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Abstract

The computation, starting from basic principles, of chemical reaction rates in realistic systems (with three or more degrees of
freedom) has been a longstanding goal of the chemistry community. Our current work, which merges tube dynamics with Monte
Carlo methods provides some key theoretical and computational tools for achieving this goal. We use basic tools of dynamical
systems theory, merging the ideas of Koon et al. [W.S. Koon, M.W. Lo, J.E. Marsden, S.D. Ross, Heteroclinic connections
between periodic orbits and resonance transitions in celestial mechanics, Chaos 10 (2000) 427–469.] and De Leon et al. [N. De
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Leon, M.A. Mehta, R.Q. Topper, Cylindrical manifolds in phase space as mediators of chemical reaction dynamics and k
I. Theory, J. Chem. Phys. 94 (1991) 8310–8328.], particularly the use of invariant manifold tubes that mediate the react
a tool for the computation of lifetime distributions and rates of chemical reactions and scattering phenomena, even in
that exhibit non-statistical behavior. Previously, the main problem with the application of tube dynamics has been w
computation of volumes in phase spaces of high dimension. The present work provides a starting point for overcom
hurdle with some new ideas and implements them numerically. Specifically, an algorithm that uses tube dynamics to pro
initial bounding box for a Monte Carlo volume determination is used. The combination of a fine scale method for deter
the phase space structure (invariant manifold theory) with statistical methods for volume computations (Monte Carlo
main contribution of this paper. The methodology is applied here to a three degree of freedom model problem and may b
for higher degree of freedom systems as well.
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1. Introduction

Chemical reaction rates are usually computed using
standard statistical methods, such as Rice-Ramsperger-
Kassel-Marcus (RRKM)[12] theory, also known as
transition state theory (TST)[43]. TST is based on the
identification of a transition state (TS) between large
regions of phase space that correspond to either “reac-
tants” or “products.” TST yields rates based on a local
study of the TS as well as the assumption that the phase
space in each region is structureless[31]. These values
can be several orders of magnitude off of experimen-
tal values[4]. Despite its shortcomings, RRKM/TST
has been a workhorse of the chemistry community for
decades. However, it is now well known that while the
structureless assumption is useful in many situations, in
general these regions (often defined by potential wells)
are not structureless[20].

De Leon et al.[5,6] attempted to extend the local
picture near the TS in two degree of freedom (d.f.) sys-
tems to a more global one and developed reaction island
theory using cylindrical manifolds[36] (now known as
tubes [39]). Berry and collaborators (see for instance
[17]) studied the local regular behavior near the saddle
regions by means of Kolmogorov entropies. Marcus
[29] suggested that these regularities were due to the
existence of some invariants near the TS. Komatsuzaki
and Berry[23–25]made further progress by using dy-
namical perturbative methods to study the transition
near the saddle region. Uzer et al.[44], by using a gen-
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the starting point for the computation of lifetime distri-
butions and rates of chemical reactions and scattering
phenomena. The standard RRKM assumption of an un-
structured phase space fails to account for the dynamics
of systems exhibiting significant non-statistical behav-
ior. We overcome this difficulty by taking into con-
sideration the homoclinic and heteroclinic intersection
structure of tubes in the phase space. Furthermore, by
working in the phase space as opposed to configura-
tion space, we overcome the recrossing problem, i.e.,
the recrossing of the transition state as projected onto
configuration space, which if uncorrected leads to in-
accurate rate computations.

Previously, the main problem with the application
of tube dynamics has been with the computation of
volumes in phase spaces of high dimension[6,44]. The
present work provides a starting point for overcoming
this hurdle by using an algorithm that uses tube dy-
namics to provide the initial bounding box for a Monte
Carlo volume determination. The main contribution of
the paper is the combination of an accurate method
for computing and understanding invariant manifolds
in the problem and hence the phase space structure to-
gether with statistical Monte Carlo methods for volume
computations.

We show the practical applicability of the methodol-
ogy in a model three d.f. problem in which the hypothe-
ses of TST do not hold: namely, the full-scattering of
electrons in Rydberg atoms in the presence of external
crossed electric and magnetic fields. We use a variety
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ient computational tools for reaction rate calculati
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tion phase space structures still needs to be devel
ven for elementary reactions.

The current work, which merges tube dynamics w
onte Carlo methods, provides some enabling
retical and computational tools needed for accu
ate calculations. In this paper, we present a metho
gy that uses basic tools of dynamical systems th
erging the ideas of[26,15] and De Leon et al. (se
.g., [5,6]). In particular, we use invariant manifo

ubes mediating the dynamical process of reactio
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f methods and software that have been develop
he last several years fortube dynamics [21,26,15,39
o better understand the transport between differen
ions (orrealms) of phase space. The numerical
ults obtained are a demonstration of accurate life
istribution and rate calculations which overcome
ifficulties that have plagued the standard statis
ethods.
The paper is organized as follows: in Section2, we

escribe the global geometric structure of the p
pace for reactions between two regions connecte
rank-one saddle point. We also introduce the met
logy for the computation of scattering rates and

ime distributions. The computational tool employ
o produce these detailed structures is based on n
orm techniques[14,13,21,22,9,10,15]. In Section3,
e apply the methodology of Section2 to the scatter

ng problem of Rydberg-type atoms in crossed ele
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and magnetic fields. Finally, in Section4, we make
several additional remarks and point out some possible
directions for future work, in particular, the applica-
bility of the computation methods to four or more d.f.
systems.

2. General methodology

Many chemical reactions and some scattering phe-
nomena proceed through energetic barriers. In gen-
eral, such situations are well described in phase space
where the energy-fixed hyper-surface determines dif-
ferent regions that are connected by the energy barri-
ers, specifically by structures related to rank-one sad-
dles associated with the barriers. To make the dis-
cussion that follows as simple as possible, we con-
sider a two state system where one state is bound and
the other is unbound. We will refer to this problem
as ascattering problem for purposes of the present
discussion.

