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[1] Increasingly accurate remote sensing techniques are available today, and methods
such as modal analysis are used to transform, interpolate, and regularize the measured
velocity fields. Until recently, the modes used did not incorporate flow across an open
boundary of the domain. Open boundaries are an important concept when the domain is
not completely closed by a shoreline. Previous modal analysis methods, such as those of
Lipphardt et al. (2000), project the data onto closed-boundary modes, and then add a
zero-order mode to simulate flow across the boundary. Chu et al. (2003) propose an
alternative where the modes are constrained by a prescribed boundary condition. These
methods require an a priori knowledge of the normal velocity at the open boundary. This
flux must be extrapolated from the data or extracted from a numerical model of a
larger-scale domain, increasing the complexity of the operation. In addition, such methods
make it difficult to add a threshold on the length scale of open-boundary processes.
Moreover, the boundary condition changes in time, and the computation of all or some
modes must be done at each time step. Hence real-time applications, where robustness and
efficiency are key factors, were hardly practical. We present an improved procedure in
which we add scalable boundary modes to the set of eigenfunctions. The end result
of open-boundary modal analysis (OMA) is a set of time and data independent
eigenfunctions that can be used to interpolate, extrapolate and filter flows on an arbitrary
domain with or without flow through segments of the boundary. The modes depend
only on the geometry and do not change in time. INDEX TERMS: 3210 Mathematical

Geophysics: Modeling; 3220 Mathematical Geophysics: Nonlinear dynamics; 3299 Mathematical Geophysics:

General or miscellaneous; 4275 Oceanography: General: Remote sensing and electromagnetic processes
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1. Introduction

[2] Dynamical systems theory provides tools to extract
alleyways and barriers to Lagrangian transport in fluid
flows. Recent works show that the detection and extraction
of the Lagrangian structures governing transport and mixing
in coastal and oceanographic flow can be used to optimize
the path of drifters and underwater gliders, or to minimize
the impact of coastal pollution [see, e.g., Coulliette and
Wiggins, 2001; Lekien et al., 2003]. These methods assume

that the motion of a particle of water or a passive drifter in
the ocean is given by

_�x ¼ �u �x; tð Þ; ð1Þ

where �x is the position (longitude and latitude) of the
particle and �u is the time-dependent two-dimensional
velocity field. The velocity field �u is typically approximated
by an analytical equation or replaced by a numerical
simulation of a large-scale ocean model. However, in the
last few years, technological advances in techniques such as
high-frequency radiometry provided accurate measurements
of the velocity vectors in certain coastal areas [Paduan and
Cook, 1997], and our goal is to provide a recipe to replace �u
in equation (1) with experimental data. These data cannot be
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used directly as a dynamical system, unlike a smooth
ordinary differential equation (ODE) that can be integrated.
There are usually gaps due to the radar range and wind
conditions [Paduan and Cook, 1997]. As a result,
oceanographers are in need of a way to extrapolate,
interpolate, and filter such data. The resulting smoothed
velocity field is often called a ‘‘nowcast’’ in reference to the
much more common forecasting operation. Nowcasting
does not involve the extrapolation of the velocity into the
future. It uses available data to determine the velocity
everywhere in space at the same time that the data were
collected.
[3] Eigenvalue problems provide basis functions over a

domain, and this technique has been used in fields such as
electromagnetism or quantum mechanics. Recent works
[Eremeev et al., 1992a, 1992b, 1995a, 1995b; Lipphardt
et al., 2000] adapt these techniques to geophysical flows. In
the case of a coastal oceanographic process, the boundary
conditions may not always be natural. The boundary of
some regions of interest does not correspond exactly to the
shoreline (such as in the work by Lipphardt et al. [2000]).
In most cases, the region of interest is closed by a segment
of shoreline on one side and an artificial boundary in the
sea, resulting from the limited range of action of the radar-
antenna system or the boundary of a coastal ocean model. In
such cases, one needs to take into account the fact there can
be a non-zero normal flux through certain portions of the
boundary. This flux can be positive or negative across
different portions of the open boundary.
[4] Lipphardt et al. [2000] propose to append a zero-

order mode satisfying a prescribed boundary condition at
the open boundary. The space of all available homogeneous
velocity fields is translated to force each solution to match
the prescribed boundary condition. This is satisfactory only
if the exact boundary condition is known. However, the flux
through the boundary must be extrapolated from the data or,
as Lipphardt et al. [2000] suggest, extracted from a numer-
ical model covering a larger domain. Chu et al. [2003]
showed later that the solution can be extremely sensitive to
the method used to extrapolate the data or numerical errors
in the modeled open-boundary flow. In addition, this
procedure requires the numerical computation of the zero-
order mode at each time step. This complicates its use and
decreases the efficiency in real-time applications where
computational time and human intervention are extremely
costly.
[5] An alternative method is presented by Chu et al.

[2003], where the modes from Lipphardt et al. [2000] are
modified in such a way that they all satisfy a prescribed
approximation of the open-boundary condition. Chu et al.
[2003] also analyze and propose several methods to extrap-
olate the boundary conditions from the data. In this case, all
the modes have to be computed at each time, creating a high
computational load. The high demand in computation time
makes the approach hardly practical for real-time applica-
tions. In addition, Chu et al. [2003] noticed the extreme
sensitivity of the solutions on the prescribed boundary
condition. Although they find a satisfactory method to
approximate the flux through the boundary in their partic-
ular example, avoiding the necessary extrapolation of the
boundary condition is a key element to improving the

quality of the nowcast and decreasing the computational
complexity of the operation.
[6] In this paper, we present a complete functional basis

that can be used to project the flow on modes allowing flux
through selected segments of the boundary. This method,
called open-boundary modal analysis (i.e., OMA), is some-
what similar to, and builds on the method introduced by,
Lipphardt et al. [2000]. However, there is a fundamental
difference in that there is the addition of an infinite (possibly
truncated) sequence of boundary modes, which allow ade-
quate degrees of freedom to project the experimental data
onto open-boundaries. The space of all available velocity
fields is greatly increased. However, all the modes are data
and time independent. They depend only on the geometry of
the boundary. As a result, they can be computed once and
stored for all future use. This allows for fast and robust
nowcasts during real-time experiments. In addition, the
larger space allows us to avoid the complicated operation
of extrapolating open-boundary flux or making any assump-
tions about normal or tangential flow along the open
boundary as other methods require. In our method, the
projection of the data on the modes determines the optimal
open-boundary flow. Another advantage (that we thank an
anonymous referee for indicating) is that the approach we
describe allows us to match boundary scales with the
interior scales.
[7] Unlike other methods, the approach that we highlight

