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Numerical simulations of the Lagrangian averaged Navier–Stokes
equations for homogeneous isotropic turbulence
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Capabilities for turbulence calculations of the Lagrangian averaged Navier–Stokes~LANS-a!
equations are investigated in decaying and statistically stationary three-dimensional homogeneous
and isotropic turbulence. Results of the LANS-a computations are analyzed by comparison with
direct numerical simulation~DNS! data and large eddy simulations. Two different decaying
turbulence cases at moderate and high Reynolds numbers are studied. In statistically stationary
turbulence two different forcing techniques are implemented to model the energetics of the
energy-containing scales. The resolved flows are examined by comparison of the energy spectra of
the LANS-a with the DNS computations. The energy transfer and the capability of the LANS-a
equations in representing the backscatter of energy is analyzed by comparison with the DNS data.
Furthermore, the correlation between the vorticity and the eigenvectors of the rate of the resolved
strain tensor is studied. We find that the LANS-a equations capture the gross features of the flow,
while the wave activity below the scalea is filtered by a nonlinear redistribution of energy.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1533069#
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I. INTRODUCTION

Over the last 30 years, direct numerical simulation
turbulent flows at small to moderate Reynolds numbers
been a valuable asset in understanding turbulence phen
ena. In such simulations, the motion of eddies ranging in s
from the physical system down to the Kolmogorov dissip
tion length scale are explicitly accounted for. The capabi
of reproducing experimentally obtained data for vario
flows has been demonstrated by these simulations; see
gallo and Moin1 and Canutoet al.2 for an earlier account on
the progress in this area. The main difficulty in the turb
lence engineering community is that performing direct n
merical simulations~DNS! of typical engineering problem
~usually at high Reynolds numbers! is computationally very
expensive, and therefore not likely to become feasible in
foreseeable future. This is mainly because the numbe
degrees of freedom for a three-dimensional Navier–Sto
flow grows rapidly with Reynolds number; namely it is pr
portional to Re9/4. Consequently, increasing the Reynol
number by a factor of 2 will increase the memory size
about a factor of 5 and the computational time by an orde
magnitude. At low Reynolds numbers, DNS remains
unique computational tool that provides information abou
number of quantities inaccessible in a laboratory; howe
alternative approaches are needed for numerical simulat
of high Reynolds number flows.

a!Telephone: ~303! 492 0286; fax: ~303! 492 7881; electronic mail:
mohseni@colorado.edu
5241070-6631/2003/15(2)/524/21/$20.00
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Alternative approaches to simulations of turbulent flo
where one does not use the brute-force approach to res
all important scales of motion like in DNS or for high Rey
nolds number flows for which DNS is not feasible are us
ally divided into two groups: Reynolds averaged Navie
Stokes ~RANS! simulations and large eddy simulation
~LES!.

In the RANS approach, the flow field is decomposed in
an ensemble averaged mean flow and a fluctuating pertu
tion field. By invoking the ergodic hypothesis, ensemble a
erages are usually approximated by time averages or a
ages over one or more spatial dimensions. Substituting
decomposition into the Navier–Stokes equations results
set of differential equations for the mean flow quantities co
taining contributions from the time-varying, turbulent m
tion. This requires the introduction of a turbulence model
describe the effect of these fluctuations on the mean. H
ever, by providing only mean turbulence quantities, t
RANS approach significantly limits our ability to stud
spatio-temporal structures in turbulent flows.

This problem can be circumvented by using the LE
approach. In LES, only large scales of motion are resol
while the effect of small scales is modeled. The basic id
behind LES is to define a large scale field through low-p
filtering of the flow variables. The governing equations f
the mean flow quantities~large scales! are obtained by filter-
ing the Navier–Stokes and continuity equations. In inhom
geneous, e.g., wall bounded flows, the filter width must b
function of position to capture the average size of the tur
© 2003 American Institute of Physics
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lent eddies that vary in space. Due to computational lim
tions of the DNS approach, the LES technique has matu
into a commonly used tool for studying turbulent flows
engineering applications.

The closure problem in LES and RANS is a central iss
in turbulence modeling. It is believed that turbulence at sm
scales retains a higher level of homogeneity, which make
more susceptible to modeling. The rationale is that only
large scale motions are noticeably affected by the geom
of the domain, while the small scale motions are self-sim
or even universal throughout the bulk of the flow. Hence,
main goal of LES modeling is to accurately model the n
effect of small ~subgrid! scales on the dynamics of larg
scales~grid scales! without solving for the evolution of smal
scales.

