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Abstract. We derive the classical Delaunay variables by finding a suitable symmetry action of
the three torus T3 on the phase space of the Kepler problem, computing its associated momentum
map and using the geometry associated with this structure. A central feature in this derivation is the
identification of the mean anomaly as the angle variable for a symplectic S1 action on the union of the
non-degenerate elliptic Kepler orbits. This approach is geometrically more natural than traditional
ones such as directly solving Hamilton–Jacobi equations, or employing the Lagrange bracket. As an
application of the new derivation, we give a singularity free treatment of the averaged J2-dynamics
(the effect of the bulge of the Earth) in the Cartesian coordinates by making use of the fact that the
averaged J2-Hamiltonian is a collective Hamiltonian of the T3 momentum map. We also use this
geometric structure to identify the drifts in satellite orbits due to the J2 effect as geometric phases.
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1. Introduction

The purpose of this paper is to prove the following well-known theorem from a
viewpoint of geometric mechanics and then to make use of this technique to study
the averaged Hamiltonian in the J2 problem. As a by-product, we also obtain a new
interpretation and derivation of known drifts in satellite orbits due to the bulge of
the earth as geometric phases.

We now state the theorem about Delaunay variables informally; a more com-
plete statement is given in Proposition 3.2.

THEOREM 1.1. In the Kepler problem, there is a natural action of the three torus,
T

3, on �elliptic, the union of nondegenerate Keplerian elliptic orbits, such that the
variables of T

3 and its momentum map constitute the Delaunay variables on the
set of regular points of the momentum map.
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The Delaunay variables were first introduced in Delaunay (1860) and have been
frequently used as canonical variables in celestial mechanics. In particular, they
are action–angle variables. There are two common derivations of these variables;
one is to directly solve the Hamilton–Jacobi equations (Born, 1927; Kovalevsky,
1967) and the other is to use the Lagrange brackets (Brouwer and Clemence, 1961;
Abraham and Marsden, 1978). The former, being rather brute-force, does not give
very much geometric insight. The latter employs the fact that Hamiltonian flows
are canonical, and it simplifies computations by evaluating the Lagrange bracket
at perigee. Nevertheless, this derivation still lacks the geometric insight that one
would like.

In this paper, we give a new derivation of the Delaunay variables; this deri-
vation is straightforward from the geometric mechanics point of view. We derive
the coordinates for the Delaunay variables as follows: we first find a T

3 symmetry
in the Kepler problem and compute its momentum map. Second, we show that
the set of the regular points of the momentum map is a trivial T

3 principal bundle
over the set of regular values of the momentum map. The variables of T

3 and its
momentum map constitute the Delaunay variables in the set of regular points of the
momentum map. Finally, we show that the Delaunay variables so derived are, in
fact, action–angle variables (and thus are canonical variables) by a straightforward
computation.

The main point in this derivation lies in the new interpretation of the mean
anomaly as a symplectic S1 action on the union of the nondegenerate elliptic Kepler
orbits. We compare this new derivation with the general method of finding action–
angle variables in Born (1927) and Arnold (1991). In the final section, we apply
this new derivation to the study of the averaged J2 dynamics, that is, the perturbed
Kepler motion due to the bulge of the Earth. In particular, this geometric set-up of
the problem allows us to interpret and derive the well-known and important phase
drifts in satellite orbits as geometric phases.

2. Three Anomalies: Mean, True, and Eccentric

In the Kepler problem, there are three well-known anomalies: the mean, true, and
eccentric anomalies. They are measured from the perigee of a given elliptic orbit,
so they are not well-defined in a neighborhood of circular orbits. In this section, we
will give the three anomalies a new interpretation in terms of the S1 actions on the
union of nondegenerate elliptic orbits. This interpretation is interesting because it
has no singularity problems. We also show that the S1 action corresponding to the
mean anomaly is symplectic.

The Kepler vector field. Let R
3
0 = R

3\{(0, 0, 0)}, the configuration manifold.
We use (q,p) as coordinates for the tangent space TR

3
0 = (R3\{(0, 0, 0)}) × R

3,
which is identified with the cotangent bundle using the Euclidean inner product.
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The manifold TR
3
0 is equipped with the canonical symplectic structure which we

write as

	 =
3∑

i=1

dqi ∧ dpi.

Since the canonical symplectic form is nondegenerate, it induces the map 	� :
T ∗TR

3
0 → T TR

3
0 defined by 	(	�α, v) = α(v) for all α ∈ T ∗TR

3
0 and v ∈

T TR
3
0. The map 	� can be written in matrix form as

	� =
(
O3 I3

−I3 O3

)
,

where O3 is the 3× 3 zero matrix and I3 is the 3× 3 identity matrix. The Hamilto-
nian vector field XF of a Hamiltonian F is defined by XF = 	� dF . The Kepler
Hamiltonian H on TR

3
0 (for a satellite whose mass we can take to be unity) is

defined by

H(q,p) = 1

2
‖p‖2 − µ

‖q‖ , (2.1)

where µ is a constant (the mass of the primary times the gravitational constant) and
‖·‖ is the usual Euclidean norm on R

3. The Kepler vector field XH is, by definition,
the Hamiltonian vector field of the Hamiltonian H and is given explicitly by

XH(q,p) =
(

p,− µ

‖q‖3
q
)
.

Let ϕt be the flow of the Kepler vector fieldXH ; we also write ϕt(q,p) = ϕ(t, (q,p)).
Besides H, the Kepler motion has the following constants of motion:

L(q,p) = q× p, (2.2)

A(q,p) = p× (q× p)− µ
q
‖q‖ , (2.3)

where L is the angular momentum and A is the Laplace (also known as the Runge–
Lenz) vector. They satisfy the following (readily verified) relations:

L · A = 0, (2.4)

‖A‖2 = µ2 + 2H‖L‖2. (2.5)

The set �elliptic is defined to be the union of the nondegenerate elliptic Kepler orbits.
It is given in terms of the Hamiltonian and the angular momentum by

�elliptic = {(q,p) ∈ TR
3
0 | H(q,p) < 0,L(q,p) �= 0}, (2.6)



188 DONG EUI CHANG AND JERROLD E. MARSDEN

which is well-known; see for instance, Cushman and Bates (1997) or Chang et al.
(2002) for the proof. The flow ϕt induces a flow on the space �elliptic and of course
is defined for all t ∈ R.

