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Abstract— Techniques using gyroscopic forces and scalar
potentials are used to create swarming behaviors for multi-
ple agent systems. The methods result in collision avoidance
between the agents as well as with obstacles.

I. INTRODUCTION

It is intriguing how swarms of insects or flocks of birds
can travel in large, dense groups without colliding. Even in
the presence of external obstacles these agents are capable
of smoothly avoiding collisions. There is strong reason to
believe that the rules, or protocols, each constituent of the
group follows are quite basic, and yet the collective or
global motion is quite remarkable. It comes as no surprise
that understanding these protocols would be invaluable for
engineering systems of autonomous agents, such as fleets of
unmanned air or underwater vehicles or groups of exploratory
robots.

The goal of this paper is to introduce a simple, decentral-
ized control law that constituents of a group of vehicles can
follow to accomplish some specified control objective while
avoiding collision with one another and with unforeseen
obstacles. In particular, we rely on the use of gyroscopic
forces for collision avoidance, as described in Chang and
Marsden [1]. Another paper that exploits gyroscopic forces
Justh and Krishnaprasad [4], where the authors use gy-
roscopic forces to produce flocking behavior of multiple
vehicles travelling at constant speed. Although we are not
particularly impelled to reproduce flocking behavior, as in
the famous work of Reynolds [8], the localized protocols
that we developed largely to avoid collisions, do seem to
create emergent, structured behavior when applied to large
groups of vehicles.

Collision avoidance plays an important role in the context
of managing multiple vehicles, especially in the context of
air-traffic control (see the work of Tomlin and coworkers, [2],
[3]). Many traditional control methods for collision avoidance
rely on a potential-based approach, such as in the Navigation
Function Method (NFM) of Rimon and Koditschek [9] or
harmonic potential fields as in Masoud and Masoud [5].
The ideas presented in the paper are inspired by the NFM.
The general idea of the NFM is to create a global potential
field to accomplish some control objective, such as getting
a vehicle to travel from its initial location to some target
point while not colliding with any obstacles. To create this

global potential field, an attracting potential might be placed
at the target point while repelling potentials are placed at
the locations of obstacles to push an approaching vehicle
away from the obstacle. Then the vehicle navigates using
the gradient of the potential field as a force field.

The breakthrough of the NFM was that it could be used
to show the existence of trajectories that avoid collision with
any obstacles. However, this method has a few drawbacks:
i) global information is needed regarding the location and
shape of all the existing obstacles, ii) corresponding to any
obstacle, there exists a neighborhood that can trap the vehicle
for relatively long (or infinite) time, iii) the NFM is often
computationally impractical, and iv) the original NFM only
considers the case of a single vehicle.

Instead of relying on repelling potentials for obstacle
avoidance, as in the NFM, the control law we present relies
on gyroscopic forces. To motivate this, consider the situation
shown in Fig. I, where three vehicles are initially equally
spaced about a circle.
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Fig. 1. By using gyroscopic forces, three vehicles can move across the
circle without colliding. The vehicles are represented by the blue, black, and
red dots. The disk about each dot represents the vehicle’s detection shell..

As indicated in the figure, the objective of each vehicle is
to simultaneously move to its antipodal point on the circle.
If potential forces alone where used for collision avoidance,



the three vehicles would simply meet in the middle, push
equally on each other, and become gridlocked. However, if
gyroscopic forces are used, they can simply spin free of this
sticky situation, as show in the figure.

Gyroscopic forces can be thought of as steering forces
since they always act perpendicular to the direction of mo-
tion. Fortunately, gyroscopic forces can be used for obstacle
avoidance without affecting the global potential function that
was constructed to foster some control objective. Actually,
gyroscopic forces do not even change the energy of the
system, a well known and easily verified fact.

It turns out that gyroscopic forces alone have some
difficulty preventing collision in large groups of vehicles.
Therefore we also introduce a type of braking force that
allows the vehicles to slow down when they are getting too
close to one another or an obstacle. Intuitively, if the vehicle
is moving too fast towards an obstacle it will not have enough
time to turn to avoid the obstacle. Therefore the braking force
is used to slow the vehicle such that it can turn in time to
avoid the obstacle. As with the gyroscopic force, the braking
force also does not change the global potential function.