LES as a method for numerical simulations of thre
dimensional turbulent flows was developed by Lilly.3 Lilly’s
turbulence modeling approach was based on that used
Smagorinsky4 in which subgrid scale~SGS! stresses are lin
early related to the rate of deformation tensor with the po
tive semi-definite subgrid eddy viscosity as a proportiona
factor. The first simulations based on Lilly’s model were p
formed by Deardorff5 who used LES to study high Reynold
number boundary layers, such as those occurring in the
mosphere. Smagorinsky-type models are dissipative and
not represent normal stress effects in sheared turbulent fl
These limitations of linear, Smagorinsky-type models ha
been recognized after first LES were carried out.5,6 In an
attempt to develop a better subgrid model, Leonard7 ex-
panded the filtered nonlinear term as a function of produ
of filtered quantities and their derivatives and obtained a g
dient diffusivity model. McMillan and Ferziger8 and Clark
et al.9 devised ana priori testing approach where they filte
DNS data to compute subgrid terms~using their definitions!
and compare them to modeled subgrid terms. Bardinaet al.10

used such tests to evaluate a scale similarity model that
developed. Scale similarity models are now often combin
with Smagorinsky-type models and are commonly used
LES.11

The dynamic approach to subgrid modeling was dev
oped by Germanoet al.,12 who used an additional, test filte
and tensor identities to dynamically determine the value
the Smagorinsky coefficient. Such dynamic subgrid mod
allow for negative eddy viscosity and can therefore repres
the backscatter of energy from small, unresolved scale
motion toward large, resolved eddies. Following Rivlin’s13

suggestion, a class of Reynolds and subgrid stress mo
was developed based~as discussed later! on the constitutive
theory for second grade fluids. Due to their relation to
LANS-a subgrid terms, these models will be discussed
more detail in Sec. II. Subgrid parameterizations are ne
sarily based on simplifying assumptions and a phenome
logical approach, and represent the main source of uncer
ties and errors in LES. While some of the subgrid mod
perform satisfactory in specific flow configurations, a gene
subgrid modeling problem remains open. In addition to
recent review by Meneveau and Katz11 that focuses on scale
similarity models detailed reviews of the LES techniq
have been presented by Mason14 and Lesieur and Me´tais.15
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Recently, Hugheset al.16–18described a two level variationa
multiscale method for large eddy simulation where they u
a priori scale separation instead of commonly used spa
filtering. Collis19 extended this idea to a three-level approa
to clarify the role of unresolved scales.

In this study, we consider a new Lagrangian averag
approach introduced in Holmet al.20 and Marsden and
Shkoller.21 Unlike the traditional averaging or filtering ap
proach used for both RANS and LES, wherein the Navie
Stokes equations are averaged, the Lagrangian averagin
proach is based on averaging at the level of the variatio
principle from which the Navier–Stokes equations are
rived. Namely, a new averaged action principle is defin
Hamilton’s principle then yields the Lagrangian-averag
Euler ~LAE-a! equations when the flow is deterministi
when the flow is a stochastic process and covariant der
tives are replaced by mean backward-in-time stochastic
rivatives, the Lagrangian-averaged Navier–Stokes equat
~LANS-a! are obtained, via the Ito formula of stochast
calculus~just as the Navier–Stokes equations are obtai
from the usual non-averaged action principle!. The Lagrang-
ian averaging procedure yields the LANS-a equations that
describe the time evolution of large eddies in turbulent flow
In this sense, the Lagrangian averaging approach is simila
that of LES.

The Lagrangian averaged Euler models were introdu
on all ofR3 ~the three-dimensional Euclidean space! in Holm
et al.,22 on boundaryless manifolds in Shkoller,23 on bounded
subsets ofR3 with boundary in Marsdenet al.,24 and on
manifolds with boundary in Shkoller;25 they were derived to
model the mean motion of incompressible flows. A sh
review of the derivation of the Lagrangian-averaged eq
tions is presented in Sec. II.