S1 Actions and anomalies. There are three anomalies frequently used in ce-
lestial mechanics; the mean, true and eccentric anomalies. We will give a new
interpretation of them as S1 group actions1 on the set �elliptic. The S1 actions related
to the three anomalies come from time reparameterizations of the elliptic Kepler
flow ϕt restricted to �elliptic. To avoid the repetition of similar arguments, we first
construct a general setting. Let T : �elliptic → R be the period of the Kepler flow,
which is well-known to be given by

T (q,p) = 2πµ

(−2H(q,p))3/2
. (2.7)

Suppose that a positive smooth function F : �elliptic → R satisfies

2π =
∫ T (q,p)

0
F ◦ ϕ(s, (q,p)) ds; (2.8)

specific F ’s satisfying this condition will be chosen shortly. Define h : R ×
�elliptic → R×�elliptic by

h(t, (q,p)) = (θ(t, (q,p)), (q,p)),

where

θ(t, (q,p)) =
∫ t

0
F ◦ ϕ(s, (q,p)) ds. (2.9)

One can verify that h is a global diffeomorphism. Let pr : R × �elliptic → S1 ×
�elliptic be the covering map given by

pr(θ, (q,p)) = (eiθ , (q,p)).

Define an S1 action, � : S1 ×�elliptic → �elliptic by � ◦ pr = ϕ ◦ h−1; that is,

�(eiθ , (q,p)) = ϕ ◦ h−1(θ, (q,p)). (2.10)

One can check that � is indeed a well-defined smooth group action and that this
action is free and proper. The infinitesimal generator of this action is given by

Y (q,p) := d

dθ

∣∣∣∣
θ=0

�(eiθ , (q,p)) = 1

F(q,p)
XH(q,p). (2.11)

1An action of a Lie group G on a manifold M is a smooth mapping � : G × M → M such
that (i) for all x ∈ M , �(e, x) = x and (ii) for every g, h ∈ G, �(g,�(h, x)) = �(gh, x) for
all x ∈ M , where e is the identity element of G. An action is called free if, for each x ∈ M ,
g �→ �(g, x) is one-to-one. An action is called proper if and only if �̃ : G×M → M ×M defined
by �̃(g, x) = (x, �(g, x)) is a proper mapping, that is, if K ⊂ M ×M is compact, then �̃−1(K) is
compact. See, for example, Chapter 9 of Marsden and Ratiu (1999) for more on Lie group actions.



GEOMETRIC DERIVATION OF THE DELAUNAY VARIABLES AND GEOMETRIC PHASES 189

Choices for the three anomalies. Consider the following three positive smooth
functions on �elliptic:

F1(q,p) = 2π

T (q,p)
, (2.12)

F2(q,p) = ‖L(q,p)‖
‖q‖2

, (2.13)

F3(q,p) =
√−2H(q,p)

‖q‖ . (2.14)

The choice of them comes from the following well-known elementary facts on the
Kepler motion. The function F1 is just the average of the time over one period.
The function F2 comes from the polar expression of the angular momentum, that
is, ‖L‖ = r2ḟ where r is the polar distance and f is the polar angle or the true
anomaly in the orbit plane where the origin is at one of the foci of the elliptic orbit.
The function F3 comes from the trigonometric relation between the true anomaly
and the eccentric anomaly, which can be found in pp. 21–22 of Vinti (1998). One
can readily check that the three functions Fi , i = 1, 2, 3 satisfy (2.8) and that
θ(t, (q,p)) given by (2.9) with the choices Fi with i = 1, 2, 3, corresponds to the
mean anomaly, the true anomaly and the eccentric anomaly, respectively, in the
case that (q,p) is the perigee of a given noncircular elliptic Kepler orbit.

The symplecticity of the mean anomaly action. Let �Fi be the action deter-
mined by the choice of Fi with i = 1, 2, 3. The infinitesimal generator Yi of �Fi is
computed, via (2.11), as follows:

Yi = 1

Fi

XH .

One can check that

iY1	 = dI1, (2.15)

where

I1(q,p) = µ√−2H(q,p)
, (2.16)

and where iY1	 is the interior product of Y1 and 	, which is defined by iY1	 =
	(Y1, · ) (see Abraham and Marsden, 1978 for more on the interior product).
However, one can check that for i = 2, 3, the exterior derivative is nonzero:

d(iYi	) �= 0. (2.17)

Since each action �Fi can be regarded as the periodic flow (of period 2π ) of the
vector field Yi , Proposition 5.4.2 in Marsden and Ratiu (1999) applied to (2.15) and
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(2.17) implies that �F1 is a symplectic action but �F2 and �F3 are not. Further-
more, (2.15) implies that the momentum map of the (mean anomaly) action �F1

is I1 in (2.16) (see, e.g. Chapters 11 and 12 of Marsden and Ratiu, 1999 for the
definition of the momentum map).

Nontriviality of �elliptic as a principal S1 bundle. Let S1 act on �elliptic by the
Kepler flow as in (2.10). Since this action is free and proper, the set �elliptic becomes
a principal S1 bundle. We will show that this bundle is not a trivial bundle, that
is, �elliptic �= S1 × (�elliptic/S

1). This implies that �elliptic is not diffeomorphic to
S1 ×M for some 5-dimensional manifold M, on which the Kepler vector field is
written as

θ̇ = 1, ṁ = 0

for (θ,m) ∈ S1 × M. This is one of the reasons why the method of measuring
the true anomaly from the perigee in the Kepler elements breaks down at circular
orbits. Although one may set a new rule of measuring the true anomaly locally
near a circular orbit, this method will not extend globally to cover all of the orbits
in �elliptic.

Let us first identify the base space �elliptic/S
1. Define the set

D = {(x, y) ∈ R
2 × R

3 | 〈x, y〉 = 0, x �= 0, ‖y‖ < µ}.
The set D is diffeomorphic to (0,∞) × T<µS

2 where T<µS2 is the set of tangent
vectors on S2 of length less than µ. Consider the map π : �elliptic → R

3 × R
3

defined by

π(q,p) = (L(q,p),A(q,p)), (2.18)

where L and A are defined in (2.2) and (2.3). The following proposition is from
Cushman and Bates (1997) (see also Chang et al., 2002 for a short proof):

PROPOSITION 2.1. The set �elliptic is a principal S1 bundle over D where the
bundle projection π : �elliptic → D is given by (2.18).

We will show the nontriviality of �elliptic by finding a nontrivial subbundle.

LEMMA 2.2. The subbundle π |π−1(S2×0) : π−1(S2 × 0) → S2 of the bundle π :
�elliptic → D is not a trivial bundle.

Proof. The set π−1(S2 × 0) is the union of circular orbits with unit angular
momentum vectors. One can see

π−1(S2 × 0) = {(q,p) ∈ TR
3
0 | 〈q,p〉 = 0, ‖q‖ = 1/µ, ‖p‖ = µ}

which is diffeomorphic, by a linear map (x, y) �→ (µx, y/µ), to the unit tangent
bundle T1S

2 of S2, which is diffeomorphic to the 2-dimensional real projective
space RP

2. It is known that the projective space RP
2 cannot be a trivial principal
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S1 bundle over S2 (see, for example, Naber, 1997). Hence, the subbundle, π−1(S2×
0)→ S2 is not trivial. �
PROPOSITION 2.3. The principal S1 bundle �elliptic is not a trivial bundle.

