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Abstract

This paper studies, using the technique of Lagrangian reduction, the geo-
metric mechanics of a pair of asteroids in orbit about each other under mutual
gravitational attraction.

1 Introduction

The binary asteroid problem is of current astrodynamic interest as recent studies
suggest that up to 20% of Near-Earth Asteroids are binaries (see Margot, Nolan,
Benner, et al. [2002]), and there have been many discoveries of binaries in the Main
Asteroid Belt and the Kuiper Belt (Veillet, Parker, Griffin, Marsden et al. [2002];
Merline, Weidenschilling, Durda, Margo et al. [2002]). The paper Koon, Marsden,
Ross, Lo, and Scheeres [2004] studied some aspects of the geometric mechanics and
dynamics of asteroid pairs; that is, a pair of irregularly shaped asteroids orbiting
about each other and attracted by their mutual gravitational forces. That paper
focused on planar models of the restricted problem (that is, the central body is
uniformly rotating, undisturbed by the second body). Already in that problem
there were interesting aspects to the dynamics such as capture and ejection.

That paper reviewed parts of the literature, including studies of translational-
rotational coupling, what is known about relative equilibria and their stability and
related topics. See Scheeres, Ostro, Werner, et al. [2000] and Scheeres [2001, 2002,a,
2004] and references therein for further information. In this paper we focus just on
the geometric mechanics aspects and take the analysis of the geometric mechanics
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2 Kinematics, Dynamics and Symmetry 2

aspects begun in Koon, Marsden, Ross, Lo, and Scheeres [2004] a little bit further.
We shall focus, in particular on the general case of two irregular bodies in orbit
about each other in three dimensions. We do not attempt, in this paper, to study
approximations or the hierarchy of different models that have been studied.

In a sense, our program is quite simple: to carry out Lagrangian reduction, in
the sense of Cendra, Marsden, and Ratiu [2001] for this problem together with some
associated structures. The configuration manifold is simply two copies of the Eu-
clidean group of three space, namely Q = SE(3)×SE(3) and the symmetry group is
SE(3) acting by the diagonal action, which reflects the obvious overall translational
and rotational symmetry of the problem. The approach we take, following this refer-
ence is to use general Lagrangian reduction methods, which rely on a specific choice
of connection, whose curvature leads to a nice description of the Coriolis effects, as
well as being critical for carrying out sharp stability analyses and a geometric phase
analysis.

We hope that this work will lay a useful foundation for future works, such as
studying relative equilibria and their stability using the energy momentum methods
(as in Simo, Lewis, and Marsden [1991]), geometric phases (as in Marsden, Mont-
gomery, and Ratiu [1990]), variational integrators (as in Marsden and West [2001]),
transport calculations (as in Dellnitz, Junge, Koon, et al. [2004]), etc.

In addition to the asteroid pair problem, there are other full body problems that
we expect will benefit from the present approach, such as problems involving under-
water vehicles and swimming. See, for instance, Radford [2003]; Kanso, Marsden,
Rowley, and Melli-Huber [2004].

One of the reasons we focus just on this specific problem is that despite earlier
and very nice studies, such as Maciejewski [1995, 1999]; Goździewski and Maciejew-
ski [1999], we have learned that it is important to lay the foundations of these sorts
of problems based on general principles so that one can take full advantage of, for
example, the energy-momentum method, dynamical systems ideas, how to place the
problem in a hierarchy of problems, etc. This was already important in, for example,
the paper Koon, Marsden, Ross, Lo, and Scheeres [2004], which reviewed some of
the literature in the area.

2 Kinematics, Dynamics and Symmetry

We begin with some kinematical preliminaries.

The Configuration Manifold. This paper deals with the ideal model of asteroids
as free rigid bodies in Euclidean 3-space R3 under mutual gravitational attraction.
Therefore, the configuration space of a single asteroid is the special Euclidean group
(the semidirect product of rotations and translations), which we denote by SE(3).
We think of an element g ∈ SE(3) as giving the position and orientation of the
asteroid relative to an inertial frame. The configuration space of the two asteroid
problem is similarly given by

Q = SE(3)× SE(3)
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and an element (g1, g2) ∈ Q represents the placement and orientation of each of the
two bodies relative to a fixed inertial frame. See Figure 2.1.
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Figure 2.1: The configuration space of the asteroid pair problem is Q = SE(3)× SE(3). The left
figure indicates how the placement and orientation of each body is given by a group element gi.
The right figure shows the asteroid pair Ida and its smaller companion Dactyl, discovered by the
Galileo mission on August 28, 1993 in the asteroid belt between Mars and Jupiter.

The Lie Group SE(3). As is well-known (see, for example, Marsden and Ratiu
[1999], §14.7), an element of SE(3) may be represented by a 4× 4 matrix,

g = (R, a) :=


R1

1 R1
2 R1

3 a1

R2
1 R2

2 R2
3 a2

R3
1 R3

2 R3
3 a3

0 0 0 1

 ,
where the matrix

R =

 R1
1 R1

2 R1
3

R2
1 R2

2 R2
3

R3
1 R3

2 R3
3


is the matrix of a rotation, that is, an element of SO(3), and the vector a =
(a1, a2, a3) represents a translation.