The control law that we present is completely decen-
tralized, therefore the ability of an agent to accomplish its
control objective is not directly dependent on any other agent.
Each vehicle has its own detection shell, within which it
can sense the relative location of neighboring vehicles or
obstacles. Since the control of each vehicle is localized,
the computations can as well be localized, which is very
important to ensure scalability of our control law to groups
that contain a large number of agents. The methods that we
present are equally applicable to either 2- or 3-dimensional
motion.

In this paper we only consider “swarms” of vehicles. That
is, we do not explicitly constrain the relative location of each
vehicle. However, there are many applications where the rela-
tive positioning between vehicles becomes important, such as
in NASA’s mission to construct a large interferometer from
multiple telescopes (see http://origins.jpl.nasa.gov for more
information). We refer to such groups of vehicles that are
constrained to move in a particular pattern as formations. The
authors plan to produce future work on collision avoidance
in the context of formations.

The next section contains an overview of the development
of our control law. We show figures that demonstrate the ap-
plication of this control law to a collision avoidance scenario,
known as the split/rejoin maneuver, coined by Olfati-Saber
and Murray [6]. Since this paper only outlines preliminary
results on collision avoidance and multi-vehicle maintenance,
we will discuss some of our ongoing and future work. We
conclude this paper by highlighting a few key points.

II. MAIN RESULTS

As previously mentioned, our goal is to develop a sim-
ple, decentralized control law that vehicles in a group can
follow to maintain a collision free environment. Section II-
A highlights the main points in the development of such a
control law. To fully appreciate this section, one should refer
to Chang and Marsden [1], where collision avoidance except
zero-velocity collision is proved by means of gyroscopic,
dissipative, and potential forces. A result related to the proof
in [1] is given in the Appendix.

A. Collision Avoidance

Suppose we have a group of fully actuated vehicles obey-
ing second-order translational dynamics (we do not consider
attitude dynamics here). Since each vehicle will implement
the same control law, we need only to develop the control
for one vehicle.

Without loss of generality we can assume the vehicle has
unit mass. We desire a feedback control law to (asymptoti-
cally) drive the vehicle to a target point qT without colliding
with any obstacles or other vehicles. A detection shell, a ball
of radius rdet, is given to the vehicle such that the vehicle
can respond to any obstacle within this shell. For the purpose
of designing the control law, let us refer to an obstacle of
vehicle i as being either an external object that vehicle i
is trying to avoid or a neighboring vehicle within vehicle
i’s detection shell. In addition, we assume all obstacles are
convex.

The dynamics of the vehicle are given simply by q̈ =
u, where q ∈ R

3. The control u consists of three parts as
follows:

u = Fp + Fd + Fg (1)

where Fp is a potential force which assigns to the vehicle a
potential function with the minimum at the target qT ; Fd is
a damping force; Fg is a gyroscopic force. The three forces,
Fp, Fd, and Fg , are of the following form:

Fp = −∇V (q), Fd = −D(n)q̇, Fg = S(n, q̇)q̇

where n denotes the vector from the vehicle to its nearest
obstacle (in particular, the nearest point on the obstacle), V
is a (potential) function on R

3, the matrix D is symmetric
and positive-definite, and the matrix S is skew-symmetric.

One suitable choice for the potential function is a simple
quadratic V (q) = 1

2‖q − qT ‖2. The matrix S in the
gyroscopic force term Fg = S(n, q̇)q̇ is chosen to be an
infinitesimal rotation about the vector n×q̇ when n×q̇ �= 0.
When n × q̇ = 0, a preferred rotational direction can be
chosen. Since the matrix S is skew-symmetric,

〈S(n, q̇)q̇, q̇〉 = 0 ⇒ Fg · q̇ = 0.

Therefore Fg does not do any work.



The damping term, Fd, in (1) can be thought of as having
two positive definite components:

Fd = −D(n)q̇ = −(Ddc + Db(n))q̇

where Ddc is a constant matrix that represents any natural
dissipation, such as drag, and Db(n) is an imposed braking
term that varies with the relative distance between the vehicle
and its nearest obstacle. It is this braking force, Db(n)q̇,
along with the gyroscopic force, that the vehicle uses for
collision avoidance.