We remark that although one cannot cover the whole bundle �elliptic with one
local trivialization, it is possible to cover it with two local trivializations. First,
notice that S2×0 is a strong deformation retract of D by the homotopy F : [0, 1]×
D → D defined by F(t, (x, y)) = ((1 − t)x + tx/‖x‖, (1 − t)y), and that S2

can be covered by two local charts. Then, using the homotopy lifting property, one
can construct two local trivializations to cover the whole bundle �elliptic. See Naber
(1997) for details.

3. Geometric Derivation of the Delaunay Variables

The objective of this section is to derive the Delaunay variables from the viewpoint
of geometric mechanics.

The traditional definition. The Delaunay variables, (l, g, h, L,G, H̃ ), are clas-
sically defined in terms of the Kepler elements as follows:

l = n(t − τ), L = √µa, (3.1)

g = ω, G =
√
µa(1− e2), (3.2)

h = 	, H̃ = cos i
√
µa(1− e2), (3.3)

where n is the mean motion, a is the semimajor axis, e is the eccentricity, i is the
inclination, ω is the argument of the perigee, 	 is the longitude of the ascending
node, τ is the time when the satellite passes through the perigee, and ∼ was put
on H in (3.3) to distinguish it from the Kepler Hamiltonian H defined in (2.1) (see
Chapter 9 of Vinti, 1998 e.g. for more details concerning the Delaunay variables).

The geometric mechanics approach. In this section, we will define a symmetry
action of the group T

3 = S1×S1×S1 (the three torus) and compute its momentum
map, from which the Delaunay variables will arise (see, e.g. Chapters 11 and 12 of
Marsden and Ratiu, 1999 for the definition of the momentum map). This derivation
seems to us to be geometrically clearer than the traditional ones such as the use of
the Hamilton–Jacobi equation in Born (1927) and Kovalevsky (1967), and the one
using the Lagrange bracket in Brouwer and Clemence (1961) and Marsden and
Ratiu (1999). In this paper {i, j,k} denotes the standard basis for R

3.
The first S1 action on �elliptic is the mean anomaly action �F1 in Section 2. We

denote it by �1 and compute it as follows: for eiθ ∈ S1 and (q,p) ∈ �elliptic,

�1(e
iθ , (q,p)) = ϕ

(
θ

2π
T (q,p), (q,p)

)
(3.4)
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which comes from (2.10) and the constancy of T (q(t),p(t)). The momentum map
was derived in Section 2 to be given as follows:

I1(q,p) = µ√−2H(q,p)
. (3.5)

The second S1 action on �elliptic is the rotation around the angular momentum
L, that is, for eiθ ∈ S1 and (q,p) ∈ �elliptic

�2(e
iθ , (q,p)) = the rotation of (q,p) around L(q,p) by angle θ (3.6)

which can be concretely written as

�2(e
iθ , (q,p)) = RL(q,p)Rz(θ2)R

−1
L(q,p) · (q,p), (3.7)

where

Rz(θ) =

 cos θ − sin θ 0

sin θ cos θ 0
0 0 1


 (3.8)

and

RL =




(
j× L
‖j× L‖

L× (j× L)
‖L× (j× L)‖

L
‖L‖

)
if L is not parallel to j,(

k× L
‖k× L‖

L× (k× L)
‖L× (k× L)‖

L
‖L‖

)
if L is not parallel to k,

where · in (3.7) is the diagonal action on each R
3 component. The corresponding

momentum map I2 is computed as

I2(q,p) = ‖L(q,p)‖, (3.9)

that is, I2 satisfies the following:

	� dI2(q,p) = d

dt

∣∣∣∣
t=0

�2(e
it , (q,p)) = (eL × q, eL × p),

where eL := L(q,p)/‖L(q,p)‖.
The third S1 action on �elliptic is by the rotation around the z-axis, that is, for

eiθ ∈ S1 and (q,p) ∈ �elliptic,

�3(e
iθ , (q,p)) = Rz(θ) · (q,p). (3.10)

The corresponding momentum map I3 is given by

I3(q,p) = L(q,p) · k (3.11)

that is the z-component of the angular momentum L(q,p). Notice that the three
angles θi’s denoting the three S1 group actions are an extension of the three
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classical Delaunay variables l, g, h and that the three momentum maps Ii’s are
the same as the three Delaunay variables, L,G, H̃ .

We remark that the momentum maps I2 and I3 can be easily derived from the
momentum map corresponding to the SO(3) action on �elliptic, where the SO(3)
momentum map is the angular momentum vector L (see Chapter 12.2 of Marsden
and Ratiu, 1999 for the derivation). Notice that the momentum maps I2 and I3 are
projections of L to the rotation axes, eL and k.

Commutativity of the actions. A reason why we choose these particular three
S1 actions is that they commute with one another, that is,

�j(e
iθj ,�k(e

iθk , (q,p))) = �k(e
iθk ,�j (e

iθj , (q,p)))

for j, k = 1, 2, 3. Each S1 action, �i can be regarded as a (periodic) flow of the
Hamiltonian vector field XIi for i = 1, 2, 3. Let XIj be the infinitesimal generators
corresponding the action �j for j = 1, 2, 3, that is,XIj (q,p) = d/dt|t=0�j(eit , (q,
p)). We want to show [XIj ,XIk ] = 0 for j, k = 1, 2, 3. One can directly show this.
Alternatively, One first computes

{Ii, Ij } = 0 (3.12)

for 1 � i, j � 3 where { , } is the canonical Poisson bracket on TR
3 = R

3 × R
3.

This involutivity implies

[XIi ,XIj ] = −X{Ii , Ij } = 0

which, in turn, implies that the three S1 actions, �1, �2 and �3, commute with one
another. We can define the T

3 = S1 × S1 × S1 group action on �elliptic by

�((eiθ1, eiθ2, eiθ3), (q,p)) = �1(e
iθ1,�2(e

iθ2,�3(e
iθ3, (q,p))) (3.13)

for (eiθ1, eiθ2 , eiθ3) ∈ T
3 and (q,p) ∈ �elliptic.

