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Parking a Spacecraft near an Asteroid Pair

Frederic Gabern,∗ Wang S. Koon,† and Jerrold E. Marsden‡

California Institute of Technology, Pasadena, California 91125

This paper studies the dynamics of a spacecraft moving in the field of a binary asteroid. The asteroid pair is
modeled as a rigid body and a sphere moving in a plane, while the spacecraft moves in space under the influence
of the gravitational field of the asteroid pair, as well as that of the sun. This simple model captures the coupling
between rotational and translational dynamics. By assuming that the binary dynamics is in a relative equilibrium,
a restricted model for the spacecraft in orbit about them is constructed that also includes the direct effect of the
sun on the spacecraft dynamics. The standard restricted three-body problem (RTBP) is used as a starting point for
the analysis of the spacecraft motion. We investigate how the triangular points of the RTBP are modified through
perturbations by taking into account two perturbations, namely, that one of the primaries is no longer a point
mass but is an extended rigid body, and second, taking into account the effect of orbiting the sun. The stable zones
near the modified triangular equilibrium points of the binary and a normal form of the Hamiltonian around them
are used to compute stable periodic and quasi-periodic orbits for the spacecraft, which enable it to observe the
asteroid pair while the binary orbits around the sun.

Nomenclature
A( ) = mechanical connection
as = distance from the sun to the center of masses

of the binary
G = universal constant of gravitation
Gr ( ) = terms of degree r in the expansion of the

generating function
H( ) = Hamiltonian function
Hr ( ) = terms of degree r in the expansion of the

Hamiltonian function
Izz = inertia tensor of the rigid body
I( ) = locked inertia tensor of the system
J ( ) = momentum map
K ( ) = kinetic energy function
L( ) = Lagrangian function
L1,...,5 = Lagrangian points of the restricted three-body

problem
L ′

4 = substitute of the L4 Lagrangian point
in the T model

M = mass of the rigid body
m = mass of the spherical body
ms = mass of the sun
N = order of the normal form computations
N (I ) = normal form of the Hamiltonian in terms of

action variables I
PO(L ′

4) = periodic orbit that substitutes the L4 Lagrangian
point in the T-model perturbed by the sun

R(I, ϕ, θs) = remaining part of the Hamiltonian that is not in
normal form

rL = distance between the asteroids forming the
binary at the relative equilibrium

SE(2) = planar Euclidean group
SO(2) = S1 = group of rotations in the plane
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TL = period of the uniform rotation of the binary at
the relative equilibrium

V ( ) = potential energy function
μ = grade of mass dispersion of the rigid body
μR = Routh critical value
μRTBP = mass parameter of the restricted three-body

problem
ν = mass parameter of the full two-body problem
ωL = frequency of the uniform rotation of the binary

at the relative equilibrium
ωs = frequency of the the sun in the time-perturbed

T model

I. Introduction

I N the last decade, many asteroid satellites and double asteroids
have been discovered.1 These include Dactyl, the first natural

satellite of an asteroid ever found (see Fig. 1) and over 50 other
binary asteroids.2

Therefore, the study of spacecraft motion about an asteroid pair
is an extremely relevant topic for future missions to asteroids, be-
cause 16% of near-Earth asteroids (NEA) are thought to be binaries.2

Binaries can be used as real-life laboratories to test rigid-body grav-
itational dynamics.1 For instance, an important question is to find
stable zones and orbits near the asteroid pair where a spacecraft can
“park” to carry out measurements and observations of the binary as
the pair orbits around the sun (see Fig. 2).

In solving this problem, we use the circular restricted three-body
problem3 (RTBP). The RTBP describes the motion of a massless
particle under the gravitational attraction of two massive bodies
(primaries) that presumably revolve in circular orbits around their
common center of masses. Usually, the system is studied in a rotating
frame (synodical), where the two massive bodies are fixed on the x
axis. The details on how to derive the corresponding equations of
motion can be found, for instance, in Ref. 3.

The RTBP has five equilibrium points (in synodical coordinates).
Three of them are on the x axis, and they are known as collinear
points or L1, L2, and L3. The remaining two form equilateral trian-
gles with the massive bodies and are known as triangular points or
L4 and L5 (see Fig. 3).

Although the collinear points are always unstable, the stability of
the triangular points depends on the value of μRTBP = m/(M + m),
where m and M are the masses of the primaries. If μRTBP < μR ,
where μR = 1

2
[1 − √

(23/27)] (known as the Routh critical value),
the triangular points are spectrally stable; otherwise, they are un-
stable. These “equilateral” points are of interest to us because their
stability properties will vary because of the rigid-body effects.
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Fig. 1 Top: Ida and Dactyl (source: JPL); bottom: A schematic dia-
gram representing the sizes of the 2000 DP107 components and their
separation, drawn to scale (source: J. L. Margot, Caltech).

Fig. 2 Schematic diagram showing two stable zones for the spacecraft
(gray �) to observe the binary (M and m) as the asteroid pair orbits
around the sun (S).

Fig. 3 Five equilibrium points of the RTBP.

