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Ever since we began to prove things that were obviously true,
many of them turned out to be false, Bertrand Russell

Abstract. The paper presents recent advances in p-regularity theory, which

has been developing successfully for the last twenty years. The main result of

this theory gives a detailed description of the structure of the zero set of an
irregular nonlinear mapping. We illustrate the theory with an application to

degenerate problems in different fields of mathematics, which substantiates the

general applicability of the class of p-regular problems. Moreover, the connec-
tion between singular problems and nonlinear mappings is shown. Amongst

the applications, the structure of p-factor-operators is used to construct nu-

merical methods for solving degenerate nonlinear equations and optimization
problems.

1. Introduction. This paper concerns the problem of solving a nonlinear equation
of the form

F (x) = 0, (1.1)
where F : X → Y is a sufficiently smooth mapping from a Banach space X to a
Banach space Y . Of course, the solution to many interesting nonlinear problems
can be cast in this form and there have been many works devoted to this problem.
The purpose of this paper is to present some of our own work and that of others in
this area in a coherent way, which has hitherto been scattered throughout various
references, as well as giving a number of new results.

We separate nonlinear mappings F and problems of the form (1.1) into two
classes, called regular and irregular. Roughly speaking, regular problems are those
to which implicit function theorem arguments can be applied and the irregular ones
are those to which it cannot, at least not directly.
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In the history of mathematics, there have been several examples in which funda-
mental results were obtained independently in the same general time period. One
such example concerns theorems about the structure of the zero set of an irregular
mapping satisfying a special higher–order regularity condition. The result that we
are referring to was simultaneously obtained in Buchner, Marsden and Schecter [11]
and Tret’yakov [31], and it was closely related to the results of Magnus [27], Szulkin
[29], and others. In Fink and Rheinboldt [15], it was noted that the theorem in [11]
was a powerful generalization of Morse Lemma and some interesting counterexam-
ples for a naive approach to the Morse Lemma were found. This theorem is one of
the basic results for the p–regularity theory.

It is perhaps worth noting that the results of Buchner, Marsden and Schecter
[11] were motivated by the problem of abstracting known results for the concrete
problem of the solution structure of the Einstein equations of general relativity.
The solution set of this important set of equations, despite their highly nonlinear
character, turn out to have only quadratic singularities at metric tensors with sym-
metry. A general result along these lines, which may be viewed as a special infinite
dimensional Morse lemma for certain types of vector-valued functions, was given in
Arms, Marsden and Moncrief [2]. Other papers that motivated this theory are those
of Tromba [35], Golubitsky and Marsden [16] and Buchner, Marsden and Schecter
[12], which deal with an infinite dimensional Morse lemma.

Goal of the Present Paper. In this paper, we show how to apply p-regularity
theory, also known as factor-analysis of nonlinear mappings to the description and
investigation of singular mappings and, in addition, to develop methods for finding
solutions to related singular problems. In particular, we show how these ideas apply
to some specific situations, such as optimization and bifurcation problems.

General Notation. Let L(X, Y ) be the space of all continuous linear operators
from X to Y and for a given linear operator Λ : X → Y , we denote its kernel and
image by Ker Λ = {x ∈ X | Λx = 0} and ImΛ = {y ∈ Y | y = Λx for some x ∈ X}.
Also, Λ∗ : Y ∗ → X∗ denotes the adjoint of Λ, where X∗ and Y ∗ denote the dual
spaces of X and Y , respectively.

Let p be a natural number and let B : X×X×. . .×X (with p copies of X) → Y
be a continuous symmetric p-multilinear mapping. The p-form associated to B is
the map B[·]p : X → Y defined by

B[x]p = B(x, x, . . . , x),

for x ∈ X. Alternatively, we may simply view B[·]p as a homogeneous polyno-
mial Q : X → Y of degree p, i.e., Q(αx) = αpQ(x). The space of continuous
homogeneous polynomials Q : X → Y of degree p will be denoted by Qp(X, Y ).

If F : X → Y is differentiable, its derivative at a point x ∈ X will be denoted
F ′(x) : X → Y . If F : X → Y is of class Cp, we let F (p)(x) be the pth derivative
of F at the point x (a symmetric multilinear map of p copies of X to Y ) and the
associated p-form, also called the pth–order mapping, is

F (p)(x)[h]p = F (p)(x)(h, h, . . . , h).

Furthermore, we use the following key notation,

Kerp F (p)(x) = {h ∈ X |F (p)(x) [h]p = 0 }
is the p-kernel of the p-order mapping.
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2. Singularity and Essential Nonlinearity.
The Regular Case. Fix a point x∗ ∈ X and suppose that F : X → Y is C1. It is
well known that if F is regular at x∗, i.e.,

Im F ′(x∗) = Y, (2.1)

then the properties of the linear approximation of F locally correspond to the
properties of the mapping F , since the mapping F can be locally linearized by a
local diffeomorphism; that is, by a nondegenerate transformation of coordinates.
Namely, there exist a neighborhood U of the point 0 and a C1 mapping ϕ : U → X
such that ϕ(0) = x∗, ϕ′(0) = IX , (the identity map on X), and

F (ϕ(x)) = F (x∗) + F ′(x∗)x (2.2)

for all x ∈ U . See any standard reference for this fact, such as [1]. If the regularity
condition (2.1) is not satisfied, then there is no such correspondence in general.

Essential Nonlinearity and Singular Maps. There exist numerous problems
where the linear approximation of F is not enough to describe the properties of
the mapping. For example, there are essential nonlinear mappings, i.e., mappings
whose local linearization does not give a good approximation. We formalize this as
follows.

Definition 2.1. Let V be a neighborhood of x∗ in X. A C2 mapping F : V → Y is
referred to as essentially nonlinear at the point x∗, if there exists a perturbation
of the form

F̃ (x∗ + x) = F (x∗ + x) + ω(x), where ‖ω(x)‖ = o(‖x‖),
such that there does not exist any C1 nondegenerate transformation of coordinates
ϕ(x) : U → X such that ϕ(0) = x∗, ϕ′(0) = IX and (2.2) holds with ϕ and F̃ .

Definition 2.2. We say the mapping F is singular (or degenerate, abnormal)
at x∗ if it fails to be regular; that is, its derivative is not onto:

Im F ′(x∗) 6= Y. (2.3)

The following Theorem establishes the relationship between these two notions.

