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Abstract— In this paper it is shown that Lagrangian Coher-
ent Structures (LCS) are useful in determining near optimal
trajectories for autonomous underwater gliders in a dynamic
ocean environment. This opens the opportunity for optimal
path planning of autonomous underwater vehicles by studying
the global flow geometry via dynamical systems methods. Opti-
mal glider paths were computed for a 2-dimensional kinematic
model of an end-point glider problem. Numerical solutions to
the optimal control problem were obtained using Nonlinear
Trajectory Generation (NTG) software. The resulting solution
is compared to corresponding results on LCS obtained using
the Direct Lyapunov Exponent method. The velocity data
used for these computations was obtained from measurements
taken in August, 2000, by HF-Radar stations located around
Monterey Bay, CA.

I. INTRODUCTION

In this paper we propose a method for determining near
optimal trajectories in the ocean for a class of Autonomous
Underwater Vehicles (AUVs) known as gliders. AUVs are
becoming increasingly popular for collecting scientific data
in the ocean. For example, they played an important role
in the Office of Naval Research sponsored Autonomous
Ocean Sampling Network II project (AOSN–II) [6], [1].
There is a growing body of literature on the use of AUVs
for ocean sensing; for examples, see [2], [7], [19]. However,
to the best of the authors’ knowledge, there has not been
much work done on optimization of AUV trajectories in
the presence of ocean dynamics, which is the topic of the
present paper.

Gliders offer an attractive means for gathering data in
the ocean because they are low cost and highly sustainable.
They are designed for high efficiency and can operate
autonomously, which makes them good candidates for au-
tonomous, large-scale ocean surveys. AOSN-II employed
two types of gliders, the SLOCUM and the SPRAY [19].

The tradeoff for a glider’s remarkable efficiency is a
relatively low average speed for the vehicle. Typically,
gliders move around 40 (cm/s) relative to the ambient water.
However, the ambient water can often move at speeds the
same order of magnitude as the speed of the glider. For
instance, in Monterey Bay, CA, which was the location for
the AOSN-II experiment, surface currents average around
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20 (cm/s), and are typically stronger outside the bay. There-
fore it is advantageous, if not necessary, to make use of
ocean currents to help propel the gliders around the ocean
for sustainable missions. The idea of exploiting “natural
dynamics” for vehicle transport has been used extensively
in a number of research areas, such as in space mission
design. For example, the natural dynamics of the 3- and 4-
body problem can be used to find efficient orbits for mission
trajectories [9].

If the dynamics of the ocean are known a priori, an
exhaustive optimization could be performed to numerically
find an optimal trajectory each time a glider needed to move
from one location to another. However the exact dynamics
of the ocean are never known a priori, nor is it often
practical to run such extensive computations.

The purpose of this paper is to propose a method for
quickly determining near optimal glider trajectories based
on approximate ocean current data. It will be shown that
optimal trajectories computed using the Nonlinear Trajec-
tory Generation (NTG) software correspond to Lagrangian
Coherent Structures (LCS). These approximate solutions
can then be used for either rough path planning or to
initialize more detailed optimization computations. For real-
time implementation, LCS must be computed from forecasts
of ocean currents. However, it is reasonable to assume
approximate ocean forecasts can be made [18] and LCS
are robust to reasonable errors in the model forecasts [11].

The remainder of the paper is structured as follows:
First we formulate the general optimal control problem. We
discuss the utility of B-Splines and the Nonlinear Trajectory
Generation software to compute numerical solutions of the
optimal control problem. Next we solve the optimal control
problem for the case of finding an optimal path between
two fixed points in the ocean. We then motivate the use of
LCS to help navigate the gliders and include a review of
how LCS are computed. Finally we compare our solution
to the optimal control problem with a corresponding LCS.

II. OPTIMAL CONTROL PROBLEM

Consider a general dynamical (control) system

ẋ(t) = f(x(t),u(t)) (1)

where x(t) is the state of the system and u(t) is the control
input. For optimal control, we would like to choose u(t)
such that some cost function is minimized and constraints
are enforced. That is, given a cost function of the form

J = Φ0(x(t0),u(t0), t0) +
∫ tf

t0

L(x(t),u(t), t)dt

+ Φf (x(tf ),u(tf ), tf ) (2)
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we would like to choose u(t) for t ∈ [t0, tf ] which
minimizes J subject to (1) and constraints of the form

Initial lb0 ≤ Ψ0(x(t0),u(t0), t0) ≤ ub0

Trajectory lbt ≤ Ψt(x(t),u(t), t) ≤ ubt

Final lbf ≤ Ψf (x(tf ),u(tf ), tf ) ≤ ubf

(3)
The cost function J is composed of an initial condition

cost, Φ0(·), an integral cost over the trajectory, L(·), and
a final condition cost, Φf (·). The constraints are similarly
partitioned. lb and ub represent lower and upper bounds,
respectively. Equations (2) and (3) are standard in optimal
control, and are further explained in [5].