The main aim of this paper is thus to study how these triangular
equilibria are perturbed 1) when one of the primaries is an extended
rigid body, and 2) when the effect of orbiting the sun is also con-
sidered. Under these situations, the coupling between the dynamics
of the relative translational motion of the two bodies and the rigid-
body rotation has to be taken into account. Furthermore, a time
dependency will appear because of the perturbation of the sun.4,5

Questions (1) and (2) are also addressed in Ref. 6 with a different
methodology.

The collinear unstable points are also worth studying because we
know, via Genesis Discovery Mission, for example, that it can be
cheap to park a spacecraft near them by using the so-called center
manifold.7

We use a simple model for the asteroid pair, a planar system made
up of a rigid body and a sphere. This model is known as sphere
restriction of the full two-body problem8 (F2BP). The F2BP con-
siders the gravitational interaction between two distributed bodies
(see Ref. 9 for a formal definition of the problem and some initial
stability studies, and see Refs. 10–12 for more studies on stability
of the F2BP, including the sphere restriction case).

To model the spacecraft motion, we assume the binary to be in a
relative equilibrium, and we also consider the direct effect of the sun
on the spacecraft. Other studies in the literature6,13 use the approach
taken in Hill’s problem, in which the sun is taken at infinity, to tackle
the influence of the perturbation of the sun.

The basic techniques used in the present paper are taken from
reduction theory and dynamical systems. The use of Hamiltonian
reduction methods allows us to reduce the dimension of the problem
and helps in the construction of the models. Normal Form techniques
are central to our numerical explorations in studying these models.
The software we used is adapted from the programs in Refs. 14 and
4, and it uses symbolic algebra routines to obtain high-order expan-
sions (Taylor and Fourier–Taylor series) of the functions involved in
the computations. These high-order expansions are important, for
instance, to obtain relatively high inclination observation orbits for
the spacecraft.

We first derive the reduced equations for the asteroid pair via re-
duction theory and make an analytical study of this reduced model.
We then construct the models for the spacecraft motion based on
a relative equilibrium solution of the asteroid pair. Only the direct
effect of the sun on the spacecraft (and not on the asteroid pair) is
considered in the modeling. Next, we study the dynamics of these
models in the vicinity of the stable triangular points and use this
study to find stable periodic and quasi-periodic orbits suitable for
parking the spacecraft while it observes the binary. Finally, the con-
clusions are presented.

II. Model of the Asteroid Pair
To obtain a model of an asteroid pair, we apply Abelian reduction

(see Refs. 15–17 for the details) to the particular case of the planar
F2BP with the sphere restriction.

A. Equations of Motion for the Binary
Consider the mechanical system of a rigid body and a sphere that

are moving in a plane, as in Fig. 4.

Fig. 4 Gravitational interaction of a rigid body and a sphere in the
plane.
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1. Reduction of the Translational Symmetry
Relative to a given inertial reference frame, the kinetic energy of

the system is

K = 1
2
m‖ṙ‖2 + 1

2
M‖Ṙ‖2 + 1

2
Izz θ̇

2

where r and R are the positions of the sphere’s center and the
barycenter of the rigid body and the angle θ is as shown in Fig. 4.

We perform a first reduction using the invariance of the sys-
tem under translations by using the fact that at the system’s cen-
ter of mass, mr + MR = 0. Defining q = r − R, which is the rela-
tive position of the sphere with respect to the rigid body, one gets
r = [M/(m + M)]q and R = [−m/(m + M)]q, and the kinetic en-
ergy can be rewritten as

K = 1
2
[mM/(m + M)]‖q̇‖2 + 1

2
Izz θ̇

2

If the unit of mass is defined such that mM/(m + M) = 1, the unit
of length is taken to be the longest axis of inertia of the rigid body,
and the unit of time is chosen such that G(m + M) = 1, then the
kinetic energy can be simplified as

K = 1
2
‖q̇‖2 + 1

2
Izz θ̇

2

The configuration space of this reduced system is the planar Eu-
clidean group SE(2), and its Lagrangian can be written locally as

L(q, θ, q̇, θ̇ ) = 1
2
‖q̇‖2 + 1

2
Izz θ̇

2 − V (q, θ) (1)

From the Lagrangian, we obtain the momenta conjugate to the
variables (q, θ) via the Legendre transformation: p = ∂L/∂ q̇ = q̇,
pθ = ∂L/∂θ̇ = Izz θ̇ . Thus, its corresponding Hamiltonian is

H = 1
2
‖p‖2 + (1/2Izz)p2

θ + V (q, θ) (2)

This system still has an overall rotational symmetry.

2. Reduction of the Rotational Symmetry
We first perform two preliminary (canonical) changes of variables

that will simplify the action of the symmetry group SO(2) = S1 on
the configuration space SE(2). The first change is the introduction
of polar coordinates:

qx = r cos φ, px = pr cos φ − (pφ/r) sin φ

qy = r sin φ, py = pr sin φ + (pφ/r) cos φ

The second one is the use of the relative angles

α = φ − θ, pα = pφ

β = θ, pβ = pφ + pθ

as shown in Fig. 4. These changes are the first steps in rewriting the
equations of the system using the body frame of the rigid body. The
Lagrangian becomes17

L = 1
2
ṙ 2 + 1

2
r 2α̇2 + 1

2

(
r 2 + Izz

)
β̇2 + r 2α̇β̇ − V (r, α)

Note that the potential does not depend on the orientation angle
θ because of its invariance under rotations. Also the action of the
symmetry group SO(2) on the (r, α, β) variables is trivial:


ϕ(r, α, β) = (r, α, β + ϕ)

The Hamiltonian in these new coordinates is given by

H = 1
2

p2
r + (

1/2r 2 + 1/2Izz

)
p2

α + (1/2Izz)p2
β

− (1/Izz)pα pβ + V (r, α) (3)

where pα = r 2α̇ + r 2β̇ and pβ = r 2α̇ + (r 2 + Izz)β̇. Notice that β is
a cyclic variable of the Hamiltonian (3), and therefore its conjugate
momentum pβ is conserved.