The simplest case is shown inFig. 1where a bound
region (zone on the left of the bottleneck) is next to
an unbound region (unbound zone on the right of the
bottleneck), and the bottleneck takes place precisely
at the rank-one saddle equilibrium point. More con-
cretely, this figure shows a planar projection of the Hill
region for the model problem used in this paper, namely
a Rydberg atom in crossed electric and magnetic fields.
Recall that the Hill region is the projection of the en-
e , the
w tion
s evel
o

2.1. Phase space structure near the saddle

Studying the linearization of the dynamics near the
saddle equilibrium point is of course an essential in-
gredient for understanding the more complete nonlin-
ear dynamics[26]. In fact, it can be shown that for
a value of energy constant just above that of the sad-
dle, the nonlinear dynamics in the equilibrium region
is qualitatively the same as the linearized picture that
we will describe below. For details, see[22,49]. How-
ever, since this geometric insight will be used later to
guide our numerical algorithms for effectively comput-
ing non-statistical lifetime distributions for scattering
problems, a brief review of the linearized picture will
be provided below for the benefit of the readers.

2.1.1. The linear dynamics near the saddle
Assume we are dealing with a Hamiltonian system

for which preliminary linear transformations have been
performed (essentially, a translation to put the saddle
at the origin and a linear change that uses the eigen-
vectors of the linear system as the new basis) so that
the Hamiltonian function for the linear system near the
saddle has the following quadratic (normal) form:

H2(q1, p1, . . . , qn, pn) = λq1p1 +
n∑

k=2

ωk

2
(q2

k + p2
k),

(1)

irec-
n-
ables

F erg a e cases are
s d sta e connectivity
d al ca
rgy surface onto the position space. In the figure
hite zone corresponds to the portion of the posi
pace where the motion is possible for the given l
f energy.

ig. 1. Planar projections of the actual Hill region for the Rydb
hown: connected (a) and unconnected (c) bound and unboun
epends on the energy level. Case (b) corresponds to the critic
wheren is the number of degrees of freedom,λ is the
real eigenvalue corresponding to the hyperbolic d
tion spanned by (q1, p1), ωk are the bath mode freque
cies; that is, the frequencies associated to the vari
(q2, p2, q3, p3, . . . , qn, pn).

tom in crossed electric and magnetic fields. The three possibl
tes separated by a bottleneck related to a rank-one saddle. Th
se.
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By fixing a positiveh ∈ R andc ∈ R, we define a
regionR ⊂ R2n in phase space by the condition

H2(q1, p1, . . . , qn, pn) = h, and |p1 − q1| ≤ c.

It can be seen thatR is homeomorphic to the prod-
uct of a (2n − 2)-sphere and an intervalI, that is,R ∼=
S2n−2 × I; namely, for each fixed value of (p1 − q1)
in the interval I = [−c, c], we see that the equa-
tion H2(q1, p1, . . . , qn, pn) = h determines a (2n −
2)-sphere

λ

4
(q1 + p1)2 +

n∑
k=2

ωk

2
(q2

k + p2
k) = h + λ

4
(p1 − q1)2.

The bounding (2n − 2)-sphere ofR for which p1 −
q1 = −c will be called n1, and that wherep1 −
q1 = c, n2 (seeFig. 2). We call the set of points on
each bounding (2n − 2)-sphere whereq1 + p1 = 0 the
equator, and the sets whereq1 + p1 > 0 orq1 + p1 <

0 will be called thenorth andsouth hemispheres, re-
spectively. Notice the (2n − 2)-sphere at the middle
of the equilibrium region wherep1 − q1 = 0. This
sphere, which is defined as follows

N2n−2
h =

{
(q, p)

∣∣∣∣∣λp2
1 +

n∑
k=2

ωk

2

(
q2
k + p2

k

)
= h

}
,

(2)

corresponds to the transition state in the chemical liter-
ature and plays an important role in chemical reaction
dynamics, as we will see later.

To analyze the flow inR, one considers the pro-
jections on the (q1, p1)-plane and (q2, p2) × · · · ×
(qn, pn)-space, respectively. In the first case we see the
standard picture of an unstable critical point, and in the
second, of a center consisting of (n − 1) uncoupled har-
monic oscillators.Fig. 2 schematically illustrates the
flow. Notice thatR itself projects to a set bounded on
two sides by the hyperbolaq1p1 = h/λ (corresponding
to q2

2 + p2
2 = · · · = q2

n + p2
n = 0, see(1)) and on two

other sides by the line segmentsp1 − q1 = ±c, which
correspond to the bounding (2n − 2)-spheres.

Since q1p1 is an integral of the (linearized)
equations inR, the projections of orbits in the
(q1, p1)-plane move on the branches of the corre-
sponding hyperbolasq1p1 = constant, except in the
caseq1p1 = 0, in which caseq1 = 0 or p1 = 0. If
q1p1 > 0, the branches connect the bounding line
segmentsp1 − q1 = ±c. If q1p1 < 0, they have both
end points on the same segment.

To interpretFig. 2 as a flow inR, notice that each
point in the (q1, p1)-plane projection corresponds to a
(2n − 3)-sphereS2n−3 inR given by

n∑
k=2

ωk

2
(q2

k + p2
k) = h − λq1p1.

r× · · ·
r), the n-transit
Fig. 2. The flow in the equilibrium region has the form saddle× cente
(note, axes tilted 45◦). Shown are the NHIM (black dot at the cente
orbits (NT).
× center. On the left is shown the projection onto the (p1, q1)-plane
asymptotic orbits (labeled A), two transit orbits (T) and two no
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Of course, for points on the bounding hyperbolic seg-
ments (q1p1 = h/λ), the (2n − 3)-sphere collapses to
a point. Thus, the segments of the linesp1 − q1 =
±c in the projection correspond to the (2n − 2)-
spheres boundingR. This is because each corre-
sponds to a (2n − 3)-sphere crossed with an interval
where the two end (2n − 3)-spheres are pinched to a
point.

