
SIAM J. APPLIED DYNAMICAL SYSTEMS c© 2006 Society for Industrial and Applied Mathematics
Vol. 5, No. 2, pp. 252–279

Binary Asteroid Observation Orbits from a Global Dynamical Perspective∗

F. Gabern†‡, W. S. Koon†, J. E. Marsden†, and D. J. Scheeres§

Abstract. We study spacecraft motion near a binary asteroid by means of theoretical and computational tools
from geometric mechanics and dynamical systems. We model the system assuming that one of
the asteroids is a rigid body (ellipsoid) and the other a sphere. In particular, we are interested in
finding periodic and quasi-periodic orbits for the spacecraft near the asteroid pair that are suitable
for observations and measurements. First, using reduction theory, we study the full two body prob-
lem (gravitational interaction between the ellipsoid and the sphere) and use the energy-momentum
method to prove nonlinear stability of certain relative equilibria. This study allows us to construct
the restricted full three-body problem (RF3BP) for the spacecraft motion around the binary, as-
suming that the asteroid pair is in relative equilibrium. Then, we compute the modified Lagrangian
fixed points and study their spectral stability. The fixed points of the restricted three-body problem
are modified in the RF3BP because one of the primaries is a rigid body and not a point mass. A
systematic study depending on the parameters of the problem is performed in an effort to under-
stand the rigid body effects on the Lagrangian stability regions. Finally, using frequency analysis,
we study the global dynamics near these modified Lagrangian points. From this global picture, we
are able to identify (almost-) invariant tori in the stability region near the modified Lagrangian
points. Quasi-periodic trajectories on these invariant tori are potentially convenient places to park
the spacecraft while it is observing the asteroid pair.

Key words. asteroid pairs, spacecraft dynamics, stability, frequency analysis, invariant tori, quasi-periodic
motion

AMS subject classifications. 37N05, 70F07, 70F15

DOI. 10.1137/050641843

1. Introduction. The dynamics of asteroid pairs has recently become a topic of interest,
specially since the first binary asteroid, Ida-Dactyl, was discovered by the Galileo spacecraft in
1993. It is currently estimated that up to 20% of near-earth asteroids (NEA) are binaries [26],
and other examples have been found among the asteroid main-belt, in the Trojan swarms and
as transneptunian objects [33]. The problem of two rigid bodies orbiting around each other
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attracted by their mutual gravitational forces is challenging from the geometric mechanics
point of view [5]. Moreover, a very interesting problem with applications to astrodynamics is
the description of the dynamics of a massless particle (e.g., a spacecraft) moving under the
influence of the binary [41, 11]. Indeed, binaries can be used as real-life laboratories to test
rigid-body gravitational dynamics. As such, these theoretical studies may be relevant for a
possible future mission to binaries.

The objective of this paper is to construct and study a model for the motion of a satellite
orbiting a binary asteroid. To do this, we first have to develop a model for the asteroid pair
itself. A binary asteroid provides a canonical model for general full body problems (FBPs);
see [24, 39]. FBPs are concerned with the dynamical interaction between distributed bodies
of finite mass. In particular, the full two-body problem (F2BP) considers the dynamics of two
spatially extended bodies that interact via their mutual gravitational fields. In this paper,
we consider the “sphere restriction” of the F2BP [20]. That is, it is assumed that one of the
rigid bodies is spherically symmetric and thus can be considered as a point mass. As for the
other rigid body, we assume that it is a triaxial ellipsoid. The study of this simple model of
an asteroid pair will give some hints on the dynamics of spacecrafts about binaries, and it can
be generalized further using, for instance, more complicated potentials [47].

One of our first goals is to find stable relative equilibria of this F2BP with the property
that we can later build models for the satellite motion around the pair. Moreover, as we
look first for simple relative equilibria, we also assume that the two bodies are restricted to
moving in a plane. This makes the reduction process and the equilibria characterization much
simpler, but not too simple, as the coupling between rotational and translational motion is
still there. For a probe sent to a binary asteroid, it is plausible to assume that the underlying
F2BP is in some type of relative equilibrium. As the study of more complex models will be
important in the future, we have to first understand the simplified cases. Thus, we devote
the first part of the paper to studying the F2BP by means of reduction methods [28], to
identifying its relative equilibria, and to proving nonlinear stability for some cases with the
aid of the energy-momentum method [44].

Following this, we choose a particular stable relative equilibria of the F2BP, which corre-
sponds to a periodic orbit in the original system, to construct a model for the satellite orbiting
the binary. This model is a restricted problem of three bodies, but one of the primaries is a
rigid body. In the literature this type of model has been called the restricted full three-body
problem or RF3BP [41].

As is well known [45], the restricted three-body problem (RTBP) has five equilibrium
points, and two of them form an equilateral triangle with the primaries. These equilateral
equilibrium points, also called Lagrangian points, may persist when one of the primaries is not
a point mass but a distributed body [2, 41, 12]. The position and stability properties of these
points are, of course, affected by the perturbation and are thus modified. In the second part
of the paper, we study how these equilibrium points are modified depending on the variation
of the parameters of the problem.

In some previous works [11, 12], we have studied this problem using normal form tech-
niques near the triangular points of some particular RF3BP, which are simpler than the ones
presented here. Even though these tools give quite satisfactory results for a range of param-
eters, the zone around the fixed points where the dynamics can be described by the normal
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form is not very big. In this paper, we extend the description of this dynamics to larger
regions of the phase space.

To achieve this goal, in the last part of the paper we apply a dynamical systems–based
tool, namely frequency map analysis [21, 37, 16], to study the global dynamics around the
Lagrangian points. We are able to identify relatively large neighborhoods of these equilibrium
points in phase space at which the trajectories are stable for a long time. As far as we know,
this is the first time that this powerful numerical tool (frequency analysis) has been applied
to orbit mechanics about asteroids.

Previously, a wavelet-based frequency analysis [46] has been used to study the transport
in the Sun-Jupiter RTBP. The advantage of this method appears in problems where the
frequencies vary with time, for example when there is relatively “fast” transport from one
region of phase space to another. In our problem, we are interested in the dynamics close
to an elliptic point, and the results given by the wavelet method should be similar to those
presented here. In particular, we look for tori that are “invariant enough,” i.e., tori where we
can place the spacecraft for a long enough time (the meaning of this will be clarified later on).
In this case, if there is transport between nearby tori, the transport should be slow.

The paper is organized as follows. In section 2, we develop and study a model of the
asteroid pair. The relative equilibria of the reduced binary system are characterized, and their
stability is studied by means of the energy-momentum method. In section 3, we construct
the model for the satellite orbiting the asteroid pair, i.e., the RF3BP, and we find the new
coordinates of the modified Lagrangian points of the RTBP and study its spectral stability. In
section 4, we study the global dynamics near the Lagrangian points of the RF3BP by means
of frequency analysis methods. This global study allows us to find (almost-) invariant tori and
trajectories very close to quasi-periodic, which are pretty suitable for the satellite. Finally,
in section 5, our conclusions and future directions are presented. For the convenience of the
reader, we add in the appendix a brief review on Abelian reduction theory, which is used in
section 2 to study the F2BP.

2. Stability of the asteroid pair.

2.1. Reduced model for the binary. To model the asteroid pair, we consider the me-
chanical system of a triaxial ellipsoid and a sphere that interact via the mutual gravitational
potential and are allowed to move in a plane. In an inertial reference frame, the kinetic energy
of the system is

K =
1

2
m‖q̇‖2 +

1

2
M‖Q̇‖2 +

1

2
Izzϕ̇

2,

where q and Q are the positions of the sphere’s center and the barycenter of the ellipsoid and
m and M are, respectively, the masses of the sphere and the ellipsoid. Izz is the component
orthogonal to the plane of motion of the inertia tensor of the ellipsoid, and the angle ϕ is as
shown in Figure 1.