In this notation, group multiplication is given by

(R, a) · (S, b) = (RS,R · b+ a)

and corresponds to 4 × 4 matrix multiplication. The inverse of a group element
(R, a) is given by (R, a)−1 = (R−1,−R−1a).

If we choose an element X ∈ R3 representing a point in the reference configu-
ration, then the current point x is given by x = RX + a, or, using 4 × 4 matrix
notation, [

x
1

]
= g

[
X
1

]
.
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The Lie Algebra. An element of the Lie algebra se(3) of SE(3) is represented by
a tangent vector to the group SE(3) at the identity and has the form

ξ = (Ω̂, u) :=


0 −Ω3 Ω2 u1

Ω3 0 −Ω1 u2

−Ω2 Ω1 0 u3

0 0 0 0

 ,
where the 3× 3 skew matrix Ω̂, an element of the Lie algebra of SO(3), corresponds
to the vector Ω = (Ω1,Ω2,Ω3).

As in the case of ordinary rigid body mechanics (see, for example, Marsden and
Ratiu [1999], the kinematic meaning of an element of se(3) is easy to understand,
as follows. Let (R(t), a(t)) be a motion of a free rigid body. That is, the motion of
a particle with reference label X and current position x is given by the curve in R3

given by
x(t) = R(t)X + a(t).

Therefore, ȧ(t) = v(t) is the translational velocity of the body with respect to
the given inertial frame, and R−1(t)Ṙ(t) = Ω̂(t) is the body angular velocity.
Therefore the element

ξ(t) =
d

ds

∣∣∣∣
s=0

(R(t), a(t))−1 (R(t+ s), a(t+ s))

is given by ξ(t) =
(
Ω̂(t), u(t)

)
, where u(t) = R(t)−1v(t), represents the translational

velocity, as viewed from the body.

The Symmetry Group. As we have seen, the configuration space for an asteroid
pair is naturally given by Q = SE(3)×SE(3). The asteroid pair problem is obviously
invariant when both asteroids are simultaneously translated and rotated by the same
element of SE(3). That is, the problem has the symmetry group SE(3) acting on Q
by the simultaneous diagonal action on the left.

Of course in particular cases, there may be additional symmetries. For instance,
if one of the bodies (say the first one) has an axial symmetry, then the symmetry
group is given by S1 × SE(3) with S1 ⊂ SO(3) acting on the first body on the right
and with SE(3) acting on the left. However, for the moment, we will deal with the
general case in which both bodies are irregular and so the symmetry group is just
SE(3).

As mentioned in the introduction (and as discussed in Koon, Marsden, Ross, Lo,
and Scheeres [2004]), other specializations are also relevant, such as when one of the
bodies is very small (as in the case of Dactyl) and does not affect the dynamics of
the larger asteroid—the restricted problem. This results in much simpler problems
for which a detailed dynamical analysis is possible, as indicated in Koon, Marsden,
Ross, Lo, and Scheeres [2004].
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The Principal Bundle of G × G. We pause for a moment to consider some
geometry of configuration spaces of the form Q = G×G, where G is a general Lie
group whose Lie algebra is denoted g.

To make use of the methods of Cendra, Marsden, and Ratiu [2001], we consider
Q as being a principal bundle with structure group G, with G acting on Q by the
diagonal action; that is, the action given by h(g1, g2) = (hg1, hg2). The base of
this principal bundle is X = G, with the projection π : G × G → X given by
π(g1, g2) = g−1

1 g2, which, to conform to the notation of the general theory, we often
write as simply x = g−1

1 g2. Notice that x is unchanged under the action of G on Q.

A Connection on the Bundle. A section of the bundle π : Q → G is given by
σ(x) = (x−1, e). Recall that having a section means that that π(σ(x)) = x. This
shows, in particular, that π is a trivial bundle. For any a ∈ G, there is a a section
aσ : X → G×G, given by aσ(x) = (ax−1, a). The family of all such sections of the
form aσ, gives a foliation of G×G. The tangent distribution to this foliation defines
a principal connection by declaring this tangent distribution to be the horizontal
spaces of the connection. Since these horizontal spaces are obviously integrable, this
connection has zero curvature.

We shall use notation suggested by matrix groups (such as SE(3) that is realized
as a group of 4 × 4 matrices, as explained above). This will simplify the notation
somewhat, especially for those not familiar in notation for Lie groups and group
actions.

Horizontal vectors have the form
(
ax−1, a,−ax−1ẋx−1, 0

)
, while vertical vec-

tors (that is, tangents to the group orbits) have the form
(
ax−1, a, ȧx−1, ȧ

)
. The

associated connection 1-form A : T (G×G) → g is given by

A (g1, g2, g1ξ1, g2ξ2) = Adg2 ξ2 = g2ξ2g
−1
2 .

In the developments below, one may choose any section one wishes to obtain a
connection. In particular, one may choose σalternative(x) = (e, x), which leads to the
connection one form

Aalternative (g1, g2, g1ξ1, g2ξ2) = g1ξ1g
−1
1 .