The following objects are relevant for understanding
transport through the saddle:

1. The pointq1 = p1 = 0 corresponds to an invari-
ant (2n − 3)-sphereS2n−3

h of periodic and quasi-
periodic orbits inR. This (2n − 3)-sphere is given
by

n∑
k=2

ωk

2
(q2

k + p2
k) = h, q1 = p1 = 0. (3)

This is known in the literature[48] as anormally hy-
perbolic invariant manifold (NHIM). Roughly, this
means that the stretching and contraction rates under
the linearized dynamics transverse to the (2n − 3)-
sphere dominate those tangent to the (2n − 3)-
sphere. This is clear since the dynamics normal
to the (2n − 3)-sphere are described by the ex-
ponential contraction and expansion of the sad-
dle point dynamics. The (2n − 3)-sphere acts as a
“big saddle point”. See the black dot at the cen-
ter of the (q1, p1)-plane on the left side ofFig. 2.

si-
th

2
of

an-

ad-

branch going from left to right (from the bound
state to the saddle region). The unstable manifolds,
Wu±(S2n−3

h ), are given by

n∑
k=2

ωk

2
(q2

k + p2
k) = h, p1 = 0. (5)

Wu+(S2n−3
h ) (with q1 > 0) is the branch going from

right to left (from the saddle region to the bound
state) andWu−(S2n−3

h ) (with q1 < 0) is the branch
going from left to right (from the saddle region to
the unbound state). See the four orbits labeled A
in Fig. 2. There are four cylinders of orbits asymp-
totic to the invariant (2n − 3)-sphereS2n−3

h . They
form the stable and unstable manifolds to the in-
variant (2n − 3)-sphereS2n−3

h . Topologically, both
invariant manifolds look like (2n − 2)-dimensional
“tubes” (S2n−3 × R) inside a (2n − 1)-dimensional
energy manifold. SeeFig. 3(a) for examples of these
structures.

3. The hyperbolic segments determined byq1p1 =
constant> 0 correspond to two cylinders of orbits
that crossR from one bounding (2n − 2)-sphere to
the other, meeting both in the same hemisphere; the
northern hemisphere if they go fromp1 − q1 = +c

to p1 − q1 = −c, and the southern hemisphere in
the other case. Since these orbits transit from one re-
gion to another passing through the (2n − 2)-sphere
N2n−2

h which is the transition state in the linearized
system, we call themtransit orbits. See the two

4 by
rs
e
ame

is
h-
i-
if

r-
pass

T

5 c or-
ta-
t
l

Note that the NHIM is the equator of the tran
tion stateN2n−2

h and divides it into north and sou
hemispheres.

. The four half open segments on the axes,q1p1 = 0,
correspond to four high-dimensional cylinders
orbits asymptotic to this invariant (2n − 3)-sphere
S2n−3

h either as time increases (p1 = 0) or as time
decreases (q1 = 0). These are calledasymptotic or-
bits and they form the stable and the unstable m
ifolds of S2n−3

h . The stable manifolds,Ws±(S2n−3
h ),

are given by

n∑
k=2

ωk

2
(q2

k + p2
k) = h, q1 = 0. (4)

Ws+(S2n−3
h ) (with p1 > 0) is the branch going from

right to left (from the unbound state to the s
dle region) andWs−(S2n−3

h ) (with p1 < 0) is the
orbits labeled T inFig. 2.
. Finally the hyperbolic segments determined

q1p1 = constant< 0 correspond to two cylinde
of orbits in R each of which runs from on
hemisphere to the other hemisphere on the s
bounding 4-sphere. Thus ifq1 > 0, the 4-sphere
n1(p1 − q1 = −c) and orbits run from the sout
ern hemisphere (q1 + p1 < 0) to the northern hem
sphere (q1 + p1 > 0) while the converse holds
q1 < 0, where the 4-sphere isn2. Since these o
bits return to the same region and they do not
through the transition stateN2n−2

h , we call them
non-transit orbits. See the two orbits labeled N
of Fig. 2.

. The key observation here is that the asymptoti
bits form (2n − 2)-dimensional stable and uns
ble manifold tubes (S2n−3 × R) to the invarian
(2n − 3)-sphereS2n−3

h in a (2n − 1)-dimensiona
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Fig. 3. (a) Stable (Ws±) and unstable (Wu±) tubes of the NHIM in the regionRB corresponding to bounded orbits and in the regionRU corresponding
to unbound orbits. Only planar projections of the tubes are shown. The+ branches correspond to incoming reactions from the unbound states to
the bound states. The− branches correspond to outgoing reactions from the bound states to the unbound states.�h denotes the planar projection
of the Poincaŕe section on this energy surface with energyh. (b) On�h, the first intersection of the exit̄C1− with an image of the entrancēC1+ is
shown. In this case, the smallestl for which C̄l+ ∩ C̄1− �= ∅ is 6. (c) A schematic of the exit, showing the first intersection, now labeledA1, along
with subsequent intersections,A2 andA3. The intersections of successive images of the entrance with the exit,Al, will asymptotically cover the
entire exit asl → ∞.

energy surface and thus, they separate two distinct
types of motion: transit orbits and non-transit or-
bits. The transit orbits, passing from one region to
another, are those inside the (2n − 2)-dimensional
manifold tube. The non-transit orbits, which bounce
back to their region of origin, are those outside the
tube.