This system is invariant under translations. Thus, defining the relative position of the
bodies as r = q − Q and taking as unit of mass the reduced mass, i.e., mM/(m + M) = 1,
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Figure 1. Gravitational interaction of a rigid body and a sphere in the plane.

the system is described by the Lagrangian functional

L(r, ϕ, ṙ, ϕ̇) =
1

2
‖ṙ‖2 +

1

2
Izzϕ̇

2 − V (r, ϕ),(2.1)

where ‖ · ‖ denotes the Euclidean norm and V (·) is the gravitational potential of the sys-
tem. The Legendre transform, (p, pϕ) = (ṙ, Izzϕ̇), gives the Hamiltonian formulation of the
problem:

H =
1

2
‖p‖2 +

1

2Izz
p2
ϕ + V (r, ϕ).(2.2)

We assume that the axes of the ellipsoid, (α, β, γ), are ordered as 0 < γ ≤ β ≤ α = 1 and
that the “γ axis” is orthogonal to the plane of motion. Thus, the longest axis of the ellipsoid
is taken as the unit of length. The unit of time is taken such that GmM = 1. The mass
parameter of the system will be denoted ν = m/(m+M), and then the moment of inertia of
the ellipsoid is Izz = (1 + β2)/(5ν). To write the mutual gravitational potential function of
the ellipsoid and sphere, we use Ivory’s theorem [25, 38]:

V (r, ϕ) = V (r, θ) = −3

4

∫ +∞

λ(r,θ)
Φ(r, θ;u)

du

Δ(u)
,(2.3)

where r = ‖r‖, θ = φ− ϕ,

Φ(r, θ;u) = 1 − r2 cos2 θ

1 + u
− r2 sin2 θ

β2 + u
,

Δ(u) =
√

(1 + u)(β2 + u)(γ2 + u), and λ(r, θ) > 0 is the largest root of Φ(r, θ;λ(r, θ)) = 0.
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This system still has an overall rotational symmetry; that is, it is invariant under rotations
in the plane of motion. In other words, the action of the symmetry group SO(2) leaves the
system invariant. Hence, to reduce the dimensionality of the problem, we apply the abelian
reduction reviewed in the appendix.

For this purpose, by introducing polar coordinates and relative angles (see [12]), we write
the Hamiltonian function in a much more convenient way:

H =
1

2
p2
r +

(
1

2r2
+

1

2Izz

)
p2
θ +

1

2Izz
p2
ϕ − 1

Izz
pθpϕ + V (r, θ),(2.4)

where pθ = r2θ̇ + r2ϕ̇ and pϕ = r2θ̇ + (r2 + Izz)ϕ̇. Notice that ϕ is a cyclic variable of
the Hamiltonian (2.4), and therefore its conjugate momentum pϕ is conserved (Noether’s
theorem).

We then apply cotangent bundle reduction (see section A.2): The momentum map is given
by J(r, θ, ϕ, pr, pθ, pϕ) = pϕ and corresponds to the total angular momentum of the system in
the new coordinates. The locked inertia tensor (instantaneous inertia tensor when the relative
motion of the two-body system is locked) is I(r, θ, ϕ) = r2 + Izz. The mechanical connection

is the 1-form given by A(r, θ, ϕ) = r2

r2+Izz
dθ + dϕ. For a fixed angular momentum pϕ = μ, we

finally perform the shift from J−1(μ) to J−1(0) as

p̃r = pr, p̃θ = pθ −
μr2

r2 + Izz
, p̃ϕ = 0.

The reduced Hamiltonian in J−1(0)/S1 has only two degrees of freedom,

Hμ(r, θ) =
1

2
p̃2
r +

1

2

(
1

r2
+

1

Izz

)
p̃2
θ + Vμ(r, θ),(2.5)

and Vμ(r, θ) is the amended potential,

Vμ(r, θ) =
μ2

2(r2 + Izz)
− 3

4

∫ +∞

λ(r,θ)
Φ(r, θ;u)

du

Δ(u)
,(2.6)

where Φ(r, θ;u), Δ(u), and λ(r, θ) > 0 are as defined before, and μ ∈ R is the total angular
momentum (fixed). The reduced symplectic form is noncanonical and given by

ωμ = dr ∧ dp̃r + dθ ∧ dp̃θ −
2μIzzr

(r2 + Izz)2
dr ∧ dθ.(2.7)

The equations of motion in the reduced space can be easily derived from i(ẋk∂
xk

+ẏk∂yk )ωμ =

dHμ, where (x, y) denote the configuration-momenta conjugate pair and iXΩ is the interior
product (or contraction) of the vector field X and the 1-form Ω:

ṙ = p̃r, ˙̃pr =
p̃2
θ

r3
− ∂Vμ(r, θ)

∂r
+

2μIzzr

(r2 + Izz)2

(
1

r2
+

1

Izz

)
p̃θ,

θ̇ =

(
1

r2
+

1

Izz

)
p̃θ, ˙̃pθ = −∂Vμ(r, θ)

∂θ
− 2μIzzr

(r2 + Izz)2
p̃r.
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2.2. Relative equilibria. We are now interested in finding the stable (we will make precise
later on in which sense) fixed points of the reduced equations. The relative equilibria (or fixed
points of the reduced equations) satisfy [27]:

p̃r = p̃θ =
∂Vμ

∂r
=

∂Vμ

∂θ
= 0.

The first two equations give

pr = 0,

pθ =
μr2

r2 + Izz
,

and the last two give

3

2
r
(
cos2 θRα + sin2 θRβ

)
− μ2r

(r2 + Izz)2
= 0,(2.8)

− 3

4
r2 sin 2θ (Rα −Rβ) = 0,(2.9)

where Rα and Rβ denote the elliptic integrals

Rα =

∫ +∞

λ(r,θ)

du

(1 + u)Δ(u)
, Rβ =

∫ +∞

λ(r,θ)

du

(β2 + u)Δ(u)
.

2.2.1. Spheroid. First, let us look at the case where the in-plane axes of the ellipsoid
are equal. In this case, 0 < γ < β = α = 1, and thus Rα = Rβ. Then, (2.9) is satisfied
automatically ∀θ ∈ T.

From (2.8) and assuming r > 1,

μ2

(r2 + Izz)2
=

3

2
Rα,

where in this case

Rα =

∫ +∞

r2−1

du

(1 + u)2
√

γ2 + u
.

In relative equilibria, the distance between the two bodies is constant (r ≡ constant). We can
thus define the following parameter:

ω ≡ μ

r2 + Izz
.(2.10)

The relative equilibria can be seen in the unreduced space as uniformly rotating systems.
Then, ω is precisely the angular velocity of this rotating system.

In this degenerate case, the elliptic integral Rα is trivially integrable, and we obtain the
following condition for relative equilibria: Given r > 1 and γ < 1,

ω2 = 3π − 3
√

r2 − 1 + γ2

4(1 − γ2)r2
− 3

2(1 − γ2)3/2
arctan

√
r2 − 1 + γ2

1 − γ2
.(2.11)
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Figure 2. Two types of relative equilibria for the planar ellipsoid–sphere Full 2-Body Problem. (a) Long-
Axis Equilibrium (LAE). (b) Short-Axis Equilibrium (SAE).