renders the eigenfunctions on an unstructured triangular grid
with a general boundary. For example, Lipphardt et al.
[2000] use a staircase approximation of the actual coastline,
where the approximate boundary is composed entirely of
segments oriented at 0�, 90�, 180�, and 270�. There are
three major reasons why an unstructured triangulation is
superior to a normal grid with a staircase boundary approx-
imation. First, a staircase boundary is a less accurate
representation of a coastline geometry than the unstructured
triangulation we use, unless an extremely fine staircase
boundary is used, which is computationally intractable
because it would require making the entire domain an
equally fine mesh. In this case, not only would the compu-
tational time be prohibitive, but round-off error becomes a
limiting factor.
[8] Second, at each corner vertex along a staircase

boundary, the tangential velocity must be set to zero in
order to satisfy the no-penetration condition along the
coastline. Therefore it is not possible to have a boundary
condition along a staircase coastline that is both free slip (or
quasi-free slip) and no penetration. The unstructured trian-
gulation used by OMA avoids this problem related to
staircase boundaries. When computing the solutions on
the unstructured mesh, natural boundary conditions can be
imposed in a weak sense, i.e., under integrals. The integral
on the boundary is decomposed as the sum of integrals on
the individual edges of the boundary, so point values at the
corners of the boundary do not need to be even defined. The
points of C1 discontinuity on the boundary are a set of
measure zero. The integrals are approximated using 2 or 3
point Gauss quadrature rules, so the quadrature points do
not include the vertices. The resulting flow can satisfy a free
slip boundary condition while preventing penetration of the
coastline by the particles.
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[9] Third, the numerical error in calculating the mode
shapes is held constant across the domain and boundary by
varying the size of the triangles in the unstructured ap-
proach. In comparison, a normal grid with constant-size
elements results in a numerical error that varies in magni-
tude substantially across the domain and boundary [see,
e.g., Lipphardt et al., 2000; Chu et al., 2003]. Thus the
unstructured triangulation is more efficient, resulting in a
much higher accuracy to computational time ratio.

2. Stream Function and Relative Vorticity

2.1. State Equation Inside the Domain

[10] The nowcast velocity will be denoted by a function �u
(with two components) on a compact subset W of a smooth
two-dimensional manifold. In section 6, we give an analyt-
ical example where W is the unit square. Section 9 focuses
on a small region around Monterey Bay, California. In both
cases, W � R

2. However, the mode equations derived in this
paper are not dependent on the coordinate system and can
be computed on any two-dimensional smooth manifold. The
Hodge decomposition [Eiseman and Stone, 1973] states that
�u can always be written as the sum

�u ¼ �uy þ �uf; ð2Þ

where

�uy ¼ r� y�k ð3Þ

is divergence-free and

�uf ¼ rf ð4Þ

is irrotational. We recall how this proceeds: Combining
equations (3) and (4) with equation (2) gives

�u ¼ r� y�k
� �

þrf; ð5Þ

where �k is the unit vector orthogonal to the domain,
pointing upwards. In the above equation, r� applies to a
vector oriented in the �k direction. The result is a vector lying
in the plane (i.e., the component along �k vanishes). We
consider this vector as a two-dimensional vector. Applying
r� and r� to equation (5) gives

Df ¼ r � �u ð6Þ

and

r� �u ¼ r�r� y�k
� �

¼ 	D y�k
� �

¼ 	�k Dy ;

so

Dy ¼ 	�k � r � �uð Þ; ð7Þ

where r � �u is the curl of the velocity in the plane of
interest. Note that r � �u is often represented as a vector
oriented along �k, hence its projection on �k in equation (7).

In the next section, we discuss the boundary conditions for
the scalar function f and y defined by equations (6) and (7).
Owing to the presence of segments of open boundary, the
boundary conditions for these scalar functions are not
completely defined. The objective of this paper is to
investigate the influence of the boundary conditions applied
to �u on the spaces spanned by each scalar function f and y.
The basis (i.e., complete sequences) of these two sets
provides a corresponding basis of the space of all available
velocities.

2.2. Boundary Conditions

[11] We let @W denote the boundary of the compact
domain W. The unit vector normal to the boundary @W
and pointing outside the domain is denoted �n (Figure 1).
The unit tangent vector is �t = �n � �k, as indicated in the
figure. We assume that the boundary @W is continuous and
piecewise C1 (that is, for all but a finite number of points on
the boundary, there exists an open set Ux containing x such
that Ux \ @W is the graph of a C1 continuous function).
Taking the dot product of equation (5) with �t and �n gives

�u ��t ¼ �t � r � y�k
� �

þ�t � rf
¼ �t � rfþ �n � ry ð8Þ

and

�u � �n ¼ �n � r � y�k
� �

þ �n � rf
¼ �n � rf	�t � ry; ð9Þ

which can be used to establish the boundary conditions for
the scalar functions f and y.
[12] We assume that the boundary @W is made of the

union of two different boundary pieces,

@W ¼ @W0 [ @W1

@W0 \ @W1 ¼ ;;

8<
: ð10Þ

Figure 1. Domain W and its boundary @W. The unit vector
�k is orthogonal to the ocean surface and points up to the
reader. The vector �n is the unit vector normal to the
boundary @W. The tangent vector �t is given by �t = �n � �k.