Remark. We now give some additional intuition and strategy behind the com-
mutativity of the three S1 actions. This will also help explain why one would
choose the particular three S1 actions defined above. First, the choice of �1 is a
natural one because it is the (time-reparametrized) Kepler flow. Since the Kepler
dynamics have a rotational symmetry, the (time-reparametrized) Kepler flow �1

commutes with rotations. Hence, one can choose �3, the rotation around the z-
axis, for an another S1 action without loss of generality. Another rotation with a
fixed axis other than the z-axis, will not commute with �3, so we need to find a
dynamical rotation whose rotation axis gets rotated by �3. Consider an arbitrary
point (q,p) in �elliptic and the plane πq×p spanned by q and p with the normal
vector in the direction of q × p. Let R be a rotation about the z-axis. Then, the
rotation of (q,p) by R followed by the rotation of (Rq,Rp) in the plane R(πq×p)

by an angle θ is the same as the rotation of (q,p) in the plane πq×p through the
angle θ followed by the rotation R. The rotation of (q,p) in the plane πq×p is
exactly the rotation about the angular momentum vector q × p. This leads one
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to the choice we made above for the S1 action �2. Hence, �2 and �3 commute.
Of course, �2 and �1 commute because of the rotational symmetry of the Kepler
dynamics.

The momentum map of the torus action. The corresponding T
3 momentum map

J : �elliptic → R
3 is given by

J = (I1, I2, I3) (3.14)

with Ii’s in (3.5), (3.9) and (3.11). The image of J is

Im J = {(x1, x2, x3) ∈ R
3 | |x3|� x2 � x1}.

LEMMA 3.1. The set B of the regular values of the map J is given by

B = {(I1, I2, I3) ∈ R
3 | |I3| < I2 < I1} (3.15)

and its inverse image �B = J−1(B) is given by

�B = {(q,p) ∈ �elliptic | L(q,p)× k �= 0, A(q,p) �= 0}, (3.16)

where L and A are defined in (2.2) and (2.3). The set �B is the union of nondegen-
erate, noncircular and nonequatorial Kepler orbits.

Proof. The second statement is implied by (2.5). To prove the first statement,
notice that the rank of dJ = (dI1,dI2,dI3) is the same as the rank of {XI1, XI2, XI3}
because 	 is nondegenerate and XIi = 	� dIi for i = 1, 2, 3. Consider the set

Ac := J−1({(I1, I2, I3) ∈ R
3 | |I3|� I2 = I1}).

Since T
3 is an Abelian group, the momentum map J is T

3 invariant. Hence, the
actions �1 and �2 leave Ac invariant and coincide with each other on Ac. It follows
that XI1 = XI2 on Ac. In the same manner, the following holds:

XI2 = XI3 on Aeq := J−1({(I1, I2, I3) ∈ R
3 | |I3| = I2 � I1}).

We now show that B is indeed the set of regular values by showing that the points
in �B are regular points of J. We first compute the infinitesimal generators corre-
sponding the three actions as follows:

XI1(q,p) = T (q,p)
2π

(
p, −µ q

‖q‖3

)
, (3.17)

XI2(q,p) = (eL × q, eL × p), (3.18)

XI3(q,p) = (k× q,k× p), (3.19)

where, as above, eL := L(q,p)/‖L(q,p)‖. First notice that none of XIi (q,p)
vanish on �B . We will show that {XI1, XI2 , XI3} is linearly independent on �B .
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Fix an arbitrary (q,p) ∈ �B . Notice that both components of each of XI1(q,p) and
XI2(q,p) are orthogonal to L(q,p). We claim that both components of XI3(q,p)
cannot be simultaneously orthogonal to L(q,p). To see this, suppose that

L(q,p) · (k× q) = 0 and L(q,p) · (k× p) = 0.

It follows that both q and p are orthogonal to the vector k × L(q,p). Then q
and p are parallel because both of them are perpendicular to the two linearly in-
dependent vectors {L(q,p), k × L(q,p)}. It follows that L(q,p) = q × p = 0,
which is impossible for (q,p) ∈ �B . Hence XI3(q,p) is not spanned by the set
{XI1(q,p), XI2(q,p)}.

We next show that the two vectors XI1(q,p) and XI2(q,p) are linearly indepen-
dent. Suppose that it is not. Then there is c �= 0 such that XI1(q,p) = cXI2(q,p),
which implies

p = c(eL × q), − µ

‖q‖3
q = c(eL × p).

This implies A(q,p) = 0, which is not the case for (q,p) ∈ �B . It follows that the
two vectors XI1(q,p) and XI2(q,p) are linearly independent. Therefore, the three
vectors XI1(q,p), XI2(q,p) and XI3(q,p) are linearly independent for all (q,p) ∈
�B . This completes the proof that B is the set of regular values of J. We now prove
the third statement. Notice that the set Ac is the union of the circular orbits and
the set Aeq is the union of equatorial elliptic orbits. Hence, �B is the union of
nondegenerate, noncircular and nonequatorial Kepler orbits. �

The canonical nature of the Delaunay variables. We now show that (�B,	) is
symplectomorphic to (T3×B, dθi ∧ dIi). This implies that the Delaunay variables
are canonical variables. Notice that T

3 acts on �B freely and properly. Define a
map s = (qs,ps) : B → �B by

qs = ‖l‖2a
(µ+ ‖a‖)‖a‖ , ps = l× qs

‖qs‖2
, (3.20)

where l, a : B → R
3 are defined by

l(x1, x2, x3) =
(√

x2
2 − x2

3 , 0, x3

)
,

a(x1, x2, x3) =
µ

√
x2

1 − x2
2

x1x2

(
x3, 0, −

√
x2

2 − x2
3

)
.

One can check that J ◦ s = IdB . Notice that s = (qs,ps) is the perigee of the
Kepler orbit with the angular momentum vector l and the Laplace vector a. Define
a map φ : T

3 × B → �B by

φ(g, x) = �g ◦ s(x)
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for

(g, x) := ((θ1, θ2, θ3), (x1, x2, x3)) ∈ T
3 × B,

where �g is the T
3 action defined in (3.13). Since J is T

3 invariant, it follows from
J ◦ s = IdB that:

J ◦ φ(g, x) = x

which with the free action of T
3 implies the injectivity of φ.

We now show the surjectivity of φ. Take any (q,p) ∈ �B . Let C be the elliptic
Kepler orbit containing (q,p). There is g1 = (θ1, 0, 0), namely, along the Kepler
flow, such that �g1(q,p) is at the perigee of the Kepler orbit C = �g1(C) (see
Figure 3.1). By simple geometry, one can see that there is g2 = (0, θ2, 0), namely,
a rotation about the angular momentum of the orbit C such that the z-component of
the position variable of the point �g2g1(q,p) is the smallest of all the z-components
of points in the orbit �g2g1(C). In other words, the orbit g2g1(C) has its perigee
in the lowest place in the configuration space R

3. Then, there is g3 = (0, 0, θ3), a
rotation about the z-axis, such that �g3g2g1(q,p) is contained in the set

9 := {((x, 0, z), (0, vy, 0)) ∈ TR
3 | z < 0, vy > 0}. (3.21)

Notice that 9 is isotropic, that is, 	(v,w) = 0 for all v,w ∈ T9 = 9×9. Since
s(B) ⊂ 9, it follows:

s∗	 = 0. (3.22)

Let g = g3g2g1 = (θ1, θ2, θ3) ∈ T
3 and x = J(g(q,p)) = J(q,p) ∈ B. One can

check that s(x) = �g(q,p). It follows that φ(g−1, x) = (q,p). This proves the
subjectivity of φ.