We recall from the theory of principal connections how the connection one form
is related to the horizontal and vertical spaces. See, for example, Bloch [2003] for a
concise summary of principal connections suitable for people in mechanics. Namely,
at each point (g1, g2) ∈ Q, the subspace kerA(g1, g2) is the horizontal space, and if
ξ ∈ g and ξQ is its corresponding infinitesimal generator on Q, then the span of the
vectors ξQ(g1, g2) as ξ ranges over g is the vertical space. One readily checks that
ξQ(g1, g2) = (g1, g2, ξg1, ξg2)) and also that A(g1, g2) · ξQ(g1, g2) = ξ.

Facts from Rigid Body Mechanics. Now we return to the specific case of G =
SE(3). First, we recall some facts from rigid body mechanics. The Lagrangian of a
single freely spinning and isolated asteroid (that is, a freely spinning and translating
rigid body) is given by its kinetic energy. It can be conveniently written using a
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metric, which we will denote k on the Lie algebra g, which is the restriction of a
uniquely determined left invariant metric, also called k on G. The metric k is in
fact given by

k(ξ, ξ) = tr(KξTξ),

where ξT is the transpose of ξ and the matrix K, which we shall write as

K =


K1 0 0 0
0 K2 0 0
0 0 K3 0
0 0 0 K4

 ,
satisfies

K1 +K2 = I3

K2 +K3 = I1

K3 +K1 = I2

K4 = M,

where I1, I2, and I3, are the principal moments of inertia of the body and M is its
total mass. We can easily see that

1
2
k(ξ, ξ) =

1
2

(
I1(Ω1)2 + I2(Ω2)2 + I3(Ω3)2

)
+

1
2
M

(
(u1)2 + (u2)2 + (u3)2

)
,

which is of course the standard expression for the kinetic energy for a free rigid
body, in body coordinates.

The Two Asteroid Lagrangian. The Lagrangian for two asteroids is given by
the total kinetic energy minus the mutual gravitational potential energy; it has the
form

L(g1, g2, ġ1, ġ2) =
1
2
k1(ξ1, ξ1) +

1
2
k2(ξ2, ξ2)− V (g1, g2). (2.1)

In this expression, ξi = g−1
i ġi, for i = 1, 2, and, for i = 1, 2, the metric ki is given by

ki(ξi, ξi) = tr(Kiξ
T
i ξi),

where the matrix Ki, which we write as

Ki =


Ki1 0 0 0
0 Ki2 0 0
0 0 Ki3 0
0 0 0 Ki4


satisfies

Ki1 +Ki2 = Ii3

Ki2 +Ki3 = Ii1

Ki3 +Ki1 = Ii2

Ki4 = Mi,
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where Ii1, Ii1, and Ii1, are the principal moments of inertia and Mi is the mass of
the ith rigid body, i = 1, 2. We will sometimes write ki(ξi) = ki(ξi, ξi), for i = 1, 2.

We can then easily see that

L(g1, g2, ġ1, ġ2) =
1
2

(
I11(Ω1

1)
2 + I12(Ω2

1)
2 + I13(Ω3

1)
2
)

+
1
2
M1

(
(u1

1)
2 + (u2

1)
2 + (u3

1)
2
)

+
1
2

(
I21(Ω1

2)
2 + I22(Ω2

2)
2 + I23(Ω3

2)
2
)

+
1
2
M2

(
(u1

2)
2 + (u2

2)
2 + (u3

2)
2
)

− V (g1, g2).

Here, Ωi =
(
Ω1

i ,Ω
2
i ,Ω

3
i

)
and ui =

(
u1

i , u
2
i , u

3
i

)
, represent, respectively, the body

angular velocity, and the translational velocity in body coordinates of the ith rigid
body, i = 1, 2.

Letting xi = gi(X) denote a point in the current configuration of body i, i = 1, 2,
and G be the gravitational constant, the gravitational potential is of course given
by the standard expression

V (g1, g2) = −G
∫

g1(B1)

∫
g2(B2)

ρ1(x1)ρ2(x2)
‖x1 − x2‖

dx1 dx2 (2.2)

where ρi is the given mass density of body i.
It is easy to see from equation (2.1) that the kinetic energy for the asteroid pair

is invariant under the diagonal action of G on G × G. Likewise we see from (2.2)
that the function V : Q→ R is invariant under the action of G. Thus, the asteroid
pair Lagrangian is also invariant.

Momentum Map. From Noether’s theorem (see Marsden and Ratiu [1999], equa-
tion 12.2.1), we then find that the conserved momentum map for the action of SE(3)
on Q = SE(3)× SE(3) is the map J : TQ→ se(3)∗ given by

〈J(g1, g2, ġ1, ġ2), ξ〉 = tr
(
KξT1 g

−1
1 ξg1

)
+ tr

(
KξT2 g

−1
2 ξg2

)
where ξi = g−1

i ġi. This quantity represents the total spatial linear and angular
momentum of the full body system.