The behavior of small scales in turbulent flows is oft
characterized by statistical isotropy, homogeneity, and u
versality. Consequently, by investigating the simplest tur
lent flow, i.e., isotropic homogeneous turbulence, we hope
understand small scale turbulence. In this study, we s
concentrate on homogeneous isotropic flows. Such flows
unbounded and thus differ from flow in regions near so
boundaries, but they provide an ideal test case for the ad
ment and verification of new turbulence theories and mod

Isotropic homogeneous turbulence can be categorize
either decaying or forced. While the forced isotropic turb
lence is usually designed to be statistically stationary, dec
ing turbulence is always statistically nonstationary. Recen
Chen et al.26 performed numerical computations of th
forced LANS-a equations for homogeneous turbulenc
They considered only one forcing technique, similar to t
forcing scheme B of the present study~see Sec. V!. In this
study we perform similar computations, extend the results
Chen et al.,26 and implement a different forcing scheme.27

However, to obtain a better understanding of the model
capabilities of the Lagrangian averaging technique we c
sider more realistic idealizations of a turbulent flow than t
forced homogeneous turbulence cases. Consequently in
study we consider two different decaying turbulent flows
well. In the first case an initial condition from a realization
the experiments by Comte-Bellot and Corrsin28,29 is used.30
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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This initial condition has a broad energy spectrum with
peak of the energy spectrum at a relatively high wave nu
ber. In the second case we generate a sharply peaked i
energy spectrum with the peak of the energy spectrum
relatively low wave number. In this way the effects of th
initial energy spectrum on the performance of the LANSa
calculations are also investigated.

This paper is organized as follows. In the next sectio
review of the Lagrangian averaging technique is presen
The numerical technique adopted in this study is describe
Sec. III. Our main numerical results are presented in S
IV–VI where computations on the LAE-a as well as forced
and decaying LANS-a calculations are discussed. Final
our findings are summarized in Sec. VII.

II. THE LAGRANGIAN AVERAGING TECHNIQUE

In this section, we give a brief summary of the releva
background material on the Lagrangian averaging appro
and the resulting Lagrangian averaged Euler~LAE-a! and
Lagrangian-averaged Navier–Stokes~LANS-a! equations.
The detailed derivation of the LAE-a and LANS-a equations
can be found in the article.31 Analytic results concerning
these equations can be found in the literature.21,23–25,32–34

The well-known Reynolds decomposition is an additi
decomposition of the spatial velocity field of the fluid into i
mean and fluctuating components. The Lagrangian avera
procedure takes an entirely different starting point, by
composing instead the Lagrangian flow of the velocity fie

Let X denote the vector space of initial velocity fields f
which the Euler equations are~at least locally! well-posed,
and letS denote the unit sphere inX. For u0PX, let u(t,x)
denote the solution of the Euler equations withu(0,•)5u0 .
Similarly, let ue(t,x) denote the solution of the Euler equ
tions with initial datau0

e , where

u0
e5u01ew , wPS, eP@0,a#

for some smalla.0. Of course,ue(t,x) depends onw as
well, but we suppress that for notational simplicity.

We letn denote a chosen measure on the unit sphereS in
X, and define theaverageof vector-valued functionsf (e,w)
on @0,a#3S by

^ f &5
t

a E
0

aE
S

f ~e,w!n de,

wheret is a characteristic time scale.
Let h be the Lagrangian flow ofu, which solves

] th(t,x)5u(t,h(t,x))) with h(0,x)5x. Similarly, let he

denote the Lagrangian flow ofue. We define theLagrangian
fluctuation volume-preserving diffeomorphismje by

je~ t,x!5he~ t,h21~ t,x!!, ~1!

so thath t
e5j t

e+h t , with + denoting composition of maps
Clearly, j0(t,x)5x, since he50(t,x)5h(t,x) for all t>0.
Let

u8~ t,x!5
d

daU
a50

ua~ t,x!
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denote the associatedEulerian velocity fluctuationaboutu.
The correspondingLagrangian fluctuation~in spatial repre-
sentation! is given by

j8~ t,x!5
d

daU
a50

ja~ t,x!.

Similarly, let

u9~ t,x!5
d2

d2aU
a50

ua~ t,x!,

and

j9~ t,x!5
d2

d2aU
a50

ja~ t,x!.

Recall that the inviscid portion of the dynamics of th
Navier–Stokes equations is governed by a simple variatio
principle, or action, which is just the time integral of th
kinetic energy of divergence-free vector fields:

S5
1

2 Et0

t1E
V

u] tu
e~ t,x!u2 dx dt. ~2!

The Euler–Lagrange equations forS(u) are the incompress
ible Euler equations, and if one allows the flow of the Eu
solution to undergo a random walk, then the Navier–Sto
equations immediately arise.35,36 Our goal is to average ove
all possible solutions of the Euler equations with initial da
u0

e in an X-ball of radius a about u; since each solution
ue(t,x) is obtained from the first variation of the action a
we described above, it is appropriate to define theaveraged
action function

S̄5K 1

2 E0

TE
V

u] tu
eu2 dx dtL . ~3!