C12004 LEKIEN ET AL.: OPEN-BOUNDARY MODAL ANALYSIS

3 of 13

C12004



where @W0 is a portion of real boundary (the shoreline) and
@W1 is an artificial boundary through which there might be a
flux (see Figure 2). Here @W1 is included in our derivation
because the basin of fluid may be too large to include the
whole area in the computation. The user may have some
measurements in a coastal area and cannot define W to be
the whole ocean. Instead, they will join a segment of the
real coastline @W0 to an artificial boundary @W1 (called the
open boundary) in the ocean to close the domain of interest.
If @W = @W0, our method reduces to the first two steps of the
three-part algorithm described by Lipphardt et al. [2000].
[13] Equations (8) and (9) are not sufficient to establish

boundary conditions for the two functions f and y. Note
also that the decomposition given by equation (2) is not
unique. Given a particular solution, one can add a diver-
gence-free function to f and a zero-vorticity term to y. This
degree of freedom allows us to make the following choice
on f and y: �uy = r � y�k does not contribute to the flux
through the coastline @W0, i.e., �n � �uy = 	�t � ry = 0. This is
a very natural choice in the sense that if the boundary was
completely of type @W0, we would require y = 0 on the
boundary [see, e.g., Eremeev et al., 1995a, 1995b;
Lipphardt et al., 2000], which would also imply�t � ry = 0.
As a result, the second term of equation (9) disappears on @W0

and gives

�n � rf ¼ �u � �n  0 on @W0: ð11Þ

We assume that @W0 is connected in @W; that is, there is
only one connected segment of shoreline. Figure 2 gives an
example of such a geometry. In section 7, we extend the

results to more complex geometries (see Figure 5 in section
7, for example). Since we have �t � ry = 0 on the segment
@W0 and y can be added any arbitrary constant function
(under the assumption that @W0 is a connected set), we can
assume y = 0 on @W0. The equations for f and y then
become

Df ¼ r � �u in W;

�n � rf ¼ 0 on @W0;

�n � rf ¼ gf sð Þ on @W1

8>>>><
>>>>:

ð12Þ

and

Dy ¼ 	�k � r � �uð Þ in W;

y ¼ 0 on @W0;

y ¼ gy sð Þ on @W1;

8>>>><
>>>>:

ð13Þ

where gf(s) and gy(s) are two unknown L2(@W1) functions
of the arc length s on the boundary @W1 that depend on the
velocity field. We can also write the equations for y and f
in the following way:

Df ¼ r � �u in W;

�n � rf ¼ gf sð Þ on @W

8<
: ð14Þ

and

Dy ¼ 	�k � r � �uð Þ in W;

y ¼ gy sð Þ on @W;

8<
: ð15Þ

where we implicitly mean that gf and gy vanish on @W0.

3. Boundary Modes

[14] We define the boundary modes to be those obtained
by solving the singular but consistent Neumann problem,

Dfb ¼
Z
@W

gf sð Þ ds in W;

�n � rfb ¼ gf sð Þ on @W:

8><
>: ð16Þ

Figure 2. Domain W and its boundary @W = @W0 [ @W1.
The portion @W0 is made of solid ground and has no normal
flow, while @W1 is subject to a possible flux.

Figure 3. Parameter s is the arc length on the boundary
and is defined in such a way that the open boundary runs
from s = 0 to s = l. The remainder of the boundary (s > l) is
the shoreline.

Figure 4. Test domain for OMA. The shoreline corre-
sponds to the left top and bottom edges of the square.
Inflow and outflow can occur through the right edge.
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We assume that a basis {gi} has been chosen for the set F of
scalar L2 functions on the boundary with support included
in @W1. Any function gf can be written as a linear
combination of the basis functions gi. Let us define fi

b by

Dfb
i ¼

Z
@W

gi sð Þ ds in W;

�n � rfb
i ¼ gi sð Þ on @W:

8><
>: ð17Þ

Notice that if fi
b is a solution of equation (17), any function

fi
b + K, where K is a constant, is also a solution. As a result,

we can add the condition

ZZ
W
fb
i dA ¼ 0; ð18Þ

and the solutions fi
b of equation (17) are unique. Suppose

that fi
b and fi

0b are two solutions of equation (17) for the
same gi. Their difference d = fi

0b 	 fi
b must satisfy

Dd ¼ 0 in W;

�n � rd ¼ 0 on @W:

8<
: ð19Þ

It is standard that equations (18) and (19) give d = 0, and so
fi
b is unique.
[15] In sections 7 and 9, we illustrate the method, with a

discrete Fourier basis of the function defined on the open
boundary,

gi sð Þf g ¼ 1; . . . ; sin
ip
l
s

� 	
; cos

ip
l
s

� 	
; . . .


 �
; ð20Þ

where l is the length of the open boundary and we assumed
that s > l corresponds to the shoreline (see Figure 3). This is
a natural choice in the sense that these boundary modes
satisfy the one-dimensional modal equation

Dgi ¼ 	lg
i gi: ð21Þ

Other bases, such as numerical bump functions, can also be
used for the discrete set of functions {fi

b}; see Chu et al.
[2003] for other examples. In the following sections, we
assume that a choice (Fourier basis or other) has been made.

4. Interior Modes

[16] The interior eigenmodes, by definition, satisfy the
following equations:

Dfi ¼ lf
i fi; in W;

�n � rfi ¼ 0; on @W;

8<
:

Dyi ¼ ly
i yi in W;

yi ¼ 0 on @W;

8<
: ð22Þ

where we implicitly assume that the solutions fi and yi are
normalized using

kfi k¼kyi k¼ 1: ð23Þ

According to Evans [1998], the modes {fi} and {yi}
form a basis of, respectively, W1(W) and W0

1(W). As a
result, the associated vector fields {rfi} and {r � yi

�k}
span the set of all velocities �u with both components in
L2(W) and satisfying the boundary condition �n � �uj@W = 0
on both the coastline and the open boundary.
[17] Notice that the eigenvalues li

f and li
y are necessarily

negative. Integration by parts gives

rfi;rfið Þ ¼
I
@W

fi �n � rfi ds	 fi;Dfið Þ ¼ 	 fi;Dfið Þ; ð24Þ

because �n � rfi = 0 on @W, and

ryi;ryið Þ ¼
I
@W

yi �n � ryi ds	 yi;Dyið Þ ¼ 	 yi;Dyið Þ; ð25Þ

because yi = 0 on @W. This gives

0 � krfik2¼ 	 fi;Dfið Þ ¼ 	lf
i kfik2¼ 	lf

i ; ð26Þ

and

0 � kryik2¼ 	 yi;Dyið Þ ¼ 	ly
i kyik2¼ 	ly

i : ð27Þ

[18] Hence the energies of the interior eigenmodes are
proportional to the absolute value of their eigenvalue