Note: For fixed γ < 1 and r > 1, we have a degenerate “circle” of relative equilibria
(∀θ ∈ T) with the binary rotating (in an inertial frame) at a constant angular velocity ω
satisfying (2.11). Also, for fixed mass parameter ν, we can compute Izz = 2/(5ν) and then
the angular momentum μ from (2.10).

2.2.2. Triaxial ellipsoid. Now, we focus on the triaxial ellipsoid, where 0 < γ ≤ β < α =
1. Here, Rα �= Rβ, and (2.9) yields sin 2θ = 0, which means that relative equilibria satisfy

θ = k
π

2
for any k ∈ Z.

Geometrically, we can distinguish between two types of solutions [40]:
1. LAE (long-axis equilibria) when θ = 0 or π (see Figure 2(a)), and

2. SAE (short-axis equilibria) when θ = ±π

2
(see Figure 2(b)).

Again, defining the angular velocity of the system as in (2.10), we obtain the following relations
between ω and r:

1. LAE:

ω2 =
3

2

∫ +∞

r2−1

du

(1 + u)Δ(u)
,(2.12)

2. SAE:

ω2 =
3

2

∫ +∞

r2−β2

du

(β2 + u)Δ(u)
,(2.13)

where recall that Δ(u) =
√

(1 + u)(β2 + u)(γ2 + u). Here, for fixed 0 < γ ≤ β < 1 and R ≥ 1,
there is a fixed point with coordinates (r, θ) = (R, kπ/2) for an angular velocity ω satisfying
(2.12) for kmod 2 = 0, or (2.13) for kmod 2 = 1. Moreover, given the mass parameter, ν,
one can compute the ellipsoid’s moment of inertia Izz = (1 + β2)/(5ν) and, using (2.10), the
angular momentum of the system μ.
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2.3. Stability of relative equilibria: Energy-momentum method. We apply the energy-
momentum method of Simo, Lewis, and Marsden [44] to study the stability of the relative
equilibria that we have just found. According to this method (see also [31, 3]), to carry out
the stability analysis of the LAE and SAE, we must compute δ2Vμ on the subspace orthogonal
to the group Gμ-orbit (in this case, Gμ = SO(2) = S1).

From (2.6), it is easy to see that

δ2Vμ =

(
A 0
0 B

)
,

for θ = k π
2 (LAE and SAE) and where A,B ∈ R and their values depend, of course, on the

particular relative equilibrium.

In the spheroid case, α = β, and thus

A =
4r2ω2

r2 + Izz
− 3

r2
√

r2 + γ2 − 1
,

where ω satisfies (2.11) and B = 0. This is due to the fact that the relative equilibria are
degenerate. Therefore, the energy-momentum method is not conclusive for the “circle” of
relative equilibria in the spheroid-sphere particular case.

1. Stability of LAEs. In this case, θ = 0 or π and thus

B = −3

2
r2 (Rα −Rβ) ,

A =
4r2ω2

r2 + Izz
− 3

r
√

(r2 + β2 − 1)(r2 + γ2 − 1)
,

where ω is given by (2.12). As α > β, Rα < Rβ and thus B > 0. Then,
(a) if A > 0, the LAE is (linearly and nonlinearly) stable;
(b) if A < 0, the LAE is unstable (the index is odd [31, 35]).
In Figure 3, we show some ranges for the parameter values that give stability of the
LAE.
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Figure 3. LAE. Nonlinear stability (red zone) and instability (white zone) of the long-axis relative equilibria
of the binary with respect to the mass parameter ν and the distance between the two bodies R for some values
of the ellipsoid axes: (a) β = γ = 0.5, (b) β = γ = 0.8, (c) β = 0.5 and γ = 0.25.
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2. Stability of SAEs. In this case, θ = ±π
2 and

B =
3

2
r2 (Rα −Rβ) ,

A =
4r2ω2

r2 + Izz
− 3

r
√

(r2 + 1 − β2)(r2 + γ2 − β2)
,

where ω is given by (2.13). As α > β, Rα < Rβ and thus B < 0. Then,
(a) if A > 0, the SAE is unstable (the index is odd [31, 35]);
(b) if A < 0, the stability of the SAE requires further analysis. In this case, we study

their spectral stability by computing numerically the eigenvalues of the linearized
vector field at the fixed points of the reduced system.

In Figure 4, we show ranges for the parameter values for which the SAE are spectrally
stable, unstable, or complex unstable.
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Figure 4. SAE. Unstable zone (green), complex unstable zone (white), and spectrally stable zone (red) of
the short-axis relative equilibria of the binary with respect to the mass parameter ν and the distance between the
two bodies R for some values of the ellipsoid axes: (a) β = γ = 0.5, (b) β = γ = 0.8, (c) β = 0.5 and γ = 0.25.

3. RF3BP. We focus now on a satellite influenced by the gravitational potential of the
binary. To model the motion of this satellite, we assume that the binary is in a relative
equilibrium, and we use the study performed in the last section. As the relative equilibria
found in section 2.2 are periodic orbits for the unreduced system, we will write the equations
of motion for the satellite in a rotating reference in which the asteroid pair is fixed.

We consider binaries such that the rigid body (ellipsoid) is “big” and the spherical body
is “small.” Hence, we assume that ν 
 1. This situation is thought to be the most common
in the main belt [33]. Moreover, as for ν 
 1 and moderate R values the SAE are spectrally
stable, we will also assume that the binary is moving in this particular solution of the F2BP.
For a study of the motion of a spacecraft near a binary in LAE, see [41].

We will now derive the equations of motion for a satellite orbiting a binary in SAE.
We start by assuming that the barycenter of the system is at the origin. As in an inertial
reference frame, the SAE is a uniformly rotating motion [12], and we write the equations for
the spacecraft in a rotating frame for which the two massive bodies, ellipsoid and sphere, are
fixed. More concretely, we choose a reference system where the centers of mass of the ellipsoid
and sphere are at the configuration points (−νR, 0, 0) and ((1 − ν)R, 0, 0), respectively; see
Figure 5. In this case, note that the longest axis of the ellipsoid is parallel to the y axis.



GLOBAL DYNAMICS NEAR AN ASTEROID PAIR 261

�
�

���

�� ��� ���

�� ��

	




Figure 5. Model for the spacecraft motion around the binary asteroid. The asteroid pair is assumed to be
in SAE, and the equations of motion for the spacecraft are written in a rotating frame.

Even though the uniformly rotating motion of the binary is in the xy-plane, we will
consider that the satellite is allowed to move in the entire three-dimensional xyz-configuration
space. The equations of motion for the spacecraft in this situation can be constructed similarly
to the RTBP equations [45]. They allow a Hamiltonian formulation and can be obtained from
the following Hamiltonian function:

H(px, py, pz, x, y, z) =
1

2

(
p2
x + p2

y + p2
z

)
+ ω (ypx − xpy) + V (x, y, z),

V (x, y, z) = −3(1 − ν)

4

∫ +∞

λ(x,y,z)
Φ(x, y, z;u)

du

Δ(u)
− ν

r2
,(3.1)

where (x, y, z) is the position of the spacecraft in the rotating reference frame, (px, py, pz)
are the conjugate momenta, and ω is the angular velocity of the rotating system (2.13).
We define R to be the distance between the ellipsoid and sphere barycenters. Then, r2

2 =
(x− (1− ν)R)2 + y2 + z2. The gravitational potential coming from the ellipsoid is computed
as before but considering that now the reference frame is tilted by 90◦. Then, we compute
V (x, y, z) using

Φ(x, y, z;u) = 1 − (x + νR)2

β2 + u
− y2

1 + u
− z2

γ2 + u

and Δ(u) =
√

(1 + u)(β2 + u)(γ2 + u). Finally, λ(x, y, z) > 0 is defined implicitly as the
largest positive root of Φ(x, y, z;λ(x, y, z)) = 0.