Here, overbar denotes averaged quantity. Expandingue

aboute50, we get

ue~ t,x!5u~ t,x!1eu8~ t,x!1 1
2e

2u9~ t,x!1O~e3!. ~4!

We insist that our measure is invariant so that^ue&5u; cor-
respondingly, we callu the mean. By differentiating Eq.~1!,
one obtains the relations between Eulerian and Lagran
fluctuations

u85] tj81~u•¹!j82~j8•¹!u, ~5a!

u95] tj91~u•¹!j92~j9•¹!u22~j8•¹!u8

2¹¹u~j8,j8!, ~5b!

where, in coordinates,

¹¹u~j8,j8!5u, jk
i j8 jj8k.

A. Generalized Taylor or frozen turbulence
hypothesis

To derive the LANS-a equations, Marsden an
Shkoller31 used a generalization of the classical frozen t
bulence hypothesis of Taylor.37 According to Taylor hypoth-
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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esis the streamwise scalar component of the fluctuatio
considered frozen over the time scale of the temporal der
tive, giving

]

]t
52U

]

]x
,

where U is the local mean velocity along the streamwi
direction, which is denoted byx.

The generalized Taylor hypothesis of Marsden a
Shkoller31 consists of assumptions associated with beha
of the Lagrangian fluctuations at different orders ofa. Here
we present their closure toO(e2), achieved by making the
following assumptions:

] tj81~u•¹!j82~j8•¹!u50, ~6a!

D

Dt
^j9&'u, ~6b!

where the orthogonality is taken inL2 and, as usual,

D

Dt
v5] tv1~u•¹!v.

Equation~6a! states that the Lagrangian fluctuationj8 is Lie
advected or frozen into the mean flow as a divergence-
vector field, i.e.,] tj81£uj850. Note that this equation au
tomatically preserves the divergence free nature ofj8.

Substituting the relations~5a! and ~5b! into the expan-
sion ~4! and using the generalized Taylor hypothesis~6a! and
~6b!, we find that

ue5u2 1
2e

2¹¹u~j8,j8!1O~e3!. ~7!

Substitution of Eq.~7! into the averaged action function~3!
gives

S̄5
1

2 E0

TE
V

@ uuu21a2¹¹u:F,u1O~a3!#dx dt,

where theLagrangian covariance tensor Fis defined by

F5^j8^ j8&.

B. The isotropic Lagrangian averaged Navier–Stokes
„LANS-a… equations

In this paper we focus on theisotropic form of the
LANS-a equations which is intended for modeling fluid flo
away from boundaries. We start by assuming that the co
riance tensor is isotropic

F5c Id,

a constant multiple of the identity. By integration-by-pa
and truncation of the averaged action function toO(a2), we
find that

S̄a5
1

2 E0

TE
V

@ uuu212a2uDu2#dx dt, ~8!

where

D5 1
2@¹u1~¹u!T#. ~9!
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The superscripta denotes that the actionS̄a depends on the
parametera. Notice that the velocitiesu obtained using this
expression will also depend on parametera, however, we
will not explicitly indicate this dependence in the followin
equations. We refer the reader to Marsden and Shkoller31 for
the anisotropic case.

Applying the calculus of variations machinery to Eq.~8!
yields the isotropic LANS-a equation

] tu1~u•¹!u1Ua, iso~u!52~12a2D!21 gradp2nAu,

div u50, u~0,x!5u0~x!, ~10!

u50 on ]V,

where

Ua, iso~u!5a2~12a2D!21 Div@¹u•¹uT1¹u•¹u

2¹uT
•¹u#. ~11!

Marsden and Shkoller21 showed that while this form of
LANS-a equations is equivalent to that presented by Fo
et al.32,38,39it reveals the additional boundary condition th
must be satisfied when wall bounded flows are conside
The additional boundary condition is

Au50 on ]V. ~12!

While this condition is naturally imposed upon the soluti
of the LANS-a equations on bounded domains, we belie
that the anisotropic theory should be used to model tur
lence in domains with boundaries. Here,A is the Stokes op-
eratorA52PD whereP is the Leray~or the Helmholtz–
Hodge! projector. The most obvious scenario in which o
might assume the covariance is isotropic is in decaying
forced turbulence inside a periodic box. In this case, the
verse Helmholtz operator commutes with the divergence
gradient operators, and the isotropic LANS-a equations are
given by

] tu1~u•¹!u52gradp̃1nDu1Div ta~u!,
~13!

div u50,

whereu is the macroscopic velocity,n is the kinematic vis-
cosity, andta(u) can be identified as thesubgrid stress ten-
sor, defined by

ta~u!52a2~12a2D!21@¹u•¹uT2¹uT
•¹u

1¹u•¹u1¹uT
•¹uT#, ~14!

or in the Cartesian coordinates

t i j
a 52a2~12a2D!21F ]ui

]xk

]uj

]xk
2

]uk

]xi

]uk

]xj
1

]ui

]xk

]uk

]xj

1
]uk

]xi

]uj

]xk
G . ~15!