Efi ¼ 1

2
r krfik2¼

1

2
r lf

i

 : ð28Þ

For practical purposes, we assume that the eigenvectors are
ordered with respect to the absolute value of their
eigenvalue, i.e.,

lf
i

  � lf
iþ1

  for all i; ð29Þ

and

ly
i

  � ly
iþ1

  for all i: ð30Þ

[19] Now we estimate the characteristic length scale of
each mode. As a first approximation, we ignore the exact
shape of the mode and note that the only relevant quantities
are l, the energy E, and the characteristic length scale d.
According to equation (28), energy and eigenvalue are
not independent quantities, so we apply Buckingham’s
�-theorem [Buckingham, 1914; Curtis et al., 1982] to l
([L	2]) and d ([L]) to get

d2l ¼ K: ð31Þ

Notice that the last relationship holds for any acceptable
couple (d, l), and hence for each eigenmode with the same
constant K. For the first mode, we have

K ¼ d21l1 ¼ D2l1; ð32Þ
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where we assume that the characteristic length of the
domain D is identical to the characteristic length of the first
mode. The approximate characteristic length for each mode
is then given by

di ¼ D

ffiffiffiffiffi
l1

li

s
: ð33Þ

5. Complete Basis

[20] The nowcast velocity is given by a function �u on W
such that each component belongs to L2 (W) and �u satisfies
the boundary condition �n � �u = 0 on @W0. Assume that we
have solved the boundary modes using equation (17) in
W1(W) and then define the normal flow on the boundary by
the scalar function

g sð Þ ¼ �n � �u @Wj : ð34Þ

Since {gi} is a complete basis of L2[0, l], we can expand g
as a linear combination of these vectors and write

g ¼
X1
i¼1

ab
i gi: ð35Þ

Define

�uH ¼ �u	
X1
i¼1

ab
i rfb

i ; ð36Þ

and notice that

�n � �uH

@W ¼ �n � �uj@W	

X1
i¼1

ab
i �n � rfb

i


@W

¼ g sð Þ 	
X1

i¼1
ab
i gi sð Þ

¼ 0: ð37Þ

[21] In other words, �uH satisfies the homogeneous bound-
ary conditions and each of its components is an L2(W)
function. As a result, �uH can be written as a unique sequence
of interior modes,

�uH ¼
X1
i¼1

ay
i r� yi

�k þ
X1
i¼1

af
i rfi; ð38Þ

and the velocity nowcast can therefore be written as a
unique sequence,

�u ¼
X1
i¼1

ay
i r� yi

�k þ
X1
i¼1

af
i rfi þ

X1
i¼1

ab
i rfb

i : ð39Þ

[22] Notice that only the scalar coefficients ai
f, ai

y, and
ai
b are functions of time and will change with the data. The

velocity modes r � yi
�k, rfi, and rfi

b only depend on the
geometry. They can be computed once and stored for a
particular region. In addition, equation (39) allows for a
clear separation of the different length scales involved.
Earlier approaches [Lipphardt et al., 2000; Chu et al., 2003]
emphasized the importance of the availability of a
characteristic length scale for each interior mode (see
equation (33)). However, they did not have access to the
characteristic length scale of the flow on the open boundary.
The OMA nowcast given by equation (39) allows for a

uniform filtering by removing (interior and boundary)
modes under a prescribed threshold.

5.1. Incompressible Nowcast

[23] When the flow is incompressible, the nowcast is
most efficiently obtained by adding this extra constraint
directly in equation (39). We have

r � �u ¼
X1
i¼1

af
i l

f
i fi þ

X1
i¼0

ab
i

Z
@W

gi sð Þ ds ¼ 0: ð40Þ

Notice that equation (40) can be seen as a linear
combination of the functions fi and the constant functionsR
@Wgi(s) ds. It is clear from equation (22) that none of the

eigenfunctions fi can be constant over the domain W. If it
was the case, we would have

fi ¼ 1

lf
i

Dfi ¼ 0; ð41Þ

and fi would be the trivial solution. As a result, each fi is
linearly independent from the constant functions

R
@Wgi(s) ds

in equation (40) and the divergence of the velocity field
vanishes if and only if

af
i ¼ 0; for all i; ð42Þ

and

X1
i¼0

ab
i

Z
@W

gi sð Þ ds ¼ 0: ð43Þ

As a result, the nowcast of an incompressible flow can be
written as a unique sequence

�u ¼
X1
i¼1

ay
i r� yi

�k þ
X1
i¼1

ab
i rfb

i ; ð44Þ

with an additional constraint on the coefficients of the
boundary modes given by equation (43).

5.2. Incompressible Nowcast With Fourier Basis

[24] If we use a Fourier basis for the boundary functions,
only one function gi (corresponding to cos ps

l
) has a non-

zero integral over the boundary. As a result, equation (43)
reduces to

ab
1 ¼ 0; ð45Þ

and the nowcast is simply given by omitting this term in
equation (44),

�u ¼
X1
i¼1

ay
i r� yi

�k þ
X1
i¼2

ab
i rfb

i � ð46Þ

6. Example: The Unit Square

[25] We consider the domain depicted in Figure 4 and
given by

W ¼ 0; 1½ � � 0; 1½ �; ð47Þ
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where

@W0 ¼ 0 � x < 1 and y ¼ 0f g
[ 0 � x < 1 and y ¼ 1f g
[ 0 � y � 1 and x ¼ 0f g ð48Þ

is the solid boundary (coastline) and

@W1 ¼ 0 � y � 1 and x ¼ 1f g ð49Þ

allows transport. The interior modes are given by

yk;l ¼ sin kpxð Þ sin lpyð Þ

fk;l ¼ cos kpxð Þ cos lpyð Þ;