2.1.2. Remark on history and cross-fertilization
It is interesting to note that some of the same phase

space structures and techniques described above that
are useful in the chemistry context, were first used in a
celestial mechanics setting by Conley and McGehee in
the 1960s[2,3,32]. Conversely, techniques from chem-
istry have been used in celestial problems, as was done
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in [20]. Due do theN-body nature and Hamiltonian
underpinnings of both fields, we expect this type of
fruitful cross-fertilization to continue[30,37].

2.1.3. Nonlinear dynamics and separatrices
For a value of the energy just above that of the sad-

dle, the nonlinear dynamics in the equilibrium region
R is qualitatively the same as the linearized picture that
we have shown above[34,49].

For example, the NHIM for the nonlinear system
which corresponds to the (2n − 3)-sphere in Eq.(3)
for the linearized system is given by

M2n−3
h =

{
(q, p)

∣∣∣∣∣
n∑

k=2

ωk

2

(
q2
k + p2

k

)
+ f (q2, p2, . . . , qn, pn) = h, q1 = p1 = 0

}
(6)

where f is at least of third order. Here,
(q2, p2, . . . , qn, pn) are normal form coordinates
and are related to the linearized coordinates via a
near-identity transformation.

In a small neighborhood of the equilibrium point,
since the higher order terms inf are much smaller than
the second order terms, the (2n − 3)-sphere for the lin-
ear problem becomes a deformed sphere for the non-
linear problem. Moreover, since NHIMs persist under
perturbation, this deformed sphereM2n−3

h still has sta-
ble and unstable manifolds that are given by

. . .

. . .

nd

tion

2.2. Global transport and Poincaré cuts

We have just seen that the stable and unstable man-
ifolds of the NHIM act as separatrices in phase space.
They are the geometric structures that completely con-
trol the transport between the bound and unbound re-
gions and, consequently, the chemical reaction rates
and scattering lifetime distributions.

In this section, we study in detail the reaction mecha-
nism and develop a technique for the computation of the
corresponding rates. As is usual in this kind of compu-
tation, we use carefully chosen (2n − 2)-dimensional
Poincaŕe sections�h in the (2n − 1)-dimensional en-
ergy surface to simplify the problem.

We proceed as follows. The unbound and bound re-
gions are labeled inFig. 3(a) asRU andRB, respec-
tively. Any reaction trajectory going from an unbound
state to a bound state must initially be in the interior of
the stable tubeWs+, and continues in the interior of the
unstableWu+ tube. These two+ branches,Ws+ ∪ Wu+,
constitute thecapture reaction path from the unbound
to bound state. This reaction path will first pierce the
Poincaŕe section in theentrance or first Poincaré cut
C̄1+ (the first forward intersection of the interior of the
unstable tubeWu+ with the Poincaŕe section). Simi-

s u

ough

re-
Ws±(M2n−3
h ) =

{
(q, p)

∣∣∣∣∣
n∑

k=2

ωk

2
(q2

k + p2
k) + f (q2, p2,

Wu±(M2n−3
h ) =

{
(q, p)

∣∣∣∣∣
n∑

k=2

ωk

2
(q2

k + p2
k) + f (q2, p2,

Notice the similarity between the formulas above a
those for the linearized problem given by Eqs.(4) and
(5). The same observation also holds for the transi
state: in the nonlinear system, it is a deformed (2n − 2)-
sphere.
See [40,41,16,22,49] for details on the semi-
analytical approximation of these objects. This geo-
metric insight will be used below to guide our numer-
ical algorithms for computing reaction and scattering
rates.
, qn, pn) = h, q1 = 0

}

, qn, pn) = h, p1 = 0

}

larly, the two− branches,W− ∪ W−, constitute the

escape reaction path, and any reaction trajectory from
the bound state to the unbound state has to pass thr
theexit or first Poincaŕe cutC̄1− (the first backward in-
tersection of the interior of the stable tubeWs− with the
Poincaŕe section) of this reaction path, just before

action takes place. Trajectories in the escape reaction
path which reach the unbound state do not return to the
bound state within the time window of interest for our
computations in forward time (similarly for the capture

reaction path in backward time).
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Fig. 3a and b show the actual computations of these
structures for our model problem, the Rydberg atom
in crossed electric and magnetic fields. InFig. 3(a),
we plot the projections onto thexy plane of the stable
and unstable manifolds of the NHIM and inFig. 3(b),
examples ofxpx Poincaŕe cuts are shown.

After defining the Poincaré return mapf on�h, we
can denote the images of the entranceC̄1+ as

C̄m
+ = fm−1(C̄1

+),

which is them-th forward intersection of the capture
reaction path with the Poincaré section.

Similarly, we can denote the pre-images of the exit
C̄1− as

C̄k
− = f−(k−1)(C̄1

−),

which is thek-th backward intersection of the escape
reaction path with the Poincaré section.

The intersection of the images of the entrance and
the pre-images of the exit under the Poincaré return
map

fm−1(C̄1
+) ∩ f−(k−1)(C̄1

−)

are what give rise to full-scattering reactions. More-
over, the corresponding intersection volume provide
the scattering lifetime distribution and reaction rates.
The problem can be simplified by looking only at the
i exit
i

C

w en
l ag-
n
i
l s
t the
u -
u me
d

ons
o will
c t
i ,

labeledA1, along with subsequent intersections,A2
andA3 is shown inFig. 3(c), where schematically we
illustrate what occurs for theAl as l → ∞. Due to
the compactness of the bound region chaotic zone in
which the tubes meander, the volume enclosed within
intersections of successive images of the entrance with
the exit will cover the entire exit asl → ∞. This means
that all incoming scattering reactions for which there
is a transition from unbound state to bound state will
eventually re-react from the bound state to the unbound
state as timet → ∞.