In most cases, the dynamics (1) and constraints (3) are
too complicated for the minimization of (2) to be solved
analytically, so numerical algorithms must be used to obtain
solutions. To solve optimal control problems numerically,
they are often transformed into nonlinear programming
(NLP) problems. The software package, Nonlinear Trajec-
tory Generation (NTG), is very useful for transforming the
optimal control problem given in (2) to an NLP problem,
see [14].

A. Nonlinear Trajectory Generation

If the dynamics, cost, and constraints are evaluated at dis-
crete points in the interval [t0, tn], it is possible to translate
the optimization problem, defined by (1), (2) and (3), into
the following NLP problem in Cj :

min
�C∈R

p
F (�C) subject to L ≤ G(�C) ≤ U

where �C = [C1 · · · Cp]T . F (�C) is our transformed cost
function, and G(�C) is the transformation of the constraints,
with L and U being the lower and upper bounds, respec-
tively. The discrete points, Ci, at which cost and constraints
are evaluated are known as collocation points.

The NTG software package, developed by Milam et. al.
[14], is based on a combination of nonlinear control theory,
spline theory, and sequential quadratic programming. NTG
takes the optimal control problem formulation, characteri-
zation of trajectory space, and the set of collocation points,
and transforms them into an NLP problem. It is then
solved using NPSOL [8], a popular NLP solver, which
uses Sequential Quadratic Programming (SQP) to obtain
the solution.

B. B-Splines

To facilitate numerical computation, outputs of the opti-
mization, along with the cost function and constraints given
in (2) and (3) are expressed in terms of B–spline functions,
see [4] for a detailed treatment of splines, and [3], [15],
[16] for their use in optimal control problems.

B-Spline curves are constructed by joining Bézier curves
with a prescribed level of continuity. The points at which the
curves are joined are called breakpoints. The nondecreasing
list of real numbers containing the breakpoints is the knot
vector, K = {t0, t1, · · · , tn}, and n is the number of

intervals. The number of times a breakpoint occurs in a knot
vector is called the multiplicity, mi. The smoothness, si, of
a breakpoint provides the level of continuity; a breakpoint
is (si − 1) times continuously differentiable. The order, ri,
of each piecewise polynomial is ri = si + mi for interior
breakpoints. We will assume that the smoothness, si, and
the multiplicity, mi, are the same for all breakpoints.

A trajectory x(t) with prescribed smoothness s and order
r can be written as

x(t) =
p∑

j=1

Bj,r(t)Cj ; t0 ≤ t ≤ tn (4)

where p is defined by p = n(r − s) + s, which is the
number of free parameters Cj (coefficients of the B–Spline
functions) that can be used to customize the trajectory. The
functions Bj,r(t) are B-Spline basis functions defined by

Bj,1(t) =
{

1 if tj ≤ t < tj+1

0 otherwise
(5)

and Bj,1 = 0 if tj = tj+1. Higher order terms can be found
using the Cox-de Boor recursion formula for r > 1, see [4].

C. Using Temporal Constraints with NTG

While the NTG formulation allows any spatial constraint
to be easily coded into the constraint set, including temporal
constraints requires more care. The easiest way to solve this
is to introduce time as a state variable in the optimization.

First define the new scaled time variable τ shown in (6),
where t represents the true time, or old time, and T is
the new state variable representing the unknown final time
which will be optimized. In the setup of the optimization
problem detailed in Sec. III, scaled time τ rather than true
time t is used:

τ =
t

T
(6)

After introducing the new state variable T , the cost and
constraint functions given in (2) and (3) become

J(x,u, T ) = Φ0(x(0),u(0), T ) + Φf (x(1),u(1), T )

+
∫ 1

0

L(x(τ),u(τ), T )dτ (7)

lb0 ≤ Ψ0(x(0),u(0), T ) ≤ ub0

lbf ≤ Ψf (x(1),u(1), T ) ≤ ubf

lbt ≤ Ψt(x(τ),u(τ), T ) ≤ ubt

(8)