8<
: ð50Þ

and correspond to the eigenvalues

lf
k;l ¼ ly

k;l ¼ 	p2 k2 þ l2
� �

: ð51Þ

[26] The associated velocity modes are given by

�uyk;l ¼ r� yk;l
�k ¼ p

k sin kpxð Þ cos lpyð Þ

	l cos kpxð Þ sin lpyð Þ

0
@

1
A;

�ufk;l ¼ rfk;l ¼ 	p
k sin kpxð Þ cos lpyð Þ

l cos kpxð Þ sin lpyð Þ

0
@

1
A:

8>>>>>>>><
>>>>>>>>:

ð52Þ

[27] Using a Fourier basis of the functions defined on
@W1, we can compute the boundary modes. We illustrate the
process by computing the modes corresponding to

gk sð Þ ¼ gk yð Þ ¼ p cos kpyð Þ: ð53Þ

One can verify that the unique solution to equation (17) is

fb
k ¼

ekpx þ e	kpx

ekp 	 e	kp cos kpyð Þ; ð54Þ

and the corresponding velocity fields are

�ubk ¼ rfb
k ¼

1

k

ekpx 	 e	kpx

ekp 	 e	kp cos kpyð Þ

	 ekpx þ e	kpx

ekp 	 e	kp sin kpyð Þ

0
BB@

1
CCA: ð55Þ

[28] For gk(y) = sin(kpy), we could not find an analytical
solution. A detailed algorithm to compute numerical OMA
modes can be found in section 9.

7. Fully Open Boundaries and Islands

[29] The definition of the OMA modes accepts many
different geometries of the boundary. Equation (17) gives
the definition of the boundary modes. In this definition,

the functions gi are the elements of a basis of the
function defined on @W, whose support is included in
@W1. In the settings above, there was only one non-empty
segment of coastline and only one segment of open
boundary. In this case, the functions gi are a basis of
the set of all scalar functions defined on @W1 � the zero
function on @W0. Chu et al. [2003] show how to treat
domains with multiple islands (and a single open bound-
ary). The same remark applies to this work, since the
boundaries of the islands are appended to @W0 and there
is still only one connected segment of open-boundary
@W1 (see Figures 5a and 5b). In addition, OMA allows
many more different configurations. The two major
examples are completely open domains and disconnected
open boundaries.

7.1. Open Domains

[30] In some cases, the outermost boundary may be
completely open. This is the case for nowcast in the open
ocean (where none or some islands may be present inside
the domain, as depicted in Figures 5e and 5f. In this case,
the open-boundary @W1 is a closed curve. The functions gi
are still a basis of the scalar function on the open boundary,
but @W1 is topologically equivalent to the circle, S1.
According to our definition, values of gi are now defined
on S1; hence a Cartesian representation constrains them to
periodic functions gi(0) = gi(l).

7.2. Disconnected Open Boundaries

[31] Another important case occurs when one or several
islands inside the domain are not completely contained
inside W. In this case, the islands separate the open

Figure 5. Possible domains of application for OMA.
Thick solid lines are segments of @W0. Dashed lines are
segments of @W1. (a, b) Basic OMA domain with or without
islands. (c, d) Disconnected open boundary (resulting from
the presence of islands that are not completely contained in
W). (e, f) Completely open boundary (i.e., @W0 = ;).
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boundary into multiple segments (see Figures 5c and 5d).
Unlike other methods, OMA is particularly well suited for
this type of situation. If @W1 is split between several disjoint
segments @W1

j , a basis of the scalar functions on @W1 can
still be computed and used to determine the boundary
modes. In this case, the gi span the set

F @W1
¼ F @W1

1
� F @W2

1
� � � � F @Wq

1
� F @W0

; ð56Þ

where F @Wj
1 is a basis of the scalar functions on the jth

segment of open-boundary @W1
j .

[32] Although careful design of the geometry to avoid
disconnected boundaries is sometimes possible, OMA’s
ability to treat almost any possible geometry is an important
improvement over earlier methods. The smallest domain
providing the fastest nowcast will not necessarily satisfy
more restrictive conditions such as the multiply connected
open domain condition of Chu et al. [2003].

8. Extrapolation, Interpolation, and Filtering

[33] Equation (39) can be rewritten in the more compact
form,

�u ¼
X1
n¼1

an�un; ð57Þ

where �un represents any of the linearly independent modes
(boundary, incompressible, or irrotational). Since the
sequence of modes is infinite, the optimal coefficients an

cannot be determined with a finite number of measure-
ments. In addition, the smallest details are obtained for high
eigenvalues, and using a finite sequence as an approxima-
tion to equation (57) allows one to filter the data and keep
significant details only. The nowcast at a particular time is
given by

�u0 ¼
XN
n¼1

an�un; ð58Þ

where N is the total number of modes (irrotational,
incompressible, and boundary) and �un represent any of
these linearly independent modes. The modes have been
ordered with respect to their characteristic lengths (i.e., their
eigenvalues), so the N first modes contain the largest
features of the flow. According to equation (33), if �uN is an
interior mode, the finite sequence typically ignores details
smaller than D

ffiffiffiffiffi
l1

p
/

ffiffiffiffiffiffi
lN

p
. This allows for a length-scale

based criteria for filtering the data. Using only N modes
means that the coefficients corresponding to the other
modes are arbitrarily set to zero; that is, �u0 is the projection
of the real velocity �u in a finite-dimensional subspace of the
space of all available L2 � L2 (W) velocities that are tangent
to @W0. To compute those coefficients, we need at least N
measurements. In this paper, the coefficients an will be the
solution of a least squares minimization problem where the
function to minimize z(an) is a function of the error �u0 	 �u.
Notice that a least square minimization problem may not be
the optimal choice. Chu et al. [2003] propose several other
norms and compare the resulting nowcasts.

[34] Assuming that we have k measurements �uq
mes at the

position �xq = (xq, yq), the value of �u is only known at k
points, where

�u �xq
� �

¼ �umes
q ; ð59Þ

we define the error as

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
q

k�u0 �xq
� �

	 �u �xq
� �

k2
s

; ð60Þ

that is,

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
q
k
X
n

an�un �xq
� �

	 �umes
q k2

s
: ð61Þ

Using the L2 norm in equation (61) gives a least squares
minimization problem. The set of projection coefficients ai

minimizes the error when

@z
@aj

¼ 0 ;8j ð62Þ

that is,

X
n

an

X
q

�un �xq
� �

� �uj �xq
� �

¼
X
q

�umes
q � �uj �xq

� �
; 8j : ð63Þ

Equation (63) is a linear system of N equations with N
unknowns ai, and its solution gives the set of optimal
coefficients determining the filtered nowcast.