In this case, the symplectic form of the system is canonical, and the equations of motion
for the spacecraft are very easy to derive. From now on, we will denote this problem the
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RF3BP, and the differential equations are

ẋ = px + ωy, ṗx = ωpy − (1 − ν)(x + νR)Rβ − ν(x− (1 − ν)R)

r3
2

,

ẏ = py − ωx, ṗy = −ωpx − (1 − ν)yRα − νy

r3
2

,

ż = pz, ṗz = −(1 − ν)zRγ −
νz

r3
2

,

where

Rα =
3

2

∫ +∞

λ(x,y,z)

du

(1 + u)Δ(u)
,

Rβ =
3

2

∫ +∞

λ(x,y,z)

du

(β2 + u)Δ(u)
,

Rγ =
3

2

∫ +∞

λ(x,y,z)

du

(γ2 + u)Δ(u)
.

To compute these elliptic integrals, we use Carlson’s elliptic integral of the second kind [4]:

Rα(x, y, z) = RD(β2 + λ(x, y, z), γ2 + λ(x, y, z), 1 + λ(x, y, z)),

Rβ(x, y, z) = RD(1 + λ(x, y, z), γ2 + λ(x, y, z), β2 + λ(x, y, z)),

Rγ(x, y, z) = RD(1 + λ(x, y, z), β2 + λ(x, y, z), γ2 + λ(x, y, z)),

where RD(x, y, z) = 3
2

∫ +∞
0 (t + x)−1/2(t + y)−1/2(t + z)−3/2 dt.

3.1. Substitutes of the Lagrangian points. As was mentioned before, it is well known
[45] that the RTBP has five equilibrium points. Three of them lie on the x axis and are
called collinear or Eulerian points, and two of them, the triangular or Lagrangian points
(also known as L4 and L5), form an equilateral triangle with the primaries. Here, we are
interested in investigating how the rigid-body (ellipsoid) affects the position and stability of
these triangular points. See Figure 6.

The fixed points of the RF3BP satisfy the following set of equations:

px = −ωy, ω2x = (1 − ν)(x + νR)Rβ +
ν(x− (1 − ν)R)

r3
2

,

py = ωx, ω2y = (1 − ν)yRα +
νy

r3
2

,

pz = 0, 0 = (1 − ν)zRγ +
νz

r3
2

.

There are three solutions satisfying y = z = 0 that correspond to the “perturbed” collinear
points. These equilibria are unstable [2] and therefore not suitable for constructing orbits in
which to park a spacecraft. A priori, one could think that the collinear points of the RF3BP
can have applications similar to the RTBP [29], such as the Genesis Discovery Mission, and
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Figure 6. Schematic picture of the stability zones near the Lagrangian points of the RF3BP.

that it can be cheap to park a spacecraft near them by using the so-called center manifold
[18, 15]. But this is not true in the current study. The difference is that in the binary asteroid
problem the time scale is much shorter. This makes things such that the correction maneuvers,
necessary to compensate the normal instability of the orbits, have to be performed too often
to be feasible in practice.

We look for solutions such that z = 0 and y �= 0. If there were no rigid-body effects, these
fixed points would correspond to the RTBP L4 and L5. They are thus the substitutes of the
Lagrangian points and satisfy

ω2x = (1 − ν)(x + νR)Rβ +
ν(x− (1 − ν)R)

r3
2

,

ω2 = (1 − ν)Rα +
ν

r3
2

.

We have numerically solved these equations for certain values of the parameters β, γ, ν,
and R by means of Newton’s method. In Figure 7, we plot the (x, y)-projection of these fixed
points for y > 0 (there is a symmetric solution at −y) after shifting and rescaling in such a
way that the ellipsoid is centered at (0, 0) and the sphere at (1, 0). After fixing β and γ, we
vary the mass parameter ν from 10−3 to 0.5 and the distance between primaries from R = 1
to R = 10. Every red dot in Figure 7 corresponds to the substitute of the L4 fixed point for
a particular set of parameter values. More concretely, the red point at the bottom corner of
every figure corresponds to ν = 10−3 and R = 1; the point at the top-left corner to ν = 0.5
and R = 1; and, the point at the top-right corner to ν = 0.5 and R = 10. See caption for
more details.

Recall that, in these units, the Lagrangian point (L4) is at the position (x, y) = (0.5,
√

3/2).
From the pictures, we can see that for small ν (big rigid-body) and short R (the two bodies
are close) the position of the fixed point deviates a lot from the L4 position. For larger ν
values and moderate distances between the primaries, the fixed point is closer to the RTBP
triangular region.
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Figure 7. Actual positions (x, y, 0) of the substitutes of the Lagrangian point L4 in the xy-plane when the
mass parameter is varied between 10−3 and 0.5 (right to left) and the distance R increases from 1 to 10 (bottom
to top). The positions have been shifted and rescaled in such a way that the ellipsoid is centered at (0, 0, 0) and
the sphere at (1, 0, 0). (a) β = γ = 0.5, (b) β = γ = 0.8, (c) β = 0.5 and γ = 0.25.

3.2. Spectral stability of the equilibrium points. We focus now on the study of the
stability of the substitutes of the Lagrangian points in the RF3BP. In this section, we con-
sider their spectral stability, i.e., stability w.r.t. eigenvalues of the linearized vector field. In
section 4, we will study the nonlinear stability by means of a numerical method.

We begin with the linearization of the system (3.1) at the equilibrium point that substitutes
L4. We then compute numerically its eigenvalues. Similarly at the RTBP, this study shows
that for “small” mass parameter values (ν 
 1), the fixed points are spectrally stable and,
for larger ν, they are complex unstable, although in certain cases the critical value is larger
than the Routh mass [41].

In Figure 8, we show some examples of the spectral stability behavior of the perturbed
triangular fixed points of the RF3BP for different types of ellipsoids. We also superimpose on
these pictures the stability zone of the SAE of the corresponding binary system.

In the next section, to perform a numerical global study of the stability region around the
perturbed Lagrangian points in the RF3BP, we will be interested in the cases for which the
underlying binary system is in a stable SAE and for which the corresponding triangular fixed
point is spectrally stable. Thus, we will look at the intersection of the green and red zones in
Figure 8.

4. Global dynamics around the Lagrangian points. In this section, the refined Fourier
analysis method (see [16]) is used to study the dynamics around the tadpole region of the
Lagrangian points. First, we obtain a global dynamical picture of the neighborhood of the
fixed points. Later we identify trajectories that are very close to quasi-periodic motion and
place the spacecraft in them, to simulate its dynamics while it is in a position in which to
make observations of the binary system.