To perform the reduction of the Hamiltonian, we apply cotan-
gent bundle reduction theory (for details, see Refs. 15 and 16). The
momentum map is given by

J(r, α, β, pr , pα, pβ) = pβ

which corresponds to the angular momentum of the system in the
new coordinates. The locked inertia tensor is I(r, α, β) = r 2 + Izz ,
which is the instantaneous inertia tensor when the relative motion
of the two body is locked. The mechanical connection is the 1-form
given by

A(r, α, β) = [
r 2

/(
r 2 + Izz

)]
dα + dβ

For a fixed pβ = γ , we can perform the momentum shift from J−1(γ )
to J−1(0) by means of

p̃r = pr , p̃α = pα − [
γ r 2

/(
r 2 + Izz

)]
, p̃β = 0

The reduced Hamiltonian in J−1(0)/S1 has only two degrees of
freedom

H = 1
2

p̃2
r + 1

2

(
1/r 2 + 1/Izz

)
p̃2

α + V (r, α) + γ 2
/

2
(
r 2 + Izz

)
(4)

with the noncanonical reduced symplectic form given by

ωγ = dr ∧ d p̃r + dα ∧ d p̃α − 2γ Izzr

(r 2 + Izz)2
dr ∧ dα (5)

Finally, the reduced Hamiltonian equations can be easily derived
from the Hamiltonian (4) and the symplectic form (5). It is a system
with two degrees of freedom, which describes the motion of the
sphere in the body frame of the rigid body

ṙ = p̃r

α̇ =
(

1

r 2
+ 1

Izz

)
p̃α

˙̃pr = p̃2
α

r 3
− ∂V

(
r, α

)
∂r

+ γ 2r(
r 2 + Izz

)2
+ 2γ Izzr(

r 2 + Izz

)2

(
1

r 2
+ 1

Izz

)
p̃α

˙̃pα = −∂V (r, α)

∂α
− 2γ Izzr(

r 2 + Izz

)2
p̃r

where V (r, α) is the potential of the rigid body in the body frame.

3. Simple Potential of the Rigid Body
For simplicity, we approximate the potential of the rigid body

by the gravitational potential of three masses attached with two
massless rigid rods. The two external masses are assumed to be
identical (see Fig. 5). Similarly, a recent related paper18 treats the
mutual dynamics of a sphere and a two-mass body but in a slightly
different context.

Following the results obtained in the last section, the Hamiltonian
with this potential is

H = 1

2
p̃2

r + 1

2

(
r 2 + Izz

r 2 Izz

)
p̃2

α + Vγ (r, α) (6)

where

Vγ = −1 − 2μ

r
− μ

(
1

ru
+ 1

rd

)
+ γ 2

2
(
r 2 + Izz

)
Here (see Fig. 5), γ ∈ R, μ = ms/(mb + 2ms), ν = m/(m + M),
r 2

u = r 2 + 2 dr cos α + d2, and r 2
d = r 2 − 2 dr cos α + d2. The mo-

ment of inertia of the system is Izz = μ/2ν. Sometimes it will be
useful to use Izz as a parameter instead of ν. The Hamiltonian equa-
tions can be readily derived from Hamiltonian (6) and the symplectic
form (5).
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Fig. 5 Simple model for the potential of the rigid body.

B. Relative Equilibria for the Binary
The relative equilibria of the asteroid pair in the reduced system

can be obtained from the Hamiltonian (6). They satisfy the following
equations:

p̃r = p̃α = 0,
∂Vγ

∂r
= ∂Vγ

∂α
= 0

After some computations, we obtain

pr = 0, pα = γ r 2

r 2 + Izz
, μ dr sin α

(
1

r 3
d

− 1

r 3
u

)
= 0

1 − 2μ

r 2
− γ 2r

(r 2 + Izz)2
+ μ

(
r + d cos α

r 3
u

− r − d cos α

r 3
d

)
= 0

The third equation gives us the solution for the orientation angle α
and the last one the distance r . From the first two equations, we can
compute the momenta once the relative positions are known. There
are two types of solutions, depending on the value of the orientation
angle: 1) collinear configurations, with sin α = 0, α ∈ {0, π}; and
2) T configurations, with rd = ru , which is equivalent to α = ±π/2.