3 The Lagrange–Poincaré Equations.

The Lagrange–Poincaré equations where introduced in Cendra, Marsden, and Ratiu
[2001], and are a convenient representation of the reduced Euler-Lagrange equa-
tions, that is, the Euler–Lagrange equations induced on (TQ)/G from those on
TQ; they are called the Lagrange–Poincaré equations because in the special case of
Q = G, they become the Euler–Poincaré equations on g. The general theory of these
equations is given in this reference from the point of view of using connections on
the bundle Q→ X = Q/G. The Lagrange–Poincaré equations are conveniently de-
rived by reducing the Hamilton variational principle, rather than the Euler-Lagrange
equations themselves, and the use of a principal connection gives them a particularly
nice form. In what follows, we are going to use notation and results from this work,
which goes by the name of Lagrangian reduction theory.
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The Isomorphism αA. One of the basic ingredients in this theory is an isomor-
phism that is obtained in a natural way from the principal connection A; in general,
it is an isomorphism

αA : TQ/G→ TX ⊕ g̃,

where g̃ is the associated bundle, a bundle over X, which we recall is defined to be
the quotient g̃ = (Q× g)/G where G acts on the first factor by the given action on
Q and on the second factor by the adjoint action. The general definition is

αA([q, q̇]G) = Tπ(q, q̇)⊕ [(q, A(q, q̇)]G,

where [q, q̇]G denotes the equivalence class of the tangent vector (q, q̇) in the quotient
TQ/G.

In our case, where Q = G×G, this becomes

αA ([g1, g2, ġ1, ġ2]G) = Tπ (g1, g2, ġ1, ġ2)⊕ [(g1, g2), A (g1, g2, ġ1, ġ2)]G .

Let us work out each term. Since x = π(g1, g2) = g−1
1 g2, we see that (x, ẋ) =

Tπ (g1, g2, ġ1, ġ2) , is given by

(x, ẋ) =
(
x,−g−1

1 ġ1g
−1
1 g2 + g−1

1 ġ2
)

= (x,−ξ1x+ xξ2) ,

where, as above, ξi = g−1
i ġi, for i = 1, 2. We remark for later use that using this

expression, we obtain
ξ1 = −ẋx−1 + xξ2x

−1.

Since (g1, g2, ġ1, ġ2) = (g1, g2, g1ξ1, g2ξ2) , we have

[(g1, g2), A(g1ξ1, g2ξ2)]G = [(g1, g2),Adg2 ξ2]G =
[
(x−1, e), ξ2

]
G
.

We shall identify
[
(x−1, e), ξ2

]
G
≡ (x, ξ2). Under this identification the bundle g̃

becomes simply g̃ ≡ X × g, where the fiber over the point x ∈ X is parametrized by
the variable ξ2.

The Structure of g̃ ≡ X × g. The geometric structure of g̃ can be easily derived
from the formulas in Cendra, Marsden, and Ratiu [2001], and we obtain

1 Lie algebra structure on each fiber, given by

[(x, ξ2), (x, η2)] = (x, [ξ2, η2])

2 The covariant derivative on the bundle g̃ induced by the connection A is

D (x(t), ξ2(t))
Dt

=
(
x(t), ξ̇2(t)

)
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3 The induced curvature is trivial:

B̃(ẋ, δx) = 0.

Using this structure, we will proceed to derive the Lagrange–Poincaré equations for
the asteroid pair, as explained in Cendra, Marsden, and Ratiu [2001]. However, in
addition, we will take advantage of the fact that the base X = G is itself a group,
to further simplify the reduced equations. To do so, we shall write TX ≡ X × g,
using space coordinates. That is, we represent the element (x, ẋ) by (x, ẋ) ≡ (x,w),
where w = ẋx−1. This induces an identification

TX ⊕ g̃ ≡ X × g× g

For this reason, instead of applying the general formulation of the Lagrange–Poincaré
equations directly, we prefer, in this case, to work out reduced equations using re-
duced variations specific to this case, to take advantage of the special features of
the asteroid pair problem. For this purpose, we shall first study the geometry of
reduced variations.

Reduced variations. Using the previous identifications and formulas in Cendra,
Marsden, and Ratiu [2001], one readily calculates reduced vertical and horizontal
variations. Of course these depend on the connection A that we have chosen. Re-
duced vertical variations are given by

δA (x,w, ξ2) = ((x,w, ξ2), (0, 0, δξ2)) ,

where δξ2 = η̇ + [ξ2, η], where η vanishes at the endpoints of the time interval in
question; say η(ti) = 0, for i = 1, 2.

Similarly, reduced horizontal variations have the form

δA (x,w, ξ2) =
(
(x,w, ξ2), (λx, λ̇− [w, λ], 0

)
,

where λ satisfies λ(ti) = 0, for i = 1, 2.

Reduced Lagrangian. Using the expression (2.1), and taking into account that
w = ẋx−1, the reduced Lagrangian

l : TX ⊕ g̃ → R,

is given by

l(x,w, ξ2) =
1
2

tr
(
K1ξ

T
1 ξ1 +K2ξ

T
2 ξ2

)
− V (e, x),

where ξ1 = −w + xξ2x
−1.
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Vertical Lagrange–Poincaré Equations. As explained before, in the example
of the asteroid pair, we choose, for computational efficiency, to derive the equations
of motion from the reduced variational principle, using the reduced variations, rather
than using directly the general Lagrange–Poincaré formulas.