Theorem 2.3. Suppose F : V → Y is C2 and that x∗ is a solution of (1.1). Then
F is essentially nonlinear at the point x∗ if and only if F is singular at the point
x∗.

Proof. Suppose that F is singular at the point x∗, i.e., Im F ′(x∗) 6= Y , so there
exists a nonzero element ξ ∈ Y such that

ξ /∈ Im F ′(x∗); (2.4)

we may suppose that ‖ξ‖ = 1. Suppose that F is not essentially nonlinear at x∗.
Define the mapping F̃ as

F̃ (x∗ + x) = F (x∗) + F ′(x∗)x + ξ‖x‖2. (2.5)

Note that ξ‖x‖2 /∈ Im F ′(x∗).
By virtue of the above assumptions, (2.2) and (2.5), there exists a C1 mapping

ϕ : U → X such that ϕ(0) = x∗, ϕ′(0) = IX and

F̃ (ϕ(x)) = F̃ (x∗) + F̃ ′(x∗)x = F (x∗) + F ′(x∗)x (2.6)
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for all x ∈ U . Since F (x∗) = 0 and F ′(x∗)x ∈ Im F ′(x∗), then from (2.6) we have

F̃ (ϕ(x)) ∈ Im F ′(x∗). (2.7)

However, using F (x∗) = 0, ϕ(0) = x∗ and ϕ′(0) = IX , we obtain

F̃ (ϕ(x)) = F (x∗ + (ϕ(x)− x∗))
= F (x∗) + F ′(x∗)(ϕ(x)− x∗) + ξ‖ϕ(x)− x∗‖2
= F ′(x∗)(ϕ(x)− x∗) + ξ‖ϕ(0) + ϕ′(0)x + ω1(x)− x∗‖2
= F ′(x∗)(ϕ(x)− x∗) + ξ‖x + ω1(x)‖2,

(2.8)

where ‖ω1(x)‖ = o(‖x‖). Thus, for small x,

ξ‖x + ω1(x)‖2 6= 0.

Taking into account (2.4), (2.8) and the fact that F ′(x∗)(ϕ(x) − x∗) ∈ Im F ′(x∗),
we conclude from this that

F̃ (ϕ(x)) /∈ Im F ′(x∗). (2.9)

This contradicts (2.7) and therefore F is essentially nonlinear at x∗.

To prove the converse, suppose that F is essential nonlinear at x∗, but that F
is not singular; i.e., is regular at this point. Then by persistence of the regularity
condition, for any perturbation

F̃ (x∗ + x) = F (x∗ + x) + ω(x),

where ‖ω(x)‖ = o(‖x‖), the map F̃ (x∗ + x) is regular at x∗ and F ′(x∗) = F̃ ′(x∗).
Hence, by virtue of a Theorem concerning the representation of a regular mapping
(see Izmailov and Tret’yakov [22])1, F̃ (x∗ + x) is represented as

F̃ (ϕ(x)) = F̃ (x∗) + F̃ ′(x∗)x,

where ϕ(0) = x∗ and ϕ′(0) = IX . It contradicts to the definition of essential
nonlinearity of the mapping F .

Destruction of the Structure of Solution Sets. We shall be interested in the
solution set

M(x∗) = {x ∈ U | F (x) = F (x∗)}
for the nonlinear equation (1.1). As we shall see later, this is the feasible set for an
associated optimization problem (see (5.1)). In particular, if x∗ is a zero of F , the
set M(x∗) is the zero-set of F .

If F is an essentially nonlinear mapping at the point x∗, then the structure of the
solution set of the problem (1.1) need not be preserved under a small perturbation
of F . For example, there might be a small perturbation of F such that the solution
set M(x∗) reduces to the single point x∗, as in the following example.
Example. Let X = R2, whose points are denoted x = (x1, x2) ∈ R2 and let
F : R2 → R be defined by F (x) = (x1 − x2)2. The solution set is obviously defined
by the condition x1 = x2. This problem is singular; note that for the perturbation
F̃ = (x1 − x2)2 + x4

1, the zero set consists of only the single solution x1 = x2 = 0.

This phenomena of the destruction of the solution set is, as we shall see in §5,
relevant for optimization problems in which F (x) = 0 is a constraint set and for
which M(x∗) is a feasible set. The destruction of the feasible set is an important

1Under additional splitting assumptions, which are not made here, this result would be a

standard consequence of the implicit function theorem, as in, for example, [1], §2.5.
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fact for optimization problems because most results in that subject depend on the
structure of the feasible set.

In particular, if F is an essentially nonlinear constraint in the optimization prob-
lem, one cannot not guarantee the preservation of the structure of the feasible set
of the problem under a small perturbation of F . Hence, the classical theoretical
results become non-informative or false for the problem. Essentially nonlinear prob-
lems need, therefore, new theoretical results and some such results are given in the
present paper in the following sections.

3. The p-factor Operator. For the purpose of describing essentially nonlinear
problems, the concept of p-regularity was introduced by Tret’yakov [30, 31, 33]
using the notion of a p-factor operator.

We construct the p-factor operator under the assumption that the space Y is
decomposed into the direct sum

Y = Y1 ⊕ . . .⊕ Yp, (3.1)

where Y1 = cl (Im F ′(x∗)), the closure of the image of the first derivative of F
evaluated at x∗, and the remaining spaces are defined as follows. Let Z2 be a closed
complementary subspace to Y1 (we are assuming that such a closed complement
exists) and let PZ2 : Y → Z2 be the projection operator onto Z2 along Y1. Let Y2

be the closed linear span of the image of the quadratic map PZ2F
(2)(x∗)[·]2. More

generally, define inductively,

Yi = cl (span Im PZiF
(i)(x∗)[·]i) ⊆ Zi, i = 2, . . . , p− 1,

where Zi is a choice of closed complementary subspace for (Y1 ⊕ . . . ⊕ Yi−1) with
respect to Y , i = 2, . . . , p, and PZi

: Y → Zi is the projection operator onto Zi

along (Y1 ⊕ . . .⊕ Yi−1) with respect to Y , i = 2, . . . , p. Finally, let Yp = Zp.
Define the following mappings (see Tret’yakov [33])

fi(x) : U → Yi, fi(x) = PYiF (x), i = 1, . . . , p,

where PYi : Y → Yi is the projection operator onto Yi along (Y1 ⊕ . . . ⊕ Yi−1 ⊕
Yi+1 ⊕ . . .⊕ Yp) with respect to Y , i = 1, . . . , p.