As the computations involved in this section are very intensive, we do not intend to
perform a systematic study of the dynamics in terms of the parameters (which we believe
was approached in the last sections), but we will choose a particular set of parameter values
close to an actual asteroid pair. We thus start by fixing the four parameters of the RF3BP
in the following manner: β = 0.7576, γ = 0.6314, ν = 1.16 × 10−3, and R = 5.873. These
particular values approximate the ones of the binary Kalliope-Linus system, placed in the
main-belt (see [17]). Even though observations suggest that this asteroid pair is not in SAE,



GLOBAL DYNAMICS NEAR AN ASTEROID PAIR 265

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0  0.02  0.04  0.06  0.08  0.1

ν

R
β = γ = 0.4

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0  0.02  0.04  0.06  0.08  0.1

ν

R

β = γ = 0.5

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0  0.02  0.04  0.06  0.08  0.1

ν

R

β = γ = 0.6

(a) (b) (c)

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0  0.02  0.04  0.06  0.08  0.1

ν

R

β = γ = 0.7

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0  0.02  0.04  0.06  0.08  0.1

ν

R

β = γ = 0.8

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0  0.02  0.04  0.06  0.08  0.1

ν

R

β = γ = 0.9

(d) (e) (f)

Figure 8. Green: spectrally stable zones for the perturbed triangular points in the RF3BP. Red: spectrally
stable zones for the SAE of the corresponding asteroid pair. The eigenvalues are computed for fixed β and γ,
for a mass parameter ν ∈ [0, 0.1], and for a distance between the primaries R ∈ [1, 10]. The fixed values of the
ellipsoid’s axes are (a) β = γ = 0.4, (b) β = γ = 0.5, (c) β = γ = 0.6, (e) β = γ = 0.7, (f) β = γ = 0.8,
(g) β = γ = 0.9.

as an illustration of how the method works we will construct the model for the spacecraft
assuming that the underlying binary with these parameter values is actually in SAE. Here,
we use the construction of the RF3BP as in section 3. In this case, the uniform rotation of
the binary in SAE is ω = 7.01844077933 × 10−2, which corresponds to a complete revolution
every 3.6 terrestrial days.

For this particular set of parameter values, the triangular points of the RF3BP are ellip-
tic fixed points. From the eigenvalues of the linearized system, it is possible to obtain the
frequencies of the normal oscillators at the equilibrium point:

ω1 = 1.72741550738 × 10−2,

ω2 = 6.76474915889 × 10−2,

ω3 = 7.05487253096 × 10−2.

Under generic conditions, the Kolmogorov–Arnold–Moser (KAM) theorem [19, 1, 34] (see
[23] or [43] for a survey) ensures the existence of many quasi-periodic trajectories in a small
neighborhood of these fixed points. In practice, the domain of applicability of the KAM
theorem is much smaller than the actual stability region, which can be extended far from the
elliptic point [32, 14, 8, 9].

In this section, we explore numerically this stability region near the Lagrangian points of
the RF3BP by means of the frequency analysis method.
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4.1. Frequency analysis and global dynamics. Let

f(t) =
∑
k∈Zm

ake
i<k, ν>t , ak ∈ C,

be a quasi-periodic function for which we know a table of equidistant values in the time
span [0, T ]. The frequency analysis algorithm will provide the values of the frequencies νk
and the amplitudes ãk of a function f̃(t) =

∑
ãke

iνkt that approximates f(t) in [0, T ]. The
actual method used for approximating the frequencies is the one given by [16]. The procedure
consists, basically, of equating the discrete Fourier transforms of the sampled initial data
and of the quasi-periodic approximation. For an introduction to the frequency analysis (FA)
method, see [21].

With the help of the FA method, we construct pictures of the global phase space dynamics
near the Lagrangian fixed points. As the phase space is six-dimensional (the RF3BP is a three
degrees of freedom problem), we need to reduce dimensionality by fixing some coordinates to
constants. We thus study particular slices of phase space that are relevant for the dynamics.

The practical implementation is as follows. First, we transform the Cartesian coordinates
of (3.1), (x, y, z, px, py, pz), to spherical coordinates (ρ, θ, λ, pρ, pθ, pλ) centered at the rigid-
body barycenter by means of the canonical change of variables given by the generating function

W (px, py, pz, ρ, θ, λ) = −ρ (px cos θ cosλ + py sin θ cosλ + pz sinλ) .

This change is useful in the visualization of the global dynamics, since it is well known that the
stability region near the RTBP Lagrangian points is of the “banana shape” [32, 13, 8, 9]. Thus,
we believe that they are a good set of coordinates with which to investigate the neighborhood
of the RF3BP triangular points as well.

The spherical coordinates of the upper (y > 0) triangular point for the Kalliope-Linus
system are

ρt = 1.0012900026, ptr = 0.0000000000,

θt = 31.207021475◦, ptθ = 1.0025816692,

λt = 0.0000000000, ptλ = 0.0000000000.

The zone of interest is a sufficiently large neighborhood of this point in phase space, and
one can fix some coordinates to study some particular slices. We zoom into a window in the
(ρ, θ)-space enclosing this triangular point by fixing all the momenta equal to the momenta
of the fixed point, (pρ, pθ, pλ) = (ptρ, p

t
θ, p

t
λ), and by choosing different slices for the inclination

λ = Λ, where Λ is a constant. In the experiments, we choose Λ = 0◦, 1◦, 2◦, . . . , 8◦.
Inside the (ρ, θ)-window we pick a regular mesh of 57,600 initial conditions and integrate

them in the interval of time [0, T ], with T = 50,000 adimensional units (this corresponds
to about 2,000 terrestrial days in the Kalliope-Linus system). Then, we take 32,768 sample
points for every trajectory and use the refined Fourier analysis [16] of this sample to evaluate
the three basic frequencies (recall that the RF3BP is a three degrees of freedom system) of the

orbits that we call ω
(1)
1 , ω

(1)
2 , and ω

(1)
3 . Afterwards, we repeat the integration in the interval

of time [T, 2T ] and recompute the frequencies. In this case, we call them ω
(2)
1 , ω

(2)
2 , and ω

(2)
3 .
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Finally, we consider the values δj = |1−ω
(2)
j /ω

(1)
j |, j = 1, 2, 3, as an estimation of the diffusion

(see [37] and [36]) related to the orbit starting at the phase space point (ρ, θ, λ, pρ, pθ, pλ). We
call δj the diffusion index. The values of δj give an estimation of the chaoticity of the particular
orbit. That is, if the trajectory associated with an initial condition is quasi-periodic, then δj
should be zero.

In Figure 9, we show several contour plots of the function σj = log δj for j = 1 (we
obtain similar pictures for the σ2 and σ3 cases). Every picture is performed for a fixed initial
inclination λ = Λ, from Λ = 0◦ (top-left) to Λ = 8◦ (bottom-right). We plot a color depending
on the value of the diffusion index: blue zones (δ1 < 10−10) correspond to initial conditions
whose trajectories are close to quasi-periodic; yellow-to-red zones (δ1 > 10−2) are related to
strongly irregular and escaping motion.

As we already mentioned, the top-left picture in Figure 9 corresponds to zero initial
inclination, i.e., Λ = 0◦. In synodic coordinates, this is the xy plane of motion. As this plane
is invariant under the dynamics of (3.1), all orbits starting at this particular slice will remain
in this plane and thus will be coplanar to the motion of the binary. We note that the stability
zone for this particular plane is quite different from the well-known “banana” region of the
RTBP [32, 14, 8]. In particular, for a similar mass parameter ν � 10−3, the stability zones
near the RTBP L4 and L5 are extended to a much larger domain in the xy plane [9].

When one increases the inclination Λ from 0◦ to 8◦, we see that the stability zone shrinks
rapidly until it “breaks” at about Λ ∼ 6.5◦ and disappears at about Λ ∼ 10◦. This is also
very different from the RTBP case, since it is well known (see [14, 36]) that the stable zone for
the Sun-Jupiter RTBP (ν � 10−3) grows until Λ ∼ 17◦ and does not disappear until Λ > 45◦

(recall the existence of the Trojan asteroids, which can be observed at inclinations larger than
40◦; see [7, 10]).