As we have just seen, reduced vertical variations are described by δ(x,w, ξ2) =
(δx, δw, δξ2) where δx = 0, δw = 0 and δξ2 = η̇ + [ξ2, η], where η(ti) = 0, for
i = 1, 2. Since ξ1 = −ẋ1x

−1 + xξ2x
−1, we see that δξ1 = xδξ2x

−1. Keeping in mind
the reduced variational principle

δ

∫ t1

t0

l(x,w, ξ2)dt = 0,

we compute

δl(x,w, ξ2) = tr
(
K1ξ

T
1 δξ1 +K2ξ

T
2 δξ2

)
= tr

(
(ξ1K1)Tδξ1 + (ξ2K2)Tδξ2

)
= tr

(
(ξ1K1)Txδξ2x−1 + (ξ2K2)Tδξ2

)
= tr

((
x−1(ξ1K1)Tx+ (ξ2K2)T

)
δξ2

)
.

Let a = x−1(ξ1K1)Tx+ (ξ2K2)T. Then we obtain δl(x,w, ξ2) = tr(aδξ2), and there-
fore,

δ

∫ t1

t0

l(x,w, ξ2)dt =
∫ t1

t0

tr (a (η̇ + [ξ2, η])) dt

=
∫ t1

t0

tr (−ȧη + a[ξ2, η]) dt

=
∫ t1

t0

tr (−ȧη + aξ2η − aηξ2) dt

=
∫ t1

t0

tr (−ȧη + (aξ2 − ξ2a)η) dt

=
∫ t1

t0

tr ((−ȧ+ [a, ξ2]) η) dt.

Then we obtain the Vertical Lagrange–Poincaré Equation in the form

tr (−ȧη + (aξ2 − ξ2a)η) = 0,

for all η ∈ g. Since the metric given by the trace is nondegenerate, we can write the
previous equation simply as follows

d

dt
a(x,w, ξ2) = [a(x,w, ξ2), ξ2] (3.1)

However, one should keep in mind that this is really an equation in X × g∗ × g∗. A
more explicit expression should be worked out in order to solve the equation, which
will be done later.
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Horizontal Lagrange–Poincaré Equations. We must now calculate δl(x,w, ξ2)
for horizontal variations; that is, as we saw before, variations of the form δ(x,w, ξ2) =
(δx, δw, δξ2) of the type (δx, δw, δξ2) = (λx, λ̇− [w, λ], 0).

Using the equality ξ1 = −w + xξ2x
−1, and, also, that δξ2 = 0 and that δw =

λ̇− [w, λ], we obtain

δξ1 = −λ̇+ [w, λ] + λxξ2x
−1 − xξ2x

−1λ.

We can always write, for an appropriate matrix ϕ1 such that ϕT
1 ∈ g,

∂V (e, x)
∂x

δx = tr(ϕ1λ).

More precisely, let

λ =


0 −λ3 λ2 u1

λ3 0 −λ1 u2

−λ2 λ1 0 u3

0 0 0 0

 ,
and seek a ϕ1 of the form

ϕ1(x) =


0 ϕ3(x) −ϕ2(x) 0

−ϕ3(x) 0 ϕ1(x) 0
ϕ2(x) −ϕ1(x) 0 0
f1(x) f2(x) f3(x) 0

 .
Then we have

tr (ϕ1(x)λ) = ϕ1
1(x)λ

1 + ϕ2
1(x)λ

2 + ϕ3
1(x)λ

3 + f1(x)u1 + f2(x)u2 + f3(x)u3,

showing that one can use Riesz theorem to represent the element ∂V (e, x)/∂x of g∗

by an element ϕ1(x) of g, via the nondegenerate metric given by the trace. Using
this, we obtain

δl(x,w, ξ2) = tr
(
(ξ1K1)T

(
−λ̇+ [w, λ] + λxξ2x

−1 − xξ2x
−1λ

))
− tr (ϕ1(x)λ)

= tr
(
−(ξ1K1)Tλ̇

)
+ tr

(
(ξ1K1)T(wλ− λw)

)
+ tr

(
(ξ1K1)Tλxξ2x−1

)
− tr

(
(ξ1K1)Txξ2x−1λ

)
− tr (ϕ1(x)λ)

= tr
(
−(ξ1K1)Tλ̇

)
+ tr

(
(ξ1K1)Twλ

)
− tr

(
w(ξ1K1)Tλ

)
+ tr

(
xξ2x

−1(ξ1K1)Tλ
)

− tr
(
(ξ1K1)Txξ2x−1λ

)
− tr (ϕ1(x)λ)

= tr
(
−(ξ1K1)Tλ̇+

[
(ξ1K1)T, w

]
λ+

[
xξ2x

−1, (ξ1K1)T
]
λ− ϕ1(x)λ

)
Using the previous calculations in the variational principle

δ

∫ t1

t0

l(x,w, ξ2)dt = 0,
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and integrating by parts, we obtain,∫ t1

t0

tr
((

d

dt
(ξ1K1)T +

[
(ξ1K1)T, w

]
+

[
xξ2x

−1, (ξ1K1)T
]
− ϕ1(x)

)
λ

)
dt = 0.