2.3. Numerical computation of the lifetime
distribution spectrum

Implementation of the above ideas for full-
scattering depends on evaluations of the intersection
volumes of the entrance and its images with the exit
[5,6,46].

As we assumed that the dynamics of the system is
Hamiltonian, the Poincaré map is volume preserving.
Let us denote byV (A) the volume ofA ⊂ �h. As we
have chosen�h to be spanned by (2n − 2) conjugate
coordinates (q2, p2, . . . , qn, pn), we may write

V (C̄m
+) =

∫
C̄m+

dq2dp2 . . . dqndpn.

Assuming an initially uniform probability distribution
of incomingreactants onC̄1 , then the fraction ofprod-
u d
r

W ry
t ring
“ ex-
p oral
a non-
m seen
i

2
M

car
c the
ntersections of the images of the entrance with the
tself; that is,

¯l
+ ∩ C̄1

− = f l−1(C̄1
+) ∩ C̄1

−

herel = m + k − 1. Fig. 3(b) shows the case wh
= 6 for the Rydberg atom in crossed electric and m
etic fields. Any point inside the intersection̄C6+ ∩ C̄1−

s a trajectory that comes from the unbound stateRU,
oops around the bound state regionRB, and intersect
he Poincaŕe section six times before escaping to
nbound state regionRU. Below, we will use the vol
me of this kind of intersection to compute the lifeti
istribution and reaction rates.

Moreover, the volume enclosed within intersecti
f successive images of the entrance with the exit
over the entire exit asl → ∞. An example of the firs
ntersection is shown inFig. 3(b). The first intersection
+
cts escaping after executingm loops around the boun
egion is

V (C̄m+ ∩ C̄1−)

V (C̄1+)
.

e will see in Section3, where we apply this theo
o a particular example, that the resulting scatte
spectrum” is structured (that is, it is not a simple
onential decay), and it is closely related to its temp
nalogue, i.e., scattering as a function of time. The
onotonicity of the scattering spectrum has been

n similar problems in chemistry[6].

.3.1. Computation of intersection volumes via
onte Carlo methods
To compute the intersection volumes of the Poińe

uts of the stable and unstable manifolds of
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NHIM, we need efficient tools to compute (2n − 2)-
dimensional volumes, wheren is the number of de-
grees of freedom of the system. For two degree of free-
dom cases, the computation is quite straightforward
[33]. However, for higher degrees of freedom, direct
computation of volumes with a numerical quadrature
is more difficult. The problem of choosing a “good”
mesh on the boundary of the (2n − 2)-sphere is already
very tricky. Hence, a different approach to the compu-
tation of these high dimensional volumes is used. We
use Monte Carlo methods to compute numerically an
approximate value of the (2n − 2)-volume. This fam-
ily of methods are based on a statistical approach to the
problem. Thus, they seem to be especially suitable for
these kind of situations.

The basic idea is as follows. We first choose a hyper-
rectangle “bounding box” in the (2n − 2) space con-
taining the Poincaré cuts of the stable and unstable
manifolds of the NHIM. SeeFig. 4(a) and (b). For the
method to be efficient, it is important that this (high-
dimensional) box contains as tightly as possible the
Poincaŕe cuts. Otherwise, most of the sample points
would be “lost” outside the object whose volume we
want to compute.

It is then easy to obtain anoracle that distinguishes
whether randomly chosen points inside this box belong
to the targeted object:

(i) Entrance: A point in �h belongs to the first
1

the corresponding trajectory has just undergone
reaction. This can be checked by numerically in-
tegrating the initial condition backward in time,
and confirming that the orbit hits some appro-
priate Poincaŕe section in the unbound region
RU.

(ii) Exit: A point in�h belongs to the first Poincaré cut
of the escape reaction path̄C1−, if the correspond-
ing trajectory will undergo reaction immediately.
This can be checked by numerically integrating
the initial condition forward in time, and confirm-
ing that the orbit hits some appropriate Poincaré
section in the unbound regionRU.

(iii) mth overlap: A point in�h belongs toC̄m+ ∩ C̄1− if
it belongs to the exit̄C1− and its (m − 1)th back-
ward iterate by the Poincaré map belongs to the en-
trance (i.e., it belongs tōC1+). This can be checked
by showing that the point belongs to the exit, as
in (ii), on one hand; and, on the other hand, in-
tegrating the initial condition backward in time
and confirming that the trajectory hits the Poincaré
section an additional (m − 2) times before hitting
the entrance (checked as in (i)).

Given the oracle, we can use any standard Monte
Carlo method to compute the desired volume. In the
computations of Section3, we useimportance and
stratified sampling in order to reduce the standard de-
viation and accelerate the convergence of the method
[

gh-di
e un

rly co
Poincaŕe cut of the capture reaction path̄C+, if

Fig. 4. (a)xẋ and (b)zż projections of the intersection of the hi
ε = 0.5835. The dark sections correspond to the projections of th
shows partial overlap whereas thezż projection shows the cuts nea
27,28,38,11].

mensional tubes with the Poincaré section�h,ε, for h = −1.52 and
stable cutsC̄1+ and the light ones to the stable cutsC̄1−. Thexẋ projection
mpletely overlapping.
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2.3.2. Scattering profile is structured and
non-RRKM

In Fig. 6a and c of Section3, the percentage of re-
actants escaping from the bound state as a function of
loops in the bound region is shown. The resulting scat-
tering profile, which is derived from the 4D intersec-
tion volumes computed via the Monte Carlo integration
method, is structured; that is, it is not a simple exponen-
tial decay. Moreover, its temporal analogue orlifetime
distribution, i.e., scattering as a function of time can
also be computed (seeFig. 6b and d). We note the sim-
ilarity between the time profile and the “loops” profile.
Both results stress that the phase space is not structure-
less, and that there is a need to take into consideration
the tube dynamics and non-RRKM effects when com-
puting reaction rates.