4.2. Gallery of quasi-periodic spacecraft trajectories. We now use the global dynamical
pictures obtained in the last section to effectively compute (close-to) quasi-periodic orbits
near the upper triangular point of the RF3BP. These orbits will lie on near-invariant tori of
dimensions 2 and 3.

To construct these tori, we proceed as follows. First, we choose initial conditions from
the global dynamical pictures that have a small associated index (we will make precise later
how small). A trajectory corresponding to one of these initial conditions will remain very
close to an invariant torus with frequencies ω1,2,3 (computed as in section 4.1). Thus, we
can numerically integrate these initial conditions for a “long-enough” time and generate the
(almost-) invariant torus (it would be invariant if the diffusion index was exactly zero).

In Figures 10 through 15, we show some examples of these (almost)-invariant tori. All
of the images have been generated by looking for initial conditions in the global pictures of
Figure 9 with a diffusion index δ1 smaller than 10−12. In particular, we have integrated them
for a time span of T = 450,000 adimensional units, that is, about 50 terrestrial years. We
could thus send a spacecraft to one of these tori, and the satellite would orbit in this (almost)
quasi-periodic orbit, without any need of extra propulsion, for at least 50 years; this is a
period more than enough for a mission of this type.

More concretely, Figure 10 shows the xy-projections of nine planar tori. These tori lie on
the zero inclination (I = 0◦) plane and, as this is an invariant plane for the RF3BP, spacecraft
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Figure 9. Global dynamics around the upper triangular point of the Kalliope–Linus system. The axes
correspond to the (ρ, θ) coordinates, where the angle is in radians. The pictures show different slices of phase
space for different inclinations Λ. From left to right and top to bottom, the portraits correspond to Λ = 0◦,
Λ = 1◦, . . . , 8◦. Blue zones are related to motion close to quasi-periodic, and hence any trajectory starting on
them is likely to remain long enough in the neighborhood of the fixed point. Yellow to red zones correspond to
initial conditions that escape, go to collision, or have a chaotic behavior in the time-window considered. See
text for more details.

trajectories on these tori will be coplanar with the orbital motion of the binary. In Figures
11 and 12, we plot the xy-, xz-, and zż-projections of six three-dimensional tori with initial
inclination I = 2◦. In Figure 13, some examples of tori with initial inclination I = 5◦ are
shown. Three examples with initial inclination I = 6◦, I = 7◦, and I = 8◦ are displayed in
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Figure 10. xy-projections of tori in the plane I = 0◦.

Figure 14. Any particular orbit chosen on these tori with nonzero initial inclination can be
useful for a spacecraft devoted to performing observations of the asteroid pair from different
perspectives. Finally, in Figure 15, we plot the three-dimensional xyz-projections of some tori
that appear in Figures 13 and 14. As we mentioned before, for larger inclinations the stability
region vanishes, and therefore no quasi-periodic orbits are found near the Lagrangian points
for I ≥ 10◦.

5. Conclusions. In this paper, we have developed and studied a model for a satellite
orbiting an asteroid pair. First, geometric mechanics was used in the modelization process
of the F2BP and in studying the stability of its relative equilibria. Then, an RF3BP was
constructed to describe the motion of the satellite, and numerical methods were used to study
some of its global stability properties. The main tool for the numerical investigation was
the frequency map analysis, which provides a very nice global view of the dynamics of this
model. Moreover, this global dynamics can be used in practice to preselect initial conditions
for satellite trajectories. Due to the stability properties of these particular orbits, they are
very suitable for parking the spacecraft on them in such a way that there is no need to spend
extra energy in the station-keeping.

Another interesting result of this paper comes from the analysis of the stability region
near the Lagrangian points of the RF3BP and its comparison with the RTBP. We have seen
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Figure 11. Invariant tori with initial conditions in the plane I = 2◦. Left column: xy-projection. Center
column: xz-projection. Right column: zż-projection.

that the rigid-body effect of one of the primaries is to make this stability region smaller in
both the equatorial plane of motion and in inclination. As an example, for ν ∼ 10−3 (which
is very close to the Sun-Jupiter mass parameter), the stability region in the RF3BP vanishes
for inclinations I ≥ 10◦, while in the Sun-Jupiter RTBP (or even in the real solar system) we
know there are objects in stable orbits up to inclinations of I ∼ 40◦ [9].

Dissipative mechanisms, such as solar radiation pressure, solar wind drag [42, 22], or the
Poynting–Robertson effect, might destroy the stability regions as dissipation-induced insta-
bilities do (see, for instance, [6]). In our case, though, we ignore the effect of solar radiation
pressure on the orbiting spacecraft, an approximation that is excellent for a mission to a
main-belt binary system. For near-Earth asteroid binary systems, a future study will be done
to map out how this additional force modifies the dynamics.

Much work still needs to be done at a theoretical level before sending an actual probe
to a binary asteroid. This paper contributes to this problem by applying to it the frequency
analysis method and showing a way of finding stable satellite orbits. Future work following
this line of investigation could consider several different aspects of the problem: first, one could
compute and study similar stability regions for more complex rigid-body gravitational systems
(like that in [47], for instance) or for two-body problems that are not in relative equilibrium
(e.g., the rigid-body is rotating faster than the relative orbital velocity of the other primary
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Figure 12. Invariant tori with initial conditions in the plane I = 2◦. Left column: xy-projection. Center
column: xz-projection. Right column: zż-projection.

[41]); second, it seems interesting to apply the same method for finding orbits that are not
necessarily close to the equilibrium points (orbits that go around one of the primaries, encircle
both primaries, retrograde orbits, etc.).

Appendix. Abelian reduction. General setting. In this appendix, we review the reduction
process for a system that is invariant under the abelian Lie group SO(2). We perform the
reduction on both sides of the problem, Lagrangian and Hamiltonian, and show that they are
equivalent via the reduced Legendre transform.

Let us start by assuming that the configuration space Q can be written as a product of
the circle S1 and a manifold B called shape space, i.e., Q = S1 ×B and q = (q0, qα) = (θ, rα),
with q ∈ Q, θ ∈ S1 and rα ∈ B ⊆ R

n.

Let us assume that the symmetry group G = SO(2) = S1 acts trivially in the following
way:

Φ : G×Q −→ Q,

(ϕ, q) �−→ Φϕ(q) = Φϕ(θ, rα) = (θ + ϕ, rα),

where G is a Lie group with Lie algebra g = R and dual Lie algebra g∗ ∼= R.
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Figure 13. Invariant tori with initial conditions in the plane I = 5◦. Left column: xy-projection. Center
column: xz-projection. Right column: zż-projection.

We also assume that the Lagrangian is of the type kinetic minus potential energy. Then,
it can be written, in a local trivialization of the tangent bundle TQ, as follows:

L(q, q̇) = K(q, q̇) − V (q) =
1

2
gij q̇

iq̇j − V (q),

where gij is a Riemannian metric and summations over i, j = 0, 1, . . . , n are understood. The
corresponding Hamiltonian on the cotangent bundle T ∗Q is given by

H(q, p) = K(FL(q, q̇)) + V (q) =
1

2
gijpipj + V (q),

where gij is the inverse of the metric gij , (q, p) = FL(q, q̇) is the Legendre transform of (q, q̇)
((qi, pi) = (qi, gij q̇

j)), and the symplectic form is canonical, i.e., Ω = dqi ∧ dpi.