This leads to the following form of the Horizontal Lagrange–Poincaré Equation

tr
((

d

dt
(ξ1K1)T +

[
(ξ1K1)T, w

]
+

[
xξ2x

−1, (ξ1K1)T
]
− ϕ1(x)

)
λ

)
= 0,

for all λ ∈ g. Since the metric given by the trace is nondegenerate, we can write the
previous equation simply as follows

d

dt
(ξ1K1)T +

[
(ξ1K1)T, w

]
+

[
xξ2x

−1, (ξ1K1)T
]
− ϕ1(x) = 0,

or, equivalently,

d

dt
(ξ1K1)T =

[
(ξ1K1)T, xξ2x−1 − w

]
+ ϕ1(x).

Taking into account that ξ1 = xξ2x
−1−w, we can rewrite the Horizontal Lagrange–

Poincaré Equation as follows

d

dt
(ξ1K1)T =

[
(ξ1K1)T, ξ1

]
+ ϕ1(x) = 0. (3.2)

However, one should keep in mind that this is an equation in X × g∗× g∗. More
explicit equations should be worked out, and we will do this shortly.

The System of Horizontal and Vertical Lagrange–Poincaré Equations
Collecting what we have proven so far from equations (3.1) and (3.2), we obtain
the following System of Horizontal and Vertical Lagrange–Poincaré Equations:

da

dt
= [a, ξ2] (3.3)

db

dt
= [b, ξ1] + ϕ1(x), (3.4)

where

a = x−1bx+ (ξ2K2)T (3.5)

b = (ξ1K1)T (3.6)

ξ1 = −w + xξ2x
−1 (3.7)

w = ẋx−1. (3.8)
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Elimination of the Quantities a and b. Now we are going to transform the
previous equations, in order to eliminate the auxiliary parameters a and b. First of
all, differentiate equation (3.5) with respect to time to obtain

ȧ = −x−1ẋx−1bx+ x−1ḃx+ x−1bẋ+ (ξ̇2K2)T

= −x−1wbx+ x−1ḃx+ x−1bwx+ (ξ̇2K2)T

= x−1[b, w]x+ x−1ḃx+ (ξ̇2K2)T

Using this and equation (3.4 we obtain

ȧ = x−1[b, w]x+ x−1[b, ξ1]x+ x−1ϕ1(x)x+ (ξ̇2K2)T

= x−1[b, w + ξ1]x+ x−1ϕ1(x)x+ (ξ̇2K2)T

= x−1[b, xξ2x−1]x+ x−1ϕ1(x)x+ (ξ̇2K2)T

= [x−1bx, ξ2] + x−1ϕ1(x)x+ (ξ̇2K2)T.

Using this and equation (3.3) we obtain the equation

(ξ̇2K2)T =
[
(ξ2K2)T, ξ2

]
− x−1ϕ1(x)x.

The Set of Lagrange–Poincaré Equations. Collecting these results together,
we can write the System of Horizontal and Vertical Lagrange–Poincaré Equations
as follows

K1ξ̇
T
1 = [K1ξ

T
1 , ξ1] + ϕ1(x) (3.9)

K2ξ̇
T
2 = [K2ξ

T
2 , ξ2]− x−1ϕ1(x)x. (3.10)

These Lagrange–Poincaré Equations are to be interpreted as being equations in
T ∗X⊕ g̃∗ ≡ X×g∗×g∗, via the identifications TX ≡ X×g given by (x, ẋ) ≡ (x,w),
where w = ẋx−1 and g̃ ≡ X × g given by

(
(x−1, e), ξ

)
≡ (x, ξ), as we have explained

before. To this, one should add the equation

ẋ = xξ2 − ξ1x.

Explicit Equations of Motion. As we have explained before, equations (3.9)
and (3.10), are to be interpreted as follows

tr
(
K1ξ̇

T
1 δξ1

)
= tr

((
[K1ξ

T
1 , ξ1] + ϕ1(x)

)
δξ1

)
(3.11)

tr
(
K2ξ̇

T
2 δξ2

)
= tr

((
[K2ξ

T
2 , ξ2]− x−1ϕ1(x)x

)
δξ2

)
(3.12)

for all δξ1, δξ2 ∈ g, to which one should add the equation

ẋ = xξ2 − ξ1x.

Now we shall transform these equations, to obtain more explicit equivalent equa-
tions, including vector equations.

To illustrate the procedure, we consider first the case of a single asteroid, that
is, equations of motion of a free rigid body in Euclidean 3-space.
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The Free Rigid Body in R3. It is clear, taking into account the last equations
(3.11) and (3.12) of the previous paragraph, that equations of a free rigid body in
Euclidean 3-space are given by

tr
(
Kξ̇Tδξ

)
= tr

(
[KξT, ξ]δξ

)
for all δξ ∈ g. This equation essentially means that Kξ̇T and [KξT, ξ] are to be
interpreted as being elements of g∗ using the trace inner product. For any matrix
M ∈ L(R4,R4), we denote by M | g the element of g∗ defined by M via the trace
inner product. Thus, the equations for a free rigid body in Euclidean 3-space are
equivalently written as follows

Kξ̇T
∣∣∣ g = [KξT, ξ]

∣∣ g.