Figure 3.1. Illustration of the T3-action where g1 is by Kepler flow, g2 is a rotation about the angular momentum,
and g3 is a rotation about the z-axis. .
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We will show that φ is symplectic, which will also imply (by the inverse func-
tion theorem) that φ is a diffeomorphism. We will use (g, x) as coordinates for
T

3 × B in the following computation to avoid any possible confusion. Then

φ∗	(∂θi , ∂θj ) = 	(T φ(∂θi ), T φ(∂θj )) = 	(XIi , XIj ) = {Ii, Ij } = 0

and

φ∗	(∂θi , ∂xj ) = 	(T φ(∂θi ), T φ(∂xj )) = 	(XIi , T φ(∂xj )) = dIi (T φ(∂xj ))

= d(Ii ◦ φ)(∂xj ) = dxi (∂xj ) = δij .

Also

φ∗	(∂xi , ∂xj ) = s∗�∗g	 (∂xi , ∂xj ) = s∗	(∂xi , ∂xj ) = 0,

where the T
3 action �g being symplectic was used in the second equality, and

(3.22) was used in the third equality. Hence, we have shown that

φ∗	 =
3∑

i=1

dθi ∧ dIi (3.23)

for ((θ1, θ2, θ3), (I1, I2, I3)) ∈ T
3 × B. This proves that φ is symplectic. In other

words, the Delaunay variables are canonical variables. Equation (3.23) can be
written in the traditional Delaunay variables as

φ∗	 = dl ∧ dL+ dg ∧ dG+ dh ∧ dH̃ .

In the following proposition, we summarize what we have derived. It is the pro-
cedure of derivation of Proposition 3.2 that is the main result of the current paper,
rather than the proposition itself.

PROPOSITION 3.2. There is a T
3 action on �elliptic given by (3.13) with the

associated momentum map J given by (3.14), where �elliptic is the union of the
nondegenerate elliptic Kepler orbits given in (2.6). The set �B of regular points of
J in (3.16) is a trivial T

3 principal bundle symplectomorphic to T
3 × B where B,

defined in (3.15), is the set of regular values of J and T
3 × B is equipped with the

canonical symplectic form
∑3

i=1 dθi ∧ dIi with ((θ1, θ2, θ3), (I1, I2, I3)) ∈ T
3×B.

The coordinates ((θ1, θ2, θ3), (I1, I2, I3)) coincide with the traditional Delaunay
variables (l, g, h, L,G, H̃ ) defined in (3.1)–(3.3).

Remark. We now compare our approach with the derivation of the Delaunay
variables using Hamilton–Jacobi theory. The derivation by Hamilton–Jacobi the-
ory can be found in Sections 21 and 22 of Born (1927) (see also Chapter 10 of
Goldstein, 1980 for an exposition of the method), which is summarized as follows.
The rotational symmetry of the Kepler Hamiltonian allows one to use separation
of variables in the Hamilton–Jacobi equation, yielding three action variables. This
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step involves a special integration trick using complex variables due to
Sommerfeld. Then, one makes use of the degeneracy of the corresponding angle
variables to obtain a new set of angle and action variables so that two of the three
angle variables do not change in time. Finally, one seeks the physical meaning of
this set of action–angle variables, which requires nontrivial geometric intuition.
This Hamilton–Jacobi approach is rather different from that in this paper.

Another approach to constructing the Delaunay variables can be based on the
Liouville–Arnold theorem. This approach is sketched in Arnold (1991, p. 117),
which refers to Charlier (1927) for details. In this approach one must begin with
first integrals in involution. Even though this general machinery guarantees one to
get a set of action–angle variables, it lacks geometric insight and it involves some
complicated integrations.

4. First-order Averaged JJJ 2-Dynamics and Geometric Phases

We now study the (first-order) averaged dynamics of the perturbed Kepler motion
with the perturbation due to the bulge of the earth. This is usually called J2-
dynamics because the coefficient of the first biggest perturbation term is referred to
as J2 (see Chapter 15 of Vinti, 1998). Traditionally, Delaunay variables are used for
this study. In the current paper, we will derive the explicit expression of the flow
equation of the averaged J2 dynamics using the set up of the previous sections.
We will also preform the S1 × S1 reduction and study the associated phases and
bifurcations. Our study of the S1 × S1 reduction is a review and improvement of
the work of Cushman (1991) and Coffey et al. (1986). The improvement comes
about through the use of topological arguments to show the presence of the Hopf
fibration, and by the addition of new results on phases.

In this section, we will use H0 for the unperturbed or Kepler Hamiltonian in
(2.1) and H for the perturbed Hamiltonian. So one should replace H in the previous
sections by H0 in this section.

4.1. DERIVATION OF THE FLOW OF THE AVERAGED J2-DYNAMICS

In order to derive the flow of the averaged J2-dynamics, we will use Cartesian
coordinates, which are superior to other coordinates because the Cartesian co-
ordinates do not have singularities, together with the observation that the averaged
Hamiltonian is a collective Hamiltonian of the T

3 momentum map J in (3.14).
Vinti (1998) has an excellent analysis of the J2-dynamics using the traditional per-
turbation method and Cushman (1991) employs normal form theory and reduction
theory to study the same problem. In particular, the averaged Hamiltonian in this
paper is the first-order normal form. For the sake of simplicity, we will omit the
phrase first-order in the following.
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The J2 and averaged Hamiltonian. The Hamiltonian H for the J2 problem is
given by

H(q,p) = 1

2
‖p‖2 − µ

‖q‖ +
J2µR

2
e (2q

2
3 − q2

1 − q2
2 )

2‖q‖5
, (4.1)

where J2 ≈ 1082.63 × 10−6 and Re is the radius of the earth. One averages
this Hamiltonian over the unperturbed flow, that is, the Kepler flow of H0, in
order to study its secular motion (in fact, this was justified using normal form
theory in Cushman, 1991). The averaged Hamiltonian H̄ on �elliptic is defined
by

H̄ (q,p) := 1

T (q,p)

∫ T (q,p)

0
H ◦ ϕH0

t (q,p) dt

for (q,p) ∈ �elliptic where ϕ
H0
t is the unperturbed Kepler flow, that is, the

Hamiltonian flow of the Kepler Hamiltonian H0 and T is the period of the Kepler
flow defined in (2.7) (again, one must replace H by H0 in (2.7)). One can then
compute the averaged Hamiltonian H̄ as follows (see, e.g. Chapter 17 of Vinti,
1998)

H̄ = H0 + J2µR
2
e

√
(−2H0)3(‖L‖2 − 3L2

3)

4‖L‖5
, (4.2)

where L is the angular momentum and L3 := L · k is the third component of L.
The collective form of the Hamiltonian. Notice that, in agreement with general

theory about dual pairs and collectivization – see Marsden and Ratiu (1999) for an
elementary discussion – H̄ is collective, that is, H̄ is a function of the momentum
map J as follows:

H̄ = F ◦ J,

where

J = (I1, I2, I3) =
(

µ√−2H0
, ‖L‖, L3

)

is the momentum map in (3.14) and where F is defined by

F(x1, x2, x3) = − µ2

2x2
1

+ J2µ
4R2

e (x
2
2 − 3x2

3 )

4x3
1x

5
2

.