A.1. Lagrangian reduction. We start with the Lagrangian rewritten in the following form:

L(rα, θ̇, ṙα) =
1

2
g00θ̇

2 + g0αθ̇ṙ
α +

1

2
gαβ ṙ

αṙβ − V (rα),

where q0 = θ ∈ T; qj = rj , j = 1 ÷ n; and α, β = 1 ÷ n. Note that L �= L(θ). Thus, θ is
a cyclic variable, and the corresponding conjugate momentum pθ = g00θ̇ = ∂L

∂θ̇
is conserved.
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Figure 14. Invariant tori with initial conditions in the planes I = 6◦ (first row), I = 7◦ (second row), and
I = 8◦ (last row). Left column: xy-projection. Center column: xz-projection. Right column: zż-projection.

While the classical theory of Routh reduction is valid, we will use modern Routh reduction
[30], which applies in a much more general framework.

The ingredients needed in the reduction process (see [30] for details) are the following:
• Infinitesimal generator: Given ξ ∈ g∗, the infinitesimal generator corresponding to the

group action can be computed as follows:

ξQ(θ, rα) =
d

dt
(exp(tξ) · (θ, rα)) |t=0 = ((θ, rα), (ξ, 0)).

• Lagrangian momentum map: The associated momentum map JL : TQ → g∗ is given
by

JL((q, q̇)) · ξQ = 〈FL(q, q̇), ξQ(q)〉 =
〈
(g0j q̇

j , gαj q̇
j), (ξ, 0)

〉
= g0j q̇

jξ.

Thus, JL(q, q̇) = g00θ̇ + g0αṙ
α.

• Locked inertia tensor: The locked inertia tensor is the instantaneous tensor of inertia
when the relative motion of the two bodies is locked. If we denote by 〈〈·, ·〉〉 the scalar
product induced by the metric gij , the locked inertia tensor I(θ, rα) : g −→ g∗ is given
(locally) by

〈I(θ, rα)η, ξ〉 = 〈〈((θ, rα), (η, 0)), ((θ, rα), (ξ, 0))〉〉 = g00ηξ.
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Figure 15. Left column: xyz-projections of two different invariant tori with initial conditions in the plane
I = 5◦. Right column: Invariant tori with initial conditions in the planes I = 6◦ (top) and I = 8◦ (bottom).

Then, I(θ, rα) = g00(r
α).

• Mechanical connection: The connection A : TQ −→ g can be written (locally) as
A(θ, rα)(θ, rα, θ̇, ṙα) = I

−1J(FL(θ, rα, θ̇, ṙα)) = g−1
00 g0j q̇

j . Thus,

A(θ, rα)(θ, rα, θ̇, ṙα) = θ̇ + g−1
00 g0αṙ

α.

From A, we can obtain the related one-form: A(θ, rα) = dθ + Aαdr
α, where Aα =

g−1
00 g0α, and the curvature B = dA = Bαβdr

α ∧ drβ has components given (locally) by

Bαβ = (∂Aα

∂rβ
− ∂Aβ

∂rα ). For a given μ ∈ g∗ ∼= R, the mechanical connection on the fiber
Q → Q/G is

αμ(θ, rα) = μdθ + μAαdr
α.

• Amended potential: For μ ∈ g∗, the amended potential is defined as

Vμ(q) = V (q) +
1

2

〈
μ, I−1(q)μ

〉
= V (q) +

1

2
g−1
00 μ

2.

• Routhian: The Routhian is a function on TQ defined as

Rμ =
1

2
‖Hor(q, q̇)‖2 − Vμ,
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where Hor(q, q̇) = (−g−1
00 g0αṙ

α, ṙα) is the horizontal component of (q, q̇) and the norm
is given by the gij metric. Then, locally, we can write

Rμ =
1

2
(gαβ − g−1

00 g0αg0β)ṙαṙβ − 1

2
g−1
00 μ

2 − V (rα).(A.1)

The general reduction theory [28, 30] tells us that if a curve q(t) in Q satisfying
JL(q, q̇) = μ is a solution of the Euler–Lagrange equations for the Lagrangian L(q, q̇),
then the induced curve on Q/Gμ satisfies the reduced Lagrangian variational principle;
that is, the variational principle of Lagrange and d’Alembert on Q/Gμ with magnetic
term B and the Routhian dropped to T (Q/Gμ).
Let be R̂μ the reduced Routhian, that is, the Routhian (A.1) dropped to the reduced
space J−1

L (μ)/S1. Then (locally),

R̂μ =
1

2
hαβ ṙ

αṙβ − Vμ(rα),(A.2)

where hαβ = gαβ − g−1
00 g0αg0β is a metric in the reduced space and Vμ(rα) is the

amended potential.
• Equations of Lagrange–Routh: The equations of motion in the reduced space J−1

L (μ)/S1

are given by

d

dt

∂R̂μ

∂ṙα
− ∂R̂μ

∂rα
= −μBαβ ṙ

β,

where Bαβ = ∂Aα

∂rβ
− ∂Aβ

∂rα and Aα = g−1
00 g0α. More concretely,

hαβ r̈
β +

(
∂hαβ
∂rγ

− 1

2

∂hβγ
∂rα

)
ṙβ ṙγ = −∂Vμ(rα)

∂rα
− μBαβ ṙ

β.(A.3)

A.2. Cotangent bundle reduction. Now, we perform the corresponding reduction in the
Hamiltonian side [27]. Let us consider that the initial Hamiltonian can be written (locally) as

H(rα, pθ, p
α
r ) =

1

2
g00p2

θ + g0αpθpα +
1

2
gαβpαpβ + V (rα),

where the metric elements gij correspond to the inverse of the metric gij . That is, gijg
jk = δki ,

where i, j, k = 0, . . . , n, and δki denotes the Kronecker delta function.
Thus, we assume that the initial Hamiltonian is invariant under the action of the abelian

symmetry group G = SO(2) = S1.
Let us perform the computations of all the extra ingredients needed in the reduction in

the Hamiltonian side [27], as follows:
• Momentum map: The momentum map corresponds to the angular momentum of the

system: J : T ∗Q −→ g∗

〈J(θ, rα, pθ, prα), ξ〉 = 〈(pθ, pα), (ξ, 0)〉 = pθξ.

Thus, J(θ, rα, pθ, prα) = pθ.
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• Momentum shift: In this case, it is convenient to perform a shift of the momenta from
J−1(μ) to J−1(0), and also in the corresponding reduced spaces, in the following way:

J−1(μ) = {(θ, rα, μ, pα)} tμ−→ J−1(0) = {(θ, rα, 0, p̃α)},
↓ ↓

J−1(μ)/Gμ = J−1(μ)/S1 tμG−→ J−1(0)/S1 = J−1(0)/G,

where

tμ(θ, rα, μ, pα) = (θ, rα, μ, pα) − (θ, rα, μ, μAα)

= (θ, rα, 0, pα − μAα) = (θ, rα, p̃θ, p̃α).

Thus, the shifting map is given by p̃α = pα − μAα and p̃θ = 0.
• Reduced Hamiltonian: In J−1(0)/G we have Hαμ = 1

2‖p̃‖2 + Vμ, where ‖ · ‖ is the
norm related to the gij metric and Vμ = V + 1

2I
−1μ2 is the amended potential. Thus,

recalling that p̃θ = 0, the Hamiltonian in the reduced space J−1(0)/G is

Hμ(rα, pα) =
1

2
gαβ p̃αp̃β + V (rα) +

1

2
μ2g−1

00 for α, β = 1 ÷ n.