Definition 3.1. The linear operator Ψp(h) ∈ L(X, Y1 ⊕ . . . ⊕ Yp), for h ∈ X, is
defined by

Ψp(h) = f ′1(x
∗) +

1
2!

f ′′2 (x∗)[h] + . . . +
1
p!

f (p)
p (x∗)[h]p−1,

and is called the p-factor operator.

Note that in the completely degenerate case, i.e., in the case that

F (r)(x∗) = 0, r = 1, . . . , p− 1,

then the p-factor operator is simply F (p)(x∗)[h]p−1.

Definition 3.2. We say that the mapping F is p-regular at x∗ along an element
h, if ImΨp(h) = Y .

Definition 3.3. We say the mapping F is p-regular at x∗ if it is p-regular along
any h from the set

Hp(x∗) =

{
p⋂

i=1

Keri f
(i)
i (x∗)

}∖
{0}.
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Definition 3.4. A mapping F ∈ Cp is called strongly p–regular at a point x∗ if
there exists α > 0 such that

sup
h∈Hα

‖{Ψp(h)}−1‖ < ∞,

where

Hα =
{

h ∈ X | ‖f (i)
i (x∗)[h]i‖Yi

≤ α for all i = 1, . . . , p, ‖h‖X = 1
}

.

Remark. Not only Ψp but also every Yi in Y1 ⊕ . . .⊕ Yp depends on the choice of
the element h. To simplify our notations we write Yi instead of Yi(h), i = 1, . . . , p.

4. A Generalization of the Lyusternik Theorem. It will be useful to recall
the following definition of tangent vectors and tangent cones (see, for instance, Ioffe
and Tikhomirov [17] or Clarke [13]).

Definition 4.1. We call h a tangent vector to a set M ⊆ X at x∗ ∈ M if there
exist ε > 0 and a function r : [0, ε] → X with the property that for t ∈ [0, ε], we
have x∗ + th + r(t) ∈ M and

lim
t→0

‖r(t)‖
t

= 0.

The collection of all tangent vectors at x∗ is called the tangent cone to M at x∗

and it is denoted by T1M(x∗).

It is well known that to solve nonlinear problems in the regular case, one may
use classical results such as the implicit function theorem, the Lagrange and Euler
theory of optimality conditions, the Lyusternik theorem (see Ioffe and Tikhomirov
[17]) and others. We recall the latter now.

Theorem 4.2 (Lyusternik Theorem). Let X and Y be Banach spaces and U be a
neighborhood of x∗ in X. Suppose F : U → Y is Fréchet differentiable on V , and
the mapping F ′ : U → L(X, Y ) is continuous at x∗. Suppose further that F is
regular at x∗. Then the tangent cone to the set M(x∗) = {x ∈ U |F (x) = F (x∗)}
is the linear space that is the kernel of F ′(x∗):

T1M(x∗) = Ker F ′(x∗). (4.1)

In Buchner, Marsden and Schecter [11] and Tret’yakov [30, 31], a generalization
of the classical Lyusternik theorem for p-regular mappings was first derived and
proved. It may be applied to describe the zero set of a p-regular mapping.

Theorem 4.3 (Generalized Lyusternik Theorem). Let X and Y be Banach spaces,
and U be a neighborhood of a point x∗ ∈ X. Assume that F : X → Y is a p–times
continuously Fréchet differentiable mapping in U and is p–regular at x∗. Then

T1M(x∗) = Hp(x∗).

We now give another version of the theorem that was formulated in Tret’yakov
[33] and [34]. See also Buchner, Marsden and Schecter [11] and Izmailov and
Tret’yakov [22] for additional results along these lines.

To state the result, we shall denote by dist(x,M), the distance function from
a point x ∈ X to a set M :

dist(x,M) = inf
y∈M

‖x− y‖, x ∈ X.
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Theorem 4.4. Let X and Y be Banach spaces, and U be a neighborhood of a point
x∗ ∈ X. Assume that F : X → Y is a p–times continuously Fréchet differentiable
mapping in U and satisfies the condition of strong p–regularity at x∗. Then there
exist a neighborhood U ′ ⊆ U of x∗, a mapping ξ 7→ x(ξ) : U ′ → X, and constants
δ1 > 0 and δ2 > 0 such that

F (ξ + x(ξ)) = F (x∗),

‖x(ξ) ‖X ≤ δ1

p∑

i=1

‖fi(ξ)− fi(x∗)‖Yi

‖ξ − x∗‖i−1
, (4.2)

and

‖x(ξ) ‖X ≤ δ2

p∑

i=1

‖fi(ξ)− fi(x∗)‖1/i
Yi

for all ξ ∈ U ′.

5. p-order Conditions for Optimality. Let f : X → R be a (sufficiently smooth,
real valued) function and F : X → Y be a (sufficiently smooth) mapping. Consider
the following nonlinear constrained optimization problem:

min
x∈X

f(x)

subject to F (x) = 0,
(5.1)

Let the solution set to this problem in a neighborhood of a given solution x∗ be
denoted by M(x∗). The p-factor-Lagrange function is defined as follows:

Lp(x, h, λ0(h), y(h)) = λ0(h)f(x) +
p∑

i=1

〈
yi(h), f

(i−1)
i (x)[h]i−1

〉
. (5.2)

Here, the functions y(h) play the role of higher-order Lagrange multipliers.

Theorem 5.1 (Necessary and Sufficient Conditions for Optimality). Let X and
Y be Euclidean spaces, and U be a neighborhood of the point x∗. Suppose that
f ∈ C2(U,R) and that F ∈ Cp+1(U, Y ). Suppose that for h ∈ Hp(x∗) the set
ImΨp(h) is closed in Y1 ⊕ . . .⊕ Yp.

1. If x∗ is a local solution to problem (5.1), then there exist λ0(h) ∈ R and
multipliers yi(h) ∈ Y ∗

i , i = 1, . . . , p, such that they do not all vanish , and

L′p x(x∗, h, λ0(h), y(h)) = λ0(h) f ′(x∗) +
p∑

i=1

(f (i)
i (x∗)[h]i−1)∗yi(h) = 0.