Let

ξ =


0 −Ω3 Ω2 u1

Ω3 0 −Ω1 u2

−Ω2 Ω1 0 u3

0 0 0 0

 ,
be an element of g, and let M = (mα

β), where α, β ∈ {1, 2, 3, 4}, be an element of
L(R4,R4). Then we have

tr(Mξ) = (m2
3 −m3

2)Ω
1 + (m3

1 −m1
3)Ω

2 + (m1
2 −m2

1)Ω
3 +m4

1u
1 +m4

2u
2 +m4

3u
3.

Then, the condition tr(Mξ) = 0, for all ξ ∈ g, or, M | g = 0, is equivalent to

mi
j = mj

i

m4
j = 0,

where i, j ∈ {1, 2, 3}, and i 6= j. Using this, one can see that an equation of the form
A| g = B| g, where A = (aα

β) and B = (bαβ) are elements of L(R4,R4), is equivalent
to

ai
j − bij = aj

i − bji

a4
j = b4j ,

that is, to

ai
j − aj

i = bij − bji

a4
j = b4j ,

where i, j ∈ {1, 2, 3}, and i 6= j. In particular, the equation for the free rigid body
in Euclidean space, can be written, equivalently, as follows

(Kξ̇T)i
j − (Kξ̇T)j

i = [KξT, ξ]ij − [KξT, ξ]ji
(Kξ̇T)4j = [KξT, ξ]4j ,
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where i, j ∈ {1, 2, 3}, and i 6= j. After carrying out the indicated calculations, one
sees that these equations are equivalent to

IΩ̇ = IΩ× Ω
u̇ = −Ω× u,

where

I =

 I1 0 0
0 I2 0
0 0 I3

 ,
and

I1 = K2 +K3

I2 = K3 +K1

I3 = K1 +K2.

The physical interpretation of the previous equations is clear. The first equation
is simply Euler equation, where Ω is the body angular velocity, and the second
represents the motion of the velocity of the center of mass u, as viewed from the
body.

Equations of the Asteroid Pair in Vector Notation. We now give the explicit
equations, in vector notation, for the asteroid pair problem, just as we did with one
asteroid.

Let ϕ2(x) = −x−1ϕ1(x)x. Equations (3.9) and (3.10) can be written as follows,

trKξ̇T1
∣∣∣ g = tr[KξT1 , ξ1]

∣∣ g

trKξ̇T2
∣∣∣ g = tr[KξT2 , ξ2]

∣∣ g.

Proceeding in a similar way as we did with the case of one asteroid, we obtain the
equations

(Kkξ̇
T
k )i

j − (Kkξ̇
T
k )j

i = [Kkξ
T
k , ξk]

i
j − [Kkξ

T
k , ξk]

j
i + ϕi

kj(x)− ϕj
ki(x)

(Kkξ̇
T
k )4j = [Kkξ

T
k , ξk]

4
j + ϕ4

ki(x),

where i, j ∈ {1, 2, 3}, i 6= j and k = 1, 2. Using these equations, one can easily
obtain, after some straightforward calculations, the following equations

IΩ̇k = IkΩk × Ωk + Fk(x) (3.13)
u̇k = −Ωk × uk + ψk(x), (3.14)

where
F̂ i

kj(x) = ϕi
kj − ϕj

ki,

and
ψi

k(x) =
1
Mk

ϕt i
k4
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for k = 1, 2. The complete system of equations of motion for the pair asteroid is,
therefore,

IΩ̇k = IkΩk × Ωk + Fk(x) (3.15)
u̇k = −Ωk × uk + ψk(x) (3.16)
ẋ = xξ2 − ξ1x, (3.17)

for k = 1, 2. These equations are in agreement with those in the literature, such as
in Maciejewski [1995, 1999].

The Hamilton–Poincaré Equations. These equations were introduced in Cen-
dra, Marsden, Pekarsky, and Ratiu [2003]. They are essentially, reduced Hamil-
ton equations in a similar sense that the Lagrange–Poincaré equations are reduced
Euler–Lagrange equations. Keep in mind that in the special case in which Q = G,
the Hamilton-Poincaré equations reduce to the Lie-Poisson equations (see, for in-
stance, Marsden and Ratiu [1999] for an exposition of these equations and how to
realize them via Poisson reduction and see Cendra, Marsden, Pekarsky, and Ratiu
[2003] for how to obtain them by reduction of Hamilton’s phase space principle.

We next derive the Hamilton–Poincaré equations for the pair asteroid problem.
The reduced fiber derivative (that is the reduced Legendre transformation) of the
reduced Lagrangian l(x, ẋ, ξ2) of the pair asteroid is the map

Fl : TX ⊕ g → T ∗X ⊕ g∗,

defined by Fl(x, ẋ, ξ2) = (x, y, π2), where

y =
∂l

∂ẋ
(x, ẋ, ξ2) (3.18)

π2 =
∂l

∂ξ2
(x, ẋ, ξ2). (3.19)

The metric k2 induces a metric k2 in g∗ in a natural way, namely, for any given
ξ2 ∈ g, we have k2 (k2(ξ2, .), k2(ξ2, .)) = k2(ξ2). Then, for π2 as in (3.19), we have
k2(π2) = k2(ξ2), where, by definition, k2(π2) = k2(π2, π2). In a similar way, let k1

be the metric in g∗ induced by k1. We now extend k1 to a right invariant metric,
also called k1, in T ∗X ≡ T ∗G.