2.3.3. Remarks on homoclinic and heteroclinic
intersection structures

If an intersection on a Poincaré section is between
stable and unstable Poincaré cuts related to the same
NHIM, it is called homoclinic intersection and if they
are related to different NHIMs,heteroclinic intersec-
tion. For simplicity, only homoclinic intersection struc-
ture has been studied in this paper. But for multi-
channel chemical reactions such as isomerization of
polyatomic molecules, the study of heteroclinic inter-
section structures is also needed. Tube dynamics tech-
niques developed in[26] can be very useful for this
effort. In our ongoing study of isomerization of tri-
a one
s

the
c
i ese
d l be
t een
t ls.

3
i

3

ith
e been
s -

tion prior to the reaction is given by the initial excita-
tion of a single electron to a high energy level in such
a way that its dynamics can be described by classical
physics. The reaction takes place when the electron is
ionized and detached. Experimentally, an atom is ini-
tially prepared in a highly excited Rydberg state and
one is interested in its behavior in the future. This is an
example of ahalf-scattering problem.

For the present study, we are instead interested in
thefull-scattering problem, in which the system is pre-
pared in an unbound initial state and we want to study
the dynamics of formation of an excited Rydberg atom
and its subsequent ionization. We will use this model
problem to illustrate our methodology. The dynamics
of the outermost electron in a Rydberg atom in crossed
electric and magnetic fields can be described by the
following classical Hamiltonian:

H = 1

2
(p2

x + p2
y + p2

z) − 1

r
+ 1

2
(xpy − ypx)

+ 1

8
(x2 + y2) − εx,

where r =
√

x2 + y2 + z2 is the distance from the
electron to the center of the nuclear core andε is the
scaled electric field strength. All the coordinates, as
well as the Hamiltonian function, have been scaled by
the cyclotron frequency[19].

Using the Legendre transform, one finds that the
velocities are given by

x

T

E

w

V

T for
t
i

3
que

fi

tomic molecules, there are three collinear rank
addle connecting two triangular isomers.

To study the structure of these intersections,
hoice of a suitable set of Poincaré sections will be
mportant. The computation of the volumes of all th
ifferent intersections via Monte Carlo methods wil

he key step in computing the reaction rates betw
he two isomers following different reaction channe

. Application to Rydberg atom formation and
onization

.1. The Hamiltonian model

The ionization of a Rydberg atom interacting w
xternal crossed electric and magnetic fields has
tudied by other authors (such as[19,44]). The activa
˙ = px − y

2
, ẏ = py + x

2
, ż = pz.

he energy in terms of positions and velocities is

ε(x, y, z, ẋ, ẏ, ż) = 1

2
(ẋ2 + ẏ2 + ż2) + Vε(x, y, z),

here the effective potential function is given by

ε(x, y, z) = −1

r
− εx.

he energy integral is the only integral of motion
he system. Notice also that the manifoldz = ż = 0 is
nvariant under the dynamics of the full system.

.1.1. Stark saddle point
The vector field of the Rydberg atom has a uni

xed point, which is commonly known as theStark
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saddle point:

x = 1√
ε
, y = 0, z = 0, ẋ = 0,

ẏ = 0, ż = 0.

The value of the energy for the Stark point,ES =
−2

√
ε, is the threshold value for the reaction to take

place. This is easily seen by plotting the Hill region in
configuration space where the motions of electron is
allowed:

H(ε, h) =
{

(x, y, z) ∈ R3 | Vε(x, y, z) ≤ h
}

.

In Fig. 1, the xy planar projection of the Hill region
for the three possible cases of the Rydberg atom are
shown. Reaction is possible if the energy value of the
electronh is higher than that of the saddle. i.e.,h > ES;
the critical case is given by the energy value equal to
that of the saddle,h = ES; and there is no reaction if
h < ES.

Let u̇ = Lu be the linearization of the vector field
evaluated at the Stark fixed point. Then, the eigenvalues
of L describe the linear dynamics around the equilib-
rium point. For any value ofε > 0, we obtain a pair of
real eigenvalues±λ and two pairs of purely imaginary
eigenvalues,±iω2 and±iω3 (because of the Hamilto-
nian character of the vector field, ifµ is an eigenvalue,
so are−µ, µ̄ and−µ̄):

±

±

w l-
w n
c
t
N√

g
t out
t this

Table 1
Eigenvalues for the linearized system at the Stark fixed point

ε = 0.58 ε = 0.6

λ 0.636449792043354 0.664862088041162
ω2 0.981505729811050 0.988576549676131
ω3 0.664616310468007 0.681731619880499

paper, there are no small divisors. Actually, the denom-
inators appearing in the generating functions (see[21])
are bounded from below by|λ|.

3.2. NHIM and the stable and unstable tubes

Using the methodology described in[21,15], we
construct a high-order normal form of the Hamilto-
nian near the Stark saddle point (up to orderN = 16).
This normal form allows us (i) to obtain a very good
approximation of the NHIM around the saddle, (ii) to
compute the stable and unstable manifold tubes of the
NHIM far from the equilibrium point, and (iii) to study
their intersections with a well chosen Poincaré section
given by

�h,ε = {(x, y, z, ẋ, ẏ, ż) ∈ R6|Eε(x, y, z, ẋ, ẏ, ż)

= h andy = 0, x < 0}.
Fig. 4shows thexẋ andzż projections of the intersec-
tion of the stable and unstable tubes with the Poincaré
section�h,ε for a particular fixed value of the energy
h = −1.52 and electric field strengthε = 0.5835. In
the following numerical experiments, we will fix the
energy value toh = −1.52 and vary the electric field
strengthε. For this level of energy, the Stark saddle
point corresponds to an electric field ofεS = 0.5776.
Forε < εS, the bound and unbound regions are discon-
nected (seeFig. 1). For ε > εS, the bottleneck at the
Stark point is open and becomes wider with largerε.