Then the Hamiltonian vector field XH̄ is expressed as a linear combination of
{XI1, XI2 , XI3} by Theorem 12.4.2 of Marsden and Ratiu (1999) as follows:

XH̄ = a1XI1 + a2XI2 + a3XI3,
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where XIi ’s are in (3.17)–(3.19) and the three functions ai := ∂F/∂xi ◦J are given
by

a1 = µ2

I 3
1

− 3J2µ
4R2

e (I
2
2 − 3I 2

3 )

4I 4
1 I

5
2

, (4.3)

a2 = 3J2µ
4R2

e (5I
2
3 − I 2

2 )

4I 3
1 I

6
2

, (4.4)

a3 = −3J2µ
4R2

e I3

2I 3
1 I

5
2

. (4.5)

One can also derive this using elementary properties of the Poisson bracket { , }.
Consequences of involutivity. The involution relation (3.12) implies that

{Ii, aj } = 0 (4.6)

with i = 1, 2, 3. One can check the Lie bracket of any two of aiXIi with i = 1, 2, 3

is zero. It follows that the flows ϕ
aiXIi
t of the vector fields aiXIi commute with one

another. Hence, the flow ϕH̄t is given by

ϕH̄t = ϕ
a3XI3
t ◦ ϕa2XI2

t ◦ ϕa1XI1
t , (4.7)

where the order of the composition of the three flows does not matter. We need the
following lemma.

LEMMA 4.1. Suppose two functions f and H are in involution, that is, {f,H } =
0. Then the flow ϕ

fXH
t of the vector field fXH is a time reparameterization of the

flow ϕ
XH
t of the vector field XH as follows:

ϕfXH (t, (q,p)) = ϕXH (f (q,p)t, (q,p)).

Proof. Let ψ(t, (q,p)) = ϕXH (f (q,p)t, (q,p)). Notice that f (q,p) is con-
stant along the flow ϕXH by the involution assumption. It is straightforward to
show that ψt is a one-parameter group. Then one checks that dψt/dt = fXH . �

By (4.6), the function ai is constant along the flow ϕ
Ij
t of the Hamiltonian vector

fields XIj for 1 � i, j � 3 where the flows ϕI1
t , ϕ

I2
t , ϕ

I3
t are given in (3.4), (3.6),

(3.10), respectively, with θ replaced by t. Hence, by Lemma 4.1, the flow ϕH̄t in
(4.7) is given by

ϕH̄t (q,p) = ϕ
I3
a3(q,p)t

◦ ϕI2
a2(q,p)t

◦ ϕI1
a1(q,p)t

(q,p) (4.8)

for (q,p) ∈ �elliptic. Recall that ϕI3
a3(q,p)t

is the rotation about the z-axis, that ϕI2
a2(q,p)t

is the rotation about the angular momentum L(q,p), and that ϕI1
a1(q,p)t

is the time
reparameterized Kepler flow.

Secular drifts. One can also check that the three functions ai’s coincide with the
three functions ci in (19.110), (19.123) and (19.126) of Vinti (1998) up to the first-
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order in J2. These are the well-known formulas of the secular drift rates. Notice
that the flow ϕ

I1
t in (3.4) can be written as

ϕ
I1
t (q,p) = ϕH0

(
I1(q,p)3

µ2
t, (q,p)

)

by (2.7) where ϕH0
t is the Kepler flow. Hence, ϕI1

a1(q,p)t
(q,p) can be written as

ϕ
I1
a1(q,p)t

(q,p) = ϕ
H0
(t+ã1(q,p)t)

(q,p),

where

ã1 = −3J2µ
2R2

e (I
2
2 − 3I 2

3 )

4I1I
5
2

. (4.9)

We can write the flow of ϕH̄ of the averaged Hamiltonian Ĥ as follows:

ϕH̄t (q,p) = ϕ
I3
a3(q,p)t

◦ ϕI2
a2(q,p)t

◦ ϕH0
ã1(q,p)t

◦ ϕH0
t (q,p), (4.10)

where ϕ
H0
ã1(q,p)t

is the secular drift along the Kepler flow (or, the drift of the

anomaly), ϕI2
a2(q,p)t

is the secular drift by the rotation about the angular momentum

L(q,p) (or, the drift of the argument of the perigee ω), and ϕ
I3
a3(q,p)t

is the secular
drift by the rotation about the z-axis (or the drift of the longitude of the ascending
node 	).

The critical inclination. Historically, the inclination i := cos−1(I3/I2), which
satisfies a2(q,p) = 0, that is, 5 cos2 i − 1 = 0, is called the critical inclination.
At this inclination, we do not have secular drift of the argument of the perigee ω

on average (Figure 4.1). Notice that the sign of the drift rate ã1 along the Kepler
orbit changes its sign at the inclination i = cos−1(1/

√
3), as can be seen in (4.9).

In summary, we derived the flow of the averaged J2-Hamiltonian in (4.2) and de-
composed it into four mutually commuting flows in (4.10) by using the fact that
the averaged Hamiltonian is a collective Hamiltonian of the T

3-momentum map J
in (3.14), so that we were able to identify the well-known secular drift terms and

Figure 4.1. Phase drifts in the J2 problem (the figure is taken from Chobotov, 1996)..
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the drift rates easily in Cartesian coordinates while coordinates with singularities
such as the traditional Delaunay variables were used in the past.

4.2. REDUCTIONS, BIFURCATIONS, AND PHASES

The papers of Cushman (1991) and Coffey et al. (1986) studied the role of
symplectic reduction in the problem of J2-dynamics. We will review it with sim-
pler and more topological arguments and then discuss how geometric phases are
involved in the reduction picture. For a numerical study of the J2-dynamics with
Poincaré maps, refer to Broucke (1994).