1. Stability of the Relative Equilibria
We do not perform a general study of the stability of these relative

equilibria. Instead, we will focus only on the cases when the rigid
body is “big” (ν 	 1) and when the binary is in a stable configura-
tion, which enables us to study the motion of a spacecraft near the
pair. Our numerical experiments show that the collinear configura-
tions are likely to be unstable (see Ref. 12 for a related problem).
These results motivate one to study the T configuration in more de-
tail. By computing the eigenvalues of the linearized vector field at
the relative equilibria for a range of parameter values, we can es-

Fig. 6 Spectral stability of the T configuration (gray zone): top,
ν = 10−3; and bottom; ν = 10−2.

tablish the spectral stability of these relative equilibria as parameter
values vary.

An example of the results is shown in Fig. 6. Here, we have fixed
the relative mass of the binaryν to two typical values13 :ν = 10−2 and
10−3. For instance, the mass parameter for some known binaries are
ν 
 10−4 for Ida, ν 
 10−3 for Kalliope, ν 
 2 × 10−3 for Eugenia,
ν 
 2 × 10−2 for Dionysus, and ν 
 5 × 10−2 for 2000 DP107.

In Fig. 6, the parameter values corresponding to spectrally stable
relative equilibria are colored in gray. The values of the parameters
studied here are μ ∈ (0, 0.2) and ω ≡ (γ /Izz) ∈ (0, 5). The moment
of inertia of the rigid body is taken as Izz = μ/ν.

In Sec. III, we use the result summarized in Fig. 6 to choose
concrete values for the parameters such that the T configuration is
spectrally stable.

2. Reconstruction of the Relative Equilibria
Because we are interested in visualizing the relative equilibria in

the initial configuration space, we need to reconstruct the dynamics
from the reduced coordinates. In our case, it is not difficult to see
that the reconstruction equations for the group variables are given
by

θ̇ = pθ /Izz, pθ = γ − pα (7)

If a solution in the reduced space [r(t), α(t), pr (t), pα(t)] is known,
one can integrate Eq. (7) to obtain the evolution of the orientation
angle of the rigid body θ(t).

For instance, if the reduced system is in one of the relative equi-
libria just described, the conjugate momenta of the orientation angle
variable is constant, that is, pθ = constant, and the equation for the
attitude (7) is trivial to integrate

θ̇ = pθ

Izz
≡ ωL which implies that θ = ωL t + θ0

Hence, in the unreduced system the relative equilibria are peri-
odic orbits of period TL = 2π/ωL . For example, for one of the
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Fig. 7 Relative equilibria for the T configuration visualized in the
unreduced reference frame. The system is rotating uniformly with an-
gular velocity ωL.

T configuration points (r ≡ rL , α = π/2) the solution for a rigid
body and a sphere is a T-shaped object, which is rotating uniformly
at rate ωL (see Fig. 7).

III. Models for the Motion of the Spacecraft
In this section, we construct two models for the motion of a space-

craft near the asteroid pair. We assume that the binary is in a spe-
cific relative equilibrium with α = π/2 and the system is rotating
uniformly with frequency ωL , as in Fig. 7. In the first model, we
assume that the motion of the spacecraft is affected only by the
gravitational interaction of the asteroid pair. In the second model,
we add the effect of the perturbation of the sun on the equations of
motion of the spacecraft.

A. Basic T Model
Suppose that Q0 and {Qu, Qd} are, respectively, the position vec-

tors of the central and the two external masses of the rigid body in
an inertial reference frame centered at the system’s barycenter. Let
us also call Qs the position of the sphere and Q the position of the
spacecraft in the same frame.

In this inertial reference frame, the kinetic energy of the spacecraft
is given by K = 1

2
‖Q̇‖2, and thus the corresponding momenta can

be defined as P = Q̇. The equations of motion for the spacecraft can
be written as

Q̇ = P, Ṗ = −∂V

∂Q

where the potential is given by

V = −G

(
mb

‖Q0p‖ + ms

‖Qup‖ + ms

‖Qdp‖ + m

‖Qsp‖

)
with M = mb + 2ms , ν = m/(m + M), and Q j p = Q − Q j , for
j = 0, u, d, s.

We now perform a rotation to fix the rigid-body’s longest principal
axis orthogonal to the x axis: Q =RθL q, where q = (x, y, z) and
RθL is the counterclockwise rotation of angle θL = ωL t + θ0 in the
xy plane,

Rθ =

⎛⎝cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎞⎠

Fig. 8 Basic T model for the spacecraft (S/C).

In this rotating frame, the equations of motion for the spacecraft are

ẋ = px + θ̇L y, ṗx = θ̇L py − ∂V

∂x

ẏ = py − θ̇L x, ṗy = −θ̇L px − ∂V

∂y

ż = pz, ṗz = −∂V

∂z

where

V = −G

(
mb

‖q0p‖ + mu

‖qup‖ + md

‖qdp‖ + m

‖qsp‖

)
Here, θ̇L = ωL , and q j p = q − q j , for j = 0, u, d, s. Note
that q j (position vectors of the masses in the rigid-body
frame) are known from the T-configuration relative equilibria:
q0 = (−νrL , 0, 0), qu = (−νrL , 1/2, 0), qd = (−νrL , −1/2, 0), and
qs = [(1 − ν)rL , 0, 0].