Figure 6. Black vectors show a footprint of the HF radar
data in Monterey Bay on 1 August 0700 GMT. Also shown
on this picture are the level sets of the percentage of
available data during the month of August 2000. Regions in
red have data almost all the time. Data is unavailable most
of the time in the blue regions.
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[35] Notice that solving equation (63) or computing the
projection of the data using other norms [Chu et al., 2003] is
a simple and costless operation. For real-time applications,
the velocity modes can be stored, and OMA only requires
solving a linear system of N equations (N is of the order of
10 to 100) at each time step. This is a valuable improvement
over the method presented by Chu et al. [2003], where all
the modes have to be recomputed at each time step.

9. Application to Monterey Bay

[36] This application uses high-frequency (HF) radar
technology [Paduan and Rosenfeld, 1996; Paduan and
Cook, 1997; Prandle and Ryder, 1985; Goldstein and
Zebker, 1987; Georges et al., 1996], which is now able to
resolve time-dependent Eulerian flow features in surface
currents along coastlines. Such an HF radar installation has
been operating in Monterey Bay (California coastline) since

1994 [Paduan and Rosenfeld, 1996; Paduan and Cook,
1997]. In our study, we use data from this installation,
acquired by the three HF radar antenna systems near
Monterey Bay. The observational data were collected in
August 2000, binned every hour on a uniform grid with
1 km by 1 km intervals.
[37] An example of an HF radar footprint of Monterey

Bay at 0700 GMT, 1 August 2000, is shown in Figure 6.
Also shown on Figure 6 are the level sets of the percentage
of available data in the bay for the month of August 2000.
There are usually many gaps in the data at each time,
especially near the open boundary and in the uppermost
region of the bay. The reason for this distribution is the
range of the radar system. The performance decreases with
the distance. Also, some regions do not have surface waves
high enough to scatter the signal, and the radars cannot
determine the velocity vectors. Our objective is to build a
method that filters, interpolates, and extrapolates such
incomplete data sets.

Figure 7. Adaptive mesh at the end of the computation of
the second incompressible mode y2. Figure 8 shows an
enlargement of the region highlighted by the red box.

Figure 8. Unstructured mesh for the computation of y2

near Point Piños, the southernmost point of the bay (see red
box on Figure 7), where the flow separates between the bay
and the Pacific Ocean.

Figure 9. Streamlines of the fourth incompressible interior
boundary mode y4 in the Point Piños area. The streamline
matches the boundary at a high level of precision.

Figure 10. Velocity field �u4
y corresponding to the fourth

incompressible interior mode y4 of Figure 9 in the Point
Piños area.
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[38] A high-precision version of the shoreline for our
domain was extracted on a topological map and is visible on
Figure 6. We use a numerical software package called
PLTMG (http://www.scicomp.ucsd.edu/reb) to solve the
mode equations (equations (22) and (17)). Unlike other
elliptic PDE solvers, PLTMG renders the eigenfunctions on
an unstructured triangular grid with a general boundary.
Figure 7 shows a particular instance of the adaptive mesh
used to compute the incompressible interior mode y2. The
use of an unstructured mesh is necessary for applications
such as the integration of particles or the computation of
Lagrangian structures near a complicated shoreline. Inade-
quate representation of the shoreline or discrepancies be-
tween the computed velocity field and the free slip
boundary condition often result in particles erroneously
crossing the shoreline. Figure 8 shows the unstructured
mesh in a magnified region centered on Point Piños, the
southernmost part of the bay featured on Figure 7. The flow
typically separates between the bay and the ocean at Point
Piños. This region is a dynamical hot spot in our Lagrangian
studies (C. Coulliette et al., Optimal pollution release in
Monterey Bay based on nonlinear analysis of coastal radar

data, submitted to Journal of Environmental Science and
Technology, 2004) (hereinafter referred to as Coulliette et
al., submitted manuscript, 2004), and our work requires
very refined velocities in this area. Figures 9 and 10 show
the streamlines of the mode y4 and the corresponding
velocity field �u4

y in the Point Piños area. Only unstructured
meshes provide streamlines so compatible with such a
complicated coastline. In the work of Lipphardt et al.
[2000] and Chu et al. [2003] the coastline is approximated
by a staircase boundary (i.e., a polygon composed entirely
of segments that are normal, or at right angles). The
staircase boundary is a much less accurate representation
of a coastline geometry than the unstructured triangulation
that we used. One might try to use an extremely fine
staircase boundary. However, this is computationally intrac-
table because it would require making the entire domain an
equally fine mesh. In this case, not only would the compu-
tational time be prohibitive, but round-off error becomes a
limiting factor.
[39] In addition, the unstructured mesh is adapted to the

solution computed. Advanced algorithms detailed by Bank
[1994] allow dynamic modifications of the mesh to keep a

Figure 11. First OMA modes computed for Monterey Bay. The first column shows the incompressible
modes y1, y2, y3, and y4. The second column shows the irrotational modes f1, f2, f3, and f4. The last
two columns contain boundary modes for, respectively, gi=1!4 = sin ips

L
and gi=0!3(s) = cos ips

L
.
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constant numerical error in calculating the mode shapes.
The error across the domain and boundary is held constant
by varying the size of the triangles. On Figure 7, smaller
triangles are used close to the boundary to match the high-
resolution curve. In addition, PLTMG has increased the
number of triangles for this mode in selected regions, such
as the corners of the open boundary or the northern and
southern part of the line dividing the two gyres. This design
provides a numerical error that is constant for the whole
domain, thus reducing the number of elements for a given
error threshold. In comparison, a normal grid with constant-
size elements results in a numerical error that varies in
magnitude substantially across the domain and boundary
[see, e.g., Lipphardt et al., 2000; Chu et al., 2003]. The
unstructured triangulation is more efficient and results in a
much higher accuracy to computational time ratio.
[40] The first few modes computed for Monterey Bay are

represented in Figure 11. The corresponding velocity modes
are tangent to the streamlines of the incompressible interior
modes (first column of Figure 11) and orthogonal to the

level sets of the irrotational interior modes (second column)
and boundary modes (third and fourth columns).
[41] Figure 12 shows two nowcasts realized with OMA.