Any additional temporal constraints may be expressed as a
set of inequalities given by

lbT ≤ ΨT (T ) ≤ ubT NT temporal constraints.
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a) u(x,y) Data, t = 1 b) u(x,y) Model, t = 1

c) u(x,y) Data, t = 4 d) u(x,y) Model, t = 4
Fig. 1. The Ocean Current Data and B–Spline Models for Time = 1 and
4 (hrs)

III. OPTIMAL CONTROL EXAMPLE

Now that we have reviewed the formulation of the
optimal control problem, let us consider a particular ex-
ample. Consider the problem of finding an optimal glider
trajectory between two fixed points in the ocean. Denote
the starting point x0 and the end point xf . In particular,
we will consider two points in Monterey Bay, CA, whose
longitude/latitude coordinates are given by

x(t0) = (−122.178(deg), 36.8557(deg))
x(tf ) = (−122.242(deg), 36.6535(deg)) (9)

For the purposes of determining the glider trajectory, a
2-D kinematic model will be used:

ẋ = V cos θ + u
ẏ = V sin θ + v

(10)

where V is the speed of the vehicle, θ is direction of motion,
and u and v are the components of the ocean currents in the
x- and y-direction1, respectively. These equations represent
the equations of motion given in (1), with V and θ being
the control inputs. The pair (u(x, y, t), v(x, y, t)) is referred
to as the (time-dependent) velocity field2.

The velocity field data was obtained from High Fre-
quency Radar stations that measure surface currents in
Monterey Bay, CA [17]. The data was processed by Open–
Boundary Modal Analysis [13] to smooth the data and fill
in missing data points.

In the NTG framework, the user needs to specify the
following:

• Choice of outputs and their derivatives

1Coordinates are chosen such that the x-axis is in the direction of
increasing longitude and the y-axis in the direction of increasing latitude.

2For this paper, we only consider 2-dimensional flow, even though the
ocean is 3-dimensional. However, for most purposes, the z-component of
the ocean is negligible.

• The cost and the constraints in terms of these outputs
and their derivatives

• The regularity of the variables, placement of the knot
points, order and regularity of the B-Splines, and
collocation points for each output

Thus, NTG needs the derivatives of the velocity field with
respect to the outputs. Numerically computing these deriv-
atives directly from the velocity data sets can easily create
convergence problems so it is best to use the tensor product
B–Spline functions, allowing straightforward computation
of derivatives.

The general B–Spline parameterizations for this example
are given as:

u(x, y) =
∑m

i=1

∑n
j=1 Bi,kux(x)Bj,kuy (y)aij

v(x, y) =
∑p

i=1

∑r
j=1 Bi,kvx

(x)Bj,kvy
(y)bij

(11)

where aij and bij represent coefficients of the B–Spline
functions for u(x, y) and v(x, y), respectively. Bi,k and
Bj,k represent B–Spline basis functions for the x- and y-
direction, respectively. The order of the polynomials used
were kux = kuy = kvx = kvy = 4 and the number of
the coefficients were m = p = 32 and n = r = 22.
Fig. 1 shows u(x,y) from ocean current data and the B–
Spline representations at times t = 1 and t = 4 hours.

The cost function for this problem is a weighted sum of
a temporal cost and an energy cost as follows:

J = WtT (12)

+
∫ 1

0

Wu

((
ẋ

T
− u

)2

+
(

ẏ

T
− v

)2
)

Tdτ

where ẋ = dx/dt. Note that the T terms in the integral
are due to introducing time as a state variable in the
NTG formulation. Integral bounds range from 0 to 1 from
the re-scaling transformation. Wt and Wu represent the
weighting on the total mission time and energy expenditure,
respectively.
Constraint functions are given as:

• (Linear) Initial Constraints:

−122.1780 − ε(deg) ≤ x(0) ≤ −122.1780 + ε(deg)

36.8557 − ε(deg) ≤ y(0) ≤ 36.8557 + ε(deg)

0 ≤ T ≤ 48 hours

• (Linear) Final Constraints:

−122.2420 − ε(deg) ≤ x(T ) ≤ −122.2420 + ε(deg)

36.6535 − ε(deg) ≤ y(T ) ≤ 36.6535 + ε(deg)

• (Nonlinear) Trajectory Constraint:

1 ≤ Wv
1

T 2

((
dx

dτ

)2

+
(

dy

dτ

)2
)

≤ 1600

where ε is a small positive number and Wv represents the
weighting on the velocity of the glider.
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(a) Velocity Field (b) Trajectories (c) DLE field

Fig. 2. Panel (a) shows four trajectories with varying emphasis on Wt and Wu, the solid line is for Wt >> Wu and the dotted line for Wt << Wu.
Panel (b) shows the trajectory constraints of the four trajectories shown in panel (a). Panel (c) shows the receding-horizon optimal trajectory.