igh-
d :
b can
p w”
o -
c ace
w r-
f

i-
n l-
i co-
λ = ±
√√

α2 + 8ε3 − α

2
,

iω2 = ±i

√√
α2 + 8ε3 + α

2
, ±iω3 = ±iε3/4,

hereα = 1 − ε3/2. Thus, the Stark fixed point is a
ays of the type saddle× center× center, and we ca
all it, indeed, a Starksaddle point. InTable 1, we show
he values ofλ, ω2 andω3 for ε = 0.58 andε = 0.6.
ote that values ofε > 0 such that

2ε3/2
√

α2 + 8ε3 + α
∈ Q (7)

ive rise to resonances of the typek2ω2 − k3ω3 = 0 in
he bath modes. However, it is important to point
hat, in the normal form computations performed in
The detailed procedure of constructing the h
imensional tubes and their Poincaré cuts is as follows
ased on the knowledge of the linear system, we
ick initial conditions which produce a close “shado
f the stable and unstable manifolds (� S3 × R) asso
iated to the NHIM. As we restrict to an energy surf
ith energyh, there is only one NHIM per energy su

ace, denotedMh(� S3).
The initial conditions in the normal form coord

ates (q1, p1, q2, p2, q3, p3) are picked with the qua
tative picture of the linear system in mind. The
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ordinates (q1, p1) correspond to the saddle projection,
(q2, p2) correspond roughly to oscillations within the
(x, y) plane, and (q3, p3) correspond roughly to os-
cillations within thez direction. Also recall thatq3 =
p3 = 0 (z = ż = 0) corresponds to an invariant man-
ifold of the system, i.e., the planar Rydberg system is
an invariant manifold of the three degree of freedom
system.

The initial conditions to approximate the stable and
unstable manifolds (Ws±(Mh), Wu±(Mh)) are picked
via the following procedure. Note that we can be as-
sured that we are obtaining a roughly complete ap-
proximation of points along a slice ofWs±(Mh) and
Wu±(Mh) since such a slice is compact, having the
structureS3. Also, we know roughly the picture from
the linear case.

1. We fix q1 = p1 = ±δ, whereδ is small. This en-
sures that almost all of the initial conditions will be
for orbits which are transit orbits from one side of
the equilibrium region to the other. Specifically+
corresponds to right-to-left transit orbits (unbound
to bound state reactions) and− corresponds to left-
to-right transit orbits (bound to unbound state re-
actions). We chooseδ small so that the initial con-
ditions are near the NHIMMh (at q1 = p1 = 0)
and will therefore integrate forward and backward
to be near the unstable and stable manifold ofMh,
respectively. We chooseδ to not be too small, or

the

2 n-

s
n-

igin
he
the

3 int
e
ce-
arly
ial

q ial

Rydberg coordinates (x, y, z, ẋ, ẏ, ż) and integrate
under the full equations of motion. The integration
proceeds until the Poincaré section�h,ε stopping
condition is reached, in this casey = 0. We can then
use further analysis on the Poincaré section, described
below.

3.2.1. Chaotic sea in the bounded region
In the z = ż = 0 invariant manifold (which corre-

sponds to the case of planar Rydberg atom), it is pos-
sible to visualize the chaotic dynamics of the bounded
region RB by plotting the cuts of long-time integra-
tion of particular orbits with the Poincaré section�h,ε.
For instance, inFig. 5(a), we plot the Poincaré sec-

(a) The chaotic sea is shown together with the first five intersections
of the tube boundaries and the Poincaré section,Cm±, m = 1, . . . , 5.
A close-up of the intersection of the tubesC̄6+ with C̄1− is shown in
Figure 3(b). (b) The first eleven intersections of the stable manifold
tube boundaries are shown,Cm−, m = 1, . . . , 11.
the integrated orbits will take too long to leave
vicinity ofMh.

. Beginning withrv = 0, and increasing increme
tally to some maximumrv = rmax

v , we look for ini-
tial conditions withq2

3 + p2
3 = r2

v , i.e. along circle
in the z oscillation canonical plane. It is reaso
able to look along circles centered on the or
(q3, p3) = (0, 0) on this canonical plane since t
motion is simple harmonic in the linear case and
origin corresponds to an invariant manifold.

. For each point along the circle, we look for the po
on the energy surface in the (q2, p2) plane, i.e., th
(x, y) oscillation canonical plane. Note, our pro
dure can tell us if such a point exists and cle
if no point exists, it will not be used as an init
condition.

After picking the initial conditions in (q1, p1,

2, p2, q3, p3) coordinates, we transform to the init
Fig. 5. Poincaŕe section�h,ε in the invariant submanifoldz = ż = 0.
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tion y = 0 of the chaotic bounded region for a fixed
energyh = −1.52 and a scaled electric field strength
ε = 0.57765, which correspond to values just above
the threshold energy of the Stark saddle point. We also
show the first five intersections of the stable and unsta-
ble tubes of the NHIM with this Poincaré section. In
this case, it takes a while until the tubes intersect due
to the small aperture of the bottleneck. InFig. 5(b), we
show the first 11 intersections of the stable tube with
the Poincaŕe section. Notice the extremely complicated
and curling pattern of the manifolds as we iterate for-
ward.