Symplectic reductions for the J2 problem. Recall that the two actions �1 and
�3 commute and that the averaged Hamiltonian H̄ in (4.2) is invariant under the
S1 × S1 action �1 ×�3 (the invariance of H̄ is proven by showing that {H̄ , I1} =
{H̄ , I3} = 0; its invariance under �1 follows from the averaging construction). We
will perform the S1×S1 reduction by stages, first by �1 and then by �3 (reduction
by stages for commuting group actions was given in Marsden and Weinstein, 1974;
more general approaches to reduction by stages are found in Marsden et al., 1998).

The first reduction. Define the Runge vector R on �elliptic by

R(q,p) = 1√−2H0(q,p)
A(q,p),

where A is the Laplace vector defined in (2.3). By (2.4) and (2.5), the angular
momentum vector L and the Runge vector R satisfy

L · R = 0, (4.11)

‖L‖2 + ‖R‖2 = I 2
1 . (4.12)

Define the mappings a = (a1, a2, a3),b = (b1, b2, b3) on �elliptic by

a = 1
2(L+ R), b = 1

2 (L− R). (4.13)

One can show by a straightforward calculation (see also Cushman and Bates, 1997)
that

{ai, aj } = εijkak, {bi, bj } = εijkbk, {ai, bj } = 0. (4.14)

By (4.11)–(4.14) and the fact (Proposition 2.1) that a nondegenerate elliptic
Keplerian orbit is uniquely determined by a pair of L �= 0 and R (or, A with
‖A‖ < µ), the first reduced space I−1

1 (ν1)/S
1 is symplectomorphic to the space

S2
ν1/2 × S2

ν1/2\{(a,b) ∈ R
3 × R

3 | a+ b = 0}
= {(a,b) ∈ R

3 × R
3 | ‖a‖ = ‖b‖ = ν1/2, a �= −b}
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with the product symplectic structure induced from the Lie–Poisson structure of
(R3,×). Notice that the points (a,−a) correspond to degenerate Keplerian orbits,
that is, L = 0. The reduced Hamiltonian H̄ν1 is given by

H̄ν1 = −
µ2

2ν2
1

+ J2µ
4R2

e (‖a+ b‖2 − 3(a3 + b3)
2)

4ν3
1‖a+ b‖5

.

For aesthetic purposes, we will add the degenerate Keplerian orbits to I−1
1 (ν1)/S

1

and work with S2
ν1/2 × S2

ν1/2. However, we will also keep track of these additional
points.

The second reduction. The S1 action by �3 on �elliptic induces the S1 action on
S2
ν1/2 × S2

ν1/2 defined by

eiθ · (a,b) = (Rz(θ)a, Rz(θ)b)

with Rz(θ) in (3.8), which follows from (4.13) and the property R(x× y) = Rx×
Ry for R ∈ SO(3) and x, y ∈ R

3. The corresponding momentum map I3,ν1 on
S2
ν1/2 × S2

ν1/2 is given by

I3,ν1(a,b) = a3 + b3,

where I3,ν1 can also be understood as the induced function from I3 in (3.11) via
(4.13). The function I3,ν1 has four critical points on S2

ν1/2×S2
ν1/2, namely the points

{±((0, 0, ν1/2), (0, 0,±ν1/2))},
which are also the fixed points of the S1 action on S2

ν1/2 × S2
ν1/2. The points

{±((0, 0, ν1/2), (0, 0, ν1/2))}
correspond to the equatorial circular Kepler orbits of I1 = ν1. The points

{±((0, 0, ν1/2), (0, 0,−ν1/2))}
correspond to the degenerate Kepler orbits of I1 = ν1 along the polar axis.

The range of I3,ν1 is given by

|I3,ν1(a,b)|� ν1

for (a,b) ∈ S2
ν1/2 × S2

ν1/2. The level set I−1
3,ν1

(ν3) for |ν3|� ν1 is given by

I−1
3,ν1

(ν3)

= {(a,b) ∈ R
3 × R

3 | ‖a‖ = ‖b‖ = ν1/2, b3 = ν3 − a3, a3 ∈ I}, (4.15)

where I is the interval defined by

I = [max{−ν1/2, ν3 − ν1/2} , min{ν1/2, ν3 + ν1/2}].
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We will show that I−1
3,ν1

(ν3) is diffeomorphic to the three sphere S3 for 0 < |ν3| <
ν1. We think of S3 as follows:

S3 = {(z1, z2) ∈ C
2 | |z1|2 + |z2|2 = 1}

= {(z1, z2) ∈ C
2 | |z1|2 = k, |z2|2 = 1− k, k ∈ [0, 1]}. (4.16)

Using the stereographic projection, one can construct a diffeomorphism of I−1
3,ν1

(ν3)

onto S3 by (4.15) and (4.16). The S1 action on I−1
3,ν1

(ν3) induces the S1 action on
S3 as follows:

eiθ · (z1, z2) = (eiθz1, eiθz2). (4.17)

Notice that S1 → S3 → S3/S1 is the Hopf fibration with the S1 action in (4.17).
Hence, the bundle S1 → I−1

3,ν1
(ν3) → I−1

3,ν1
(ν3)/S

1 is bundle-isomorphic to the
Hopf fibration for 0 < |ν3| < ν1.

We emphasize that the degenerate Kepler orbits we added to I−1
1 (ν1)/S

1 are not
contained in I−1

3,ν1
(ν3) for 0 < |ν3| < ν1. They are contained in the zero level set

I−1
3,ν1

(0). However, the zero level set I−1
3,ν1

(0) is not a smooth manifold because of
the critical points

±((0, 0, ν1/2), (0, 0,−ν1/2)). (4.18)

The zero level set I−1
3,ν1

(0) is homeomorphic to a quotient space S3/∼ where the
equivalence relation identifies S1 × 0 with a point and 0× S1 with another point.

The reduced space I−1
3,ν1

(0)/S1 is homeomorphic to S2 but has singular pinch
points. This is consistent with the case of the singular reduction (the critical points
in (4.18) are the fixed points of the S1 action). We will not study this singular case
in the current paper. See Cushman (1991) and references therein for more details
on this case.

Lastly, notice that

I−1
3,ν1

(ν1) = ((0, 0, ν1/2), (0, 0, ν1/2)),

I−1
3,ν1

(−ν1) = −((0, 0, ν1/2), (0, 0, ν1/2)).

This completes our study of the level sets of I3,ν1.
We construct the Hopf fibration S1 → I−1

3,ν1
(ν3) → I−1

3,ν1
(ν3)/S

1 in coordinates
for 0 < |ν3| < ν1. Coffey et al. (1986) suggested the following projection:

w = (w1, w2, w3) : I−1
3,ν1

(ν3) ⊂ S2
ν1/2 × S2

ν1/2 → I−1
3 (ν3)/S

1  S2 ⊂ R
3,

where

w1 = (L× R) · k = 2(a2b1 − a1b2),

w2 = ‖L‖(R · k) = ‖a+ b‖(a3 − b3),

w3 = 1
2(‖L× k‖2 − ‖R‖2) = 1

2((a1 + b1)
2 + (a2 + b2)

2 − ‖a− b‖2).