The upper nowcast uses only four incompressible modes
and four irrotational modes. It cannot produce any flow
normal to the boundary. It is similar to the nowcasts
obtained after the first two steps of the algorithm described
by Lipphardt et al. [2000]. The lower nowcast uses eight
additional boundary modes and is able to generate normal
flow on the open boundary (interaction with the Pacific
Ocean). The error between the HF radar data (red arrows on
Figure 13) and the nowcast, which does not use boundary
modes (black arrows on Figure 13), can be extremely large
near the open boundary. Figure 13 also reveals that

Figure 12. Effect of the boundary modes on the nowcast
computed for 1 August 2000 at 0700 GMT. Both nowcasts
use four incompressible modes and four irrotational modes.
The nowcast in the top panel does not use any boundary and
cannot produce any flow through the open boundary. The
nowcast in the bottom panel uses eight boundary modes.

Figure 13. Effect of the boundary modes on the nowcast
computed for 1 August 2000 at 0700 GMT. On both
images, the red vectors represent the available HF radar data
for that time. The black arrows are the velocity at the same
points evaluated by the OMA nowcast. The nowcast in the
top panel uses only four incompressible modes and four
irrotational modes. Since the upper nowcast does not use
any boundary mode, the error between the HF radar data
and the nowcast near the open boundary is large. The
nowcast in the bottom panel uses eight additional boundary
modes and is able to reduce the error between experimental
data and extrapolated velocity.
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including eight boundary modes in the nowcast decreases
the error significantly near the open boundary.
[42] One might wonder if the effect of the boundary

modes is only a minor correction of the nowcast near the
open boundary. If this is the case, computations inside the
bay (far away from the open boundary) may not be affected
by the boundary modes. Figure 14 shows the nowcast on 17
August 2000 at 1200 GMT. The upper nowcast does not use
boundary modes. These are included only in the lower
nowcast of Figure 14.
[43] One can notice that the two nowcasts are dynami-

cally different, even inside the bay, far away from the open
boundary. For the closed-boundary nowcast (Figure 14,
top), there is no separation point on the coastline. The flow
spirals around the Bay. However, the open-boundary modes

of the full OMA nowcast (Figure 14, bottom) captured the
separation point near Point Piños.

10. Conclusion

[44] We presented a practical method to interpolate,
extrapolate, and filter experimental Eulerian data. This is
the first modal analysis that includes a sequence of bound-
ary modes. As a consequence, the modeler does not need to
speculate on the open-boundary flux. Previous approaches
like that of Lipphardt et al. [2000] require the use of a larger
model or an extrapolation of the data to determine the flux
across the open boundary. As shown by Chu et al. [2003],
the modes computed and the nowcasts are very sensitive to
numerical and experimental errors in the determination of
an a priori flux through the open boundary. In addition,
earlier methods do not produce time-independent modes
and require the computation of some or all of the modes at
each time step. In contrast, OMA adapts the flow near the
boundary with the available data through equation (63). If
the normal flow is known near the boundary, OMA uses this
information and provides nowcasts similar to the adapted
three-step algorithm of Lipphardt et al. [2000]. If, at some
time, data are available only in the middle of the domain, far
away from the boundary, OMA naturally projects the data
on the boundary modes and finds the boundary flow that
best fits the data. The space spanned by the OMA modes is
much larger than the spaces spanned by Lipphardt et al.
[2000] or Chu et al. [2003]. However, the numerical
complexity of the nowcasting problem is much smaller
when using autonomous OMA modes. These can be stored
and read from a file during an experiment and do not need
to be computed in a real-time setting.
[45] There are many applications of such methods. Our

group is primarily concerned with the interpolation, filter-
ing, and extrapolation of Eulerian velocities. Other exam-
ples include Eulerian prediction, which was discussed by
Chu et al. [2003]. Recently, the motion of a vector contain-
ing the projection coefficients of the nowcast velocity was
used by Lekien and Leonard [2004] to determine dynamical
regimes (such as upwelling or double-gyre patterns) in
experimental data.
[46] Other mode generation techniques are available

today. In particular, statistical modes have been introduced
in the context of fluid flows in the work by Lumley [1970].
An extensive application of statistical modes for compress-
ible flows is given by Rowley et al. [2004]. A major
difference between OMA and statistical modes is that
OMA modes do not depend on the data. The statistical
modes are adapted to the data distribution, and fewer modes
are usually necessary to obtain the same precision. It is our
impression that an adapted basis of statistical modes will
always give better nowcasts with fewer modes than modal
analysis. Compared to statistical modes, the strength of
modal analysis is its potential to generate autonomous
modes. The approach described by Lipphardt et al. [2000]
seems to develop modes that are independent of the ob-
served field, but in fact, a zero-order mode solution is
required at every time step. While this is computationally
expensive, this is much more efficient than the method of
Chu et al. [2003] that requires the computation of each
mode at each time step. In contrast, OMA modes have the

Figure 14. Effect of the boundary modes on the nowcast
computed for 17 August 2000 1200 GMT. The top panel
uses four incompressible modes and four irrotational modes.
The bottom panel uses four additional boundary modes. The
velocity vectors have been normalized on each panel to
highlight the differences between the dynamical features.
Only the OMA nowcast (bottom panel) is able to reproduce
the separation point on the shoreline (near Point Piños) that
was visible in the HF radar data. This example shows that
certain important dynamical features can be wiped by
removing the boundary modes.
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advantage of being completely independent of the field
observed. The modes are computed once for a given
boundary geometry and can be stored for future use, which
makes them attractive for long-term applications with enor-
mous amounts of data and very useful for real-time compu-
tations, such as current or even Lagrangian forecasting as
described by Lekien et al. [2003], Coulliette et al. (submit-
ted manuscript, 2004), and F. Lekien et al. (Pollution release
tied to invariant manifolds: A case study for the coast of
Florida, submitted to Physica D, 2004).