Using the fact that ξ1 = xξ2x
−1 − ẋx−1, we see that y, which is given by

(3.18), satisfies y = −k1(ξ1, .)x, where the right hand side is the right transla-
tion of −k1(ξ1, .) ∈ g∗ to the element x ∈ G. Therefore, we obtain, k1(y) = k1(ξ1).
Collecting results, we see that the kinetic energy for the asteroid pair, namely,

1
2
k1(ξ1) +

1
2
k2(ξ2),

can be written as follows,
1
2
k1(x)(y) +

1
2
k2(π2).
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Finally, the reduced Hamiltonian h : T ∗X⊕g∗ → R is given as usual by the formula
kinetic plus potential energy, so we obtain,

h(x, y, π2) =
1
2
k1(x)(y) +

1
2
k2(π2) + V (e, x).

Using the Hamiltonian h and a torsionless affine connection ∇ on G, (a specific
choice is made below), we can write the Hamilton–Poincaré equations, as follows,

Dy

Dt
= −∂h

∂x
ẋ = k1(x)(y, .)

ξ2 = k2(π2, .)

Dπ2

Dt
= ad∗ξ2 π

2.

If one chooses the connection ∇ to be the Levi-Civita connection of the right invari-
ant metric k1 in X, one can give a more explicit expression for

∂h

∂x
.

First of all we have

∂h

∂x
(x, y, π2) =

1
2
∂k1(x)(y)

∂x
+
∂V (x, e)
∂x

,

where the partial derivative with respect to x has to be understood in a covariant
sense, as explained in Cendra, Marsden, Pekarsky, and Ratiu [2003]. Since ∇k1 = 0,
we see that, for any tangent vector vx ∈ TxX, we have

1
2
∂k1(x)(y)

∂x
(vx) = κ1(x)(y, vx),

which defines a tensor field κ1(x) ∈ T 1
1 (X), depending on k1. This gives

∂h

∂x
(x, y, π2) = κ1(x)(y, .) +

∂V (x, e)
∂x

Collecting results, we can write the Hamilton-Poincaré equations equivalently as
follows.

Dy

Dt
= −κ1(x)(y, .)− ∂V (x, e)

∂x
(3.20)

ẋ = k1(x)(y, .) (3.21)

Dπ2

Dt
= ad∗k2(π2,.) π

2. (3.22)

This system of equations has some interesting features; for instance, the last equation
is not coupled to the first two. Also, the first equation is affine in y, while the second
equation is linear in y.
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Poisson Bracket and Symplectic Leaves in T ∗X ⊕ g∗. Following Cendra,
Marsden, Pekarsky, and Ratiu [2003], and taking into account that the principal
connection A we have chosen is integrable, we can easily see that the induced Poisson
Bracket in T ∗X ⊕ g∗ is given simply by

{f, g}(x, y, π2) = {f, g}T ∗X(x, y, π2) + {f, g}g∗(x, y, π2),

Where {f, g}T ∗X is the standard Poisson bracket in T ∗X, and {f, g}g∗ is the standard
Poisson bracket in g∗. The symplectic leaves are also relatively easy to compute,
following Cendra, Marsden, Pekarsky, and Ratiu [2003], and are given by T ∗X×Oµ,
where Oµ is the coadjoint orbit that contains µ. The symplectic form is given by

ω(., .) = ωT ∗X(., .) + ωµ(., .),

where ωµ is the canonical symplectic form on Oµ. This also provides a nice example
for the theory in Marsden and Perlmutter [2000].

4 Conclusions and Future Directions.

What does one gain from what appears, at first sight, to be a very complicated
derivation of equations that are already in the literature? The main overall benefit
is that this derivation puts the problem properly into the general framework of
geometric mechanics. For instance, it answers, automatically, the following basic
question: in what sense are the equations (3.15), (3.16), and (3.17) variational? For
example, the answer to such questions are critical for the use of modern variational
numerical integration techniques, as in, for instance, Marsden and West [2001] and
Lew, Marsden, Ortiz, and West [2004].

Similarly, the Hamilton-Poincaré formulation gives a very nice setting in which
one can derive the Poisson bracket formulation of the problem. For instance, it
answers, in a systematic way, the sense in which equations (3.20), (3.21), and (3.22)
are Hamiltonian. Many of the previous approaches were quite ad hoc in this regard.

We have also mentioned another benefit, namely that the geometric mechanics
setting is the first step that is needed to make use of the energy-momentum method,
which has not been heretofore employed for this problem. It is the most powerful
stability method known for mechanical systems with symmetry and so its use in
future researches will be very important. This is also essential for carrying out the
dynamical systems analysis of tube and lobe dynamics, ejection calculations, capture
probabilities, etc. There is much current interest in these techniques at present; see,
for example, Astakhov, Burbanks, Wiggins, and Farrelly [2003]; Koon, Marsden,
Ross, Lo, and Scheeres [2004]; Dellnitz, Junge, Koon, et al. [2004] and references
therein. It is clear that future applications and development of these techniques
are going to depend on the structures and the variational computational algorithms
that geometric mechanics provides and the present article is, we believe, a useful
contribution towards these goals.
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