In this equation,a is a scale of the rapid fluctuations in th
flow map, below which wave activity is filtered by a nonlin
ear redistribution of energy. Notice that the third term on t
right hand side is equivalent to the tensor-diffusivity mod
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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developed by Leonard.7 Also, notice that the divergence o
the last term on the right hand side can be expressed
gradient of a scalar

Div~¹uT
•¹uT!5grad~¹uT:¹uT!. ~16!

Therefore, this term can be absorbed into the modified p
sure functionp̃. On the periodic box, the pressure function
determined~up to a constant! from the incompressibility
condition as a solution of the Poisson problem obtained
taking the divergence of the momentum equation.

We point out that LANS-a equations can be rewritten s
that the stress terms take a form similar to the constitu
relation for second grade fluids33,38,40,41

]u

]t
1~u•¹!u5Div s~u!, ~17!

where the stress,s, includes both viscous and subgr
stresses

s~u!52pI12n~12a2D!D12a2Ḋ. ~18!

Here,Ḋ is co-rotational Jaumann derivative

Ḋ5]D/]t1~u•¹!D1DR2RD,

whereR is a rate of rotation tensor defined as

R5 1
2@¹u2~¹u!T#. ~19!

The key difference between the constitutive relation for s
ond grade fluids and the subgrid stress given by Eq.~18!
stems from the viscous stress term, that is, the second
on the right hand side of Eq.~18!, which in the case of the
LANS-a equations includes an additional Helmholtz ope
tor (12a2D). Rivlin13 was the first to suggest that the co
stitutive relations for non-Newtonian fluids could be used
model turbulent stresses. Rivlin showed that unlike lin
models, in which turbulent stress is linearly related to
rate of deformation tensor, nonlinear relations are able
represent normal stress effects observed in sheared turb
flows. Following Rivlin’s suggestion, Lumley42 and later
Pope43 explored and developed models for Reynolds stres
in the context of the RANS equations. This line of resea
was continued and expanded by Speziale.44,45 In addition to
the phenomenological approach, nonlinear models for R
nolds stresses were also developed using statistical tu
lence theories by Yoshizava46 who employed a direct inter
action approximation approach and Rubenstein and Burt47

who used renormalization group theory. As we have s
earlier the tensor-diffusivity model developed by Leona7

can also be considered as a nonlinear model. This model
combined with the Smagorinsky model anda priori tested by
Clark et al.9 Recently the nonlinear model of Leonard w
used in combination with the dynamic Smagorinsky mo
by Leonard and Wincklemans48 and Wincklemanset al.49 in
the LES of incompressible wall bounded flows. Lund a
Novikov50 carried out an extensivea priori study of a wide
range of nonlinear constitutive relations as subgrid mod
At the same time, Wong51 proposed a way to combine
nonlinear subgrid model together with the dynamic model
procedure. Kosovic52 developed a phenomenological nonli
Downloaded 24 Feb 2003 to 131.215.186.7. Redistribution subject to A
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ear model and used it in simulations of atmospheric bou
ary layers.53 This nonlinear model can reproduce norm
stress effects and represent the backscatter of energy wit
allowing for negative eddy viscosity.

In addition to the relation between constitutive relatio
for second grade fluids and LANS-a equations, Oliver and
Shkoller33 also demonstrated a connection between
LANS-a equations and vortex methods. While phenome
logical nonlinear subgrid stress models and the subgrid t
in LANS-a equations share certain properties, the subg
term in LANS-a arises as a consequence of Lagrangian
eraging, and is not based on a phenomenological mode
assumptions. Due to the existence of a variety of subg
models, mathematical properties of various ad hoc filte
Navier–Stokes equations which are often used in LES h
not been studied in detail. Contrary to that, mathemat
properties of LANS-a equations have been studied exte
sively and the proofs of global well-posedness and regula
of solutions even in the case of wall bounded flows ha
been presented by Foias, Holm, and Titi32 and Marsden and
Shkoller.21 One of the main problems of subgrid modelin
for LES is the problem of no-slip boundary conditions
simulations of high Reynolds number wall bounded flows.
order to avoid resolving the viscous sublayer, which wou
be equivalent to carrying out DNS, approximate bound
conditions employing wall functions and assuming a log
rithmic velocity profile are usually imposed near the wa
While this approach yields satisfactory results when sim
flow domain geometries are considered it cannot be ea
generalized to transitional flows or complex flow geometr
regularly encountered in engineering applications. In
context of the isotropic LANS-a equations, such an initial
boundary value problem is well posed if the addition
boundary condition~12! is introduced. For the anisotropi
LANS-a equations, the degeneracy of the covariance ma
plays the role of the additional boundary condition.54 In fu-
ture work, we shall determine if the LANS-a equations are a
viable wall-bounded turbulence model. As the first step
ward this work, in this study, we shall focus on isotrop
turbulence simulations in a periodic box.