If, moreover, Im Ψp(h) = Y1 ⊕ . . .⊕ Yp, then λ0(h) 6= 0.
2. Moreover suppose that the set ImΨp(h) is closed in Y1 ⊕ . . . ⊕ Yp for any

element h ∈ Hp(x∗) and Im Ψp(h) = Y1 ⊕ . . . ⊕ Yp. If there exist α > 0 and
multipliers yi(h) ∈ Y ∗

i , i = 1, . . . , p, such that

L′p x(x∗, h, 1, y(h)) = 0 (5.3)

and
L′′p xx(x∗, h, 1, y(h))[h]2 ≥ α‖h‖2, (5.4)

for all h ∈ Hp(x∗) then x∗ is an isolated solution to problem (5.1).

The proof of the necessary conditions for optimality is given in Izmailov and
Tret’yakov [22], and the sufficient conditions for p–regular mappings are derived in
Brezhneva and Tret’yakov [10].
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6. p-regularity and p-majorizability. The results of this subsection are adapted
from Izmailov and Tret’yakov [22].

Definition 6.1. The mapping F : U → Y is said to be p−majorizable at the
point x∗, if there exist a neighborhood U ′ ⊆ U and a constant δ > 0 such that

dist(x,M(x∗)) ≤ δ‖F (x)‖1/p
Y ,

for all x ∈ U ′.

In the case of p-regular mappings the structure of the zero set does not change
in an essential way, but it may have some small perturbations. This is derived from
the following results.

Theorem 6.2. Let X be Banach space and Y be Hilbert space, U be a neighborhood
of x∗ in X. Suppose F ∈ Cp(U, Y ) and F (i)(x∗) = 0, i = 1, . . . , p − 1. Then F
is p–regular at x∗ if and only if for any continuous mapping Ω : U → Y such that
Ω(x∗) = 0 and ‖Ω(x)‖Y = o(‖x− x∗‖p), the mapping F̃ = F + Ω is p−majorizable
at the point x∗;

Corollary 6.3. The tangent cone to the solution set of the mapping F coincides
with the tangent cone to the solution set of the mapping F̃ up to order o(‖x− x∗‖).
Hence, in this sense, the zero set changes only a small bit under small perturbations.

7. The Representation Theorem. The results of this section follow the work of
Izmailov and Tret’yakov [22].

Theorem 7.1 (Representation Theorem). Let X and Y be Banach spaces, and V be
a neighborhood of x∗ in X. Suppose F : V → Y is of class Cp+1 and F (i)(x∗) = 0,
i = 1, . . . , p− 1. Suppose further that for a constant C > 0,

sup
‖h‖X=1

‖{F (p)(x∗)[h]p−1}−1‖ ≤ C.

Then there exist a neighborhood U of 0 and a neighborhood V of x∗ in X and
mappings ϕ : U → X and ψ : V → X such that ϕ and ψ are Fréchet-differentiable
at 0 and x∗, respectively, and

(a) ϕ(0) = x∗, ψ(x∗) = 0;
(b) F (ϕ(x)) = F (x∗) + 1

p!F
(p)(x∗)[x]p for all x ∈ U ;

(c) F (x) = F (x∗) + 1
p!F

(p)(x∗)[ψ(x)]p for all x ∈ V ;
(d) ϕ′(0) = ψ′(x∗) = IX .

Corollary 7.2 (Generalized Morse lemma). Let X and Y be Hilbert spaces, V
be a neighborhood of x∗ in X. Suppose F : V → Y is of class Cp+1 and the set
Im F (p)(x∗) is closed in Y. Furthermore, assume that

sup
‖h‖X=1

‖(F (p)(h))−1‖ < ∞.

Then there exists a neighborhood U of 0 in X and a mapping ϕ : U → X such that
ϕ(0) = x∗, ϕ(U) ⊂ V , ϕ is diffeomorphism from U onto ϕ(U), ϕ′(0) is the identity
operator onto X and

ϕ(T1 ∩ U) = ϕ(Hp ∩ U) = F−1(F (x∗)) ∩ ϕ(U).

A proof of this fact directly follows from the results in Buchner, Marsden and
Schecter [11] and the definition of p–regular mapping. For the case p = 2 this result
is given in Avakov, Agrachyov, and Arutyunov [3].
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8. Methods for Solving Singular Nonlinear Equations.
The 2-factor Method. This method was derived in Belash and Tret’yakov [5] and
Tret’yakov [32, 33]. Suppose that F is 2-regular at x∗ with respect to some h. The
scheme of the 2-factor-method can, in this case, be written in the form

xk+1 = xk − [F ′(xk) + P⊥k F ′′(xk)hk]−1F (xk), k = 0, 1, . . . , (8.1)

where hk ∈ KerF ′(xk), ‖hk‖ = 1 and where P⊥k is the orthogonal projector onto
(Im F ′(xk))⊥, k = 0, 1, . . . . Note that the scheme (8.1) is similar to the Newton
method.

We consider the simplest case in which we assume that

dimKer F ′(xk) = dim KerF ′(x∗), k = 0, 1, . . . .

Theorem 8.1. Let x∗ be a solution of (1.1), and U be a neighborhood of the point
x∗ in Rn. Suppose that F is 2-regular at x∗ with respect to h∗ ∈ KerF ′(x∗). Then
there exists a neighborhood U ′ ⊆ U of x∗ in Rn such that for any point x0 ∈ U ′ the
sequence defined by (8.1) converges to x∗ and

‖xk+1 − x∗‖ ≤ R ‖xk − x∗‖2 ∀k = 0, 1, . . . ,

with a constant R > 0.

The development of the 2-factor-method and its application to a wide range of
problems are given in Izmailov and Tret’yakov [24]. A survey of various methods
for finding singular solutions to nonlinear problems and a general scheme for solving
singular nonlinear equations are presented in Brezhneva and Izmailov [6].

9. Genericity of the Class of p-regular Problems. Consider the problem of
genericity of the notion of p-regularity of a mapping F . For simplicity, we restrict
our considerations to the case of absolute degeneration in the spaces X = Rn and
Y = Rm, n, m ∈ N. By virtue of the definition of a p-regular mapping, the problem
of genericity reduces to the problem of genericity of the p-regularity property of
mappings Q(x) = Q[x]p = Q[x, . . . , x︸ ︷︷ ︸

p

], x ∈ X in the space Qp(Rn, Rm). This

problem is solved by an application of the transversality theory and the following
Theorem (see Buchner, Marsden and Schecter [11], Ortega and Rheinboldt [28], and
Izmailov and Tret’yakov [24]).