As previously mentioned, each vehicle is given a detection
shell of radius rdet within which it can determine the relative
location between itself and its nearest obstacle. Even if more
than one obstacle is within the vehicle’s detection shell, the
vehicle only reacts to the nearest one. If there is no obstacle
within the vehicle’s detection shell then the gyroscopic and
braking forces are zero. In addition, each vehicle does not
react to obstacles “behind” them, even if the obstacle is
within the detection shell. The magnitude of the gyroscopic
and braking forces varies as a negative exponential of the
distance between the vehicle and its nearest obstacle, for
example:

Db(n) = C1 exp(−‖n‖) − C2

where C1 and C2 are positive constants chosen such that the
force is bounded by some specified maximum and is zero
when the obstacle is on the edge of the detection shell. Of
course more elaborate reaction schemes can be devised, but
the one described above is relatively very simple and requires
only a minimal amount of communication between agents–
two very desirable characteristics.

As with the NFM, we can prove, under some assumptions,
that our control law can asymptotically drive a vehicle to its
target point without the vehicle colliding with any obstacles
(see [1] for details). The two main assumptions are that
the kinetic energy of the vehicle is bounded and that only
one obstacle is present in the detection shell. The second
assumption is obviously the most restrictive and the one that
we would like to relax, especially in the case for multiple
vehicles. What is promising about using gyroscopic forces is
that we have the ability to decouple, in a sense, the collision
avoidance from the control objective. For instance, if we can
prove the vehicle does not collide with any obstacles, then we
can easily prove convergence of the vehicle to its target point
using the energy E(q, q̇) = 1

2‖q̇‖2 + V (q) as a Lyapunov
function since gyroscopic forces do not change the energy.

B. Demonstration of a Split/Rejoin Maneuver

Here we apply the control law developed in the previ-
ous section to a group of 25 vehicles. We provide only
snap-shots of an interesting split/rejoin maneuver. To down-
load and view this and related animations, please visit
http://www.cds.caltech.edu/∼shawn/download.html.

a) t = 0 b) t = 8 c) t = 11

d) t = 13 e) t = 15 f) t = 20

Fig. 2. Split/Rejoin maneuver for a group of 25 vehicles

Fig. 2 shows the evolution of 25 vehicles navigating
around a large obstacle. For ease of visualization, the simula-
tion is 2-dimensional, i.e. q ∈ R

2. At time t = 0, each agent
starts off randomly positioned with an arbitrary velocity, Fig.
2a. The vehicles quickly coalesce into a distinct group before
they encounter the obstacle, Figs. 2b and 2c. Figs. 2d and
2e show the group splitting and moving around the obstacle,
after which, the vehicles rejoin into a coherent group again,
as in Fig. 2f.

The “target point” for the vehicles in this simulation was
actually chosen to have some dynamics. The vehicles are
chasing a virtual vehicle that is moving in a straight line
ahead of the group. If desired, once or if the vehicles near
the target location, they should switch control laws to allow
them to hover about the target location, as described in [4].
Although we do not specify or constrain the group to move in
a particular pattern, we see an emergent structure present in,
for instance, Figs. 2b and 2f, for which we can only explain
with intuitive reasoning. However, we find the emergence of
such behavior from seemingly nonrestrictive, local control
laws to be quite interesting. We are investigating how local
control protocols can be implemented to produce emergent
patterns.

C. Future Directions

This paper is intended only to introduce some ideas on
collision avoidance for multiple vehicles. There is clearly
much more work to be done in the area of collision avoidance
and in the area of multi-vehicle management in general.

One issue that we are currently working on is determining
the best way to deal with formations or pseudoformations.
We can loosely think of a formation as being a group of
vehicles in which the relative locations of the vehicles is
important (see Olfati-Saber and Murray [6] for a precise



definition). In [6] it is shown that for a group of n agents
in a plane, at least 2n − 3 inter-agent distance-based con-
straints are needed to construct a rigid formation. In addition,
more constraints need to be specified to avoid the folding
phenomenon in rigid structures, as in Olfati-Saber, Dunbar,
and Murray [7]. Applications where the use of formations as
rigid and unfoldable graphs are important often arise when
a group of vehicles forms a sensor network. For the purpose
of flocking, a looser definition of a formation as a flexible
graph seems to be more appropriate.