GEOMETRIC DERIVATION OF THE DELAUNAY VARIABLES AND GEOMETRIC PHASES 205

The map w satisfies

w2
1 + w2

2 + w2
3 =

(
ν2

1 − ν2
3

2

)2

for (a,b) ∈ I−1
3,ν1

(ν3). One can check

I−1
3,ν1

(ν3)/S
1 = {w ∈ R

3 | ‖w‖ = (ν2
1 − ν2

3)/2}. (4.19)

As a map on S2
ν1/2 × S2

ν1/2, w = (w1, w2, w3) satisfy

{wi,wj } = 2‖a+ b‖εijkwk = 2(ν2
1 + w3 − ‖w‖)1/2εijkwk. (4.20)

It follows that the reduced symplectic structure on I−1
3,ν1

(ν3)/S
1 can be regarded

as the one induced from the Poisson structure of R
3 in (4.20). Thus, the symplectic

structure on I−1
3,ν1

(ν3)/S
1 is the restriction of that in (4.20) to I−1

3,ν1
(ν3)/S

1, which is
given by

{wi,wj } = 2
(
w3 + 1

2(ν
2
1 + ν2

3)
)1/2

εijkwk.

The reduced Hamiltonian H̄ν1,ν3 on I−1
3,ν1

(ν3)/S
1 is given by

H̄ν1,ν3 = −
µ2

2ν2
1

+ J2µ
4R2

e (w3 + (ν2
1 − 5ν2

3 )/2)

4ν3
1(w3 + (ν2

1 + ν2
3)/2)5/2

.

The reduced Hamiltonian vector field, ẇ = XH̄ν1,ν3
on I−1

3,ν1
(ν3)/S

1 is given by

ẇ1 = 3J2µ
4R2

e (ν
2
1 − 9ν2

3 + 2w3)w2

ν3
1(ν

2
1 + ν2

3 + 2w3)3
,

ẇ2 = −3J2µ
4R2

e (ν
2
1 − 9ν2

3 + 2w3)w1

ν3
1 (ν

2
1 + ν2

3 + 2w3)3
, ẇ3 = 0.

Then, the flow of XH̄ν1,ν3
with the initial condition w(0) = (w10, w20, w30) is easily

read off as follows:

w(t) = (r0 cos(αt), r0 sin(αt), w30), (4.21)

where

r0 =
√
(w10)

2 + (w20)
2 =

√(
ν2

1 − ν2
3

2

)2

− (w30)
2,

and

α = −3J2µ
4R2

e (ν
2
1 − 9ν2

3 + 2w30)

ν3
1(ν

2
1 + ν2

3 + 2w30)
3

.
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A direct computation shows that this angular frequency, α, coincides with a2 in
(4.4), the drift rate of the argument of the perigee, ω. This is an expected result
because the flows ϕI1 and ϕI3 are reduced out in (4.8) by the S1 × S1-reduction by
�1×�3. Thus, the reduced flow is the same as the projection of ϕI2

a2t
in (4.8). This

explains why α coincides with a2.
Bifurcations in the reduction picture. The equilibria of the reduced Hamiltonian

dynamics on I−1
3,ν1

(ν3)/S
1 for 0 < |ν3| < ν1 are easily computed from XH̄ν1,ν3

as
follows:



{(
0, 0,± ν2

1−ν2
3

2

)}
if ν1/

√
5 < |ν3| < ν1,{(

0, 0,± ν2
1−ν2

3
2

)}
∪ {

w ∈ R
3
∣∣ ‖w‖ = ν2

1−ν2
3

2 , w3 = 9ν2
3−ν2

1
2

}
if 0 < |ν3| < ν1/

√
5.

Notice that a bifurcation happens at the critical value

ν2
1 − 5ν2

3 = 0. (4.22)

For 0 < |ν3| < ν1/
√

5, a ring of new equilibria appears (Figure 4.2).
This ring of equilibria at w3 = (9ν2

3 − ν2
1)/2, corresponds to the critical incli-

nation i satisfying

cos i = L3

‖L‖ =
1√
5

because of (4.22), (4.12), and the definition of w3. This ring of equilibria is due to
the averaging performed over the (unperturbed) Kepler flow. To break this
fictitious degeneracy, one needs to study with the higher order normal form of
the J2-Hamiltonian in (4.1) (see Cushman, 1991 for more details). However, one
should keep in mind that the reduction of the symplectic spaces performed in the
current paper is independent of the Hamiltonians involved.

Geometric phases in the second reduction. In the Hopf fibration, S1 →
I−1

3,ν1
(ν3) → I−1

3,ν1
(ν3)/S

1, we want to compute the amount of the angle

Figure 4.2. Flows on the reduced sphere. (a) ν1/
√

5 < |ν3| < ν1; (b) 0 < |ν3| < ν1/
√

5..
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displacement in the fiber during one period of the reduced flow in (4.21). The
period Dt is given by

Dt = 2π

α
.

Notice that the fiber variables corresponds to 	, the longitude of the ascending
node, in a local trivialization. The quantity a3 in (4.5) can be expressed in terms of
the w3 component of the reduced flow as well as ν1 and ν3 as follows:

a3(w3; ν1, ν3) = − 3J2µ
4R2

eν3

2ν3
1(w3 + (ν2

1 + ν3
3)/2)5/2

.

Hence, a3 is constant along the flow on the level set I−1
3,ν1

(ν3), so the phase displace-
ment, D	, during the time interval Dt is given by

D	 = a3 Dt. (4.23)

Thus, one can also write

D	 =
4πν3

√
w3 + (ν2

1 + ν2
3)/2

w3 + (ν2
1 − 9ν2

3)/2
. (4.24)

Since the reduced integral curves shown in Figure 4.2 lie in level sets of w3, one can
replace w3 with its initial value. Interestingly, this formula for the phase depends
only on the basic data in the geometry of the reduction construction (ν1, ν3 and
initial data w30 on the reduced space that picks out a particular reduced trajectory)
and not on the Hamiltonian; specifically, it is written in a way so that J2 does not
appear. In this sense it is geometric. Figure 4.3 illustrates, in a schematic way,
the phase displacement. Of course at this point one could bring in the general

Figure 4.3. Schematic of the bundle whose associated geometric phase gives the angular drift D	 given by (4.24)
during one period Dt of the reduced dynamics.

.
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machinery of geometric and dynamic phases and reconstruction to bear on the
problem for additional geometric insight, as in Marsden et al. (1990, 2000), but we
shall not pursue the matter further in the present paper.
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