III. NUMERICAL METHOD

Our computational domain is a periodic cubic box
side 2p. In a numerical simulation of decaying turbulenc
the size of the computational domain imposes an up
bound on the growth of the large scales in the flow. This
consistent with the observation in most experiments that
largest scales of motion are of the same order as the siz
the experimental apparatus. Given the number of grid po
and the size of the computational domain, the smallest
solved length scale or equivalently the largest wave num
kmax, is prescribed. In a three-dimensional turbulent flow t
kinetic energy cascades in time to smaller, more dissipa
scales. The scale at which viscous dissipation becomes d
nant, and which represents the smallest scales of turbule
is characterized by the Kolmogorov length scaleh ~whose
definition is recalled below!. In a fully resolved DNS, the
condition kmaxh*1 is necessary for the small scales to
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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adequately represented. Consequently,kmax limits the highest
achievable Reynolds number in a direct numerical simula
for a given computational box.

The full range of scales in a turbulent flow for even
modest Reynolds number spans many orders of magnit
and it is not generally feasible to capture them all in a n
merical simulation. On the other hand, in turbulence mod
ing, empirical or theoretical models are used to account
the net effect of small scales on large energy-contain
scales. In the next sections, the numerical simulations
forced and decaying homogeneous turbulence based on
full DNS, LES modeling, and the LANS-a modeling are
presented.

Direct numerical simulations~DNS! of isotropic flows
using pseudospectral methods was pioneered by the wo
Orszag and Patterson55 and Rogallo.56 The accuracy in the
calculation of the spatial derivatives that appear in
Navier–Stokes equations is improved substantially by us
the pseudospectral technique as compared with the finite
ference method. The core of the numerical method use
this study is based on a standard parallel pseudospe
scheme with periodic boundary conditions similar to the o
described in Rogallo.56 The spatial derivatives are calculate
in the Fourier domain, while the nonlinear convective ter
are computed in the physical space. The flow fields are
vanced in time in physical space using a fourth ord
Runge–Kutta scheme. The time step was chosen appr
ately to ensure numerical stability. To eliminate the alias
errors in this procedure the two thirds rule is used, so that
upper one third of wave modes is discarded at each stag
the fourth order Runge–Kutta scheme.

In addition to LANS-a computations, we also performe
simulations using a dynamic SGS model~see, e.g., German
et al.12!. Germanoet al.12 suggested a dynamic procedure
which the model coefficient of an arbitrary functional rel
tionship, selected to represent the subgrid scale stress te
can be evaluated as part of the simulation. This proced
applied to the Smagorinsky eddy-viscosity model, h
proven quite versatile and is used here as a representati
a class of LES models. The filter aspect ratio in the dyna
LES model is a free parameter and the final result depe
on the value of this parameter particularly in severe test ca
such as the one considered here. The model coefficient in
dynamic LES is averaged over the whole computational
main. However, the LES computations were repeated
many filter aspect ratios~at least four!, and the paramete
that matched the best with the turbulence decay of the D
data or the DNS energy spectra was used in the computa
of the next sections.

There are three main characteristic length scales in
isotropic turbulent flow: theintegral scale lcharacterizing
the energy containing scales is defined as

l 5
3p

4

E
0

kmax E~k!

k
dk

E
0

kmax
E~k!dk

, ~20!
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where E(k) is the energy spectrum function at the sca
wave numberk[(k"k)1/2; the Kolmogorov microscaleh
representative of dissipative scales is

h5S n3

e D 1/4

, ~21!

wheree is the volume averaged energy-dissipation rate; a
the Taylor microscalel characterizing the mixed energy
dissipation scales is defined as

l5A urms
2

^~]u1/]x1!2&
, ~22!

whereurms is the root mean square value of each compon
of velocity defined as

urms
2 5

2

3 E0

kmax
E~k!dk. ~23!