Theorem 9.1. Let h ∈ Rn, h 6= 0. Then the set of the mappings Q ∈ Qp(Rn,Rm),
which are p-regular at the element h, is open and dense in Qp(Rn, Rm) for p, n, m ∈
N, n ≥ m,.

10. Implicit Function Theorem.

Theorem 10.1 (Tret’yakov [33], [34]). Suppose that X, Y and Z are Euclidean
spaces, W is a neighborhood of a point (ξ0, η0) in X×Y , and assume that F : W → Z
is of class C2. Suppose F (ξ0, η0) = 0 and the following conditions hold:

1. the singularity condition:

f
(r)
i ξ . . . ξ︸ ︷︷ ︸

q

η . . . η︸ ︷︷ ︸
r−q

(ξ0, η0) = 0, r = 1, . . . , i− 1, q = 0, . . . , r − 1, i = 1, . . . , p;
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2. the p-regularity condition at the point (ξ0, η0): there is a neighborhood
U(ξ0) of the point ξ0 in X such that

Ψp η(ξ0, η0, h)Y = Z

for all
h ∈ {Ψp η(ξ0, η0)}−1(−F (ξ, η0))

and all ξ ∈ U(ξ0) such that F (ξ, η0) 6= 0,
3. the Banach condition: for any z ∈ Z, ‖z‖ = 1, there exists η ∈ Y such that

Ψp η(ξ0, η0, η)η = z, ‖η‖ ≤ c,

where c > 0 is independent of z constant;
4. the elliptic condition with respect to the independent variable ξ:

‖fi(ξ, η0)‖Zi ≥ m‖ξ − ξ0‖i
X

for all ξ ∈ U and for all i = 1, . . . , p, where m > 0 is some number and U is
a neighborhood of the point ξ0 in X.

Then for any ε > 0 there exist δ > 0, K > 0 and a map ϕ : U(ξ0, δ) → U(η0, ε)
such that

(a) ϕ(ξ0) = η0;
(b) F (ξ, ϕ(ξ)) = 0 for all ξ ∈ U(ξ0, δ);
(c)

‖ϕ(ξ)− η0‖Y ≤ K

p∑

i=1

‖fi(ξ, η0)‖1/i
Zi

for all ξ ∈ U(ξ0, δ).

11. Generalization of Banach’s Open Mapping Theorem. A mapping Q :
X → Y will be called quadratic if there exists a bilinear mapping B : X ×X → Y
such that

Q(x) := Q[x]2 = B(x, x)
for all x ∈ X. In other words, as in the introduction, a quadratic mapping is a
homogeneous polynomial mapping of degree 2.

Denote by Q−1 the right inverse operator (in general, it is many-valued) for the
mapping Q. The right inverse operator has norm given by

‖Q−1‖ = sup
‖y‖Y =1

inf
{‖x‖X | x ∈ X, Q[x]2 = y

}
.

Theorem 11.1. Assume that Q : Rn → Rm is a continuous quadratic mapping
satisfying

Im Q[x]2 = Rm.

Then
‖Q−1‖ < ∞.

For p > 2 this result does not hold in general, as is illustrated by the following
example.

Example. (Izmailov and Tret’yakov [22]). Consider the mapping

Q ∈ Q5(R2, R2), Q[x]5 =
[

x5
1 − x2

1 x3
2

x3
1 x2

2

]

We have Im Q = R2, but ‖Q−1‖ = ∞.
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12. Application to Differential Equations. We consider the Cauchy problem
for the following partial differential equation of first order

a(x, y, u)p + b(x, y, u)q = c(x, y, u), (12.1)

with initial data for s = 0 on a curve l,

x = x(t), y = y(t), u = u(t), (12.2)

where x and y are independent variables; u = u(x, y) is unknown function; and
where p and q are, following the Monge notations, p ≡ ∂u/∂x, q ≡ ∂u/∂y; and
where a(x, y, u), b(x, y, u), c(x, y, u) are given continuous functions.

Let us apply the preceding implicit function theorem to investigate the issue of
existence of the solution of the Cauchy problem in the singular case, i.e., when the
Jacobian is equal to zero; that is,

∆(s, t) = xsyt − xtys = 0. (12.3)

Letting
ξ = (x, y), η = (s, t),

we write

F (ξ, η) =
(

x− x(s, t)
y − y(s, t)

)
= 0.

Consider the case p = 2. Suppose that all parameters of (12.1) and functions
x(t), y(t), u(t) are sufficiently smooth and

s1 < s0 < s2, t1 < t0 < t2.

x(t0) = x0; y(t0) = y0; u(t0) = u0.
Without loss of generality suppose that

x(s0, t0) = 0, y(s0, t0) = 0,

so that
F (ξ, η0) = ξ.

Theorem 12.1. (Brezhneva and Tret’yakov [9].) Let a(x, y, u), b(x, y, u), c(x, y, u)
be continuously differentiable functions, Ω be a neighborhood of the point t0, l ∈
C1(Ω). Suppose M = M(x0, y0, u0) belongs to l and under some value s0 ∈ (s1, s2)
for the point η0 ≡ (s0, t0) the following conditions hold.

1. the singularity condition:

∆(η0) = xs(η0)yt(η0)− xt(η0)ys(η0) = 0;

2. the p-regularity condition:

Ψp η(ξ0, η0, h)Y = Z

for all
h ∈ {Ψp η(ξ0, η0)}−1(−ξ)

and all ξ with ‖ξ‖ = 1;
3. the Banach condition: for any z ∈ Z, ‖z‖ = 1, there exists η ∈ Y such that

Ψp η(ξ0, η0, η)η = z, ‖η‖ ≤ c,

where c > 0 is a constant independent of z.
Then there exists a continuous solution u = u(x, y) to the equation (12.1) in some
neighborhood U of the point (x0, y0) in X × Y . This solution contains some part
of the curve l passing through the point M .
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13. Application to Bifurcation Theory. We will give a sufficient condition for
bifurcation at a multiple eigenvalue for a typical nonlinear eigenvalue problem.
Namely, we consider the following equation,

f(u, λ) = ∆u− (λ + λ0)g(u) = 0 in Ω

with boundary conditions

u = 0 on ∂ Ω,

where Ω is a bounded region in Rn, f : Hs+2
0 ×R→ Hs, λ ∈ R, λ0 is an eigenvalue

of ∆ with multiplicity n > 1, and where g(0) = 0, g′(0) = 1, g′′(0) = 1.
Let Ker (Duf(0, 0)) = Ker (∆−λ0 I) be spanned by the L2 orthonormal functions

u1, . . . , un. Consider an element u = z1u1 + . . . + znun and introduce the mapping

F (x) = F (z1, . . . , zn, λ) = f(u, λ), x = (u, λ).