These equations are Hamiltonian (in a canonical way) with the
following Hamiltonian function:

H = 1
2

(
p2

x + p2
y + p2

z

) + ωL(ypx − xpy) + V (x, y, z)

Let us redefine nondimensional units for the spacecraft model as
follows: take the new unit of length to be the distance between the
center of masses of the rigid body and the sphere, the unit of time to
be such that ωL = 1, so that the asteroid pair does a complete revo-
lution in 2π units of time, and the unit of mass such that GmM = 1.

Then, the Hamiltonian for the motion of the spacecraft can be
written as an O(μ) perturbation of the RTBP with mass-ratio ν

H = 1
2

(
p2

x + p2
y + p2

z

) + (ypx − xpy) + V (x, y, z) (8)

where

V = −(1 − ν)(1 − 2μ)/r1 − ν/r2 − μ(1 − ν)(1/ru + 1/rd)

Here, r 2
1 = (x + ν)2 + y2 + z2, r 2

2 = [x − (1 − ν)]2 + y2 + z2, r 2
u =

(x + ν)2 + (y − d)2 + z2, r 2
d = (x + ν)2 + (y + d)2 + z2, and

d = 1/2rL , as in Fig. 8.

B. T Model: Perturbation of the Sun
We now take into consideration the direct effect of sun’s pertur-

bation on the spacecraft. We assume, as a first approximation, that
the uniform rotation of the binary is not affected by the sun and
that the center of masses of the binary is also rotating uniformly
around the sun with a rate denoted by ωs , as in Fig. 9. This idea is
similar to the construction of the well-known bicircular problem19

that has been used to model some restricted four-body problems in
the solar system.20,21
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Fig. 9 Perturbation of the sun on the T model.

We start in inertial coordinates, where we denote Q as the position
vector of the spacecraft measured from the sun and {Q1, Qu, Qd , Q2}
the ones corresponding, respectively, to the center, upper, and lower
mass of the rigid body and to the sphere. In these coordinates, the
equations of motion for the spacecraft are

Q̈ = −∂V

∂Q

where the Newtonian potential is

V = − m1

‖Q − Q1‖ − mu

‖Q − Qu‖ − md

‖Q − Qd‖ − m2

‖Q − Q2‖ − ms

‖Q‖
We perform two changes of variables to write the equations in

the so-called synodical coordinates relative to the binary. The first
one is a translation from the sun to the center of masses of the
asteroid pair: Q = QCMT + R, where QCMT = (as cos θ̄s, as sin θ̄s, 0),
θ̄s = nst + θ̄ 0

s , and R = (X, Y, Z) is the position of the spacecraft
from the center of masses of the T model (C MT ). After this (time-
dependent) translation, the equations for the spacecraft are

R̈ = asn2
s (cos nst, sin nst, 0) − ∂V

∂R

The second change of variables is a (time-dependent) rotation
that fixes the binary to the x axis:

X = x cos t − y sin t, Y = x sin t + y cos t, Z = z

From here, write

ẍ − 2ẏ − x = Ẍ cos t + Ÿ sin t

ÿ + 2ẋ − y = Ÿ cos t − Ẍ sin t

Recall that, in the relative equilibria of the binary, (X1, Y1) =
(−ν cos t, −ν sin t), (X2, Y2) = [(1 − ν) cos t, (1 − ν) sin t], and
similar expressions for mu and md hold. If we denote r = (x, y, z)
to be the position of the spacecraft in these rotating coordinates, we
obtain

ẍ = 2ẏ + x + ms

a2
s

cos θs − m1

x + ν

‖r − r1‖ − m2

x − (1 − ν)

‖r − r2‖

− mu
x + ν

‖r − ru‖ − md
x + ν

‖r − rd‖ − ms
x + as cos θs

‖r − rs‖

ÿ = −2ẋ + y − ms

a2
s

sin θs − m1

y

‖r − r1‖ − m2

y

‖r − r2‖

− mu
y − d

‖r − ru‖ − md
y + d

‖r − rd‖ − ms
y − as sin θs

‖r − rs‖

z̈ = −m1

z

‖r − r1‖ − m2

z

‖r − r2‖ − mu
z

‖r − ru‖

− md
z

‖r − rd‖ − ms
z

‖r − rs‖

where θs = t − θ̄s = t − nst − π and the third Kepler law has been
used in the computations.

Finally, defining the momenta in the usual way via the Legendre
transform, we get

ẋ = px + y, ẏ = py − x, ż = pz

the equations of motion are Hamiltonian, and the Hamiltonian func-
tion can be written as a periodic perturbation of the T model:

H = 1
2

(
p2

x + p2
y + p2

z

)+ (ypx − xpy)

− (
ms

/
a2

s

)
(x cos θs − y sin θs) + V (x, y, z, θs) (9)

where

V = − (1 − ν)(1 − 2μ)

r1

− ν

r2

− μ(1 − ν)

(
1

ru
+ 1

rd

)
− ms

rs
(10)

Here, r 2
s = (x +as cos θs)

2 + (y − as sin θs)
2 + z2 and θs = ωs t + θ0

s .