The time scale of the energy containing eddies is the lar
eddy-turnover timeT defined asT[ l /urms.

57 The Taylor
Reynolds number~defined based on the Taylor microscale! is

Rel[
urmsl

n
. ~24!

We expect that simulations which share the same value
both Rel and the nondimensional Kolmogorov length sca
k0h should be identical in a statistical sense.

In the next sections, we present results of our numer
simulations of the LANS-a equations. We first demonstrat
the characteristics of the nonlinear redistribution of energy
the LAE-a equations, and then present results of our visc
computations.

IV. THE LAGRANGIAN-AVERAGED EULER
EQUATIONS

In Sec. II, we argued that the LAE-a equations redistrib-
ute the energy content among the small scales throug
nonlinear redistribution mechanism. This is illustrated in F
1 where various energy norms in the LAE-a simulations
~i.e., no viscous dissipation! are contrasted against the ener
norm in the Euler calculation. The initial condition is th
same as the one described in Sec. IV A for the viscous c
putations based on the initial data from Comte-Bellot a
Corrsin28,29 test case~CBC!. As expected, theH1-equivalent
energy norm for the LAE-a equations given by

H1~u!5
1

2 E @u•u12a2D•D#d3x, ~25!

is a conserved quantity.D is defined in Eq.~9!. In the case of
periodic boundary conditions, this energy function may a
be expressed asH15 1

2*u•(12a2D)u. The value ofH1 de-
pends on the initial condition, as well as the parametera. For
given initial data and fixeda, on the other hand, theL2

energy function

L2~u!5
1

2 E u•u d3x ~26!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 1. Euler and the LAE-a simulations starting with CBC initial data att2t051.8. Euler~solid with circles! ~a! Na
35643 for a51/16, ~b! a51/16; with

Na
35483, 643, and 1283. Note that the flat part of theL2(u) curves for the LAE-a cases is due to the finite resolution of the computational domain, an

is not a characteristic of the LAE-a equations.
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drops significantly from its normalized initial value of 0.5.
is precisely this quantity that we shall compare with the n
merical simulation of Navier–Stokes equations. Again,
absolute drop inL2(u) depends on the initial velocity as we
as the value ofa. SinceH1(u) is constant along solutions o
the LAE-a equations, any decay inL2(u) is followed by an
increase ina2L2(¹u). After some initial transient all of the
energy norms saturate. We remark that whena goes to zero,
by definition the LANS-a computations approach DNS. I
other words whena50, theH1 energy norm~25! reduces to
the usualL2 norm for the kinetic energy.

In homogeneous flows the following equality holds

2D•D5v•v, ~27!

wherev is a vorticity vector,v5¹3u. It follows that in
such flows theH1 norm can be expressed as a sum of theL2

norm and enstrophy~theL2 norm of vorticity! multiplied by
a factora2.

H1~u!5L2~u!1a2E~u!. ~28!

Here, enstrophy is defined as

E~u!5L2~v!5
1

2 E v•v d3x. ~29!

Therefore a drop in kinetic energy (L2 norm! is accompanied
by a proportional increase in enstrophy.

In a viscous computation the decay inL2(u) is aug-
mented by the viscous decay inL2(u), as the viscous effect
remove energy from small scales. Viscous computations
performed in the next sections to quantify the nature of
viscous decay.

In Fig. 1~b! the effect of grid resolution on the LAE-a
simulations is shown. While the value ofH1(u) is the same
in both 483, 643, and 1283 runs, theL2 norm ofu and¹u are
significantly different after an initial transient. Therefore t
decay inL2(u) depends on the size of the computation
domain. One should note that the conservation of theH1

norm is slightly sensitive to the accuracy of the implemen
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numerical scheme. The fourth order Runge–Kutta h
proved to be adequate in our case. However, numerical
perimentation has shown that lower-order time integrat
schemes might result in a slight decay in theH1 norm. All of
the reported computations in this study are performed us
the same fourth order Runge–Kutta scheme.

V. FORCED TURBULENCE

Forced isotropic turbulence in a periodic box can be c
sidered as one of the most basic numerically simulated
bulent flows. Forced isotropic turbulence is achieved by
plying isotropic forcing to the low wave number modes
that the turbulent cascade develops as the statistical equ
rium is reached. Statistical equilibrium is signified by th
balance between the input of kinetic energy through the fo
ing and its output through the viscous dissipation. Isotro
forcing cannot be produced in a laboratory and theref
forced isotropic turbulence is an idealized flow configurati
that can be achieved only via a controlled numerical exp
ment; nevertheless, forced isotropic turbulence represent
important test case for studying basic properties of tur
lence in a statistical equilibrium.