Since F ′(x) is a Fredholm and self-adjoint operator,

Ker (F ′(x∗)) = (Im F ′(x∗))⊥.

Using the last relation, p-regularity theory and the generalized Lyusternik theorem,
we obtain the following: if the mapping F is p–regular at the point x∗ with respect
to element h = (u, λ) 6= (0, λ) then x∗ = (0, 0) is the bifurcation point of the problem
under consideration.

To see why this is so, consider the case p = 2. Let P⊥ be the orthogonal
projection onto Y2 = (Im F ′(x∗))⊥. The equality

P⊥F ′′(x∗)[h]2 = 0, h = (u, λ)

is equivalent to the inclusion

F ′′(x∗)[h]2 ∈ Im F ′(x∗).

Hence,

〈F ′′(x∗)[h]2, ui〉 = 0, i = 1, . . . , n. (13.1)

If the system (13.1) has a nonzero solution z1, . . . , zn, then we get an element
h = z1u1 + . . . + znun as desired, and the point x∗ = (0, 0) is the bifurcation point
to the problem under consideration.

Example. (See Buchner, Marsden and Schecter [11].) Consider

f(u, λ) = ∆u− (λ− 10)g(u) = 0

on Ω = [0, π] × [0, π] in R2 with u = 0 on ∂ Ω. Assume g(0) = 0, g′(0) = 1 and
g′′(0) = 1. Then u = 0, λ = 0 is a bifurcation point.

To be specific, take n = 2, and then u1 = sin 3x sin y, u2 = sin x sin 3y. It is
easy to prove that the mapping F is 2-regular at the point x∗ = (0, 0) and the
element h = (1, 1, 5(a + 3b)) is the solution to the system (13.1), where a = 16

27

and b = 68
75 . The proof of 2-regularity of the mapping F reduces to the test of the

non-degeneration of the matrix F ′′(x∗)[h] where F ′′(x∗)[h]2 = 0.
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14. The Poincaré-Andronoff-Hopf Bifurcation and p-regularity Theory.
Consider the following problem

ẋ(t) = g(µ, x), (14.1)
x(0) = x(τ),

where g(µ, x∗) = 0 for all µ ∈ W1, g : W1 ×W2 → R2 is of class C(p+2), W1 is an
open set in R, W2 is an open set in Rn, and µ ∈ W1 is a parameter.

Let M be a set of points (τ, µ, x) ∈ R×W1 ×W2 such that the solution x(t) of
(14.1) passes through the point (τ, µ, x), where x(0) = x(τ), ẋ(t) = g(µ, x(t)).

We can represent the set M as M = S∪P , where S = R×W1×{x∗} is a simple
two-dimensional solution branch to (14.1) and P = M\S.

The problem is to describe the structure of the set P of periodic solutions of
(14.1) in the vicinity of (τ∗, µ∗, x∗).

Let us denote F (τ, µ, x) def= x− ϕ(τ, µ, x), Rl def= R× R× Rn and consider the
equation

F (τ, µ, x) = x− ϕ(τ, µ, x) = 0. (14.2)
It is well known that for equation (14.1) there exists a solution

ϕ(τ, µ, x) ∈ Cp+1([−δ, τ∗ + δ]× V1 × V2,Rn),

where V1 is the vicinity of the point µ∗, such that jointly with (14.2), for all τ ∈
[−δ, τ∗ + δ], µ ∈ V1, and x ∈ V2 we have

ϕ̇(τ, µ, x) = g(µ, ϕ(τ, µ, x)),
ϕ(0, µ, x) = x,

ϕ(τ, µ, x∗) = x∗.

This means that the solution ϕ(·, µ, x) is satisfied to our problem (14.1) and the set
M = S ∪ P coincides with the solution set F−1(0) in the neighborhood O of the
point (τ∗, µ∗, x∗).

Using Corollary 7.2 of the Representation Theorem, we get the following.

Theorem 14.1. Let V be a neighborhood of the point z∗ ∈ Rl and suppose that
F ∈ Cp+1(V,Rn) is p–regular at the point z∗, and F (z∗) = 0. Then there exist a
neighborhood O = (U1 × U2 ×On) of the point 0 ∈ Rl and a mapping ρ : O → Rn

such that ρ(0) = z∗, ρ(O) ⊂ V is a neighborhood of the point z∗ ∈ Rl, where ρ is a
diffeomorphism from O onto ρ(O), ρ′(O) = IRl and

ρ(T1 ∩ O) = F−1(0) ∩ ρ(O), T1(z∗) =
p∩

r=1
Kerrf (r)(z∗).

In another words, the set M can be described in the following way

M ∩ ρ(O) = ρ(
p∩

r=1
Kerrf (r)(z∗) ∩ On).

Note that testing the assumption that F is p–regular mapping is the independent
and interesting problem.

Consider the specific case p = 2 (see Izmailov [20]) and denote by L2 the eigen–
subspace of the linear operator ∂xg(µ∗, x∗) that corresponds to the eigenvalue ±iω
and by P2 the orthogonal projection onto L2. Then, by virtue of the Corollary
7.2, we immediately obtain the Andronoff–Hopf Theorem, since 2-regularity
condition is, in fact, equivalent to the Andronoff–Hopf condition

trP2∂xg(µ∗, x∗) 6= 0.
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This follows from

T1(z∗) = (R× R× {0}) ∪ ({0} × {0} × L2).

In fact, we have
S ∩ ρ(O) = ρ(U1 × U2 × {0})

and
(P ∪ {(2π/ω, µ∗, x∗)}) ∩ ρ(O) = ρ({0} × {0} × (L2 ∩ On)).

15. Singular Problems in the Calculus of Variations. In this section we apply
the p–regularity theory to the isoperimetric problem and discuss the case p = 2.
One may view this as an instance of obtaining the 2-factor-Euler-Lagrange equation
for optimality.

We consider a functional of the form

J0[y] =
∫ x2

x1

F (x, y, y′)dx, (15.1)

where y ∈ C1([x1, x2],R) and F (x, y, y′) is a function with continuous first and
second derivatives with respect to its arguments.