The linear initial constraints serve to define the start
position of the glider and initialize the time. Linear final
constraints restrict the final destination point of the glider.
The nonlinear trajectory constraint limits the velocity of the
glider to a maximum relative velocity of 40 (cm/s).

To understand how Wt and Wu affect optimal solutions,
consider the differences between trajectories from heavily
weighting energy as opposed to time. Fig. 2(a) compares
trajectories which range from Wt >> Wu, in the solid
line, to Wt << Wu in the dotted line. As expected, the
trajectories are more direct when time is weighted more than
energy. We see that weighting energy causes the trajectories
to deviate from a straight line, which indicates the effect of
ocean currents.

One can see an even more striking distinction between
these trajectories by comparing the plots of their nonlinear
constraint functions shown in Fig. 2(b). The constraint
values are plotted on a log-scale and that the square-root
of the nonlinear constraint gives the relative speed of each
glider. Upon close inspection, one will notice that the
minimum-time glider shown by the solid blue line moves on
average about three times faster (relative to the water), and
over a shorter path, than the glider represented by the green
dash-dotted line. But remarkably, the total trajectory times
between these two only vary by about 30%. Therefore,
one can decidedly conclude the utility of the currents in
the energy-optimal solutions. This motivates the need for a
systematic way to utilize the ocean currents for navigating
the gliders. This is accomplished by the help of Lagrangian
Coherent Structures (LCS) in the ocean. In Section IV
we review how LCS are obtained from Direct Lyapunov
Exponent (DLE) fields.

A. Receding-Horizon Optimal Trajectory

The parameterizations given by (11) do not incorporate
the time dependence of the currents. To build in the time
dependence of the velocity data into NTG, we assume
the velocity fields are constant over hourly intervals. For
example, at time t = 0 an optimal trajectory from x(t0) to
x(tf ) is computed assuming the velocity field given at t = 0

does not change in time. Denote this trajectory x̂1(s). Then
another next trajectory, x̂2(s), is computed by letting the
initial point be x̂1(1 hour) and keeping the same endpoint
x(tf ) while assuming the velocity field given at t = 1 hour
is constant in time. Continuing, we let the optimal trajectory,
xopt(s), be the concatenation:

xopt(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x̂1(s) for 0 ≤ s < 1
x̂2(s) for 1 ≤ s < 2
...
x̂n(s) for T − 1 ≤ s ≤ T

where x̂n(T ) satisfies the terminals constraints. We think of
this as a receding-horizon approach, where we update the
best estimate of the currents each hour, which is reasonable
since the currents do not change significantly in one hour.
Fig. 2(c) shows the complete optimal trajectory for this
example, where Wu is slightly larger than Wt.

IV. LAGRANGIAN COHERENT STRUCTURES

In the sections above, we discussed the use of optimiza-
tion for determining efficient trajectories for a glider in the
ocean. Now let us discuss some dynamical systems concepts
which will allow us to determine similar efficient routes.

General time-dependent flows can often be studied in
terms of Lagrangian Coherent Structures (LCS) [10]. LCS
can be thought of as material lines which act as separatrices,
dividing the flow into dynamically distinct regions. LCS can
be defined in a number of ways; below we recall a definition
based on Direct Lyapunov Exponents [20].

A. Direct Lyapunov Exponent Approach

Consider a general time-dependent dynamical system
described by the differential equation

ẋ = f(x, t) (13)

Let x(x0, t0; t) denote the solution of (13). Define the strain
tensor

Σ(x0, t0; t) =
[
∂x(x0, t0; t)

∂x0

]T [
∂x(x0, t0; t)

∂x0

]
(14)
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(a) Velocity Field, Double Gyre (b) DLE field, Double Gyre (c) DLE field, Monterey Bay

Fig. 3. Panel (a) shows the velocity field of the double gyre example. Panel (b) shows the DLE field of the double-gyre example; the red ridge of high
DLE in the middle of the domain represents an LCS, which divides the flow into two distinct regions. Panel (c) shows a representative DLE field for
Monterey Bay; areas of blue indicated low DLE, while the ridges of red indicated high DLE, which are Lagrangian Coherent Structures (LCS).