• Reduced symplectic form: In general, in the reduced space, the symplectic form is not
canonical. The projection is given by the map

((T ∗Q)μ,Ωμ)
Pμ−→ ((T ∗(Q/G), ω −Bμ),

where the “reduced” symplectic form is

ωμ = ω −Bμ = drα ∧ dp̃α − μ
∂Aα

∂rβ
drβ ∧ drα.

• Hamiltonian equations: The Hamiltonian equations are given by [28]

i(ṙα∂rα+˙̃pα∂p̃α )ωμ = dHμ,

where iXΩ denotes the interior product (or contraction) of the vector field X and the
1-form Ω. Computing both sides of this identity,

i(ṙα∂rα+˙̃pα∂p̃α )ωμ = ṙαdp̃α − μ
∂Aα

∂rβ
ṙβdrα + μ

∂Aα

∂rβ
ṙαdrβ − ˙̃pαdr

α,

dHμ =
∂Hμ

∂rα
drα +

∂Hμ

∂p̃α
dp̃α,

we obtain the equations of motion in the reduced J−1(0)/G space:

ṙα =
∂Hμ

∂p̃α
, ˙̃pα = −∂Hμ

∂rα
− μ

(
∂Aα

∂rβ
− ∂Aα

∂rβ

)
ṙβ.

Finally, we can write them more explicitly as

ṙα = gαβ p̃β, ˙̃pα = −1

2

∂gβγ

∂rα
p̃β p̃γ −

∂V (rα)

∂rα
− 1

2
μ2∂g

−1
00

∂rα
− μBαβg

βγ p̃γ .(A.4)
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A.3. Reduced Legendre transform. The correspondence between the reduced equations
of motion on the Hamiltonian and Lagrangian sides is given by the reduced Legendre trans-
form. We start with the reduced Routhian (A.2),

R̂μ =
1

2
(gαβ − g−1

00 g0αg0β)ṙαṙβ − 1

2
g−1
00 μ

2 − V (rα),

and the shifted momenta,

p̃α =
∂R̂μ

∂ṙα
= (gαβ − g−1

00 g0αg0β)ṙβ.

Using the identities

g0αg
0β + gαγg

γβ = δ β
α ,

gαβgβ0 + gα0g00 = 0,(A.5)

we obtain the first equation in (A.4): gαβ p̃β = ṙα.
Now, in order to recover the reduced Lagrange–Routh equations (A.3), we compute the

time-derivative of the shifted momenta

˙̃pα = (gαβ − g−1
00 g0αg0β)r̈β +

∂

∂rγ
(
gαβ − g−1

00 g0αg0β

)
ṙγ ṙβ,

and the derivative with respect to rα of the identities (A.5),

∂g0ε

∂rα
g0β + g0ε

∂g0β

∂rα
+

∂gεγ
∂rα

gγβ + gεγ
∂gγβ

∂rα
= 0,

∂gβγ

∂rα
gγ0 + gβγ

∂gγ0

∂rα
+

∂gβ0

∂rα
g00 + gβ0∂g00

∂rα
= 0.

If we substitute the last three identities together with (A.5) into the second equation of (A.4),
we obtain

(gαβ − g−1
00 g0αg0β)r̈β +

∂

∂rγ
(
gαβ − g−1

00 g0αg0β

)
ṙγ ṙβ

=
1

2

∂

∂rα
(
gβγ − g−1

00 g0βg0γ

)
ṙβ ṙγ − ∂V (rα)

∂rα
− 1

2
μ2∂g

−1
00

∂rα
− μBαβ ṙ

β,

which exactly corresponds to the Lagrange–Routh equations (A.3).
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[4] B. C. Carlson, Computing elliptic integrals by duplication, Numer. Math., 33 (1979), pp. 1–16.
[5] H. Cendra and J. E. Marsden, Geometric mechanics and the dynamics of asteroid pairs, Dyn. Syst.,

20 (2005), pp. 3–21.
[6] M. G. Clerc and J. E. Marsden, Dissipation-induced instabilities in an optical cavity laser: A me-

chanical analog near the 1 : 1 resonance, Phys. Rev. E, 64 (2001), paper 067603.
[7] F. Gabern, On the Dynamics of the Trojan Asteroids, Ph.D. thesis, Department of Applied Mathematics

and Analysis, University of Barcelona, Barcelona, Spain, 2003; available online at http://www.maia.
ub.es/dsg/2003/.
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Publishers, Dordrecht, The Netherlands, 1999, pp. 134–150.

[22] J. C. Liou and H. A. Zook, An asteroidal dust ring of micron-sized particles trapped in 1 : 1 mean
motion with Jupiter, Icarus, 113 (1995), pp. 403–414.

[23] R. de la Llave, A tutorial on KAM theory, in Smooth Ergodic Theory and Its Applications, Proc.
Sympos. Pure Math. 69, AMS, Providence, RI, 2001, pp. 175–292.

[24] A. J. Maciejewski, Reduction, relative equilibria and potential in the two rigid bodies problem, Celest.
Mech. Dyn. Astron., 63 (1996), pp. 1–28.

[25] W. D. MacMillan, The Theory of the Potential, McGraw–Hill, New York, 1930.
[26] J. L. Margot, M. C. Nolan, L. A. M. Benner, S. J. Ostro, R. F. Jurgens, J. D. Giorgini, M. A.

Slade, and D. B. Campbell, Binary asteroids in the near-Earth object population, Science, 296
(2002), pp. 1445–1448.

[27] J. E. Marsden, Lectures on Mechanics, London Math. Soc. Lecture Note Ser. 174, Cambridge University
Press, Cambridge, UK, 1992.

[28] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Texts in Appl. Math. 17,
Springer-Verlag, New York, 1999.

http://www.maia.ub.es/dsg/2003/
http://www.maia.ub.es/dsg/2003/
http://www.maia.ub.es/dsg/2001/
http://www.johnstonsarchive.net/astro/asteroidmoons.html
http://www.johnstonsarchive.net/astro/asteroidmoons.html


GLOBAL DYNAMICS NEAR AN ASTEROID PAIR 279

[29] J. E. Marsden and S. D. Ross, New methods in celestial mechanics and mission design, Bull. Amer.
Math. Soc. (N.S.), 43 (2006), pp. 43–73.

[30] J. E. Marsden, T. S. Ratiu, and J. Scheurle, Reduction theory and the Lagrange-Routh equations,
J. Math. Phys., 41 (2000), pp. 3379–3429.

[31] J. E. Marsden and J. Scheurle, Lagrangian reduction and the double spherical pendulum, Z. Angew.
Math. Phys., 44 (1993), pp. 17–43.

[32] R. McKenzie and V. Szebehely, Nonlinear stability around the triangular libration points, Celest.
Mech. Dyn. Astron., 23 (1981), pp. 223–229.

[33] W. J. Merline, S. J. Weidenschilling, D. D. Durda, J. L. Margot, P. Pravec, and A. D.

Storrs, Asteroids do have satellites, in Asteroids III, W. F. Bottke, A. Cellino, P. Paolicchi, and
R. P. Binzel, eds., University of Arizona Press, Tucson, AZ, 2002, pp. 289–312.

[34] J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen
Math.-Phys. Kl. II, 2 (1962), pp. 1–20.

[35] Y. G. Oh, A stability criterion for Hamiltonian systems with symmetry, J. Geom. Phys., 4 (1987), pp.
163–182.
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