The isoperimetric problem in calculus of variations can be formulated as follows.

Isoperimetric problem. Minimize the functional J0 in (15.1) subject to the sub-
sidiary condition

J1[y] =
∫ x2

x1

G(x, y, y′)dx = l (15.2)

and boundary conditions

y(x1) = y1, y(x2) = y2. (15.3)

In accordance with Lauwerier [26] and other books on the calculus of variations,
if the regularity condition ImJ ′1[y

∗] 6= 0 is fulfilled, then a necessary condition that
y is an extremum to the isoperimetric problem can be written as

d

dx
(Fy′ + λGy′) = Fy + λGy, (15.4)

where λ is a constant. Notice that equation (15.4) is just the Euler-Lagrange equa-
tions for the functional J0 + λJ1.

The increment of the functional J1 is defined as

∆J1 = J1[y(x) + δy]− J1[y(x)] = L[y(x), δy] + Ψ[y(x), δy] ‖δy‖,
where |Ψ[y(x), δy]| → 0 as δy → 0 , L[y(x)] is a linear functional, and L[y(x), δy] =
L[y(x)]δy is called the variation of the functional J1. Moreover, we can write

L[y(x) + δy]δy − L[y(x)]δy = A[y(x)](δy)2 + Ψ[y(x), δy] |δy|2,
and A[y(x)](δy)2 is called the second variation of the functional J1.

Define the functionals J ′1[y
∗] and J ′′1 [y∗] as

J ′1[y
∗] = L[y∗], J ′′1 [y∗] = A[y∗].

In accordance with Korneva and Tret’yakov [25], we have:

J ′1[y
∗]h(x) = Gy′h(x)

∣∣x=x2

x=x1
+

∫ x2

x1

[
Gy − d

dx
Gy′

]
h(x)dx,
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and

J ′′1 [y∗]h1(x)h2(x) = h′1(x)Gy′y′h2(x)|x=x2
x=x1

+
∫ x2

x1

[
Gyyh1(x) + Gyy′h

′
1(x)

− d

dx
[Gy′yh1(x) + Gy′y′h

′
1(x)]

]
h2(x)dx.

Choose a function h(x) such that h(x) ∈ Ker2 J ′′1 [y∗], i.e.,

J ′′1 (y∗)h2(x) =
∫ x2

x1

[Gyyh2(x) + 2Gyy′h(x)h′(x) + Gy′y(h(x))2]dx = 0.

Next, we make the following definition.

Definition 15.1. The isoperimetric problem is called singular or irregular if

ImJ ′1[y
∗] = 0. (15.5)

The equality (15.5) implies that y∗ is an extremal of J1. Note that there are
singular isoperimetric problems with nontrivial extremum, and the necessary con-
dition (15.4) is empty for these problems, i.e., the equation (15.4) has no solution
with corresponding F and G.

We now are able to introduce new necessary conditions for optimality that are
similar to (15.4) and which are useful for the singular isoperimetric problem.

Theorem 15.2. Let a curve y∗ be an extremum of the functional (15.1) under
the condition (15.2) and boundary conditions (15.3), and y∗ be an extremal of the
functional (15.2), i.e., (15.5) holds. Suppose there is a function h(x) ∈ Ker2J ′′1 [y∗]
such that J ′′1 [y∗]h(x) 6= 0. Then, there is a constant λ such that y∗ is an extremal
of the functional

x2∫

x1

H(x, y, y′)dx,

where H = F + λ(Gyh + Gy′h
′) is a 2-factor-Euler-Lagrange function, and the

following 2-factor-Euler-Lagrange equation holds,

Fy + λ(Gyyh + Gyy′h
′)− d

dx
[Fy′ + λ(Gyy′h + Gy′y′h

′)] = 0. (15.6)

It should be noted that (15.6) is similar to (15.4) and that the condition J ′′1 [y∗]h(x) 6=
0 is the 2–regularity condition for the isoperimetric problem.

Example. Consider the problem of minimizing the functional

J0[y] =
∫ 1

−1

y2dx (15.7)

subject to the constraints

y(−1) = y(1) =
5
4
, J1[y] =

∫ 1

−1

(
y′ − x

2

)2

dx = 0. (15.8)

Let show that the curve y∗ = 1
4x2 +1 is an extremal of J1 and y∗ does not satisfy

the classical necessary optimality condition (15.4), but satisfies necessary optimality
conditions that are formulated in theorem 15.2.
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First of all, a necessary condition for a curve y(x) to be an extremal of J1 is that
y(x) satisfies the corresponding Euler-Lagrange equation:

d

dx

(
2

(
y′ − x

2

))
= 0.

The above equation implies that

2y′′ − 1 = 0.

Integrating, we have

y =
1
4
x2 + C1x + C2.

Using the boundary conditions (15.8), we obtain

y∗ =
1
4
x2 + 1. (15.9)

Using (15.8) and (15.9) we have

J1[y∗] =
∫ 1

−1

(
1
2
x− x

2

)2

dx = 0,

and hence, y∗ is an extremal of J1.
According to (15.4), the classical necessary conditions for y∗ to be an extremum

to the problem (15.7)–(15.8) is that y∗ satisfies the equation:
d

dx

(
2λ

(
y′ − x

2

))
= 2y,

that is
2λy′′ + λ = 2y,

Putting (15.9) into the last equation, we get
1
2
x2 + 2− 2λ

1
2

+ λ = 0,

so that
1
2
x2 + 2 = 0 ∀x.

The last equation has no solution. Hence, the necessary condition (15.4) is an empty
condition for this example.

We will prove that the function y∗ from (15.9) satisfies the hypotheses of Theorem
15.2. First of all, we will show that the function

h(x) = x4 + 24x2 − 25 (15.10)

satisfies the conditions of Theorem 15.2. The first condition of the theorem, namely
h(x) ∈ Ker2 J ′′1 [y∗], is equivalent to

∫ 1

−1

2(h′(x))2dx = 0.

Putting (15.10) into this equation, we get
∫ 1

−1

(4x3 + 48x)dx = (x4 + 24x2)|1−1 = 1 + 24− 1− 24 = 0.

The second condition of the theorem, namely J ′′1 [y∗]h(x) 6= 0, implies that
d

dx
(2h′) 6= 0,
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that is
d

dx
(4x3 + 48x) = 12x2 + 48 6= 0.