Let λt(t0,x0) denote the maximum eigenvalue of
Σ(x0, t0; t). The Direct Lyapunov Exponent (DLE) is de-
fined as

σ∆(t0,x0) =
1

2∆
lnλt(t0,x0) (15)

where ∆ = t − t0. The DLE characterizes the amount of
stretching at a point x0 at time t0.

If we fix the initial time t0 then, with a slight abuse of
notation, σ∆(t0,x0) can be thought of as a scalar field, be-
ing a function of the spatial variable x0. For 2-dimensional
flows, Lagrangian Coherent Structures are defined as ridges
of the field σ∆(t0,x0), see [20] for a precise definition.

As an example of these concepts, consider the “double-
gyre”, whose velocity field is shown in Fig. 3(a). The DLE
field for this example is shown in Fig. 3(b) and we notice
high DLE along the red line which divides the gyres. We
refer to this line of high DLE as an LCS. This LCS should
be expected since, from Fig. 3(a), two points which are
close to each other, but on opposite sides of the line, will
rapidly diverge when advected by the flow.

An example DLE field for Monterey Bay, CA, is shown
in Fig. 3(c). It should be noted that for general time-
dependent flows, such as the ocean, LCS are typically time-
dependent curves. Therefore Fig. 3(c) should be interpreted
as a snapshot of the time-dependent DLE field at a particular
instance.

Again, LCS can be thought of as material lines, which act
as separatrices. The intuition behind this for 2-dimensional,
incompressible flow is that since there is high stretching
about the LCS, then we must have a situation where
particles on either side of the LCS are being advected into
dynamically different regions of the flow, and to preserve
continuity, particles on the LCS are advected along the
structure (this reasoning can easily be justified by refer-
ring to “toy” example given in Figs. 3(a),(b)). Since LCS
delineate the average motion of the flow, it is reasonable to
assume that they might make efficient pathways. As shown
in the next section, it turns out that this is indeed the case.

V. COMPARISON OF RESULTS

Now we are in a position to test the hypothesis that LCS
in the ocean reveal efficient or near-optimal routes for glider

transport. In Sec. III we had chosen boundary conditions
(i.e. x(t0) and x(tf )) near an LCS in Monterey Bay. In
Fig. 4 we have superimposed instances of the trajectory
given in Fig. 2(c) with the corresponding DLE field at that
time. The figure should be thought of as snapshots of a
movie which shows the progression of the LCS and the
progression of the glider path together3. One can see that
there is indeed a good correspondence between the optimal
trajectory and the LCS.

This suggests something quite interesting: one can con-
struct approximations to optimal paths by knowing the
evolution of the LCS. It should be noted that although the
initial location of the glider given in our example was near
an LCS, this fortuity does not seem so contrived when
one considers that LCS often correspond to geophysical
fronts, such as temperature, which the gliders are meant
to study [12]. Additionally, these LCS often represent sep-
aratrices, dividing regions of qualitatively distinct behavior.
Therefore, gliders navigating along such dividing lines can
easily switch to one or the other region with minimal
control.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we showed that LCS provide a good
correspondence with optimal trajectories for autonomous
underwater gliders in the ocean. The ability to navigate
gliders efficiently is very important for sustainability and
keeping maintenance and operational costs low. Therefore,
analyzing the evolution of LCS can be quite important in
planning paths for glider trajectories. While showing the ex-
istence of this correspondence is interesting, work is being
done to develop systematic ways to exploit this relation in
controlling gliders in the ocean in actual experiments, such
as AOSN.

Some questions that will be studied in the near future
are: Can computations of optimal trajectories be sped up
by using information of LCS to initialize the optimization
code? How does the trade-off between optimizing energy
and optimizing time affect the utility of LCS for “optimal”

3This movie can be found at
www.cds.caltech.edu/∼shawn/animations/ACC05.html
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(a) Time = 0 (hrs) (b) Time = 5 (hrs) (c) Time = 10 (hrs)

(d) Time = 15 (hrs) (e) Time = 20 (hrs) (f) Time = 25 (hrs)

Fig. 4. This figure shows the correspondence with the optimal trajectory shown in Fig. 2(c) and an LCS. Note that the ‘O’ in the figures near
the LCS represents the location of the AUV while the ‘X’ represents the final target location. The movie version of these figures can be found at
www.cds.caltech.edu/∼shawn/animations/ACC05.html.

path planning? Also, in this paper we assumed a receding-
horizon approach to integrating the currents into the optimal
control, however this integration should be incorporated
continuously by extending the B-spline parameterizations
in time (as well as space), which is something the authors
are working on.
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