Notation

�x position (longitude, latitude).
�u(�x) velocity at point �x.
�u0(�x) filtered nowcast velocity at point �x.

y stream function.
yi incompressible interior mode.
�ui
y incompressible velocity mode derived from yi.
f relative vorticity.
fi irrotational interior mode.
�ui
f irrotational velocity mode derived from fi.

fi
b boundary mode.
�ui
b boundary velocity mode derived from fi

b.
W domain covered.

@W boundary of W.
@W0 coastline.
@W1 open boundary.

�k unit vector pointing upward.
�n unit vector normal to the boundary pointing outward.
�t tangent vector �t = �n � �k.

[47] Acknowledgments. The authors are grateful to the Office of
Naval Research for their support (grant N00014-01-1-0208 and the AOSN-
ii project N00014-02-1-0826), particularly program managers Manuel
Fiedero, Reza Malek-Madani, and Wen Masters. The authors also thank
Bruce Lipphardt and Michael Toner for enlightening discussions and
enriching ideas. The high-frequency radar data were collected in Monterey
Bay by the Naval Postgraduate School, and the authors are grateful to
Jeffrey Paduan and Michael Cook for processing and sharing available
velocity fields.

References
Bank, R. E. (1994), PLTMG: A Software Package for Solving Elliptic
Partial Differential Equations: User’s Guide, 7.0, Soc. of Ind. and Appl.
Math., Philadelphia, Pa.

Buckingham, E. (1914), On physically similar systems: Illustrations of the
use of dimensional equations, Phys. Rev., 4, 345–376.

Chu, P. C., L. M. Ivanov, T. P. Korzhova, T. M. Margolina, and
V. Melnichenko (2003), Analysis of sparse and noisy ocean current

data using flow decomposition, J. Atmos. Oceanic Technol., 20, 478–
491.

Coulliette, C., and S. Wiggins (2001), Intergyre transport in a wind-driven,
quasi-geostrophic double gyre: An application of lobe dynamics, Non-
linear Proc. Geophys., 8, 69–94.

Curtis, W. D., J. D. Logan, and W. A. Parker (1982), Dimensional analysis
and the pi theorem, Linear Algebra Appl., 47, 117–126.

Eiseman, P. R., and A. P. Stone (1973), Hodge decomposition theorem,
Notices Am. Math. Soc., 20(1), A169.

Eremeev, V. N., L. M. Ivanov, and A. D. Kirwan (1992a), Reconstruction of
oceanic flow characteristics from quasi-Lagrangian data: 1. Approach and
mathematical methods, J. Geophys. Res., 97(C6), 9733–9742.

Eremeev, V. N., L. M. Ivanov, A. D. Kirwan, O. V. Melnichenko, S. V.
Kochergin, and R. R. Stanichnaya (1992b), Reconstruction of oceanic
flow characteristics from quasi-Lagrangian data: 2. Characteristics of the
large-scale circulation in the Black Sea, J. Geophys. Res., 97(C6), 9743–
9753.

Eremeev, V. N., L. M. Ivanov, A. D. Kirwan, and T. M. Margolina (1995a),
Amount of cs-137 and cs-134 radionuclides in the Black Sea produced by
the Chernobyl accident, J. Environ. Radioact., 27(1), 49–63.

Eremeev, V. N., L. M. Ivanov, A. D. Kirwan, and T. M. Margolina (1995b),
Analysis of cesium pollution in the Black Sea by regularization methods,
Mar. Pollut. Bull., 30(7), 460–462.

Evans, L. C. (1998), Partial differential equations, in Graduate Studies in
Mathematics, vol. 19, Am. Math. Soc., Providence, R. I.

Georges, T. M., J. A. Harlan, and R. A. Lematta (1996), Large-scale map-
ping of ocean surface currents with dual over-the-horizon radars, Nature,
379, 434–436.

Goldstein, R. M., and H. A. Zebker (1987), Interferometric radar measure-
ment of ocean surface currents, Nature, 328, 707–709.

Lekien, F., and N. Leonard (2004), Dynamically consistent Lagrangian
coherent structures, AIP Conf. Proc., in press.

Lekien, F., C. Coulliette, and J. Marsden (2003), Lagrangian structures in
very high-frequency radar data and optimal pollution timing, AIP Conf.
Proc., 676, 162–168.

Lipphardt, B. L., Jr., A. D. Kirwan Jr., C. E. Grosch, J. K. Lewis, and J. D.
Paduan (2000), Blending HF radar and model velocities in Monterey Bay
through normal mode analysis, J. Geophys. Res., 105(C2), 3425–3450.

Lumley, J. L. (1970), Stochastic Tools in Turbulence, Am. Inst. of Phys.,
College Park, Md.

Paduan, J. D., and M. S. Cook (1997), Mapping surface currents in Mon-
terey Bay with codar-type HR radar, Oceanography, 10, 49–52.

Paduan, J. D., and L. K. Rosenfeld (1996), Remotely sensed surface cur-
rents in Monterey Bay from shore-based HF radar (codar), J. Geophys.
Res., 101, 20,669–20,686.

Prandle, D., and D. K. Ryder (1985), Measurement of surface currents in
Liverpool Bay by high-frequency radar, Nature, 315, 128–131.

Rowley, C. W., T. Colonius, and R. M. Murray (2004), Model reduction for
compressible flows using POD and Galerkin projection, Physica D,
189(1–2), 115–129.

																							
R. Bank, Department of Mathematics, University of California at San

Diego, La Jolla, CA 92093-0112, USA. (rbank@ucsd.edu)
C. Coulliette and J. Marsden, Control and Dynamical Systems, 107-81,

California Institute of Technology, Pasadena, CA 91125, USA.
(chadc@cds.caltech.edu; marsden@cds.caltech.edu)
F. Lekien, Department of Mechanical and Aerospace Engineering,

Princeton University, EQuad J220, Princeton, NJ 08544, USA. (lekien@
princeton.edu)

C12004 LEKIEN ET AL.: OPEN-BOUNDARY MODAL ANALYSIS

13 of 13

C12004