In the interest of managing large groups of vehicles,
we are also interested in studying the role of hierarchal
infrastructures and heterogenous groups. In the simulations
shown in this paper, all vehicles were modelled identically
and each vehicle applied the same control law. We would
like to explore circumstances where vehicles in a group have
different capabilities, objectives, preferences, or roles.

III. SUMMARY

The area of multi-agent control has many unsettled prob-
lems. It was our goal in this paper to stress an alternative
approach for collision avoidance, namely the use of gyro-
scopic and braking forces. We were particulary attracted to
these types of forces for several reasons, including: they do
not affect the potential function; they seem more natural
than forces derived from inter-agent potentials; and they are
typically easier to implement on real-world systems since
most vehicles have the ability to steer and brake but are not
usually able to be pushed in arbitrary directions. Since the
reaction protocols are based only on local information, they
easy extend to groups with an arbitrary number of agents.
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APPENDIX

Here we suggest an algorithm for collision avoidance using
only gyroscopic forces. Consider a (point-mass) vehicle with
the following dynamics:

q̈ =
[
0 −u
u 0

]
q̇

with q = (x, y)T ∈ R
2. Let Vo �= 0 be the initial speed

of the vehicle. Since the gyroscopic force does not change
the speed, we have ‖q̇(t)‖ = Vo for all t ≥ 0. Assume
the gyroscopic force is bounded by the positive constant ωo;
in particular we allow u ∈ {0,±ωo}. Hence when u = 0,
the motion is linear, and when u = ωo (resp. −ωo), the
vehicle moves counter-clockwise (resp. clockwise) on a circle
of radius Vo/ωo. We assume that the vehicle has a detection
shell so that it can detect the relative location of any obstacles
within a circular neighborhood of radius Rd.

We now present a simple algorithm which allows a vehicle
to approach a target point, avoiding any obstacles on the
journey.

a) Reorientation.: First we give the reorientation algo-
rithm, which orients the vehicle so that it points to the target.
Let nt denote the vector from the vehicle to the target point,
and θt denote the signed angle from q̇ to nt. We choose u
following the rule:

u =




ωo if θt > 0,
0 if θt = 0,

−ωo otherwise.
(2)

Hence the vehicle aligns its velocity toward the target unless
it senses an obstacle in its detection shell.

b) Collision Avoidance.: We now describe an algorithm
for avoiding collision between the vehicle and an obstacle.
Assume that the obstacle is an convex body, B. Let Be =
{q ∈ R

2 | d(q, B) ≤ Rd}, where d(·, ·) is the Euclidean
distance function.

Suppose the vehicle has detected an obstacle, i.e. q ∈ Be.
Let no denote the vector from the vehicle to the obstacle and
θo be the signed angle from no to q̇. The collision avoidance
algorithm is as follows:

u =
{

ωo if θo > 0
−ωo otherwise

(3)

Then, in a finite time, the vehicle will leave the region, Be,
assuming Rd > Vo/ωo (that the vehicle’s turning radius is
less than the width of the detection shell). This inequality is
somewhat conservative. One can prove lower bounds under
appropriate restrictions. As an example, for circular obstacles
one can show that if

Vo ≤ ωo(R2
d + 2roRd)
2Rd

where ro is the radius of the obstacle, no collision will occur.

c) Combination.: We would like to combine the reori-
entation algorithm (2) and the collision avoidance algorithm
(3) so that the vehicle can ultimately hit the target, while
avoiding collisions with any obstacles. We assume that
obstacles are at least more than 2(Rd + Vo/ωo) away from
one another. The algorithm can be succinctly specified as
follows:

ALGORITHM I:
1 Use (2)
2 IF obstacle is in the detection shell

THEN use (3)
ELSE goto 1

Assuming obstacles are located more than 2(Rd +Vo/ωo)
apart, no limit cycles will occur due to the introduction of
multiple obstacles with ALGORITHM I. Although we do not
yet have an analytic convergence proof for this algorithm, a



geometric proof exists, but is omitted for brevity. A simple
depiction of a trajectory specified by ALGORITHM I is given
in Fig. 3.

Obstacle 
Target 

Trajectory 

Fig. 3. Collision avoidance with a bang-bang gyroscopic force.
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