IV. Nonlinear Dynamics near the Perturbed
Lagrange Points

Recall that the triangular libration points of the RTBP are spec-
trally stable if the mass parameter is smaller than the Routh critical
value. In this case, the nonlinear dynamics around these points can be
studied by means of normal form techniques.14,22,23 In this section,
we study the effect of the rigid body and the sun near the triangular
points and use similar techniques to describe the nonlinear dynam-
ics near them. The normal form expansion of the Hamiltonian at
the equilibrium points provides a way to obtain all possible motions
in a vicinity of these points. Hence, this procedure enables us to
find many quasi-periodic trajectories near the triangular points that
can be used for the spacecraft to orbit around the asteroid pair. The
advantage of having a symbolic representation of the Hamiltonian
is that it allows the prescribing of the initial conditions for these
quasi-periodic motions very easily.

To choose the parameters for the models developed in Sec.III,
we use the stability results of the asteroid pair relative equilibria de-
scribed in Sec II.B. In particular, we choose the parameters such that
the binary is in a stable T configuration. The mass ratio between the
sphere and the rigid body is taken as a typical value for certain type
of binaries, ν = m/(m + M) = 0.001. The grade of mass dispersion
μ of the rigid body is chosen to be relatively small, μ = 0.02, and
its moment of inertia is taken as Izz = 20. The angular momentum is
also taken to be moderately small, γ = 4, so that the T configuration
is spectrally stable with ω = 0.2 as its corresponding frequency (see
Fig .6). With these parameters, the T-configuration solution is found
at rL = 5.07830172847938 times the largest dimension of the rigid
body. Also, the selection of these particular values ensures that the
perturbed triangular points will be spectrally stable.

When including the perturbation of the sun, we assume that the
binary is in the main asteroid belt (as ≈ 3 astronomical unit) and
that its total mass is that of a medium/large-size asteroid (1017 kg).
This gives us the remaining parameters for the second model in
nondimensional units: as = 1.5 × 106 and ms = 1013. The relative
frequency of the sun ωs can be easily obtained from the third Kepler
law: ωs = 0.998278674068352.

Using these parameter values to make the actual computations, we
perform a local study of the nonlinear dynamics for the spacecraft
near the Lagrangian stable regions, knowing that the qualitative
results will be valid for a wide range of parameters.

The implicit function theorem shows that, if the perturbations
are small and are under some non-resonance conditions, the RTBP
triangular points persist in the basic T model and are replaced by
stable periodic orbits after taking into consideration of the sun’s
perturbation (see Fig. 10).

We focus on the L4 case, although the same results can be obtained
for L5. The new fixed point that plays the role of L4 in the T model
will be called L ′

4, and the periodic orbit that has the same period as
the sun’s perturbation Ts = 2π/ws will be named P O(L ′

4).
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Table 1 Normal frequencies for the linear oscillators around
the elliptic fixed point L′

4 and periodic orbit PO(L′
4)

Normal mode L ′
4

P O(L ′
4
)

ω1 −0.10702011607983 −0.10702058242758
ω2 0.99366842989866 0.99366615570514
ω3 1.00058470215019 1.00058692342681

Fig. 10 Schematic diagram showing the triangular equilibria of the
RTBP persist when one of the primaries is not a point mass but an
extended rigid body.

A. Study of the Dynamics at L′
4 and PO(L′

4)

Here we compute the eigenvalues of the linearized vector field
at L ′

4 or the Floquet multipliers of the periodic orbit P O(L ′
4). For

the example, they correspond to elliptic objects and are displayed
in Table 1.

Thus, the T-model system is elliptic at L ′
4 and around P O(L ′

4),
and we can study the nonlinear dynamics around these objects by
constructing a high-order normal form around the fixed point L ′

4

and around the periodic orbit P O(L ′
4).

This normal form computation allows us to extend the study of
the dynamics in a neighborhood of the elliptic invariant objects
(fixed point and periodic orbit) and provides a way to integrate
the equations of motion in this neighborhood. Once the complete
nonlinear dynamics are understood, we can use this normal form to
prescribe the trajectories of the spacecraft near the invariant object.

1. Quadratic Normal Form
We focus on the time-periodic case (for the autonomous system,

the quadratic normal form corresponds to the real Jordan form of the
linear differential equations): After having moved the origin to the
periodic orbit P O(L ′

4) (this translation is Ts periodic), the linear
part of the vector field is of the form u̇ = L(t)u, where L(t) is a
6 × 6 Ts-periodic real matrix.

The Floquet theorem ensures the existence of a linear Ts-periodic
change of variables v = C(t)u such that the linear part of the vector
field reduces to a linear system with constant coefficients v̇ = v,
where  is a 6 × 6 real constant matrix.

It is possible4 to choose the change of variables such that C(t) is
symplectic (the method requires this condition because the changes
are made directly on the Hamiltonian function) and the matrix 
takes the form

 =
(

03 �

−� 03

)
where 03 is the 3 × 3 zero matrix and � = diag(ω1, ω2, ω3) is the
diagonal matrix containing the frequencies w j corresponding to the
three normal modes of the periodic orbit [recall that the periodic
orbit P O(L ′

4) is elliptic].