3.3. Intersection volumes, lifetime distributions,
and rates

As we explained in Section2.3, to compute the
4D intersection volumes of the stable and unstable
tubes with the Poincaré section we use a Monte Carlo
method. First, we choose a hyper-rectangle that con-
tains (as tightly as possible) the intersection volume.
This is easily achieved by looking at the 2 projections
of the 4D object on thexẋ andzż planes, for instance
the ones inFig. 4(a) and (b), respectively. Then, we
apply the VEGAS algorithm (see[27,28]and[38,11])

F
(
t
c
s
c

ig. 6. The electron scattering lifetime distribution for the Rydberg ato
a) The percentage of electrons escaping from the interior region (i.e
he central core is shown in the caseε = 0.58. The resulting scattering
losely related to its temporal analogue, i.e., scattering as a function
een in similar problems in chemistry and is a hallmark of non-RRKM
omputations, 106 random initial conditions within the intersection of th
m in crossed electric and magnetic fields for an energy levelh = −1.52.
., scattering away from the bounded region) as a function of loops around
profile is structured (i.e., not a simple exponential decay), and it is
of time: (b). The non-monotonicity of the scattering spectrum has been
behavior[4]. (c) and (d): the same for a strength ofε = 0.6. For these

e capture and escape reaction paths were used.
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to compute the volume of the desired object. Notice,
that in order to apply this algorithm we only need a
function (or oracle) that tells us whether a given point
inside the high-dimensional box is contained in the tar-
geted object or not. In this case, this is easily achieved,
as explained in Section2.3: first, we complete the four-
dimensional point to a six-dimensional phase space ini-
tial condition (by imposing the Poincaré section and
energy restrictions); and, then, we integrate this point
backward in time (to see if it belongs to the entrance,
i.e., the green projection inFig. 4), and forward in time
(to see if it belongs to the exit, i.e., the dark projection
in Fig. 4).

Here, we show the results for two examples. First,
we consider the case of a fixed energyh = −1.52 and
scaled electric field strengthε = 0.58. The intersection
volumes w.r.t. the number of loops of the tube around
the nuclear core in the bounded region is shown inFig.
6(a). The scattering spectrum for theε = 0.6 case is
shown inFig. 6(c).

In Fig. 6(b) and (d), we show the lifetime distri-
bution of the scattering process. That is, givenNinc

incoming electrons coming from the unbound region
to form a Rydberg atom, we count how many leave the
bound region (ionization of the atom) per unit of time.
The practical implementation is as follows: We first
generate a quasi-random[35] swarm of points in the
box containing the Poincaré cuts by using the Sobol
algorithm [42,1,38,11]. Then we choose initial con-
ditions such that the corresponding points belong to
t nd
c per
u nts
t ns
s

3
here

a an-
t eri-
m rk-
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t ns-
f nal
c sec-
o pute
6 nd

to numerically integrate them until the first crossing of
�h,ε (using Runge-Kutta-Fehlberg 7-8) takes about 7
h. The Monte Carlo computation using 106 points takes
about two days. Furthermore, we found that using only
half as many points for the Monte Carlo portion gave
very similar answers.

4. Discussion

This paper has introduced a new method for com-
puting scattering and reaction rates inn degree of
freedom systems using tube dynamics in a synergis-
tic way with Monte Carlo volume determination meth-
ods. The method was applied to the three degree of
freedom model problem of a Rydberg atom. The tech-
nique may be useful for systems of four or more de-
grees of freedom such as various isomerization prob-
lems. This overcomes a major hurdle encountered by
De Leon et al.[5,6]. The method can be used in any
system with rank-one saddles which separate phase
space regions corresponding to different states of the
chemical system, such as the isomerization of poly-
atomic clusters[18,50,51]and bimolecular reactions
[47].

Our primary concern in this paper is to present and
computationally implement a method that is extend-
able to multidimensional systems. As such, we com-
pute a large number of sample points on the manifolds
of the NHIM. However, this is computationally time-
c will
m s an
a ight
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p oint.
O en-
e vide
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he entrancēC1+, integrate them forward in time a
ount how many of them ionize from the atom
nit time. It is clear from the numerical experime

hat the resulting lifetime distribution is by no mea
tatistical.

.3.1. Computation times
We note that some of the computations done

re parallelizable and future work could take adv
age of this to speed up the calculations. All exp
ents for this work were performed on a PC wo

tation with an Intel Pentium III 1 Ghz processor. T
ormal form computations, including the reduction

he center manifold and the construction of the tra
ormation from normal form coordinates to the origi
oordinates (up to order 16), takes only a number of
nds. The next step, using the normal form to com
50,000 points on the manifold tube of the NHIM a
onsuming, and we expect further refinements
ake this part of the process more efficient. This i
rea we are currently pursuing. For instance, we m
ot need to compute a sampling of the entire NH
anifolds. Since all we need is a bounding box for
onte Carlo volume computation, we could pick o

hose points on the NHIM which lead to the larg
rojections on the Poincaré section. For example, co
iderFig. 4. Thex andẋ directions of the bounding bo
ould be obtained by looking only at the set on the
or which z = ż = 0.

One could also perhaps obtain the bounding
rom the linear dynamics, which will be a good a
roximation for energies just above the saddle p
nce a bounding box is obtained for small excess
rgies, numerical continuation could be used to pro
tight bounding box for larger excess energies. Th
till work in progress.
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4.1. Set oriented methods

In [7], a completely different approach is taken to
compute transport rates in the same Rydberg atom
problem. It is based on the Dellnitz-Junge set ori-
ented methods for computing almost invariant sets
and transport rates; see[8] and references therein for
background. The set oriented approach is also able
to deal with both the two and three d.f. problem and
gives rates that agree with those given here. Two of
the main differences in how the computation is done
are as follows. First of all, the tube cross sections are
computed not by using normal form methods, but by
means of time of return maps and adaptive subdivi-
sion techniques; the tubes are then flowed out as in
the present paper. Second, the set oriented method, be-
ing based on a tree-structured adaptive box subdivision
method is able to compute volumes by directly count-
ing the relevant boxes involved, as opposed to using
Monte Carlo methods. The fact that the two methods
give the same specific results is confirmation that each
technique has a solid mathematical and computational
foundation.
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