Hence the both conditions of the theorem are fulfilled. Now construct the 2-factor-
Euler-Lagrange function H for this example:

H = y2 + λ
(
2

(
y′ − x

2

)
(4x3 + 48x)

)
.

Suppose that y∗ from (15.9) is an extremum to the problem (15.7)–(15.8) and find
a constant λ such that the 2-factor-Euler-Lagrange equation (15.6) holds for y∗ and
λ. Putting (15.9) into (15.6), we get

2y − d

dx
(2λ(4x3 + 48x)) = 0,

that is,
2y − 24λx2 − 96λ = 0,

so that
1
2
x2 + 2− λ(24x2 + 96) = 0.

Our equation for λ thus reduces to

(1− 48λ)
(

1
2
x2 + 2

)
= 0.

The last equality implies that λ = 1/48.
Hence, the theorem 15.2 gives us nonempty necessary optimality conditions for

irregular isoperimetric problem.

16. A Method for Nonlinear Equality–Constrained Optimization Prob-
lems. In this section, we present a method for solving smooth nonlinear equality–
constrained optimization problems for which the constraint matrix at the solution
is irregular. The method of construction is based on the optimality conditions for
2–regular problems.

We consider the problem

min
x∈Rn

f(x),

subject to F (x) = 0,
(16.1)

where f : Rn → R is a sufficiently smooth function and F : Rn → Rm is a sufficiently
smooth mapping, written as

F (x) =




F1(x)
. . .

Fm(x)


 = 0.

Suppose that F ′(x∗) is irregular at the solution x∗; namely:

RankF ′(x∗) = r < m.

Without loss of generality, assume that

F ′r+1(x
∗) = 0, . . . , F ′m(x∗) = 0. (16.2)

The subspace ImF ′(x∗) has an orthogonal complementary subspace (ImF ′(x∗))⊥

in Rm. Under the assumption (16.2), we have:

(ImF ′(x∗))⊥ = {x = (x1, . . . , xm) ∈ Rm |x1 = . . . = xr = 0}.
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Remark. Note that implementation of the proposed method does not require a
knowledge of the number r. It is possible to apply the algorithm described in
Brezhneva, Izmailov, Tret’yakov, and Khmura [7] for the determination of r, without
x∗ being known precisely.

In §5 we considered the optimality conditions for p–regular constrained optimiza-
tion problems. In the following, we will need necessary optimality conditions for
p = 2.

Theorem 16.1. Let x∗ be a solution to (16.1), and F be 2-regular at x∗ on h∗ ∈
H2(x∗). Then, there exists y∗ ∈ Rm such that

f ′(x∗) + (F ′(x∗) + P⊥F ′′(x∗)h∗)T y∗ = 0, (16.3)

where P⊥ is the orthogonal projector onto (ImF ′(x∗))⊥.

Recall from Definition 3.3 that

H2(x∗) = Ker F ′(x∗) ∩Ker2 P⊥F ′′(x∗).

We also use the following notation:

z = (x, y) ∈ Rn+m, z∗ = (x∗, y∗),

where x∗ is a solution to (16.1) and y∗ ∈ Rm satisfies (16.3). In this section, we
also let PMh0 denote the orthogonal projection of the element h0 onto the set M .

The basic idea of our method for solving nonlinear equality–constrained opti-
mization problems is to construct a mapping R : Rn+m → Rn+m such that z∗ is a
regular solution to the system

R(z) = 0. (16.4)
Namely, we consider the following method. Let x∗ be a solution to (16.1), and let

F be 2–regular at x∗ on h∗ = PH2(x∗)h0, where h0 ∈ Rn is some arbitrary element,
‖h0‖ = 1, ‖h0 − h∗‖ ≤ ε, and ε ≥ 0 is sufficiently small.

Define the mapping:

F̂ : Rn → Rm, F̂ (x) = (F1(x), . . . , Fr(x), 0, . . . , 0)T , (16.5)

Note that for F̂ , the following equality holds:

dimKer F̂ ′(x) = dim KerF ′(x∗)

for all x ∈ Uε(x∗), and

P⊥ = P(Im F ′(x∗))⊥ = P(Im F̂ ′(x))⊥

for all x ∈ Uε(x∗), where Uε(x∗) is a sufficiently small ε–neighborhood of x∗ in Rn.
Introduce the mapping

G : Rn → Rm, G(x) = F (x) + P⊥F ′(x)h(x), (16.6)

where
h(x) = PH2(x)h

0, ‖h0‖ = 1, (16.7)
and

H2(x) = KerF̂ ′(x) ∩Ker 2{P⊥ F ′′(x)}\{0}. (16.8)
Note that from the condition of 2–regularity of the mapping F , it follows that for
any x ∈ Uε(x∗) the set H2(x) 6= {0}.

Define the function

L̄ : Rn × Rm → R, L̄(x, y) = f(x) + 〈y, G(x)〉.
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In accordance with Brezhneva and Tret’yakov [8], the following theorem is pivotal
for this method.

Theorem 16.2. Let x∗ be a solution to (16.1), F be 2-regular at x∗ on h∗ =
PH2(x∗)h0, G be defined by (16.6)–(16.8), and let there exist y∗ ∈ Rm such that
(16.3) holds and such that

〈L̄′′xx(x∗, y∗)h, h〉 > 0 ∀h ∈ kerG ′(x∗)\{0}.
Then, there exists ε > 0 such that z∗ = (x∗, y∗) is an isolated regular solution to
the system of nonlinear equations

R(z) =
(

f ′(x) + (G ′(x))T y
G(x)

)
= 0. (16.9)

Using theorem 16.2, it follows that the original problem of finding a singular solu-
tion to problem (16.1) is reduced to finding an isolated solution to system (16.9). To
find such a solution, any traditional numerical method can be applied, for example,
the Newton’s method.

17. Conclusion. In this paper, we have presented the key constructions and re-
sults of p–regularity theory, a subject that has been actively developed for the last
fifteen years. One of the basic results of the theory, the theorem about the structure
of the zero set of an irregular mapping satisfying a special higher–order regularity
condition, was simultaneously obtained in Buchner, Marsden and Schecter [11] and
Tret’yakov [31]. In this paper we have showed how to apply p–regularity theory to
the description and investigation of singular mappings in different fields of mathe-
matics. We believe that it is very promising to apply the theory to other fields of
mathematics and to new nonlinear objects.
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