Implementing these changes of variables, the normal form up
to degree 2 only contains monomials of order 2. The order 0 is
irrelevant in the equations of motion, and the order 1 terms are
eliminated because the origin is a fixed point after the translation.
So, the normal form up to degree two is a quadratic form given by

H2 = ω1

[(
x2

1 + y2
1

)/
2
] + ω2

[(
x2

2 + y2
2

)/
2
] + ω3

[(
x2

3 + y3
2

)/
2
]

Finally, it is convenient, before starting the high-order normal form,
to express the variables in complex notation

x j = (q j + i p j )
/√

2, y j = (iq j + p j )
/√

2, j = 1, 2, 3

which rewrites the quadratic part of the Hamiltonian in the following
form:

H2 = iω1q1 p1 + iω2q2 p2 + iω3q3 p3

where the values for the frequencies w j can be found in Table 1.

2. High-Order Normal Form
Prior to the construction of the high-order normal form, we ex-

pand the Hamiltonian in Fourier–Taylor series (Taylor series in the
autonomous case) and insert the previous linear changes to this ex-
pansion to obtain

H = iω1q1 p1 + iω2q2 p2 + iω3q3 p3 +
∑
j ≥ 3

Hj (q, p, θs)

which will be the starting input object of the following construction.
For details on how to expand the current type of potential functions,
see Ref. 4.

To build the normal form of order higher than 2, we use the Lie
series method (see Ref. 24, for an introduction) implemented as in
Ref. 14. We use a hand-made software that contains symbolic al-
gebra routines that deal with the Taylor and Fourier–Taylor series
appearing in the computations. We sketch one step of the process
for the time-periodic case. For the autonomous case, skip the de-
pendence with time.

Let us assume that the Hamiltonian is already in normal form up
to degree r − 1:

H = ωs pθs + H (n)

2 (qp) +
r − 1∑

j = 4, j = 2̇

H (n)

j (qp)

+ Hr (q, p, θs) + Hr + 1(q, p, θs) + · · ·
where Hr (q, p, θs) = ∑

|k| = r hk
r (θs)qk1

pk2
, θs = ωs t + θ0, and k =

(k1, k2) ∈ Z3 × Z3. The extra term ωs pθs has been introduced to
make the Hamiltonian autonomous, and pθs is the conjugate mo-
menta to the θs variable.

We are interested in making a change of variables such that the
homogeneous polynomial Hr (q, p, θs) takes a form that is as simple
as possible. In particular, we want this change to make the mono-
mials contained in it autonomous. The canonical change given by
the following generating function satisfies these requirements:

Gr = Gr (q, p, θs) =
∑
|k| = r

k1 �= k2

−hk
r (θs)

〈ω, k2 − k1〉qk1
pk2

where 〈,〉 denotes the dot product.
The new Hamiltonian obtained with this change of variables is

obtained with the Lie series24:

H ′ = H +{H, Gr }+ 1
2!

{{H, Gr }, Gr }+ 1
3!

{{{H, Gr }, Gr }, Gr }+· · ·
and can be written as

H ′ = ωs pθs + H (n)

2 (qp) +
r − 1∑

j = 4, j = 2̇

H (n)

j (qp)

+ H (n)
r (qp) + H ′

r + 1(q, p, θs) + · · ·
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Table 2 Coefficients of the normal forms up to order 3 in the actions

k1
a k2

a k3
a hk (T model)b hk (T model + sun)c

1 0 0 −1.07020116079827e−01 −1.07020582427575e−01
0 1 0 9.93668429898665e−01 9.93666155705138e−01
0 0 1 1.00058470215019e+00 1.00058692342681e+00
2 0 0 1.98209282337547e+00 1.98210606475071e+00
1 1 0 −8.41335633534186e−02 −8.41363103519259e−02
0 2 0 3.34451789294228e−02 3.34473273382156e−02
1 0 1 9.77435542208162e−02 9.77447151079432e−02
0 1 1 1.62579166640980e−02 1.62670378418912e−02
0 0 2 −7.22623320607685e−04 −7.23728487410444e−04
3 0 0 7.23164870868422e+01 7.23172271456241e+01
2 1 0 2.40637121303353e+01 2.40641088603377e+01
1 2 0 6.06695219686117e+00 6.06715074575221e+00
0 3 0 −9.09462225134519e−02 −9.09462282070405e−02
2 0 1 −3.51875180623665e+00 −3.51880095271078e+00
1 1 1 3.17368174336265e+00 3.17373202727457e+00
0 2 1 −1.72093135781978e−01 −1.72064978874555e−01
1 0 2 −1.02419399482606e−01 −1.02420550719694e−01
0 1 2 −6.60967536055335e−03 −6.64293506149859e−03
0 0 3 3.82965067009504e−05 3.82868741518696e−05

aThe first three columns contain the exponents of the actions.
bThe fourth column corresponds to the autonomous case.
cThe fifth one to the time-perturbed model.

We iterate this process and perform all of the changes up to a
high-order N . Specifically, we use N = 32 in the autonomous case
and N = 24 in the time-periodic one. These particular choices are
caused by RAM memory limitations, but they are sufficient for our
purposes.

Finally, we write the Hamiltonian in action-angle variables (I, ϕ),
by defining I j = iq j p j , j = 1, 2, 3,

H = N (I ) + R(I, ϕ, θs), N (I ) =
N/2∑

|k| = 1

hk I k1
1 I k2

2 I k3
3 (11)

where the term R(I, ϕ, θs) is the remaining part of the Hamilto-
nian that has not been transformed to normal form, and thus it still
depends on the angles and time. This term is of order N + 1.

We now assume that the dynamics in a vicinity of L ′
4 and P O(L ′

4)
is given by the normal form Hamiltonian N (I ). The error of
this approximation can be estimated by bounding the remainder
R(I, ϕ, θs), which will be large if ‖I‖2 is large. Note that for I = 0,
R= 0. The symbolic computations result with certain values for the
coefficients of the normal form expansion. These coefficients up to
order 3 in the actions are given in Table 2.

Because the normal form depends only on actions, it is integrable.
All motions in a (small) vicinity of L ′

4 and P O(L ′
4) are periodic or

quasi-periodic. They take place on invariant tori of dimensions 1, 2,
and 3 (autonomous case) or 2, 3, and 4 (periodic case). See Figs. 11
and 12 for some examples. These invariant tori can be computed
numerically because it is easy to pick the “good” initial condition
from the normal form expansion (see the following).

3. Test and Validity of the Normal Form Approximation
We have also constructed the transformations (using the generat-

ing function written as a Fourier–Taylor expansion) that send points
from the normal form space to the initial one and vice versa. These
changes of variables not only provide a way to visualize the dynam-
ics in the initial coordinates, but also they are very helpful to test
the programs.

To check the accuracy of the computations, we proceed as
follows14: First, we take a fixed value for the actions I1 = I2 = I3 = λ,
with λ small, transform this point back to the initial coordinates,
and integrate it numerically using the vector field corresponding to
Eqs. (8) and (9) during a time span T . Let us call this final point x(λ).
Then, we use the normal form (11) to integrate (this integration is a
trivial tabulation) the same initial condition (I j = λ) in the normal
form space for the same interval of time T and transform back the
final point of the integration to the initial coordinates. We call now
this point x′(λ).

Fig. 11 Examples of stable orbits near the Lagrangian zones of the
asteroid pair I: top/center, Projection into the xpx and ypy planes, re-
spectively, of a three-dimensional tori bottom, Projection into the xy
plane of four-dimensional tori for the time-periodic case.
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Fig. 12 Examples of stable orbits near the Lagrangian zones of the as-
teroid pair II: top, periodic orbit in the autonomous case; center/bottom,
two examples of three-dimensional tori for the time-periodic case.

The norm of the difference between x(λ) and x′(λ) is an increasing
function of λ and gives an estimation of the error that we are doing
when approximating the dynamics of models (8) and (9) by the
corresponding normal forms. Moreover, if we denote

e(λ) = ‖x(λ) − x′(λ)‖2 (12)

the order of the error approximately behaves like

N ≈ ln[e(λ1)/e(λ2)]

ln(λ1/λ2)

where N corresponds to the order of the normal form. This test
is performed using different (small) values of λs and successfully
passed by all our programs.

B. Spacecraft Parking Orbits
We can construct prescribed stable trajectories for the spacecraft

near the elliptic objects L ′
4 and P O(L ′

4) by using the dynamics
given by the normal form (11). Some of these stable orbits are very
interesting because we can use them to park the spacecraft to do
observations of the binary as the pair orbits around the sun.

Notice that, essentially, the I1 and I2 actions correspond to planar
motion (in the xy plane) and I3 to the vertical direction zpz . This
observation is not exact because of the nonlinear terms, but it will
be very useful for some applications.

For instance, if we are interested in performing observations of
the asteroid pair with relatively high inclinations, we can prescribe

Fig. 13 Examples of relatively high inclination orbits suitable for bi-
nary observations: top, periodic orbit for the autonomous case; bottom,
two-dimensional invariant torus for the time-periodic case.

values for the initial conditions with I1 = I2 = 0 and I3 = λ3. Then,
using the nonlinear transformation that sends points from the normal
form space to the initial one, we compute the point in the phase space
of the T model that corresponds to this initial condition. Finally, we
numerically integrate this orbit to obtain the desired invariant torus.

The concrete value of λ3 should be taken as large as possible. This
is determined by requiring that the normal form approximation error
(12) is smaller than certain tolerance, e(λ3) < Tol. In our computa-
tions, for instance, if we choose Tol = 10−10, we can take λ3 = 0.02.
With this particular choice of actions, we obtain trajectories for the
spacecraft that correspond to a periodic orbit in the autonomous case
and a two-dimensional invariant torus in the time-dependent model.
These particular trajectories are shown in Fig. 13. Notice that they
are quite extended in the vertical direction.

V. Conclusions
We have studied simple models for the motion of a satellite about

an asteroid pair, adding the effect of a nonspherical rigid body and
the perturbation of the sun. We applied reduction theory for the
modeling of the binary and dynamical systems methods for the study
of the models. These accurate semi-analytical methods enable us to
construct periodic and quasi-periodic orbits for the spacecraft very
convenient for doing observations of the asteroid pair.

Even though the models studied are approximate, the results are
useful at a theoretical level. The procedure used in this paper can
be helpful when studying more complex models, and the qualitative
dynamical behavior will persist.

In addition to make a dynamical study of the satellite motion
about the binary, the paper also contributes to the study of the natural
motion of the asteroid pair itself. This will play an important role
when developing spacecraft missions to these bodies, a current topic
of great interest.
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