The numerical forcing of a turbulent flow is usually re
ferred to the artificial addition of energy to the large sca
~low wave number! velocity components in the numerica
simulation. Forcing of the large scales of the flow is oft
used to generate a statistically stationary velocity field,
which the energy cascades to the small scales and is d
pated by viscous effects. In the statistically stationary st
the average rate of energy addition to the velocity field
equal to the average energy-dissipation rate. The Reyn
number attainable for a given size of simulation is subst
tially higher for forced turbulence than for the case of dec
ing turbulence.

It is generally believed that the Kolmogorov casca
theory58 provides an approximate description of homog
neous isotropic turbulence. The almost universal scaling
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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the dissipation range in Kolmogorov variables and thek25/3

energy spectrum are among the most successful predic
in turbulent flows. It is expected that any turbulent mod
must accurately predict this energy spectrum. Statistic
stationary and homogeneous turbulence provides an i
framework to study the capabilities of any turbulence mo
in predicting the Kolmogorov energy spectrum. To this e
Chenet al.26 numerically investigated the LANS-a equations
in the case of forced homogeneous turbulence with a forc
technique similar to the forcing schemeB implemented in
this study. They concluded that the LANS-a simulations ac-
curately predicts the Kolmogorov energy spectrum for sca
larger than the parametera. However, one might attribute
their results to the nature of their forcing technique; tha
forcing based on the Kolmogorov scalingk25/3 in the forced
region. In this section we repeat their numerical experime
expand it and perform a new set of forced calculations wit
different forcing technique that does not have the limitatio
of the forcing scheme implemented in Chenet al.26 The reso-
lutions of all of our forced DNS computations are 173

(2563 before dealiasing!.

A. Forcing schemes

In using a low wave number forcing, we assume that
time averaged small scale quantities are not influenced by
details of the energy production mechanisms at large sca
This assumption is closer to the truth at high Reynolds nu
bers, where the energy containing scales are widely s
rated from the dissipation scales. The forcing parameters
fluence both the small scale quantities and the flow quan
variables such as the Reynolds number and the Kolmogo
length scale; however, a physically plausible forcing sche
should not influence the small scales independently of
flow quantity variables.

There are many methods for forcing homogeneous
bulent flows. Siggia and Patterson59 forced their simulations
by applying a constant value for the amplitude of the Fou
coefficients û in the shell 1<k<2. Eswaran and Pope60

implemented a different method. They used an Uhlenbe
Ornstein stochastic diffusion processw correlated over time
with a chosen time scale to generate the random forcing

the form f̂ i(k,t)5(d i j 2kikj /k2)wj (k,t)3@Q(k)2Q(k
2kF)# whered i j is the Kronecker delta function andQ is the
Heaviside function. However, the velocity-force correlati
contributes to the net forcing because there is a certain
scale over which the force is correlated. Ghosalet al.61

implemented a technique to guarantee that the productio
balanced by the desired value of dissipation. They use
volume force of the formf̂(k)5eû/(Nû2(k)) at the wave
number k in the shell k5k0 containing N wave numbers
wheree is the dissipation rate. Instead of forcing all the wa
numbers in the shellk5k0 Caratiet al.62 forced only a ran-
domly chosen wave numbersN8,N to eliminate the strong
correlation of the forcing with the velocity field. Clearly, th
external force injects the energy at the constant r
* f"u dx/V5(fk•uk5e observed in Ghosalet al.61

Here we adopt two well-studied forcing methods that
different than the ones discussed above.
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B. Forcing scheme A

The first method consists of applying forcing over
spherical shell with shell walls of unit width centered
wave number one, such that the total energy injection rat
constant in time. This forcing procedure was used by Mi
and Pullin.63 The forcing amplitude is adjustable via the p
rameterd while the phase of forcing is identical to that of th
velocity components at the corresponding wave vectors.
Fourier coefficient of the forcing term is written as

f̂ i5
d

N

ûi

Aûkûk*
~30!

for all the modes in the specified shell. Here,f̂ i and ûi are
Fourier transforms of the forcing vectorf i and velocity,ui ,
in the momentum conservation equation,N is the number of
wave modes that are forced. The above form of forcing
sures that the energy injection rate,( f̂ i•ûi , is a constant
which is equal tod. We chosed50.1 for all of our runs.

C. Forcing scheme B

The second method corresponds to the forcing used
Chen and Shan64 where wave modes in a spherical sh
uku5k0 of a certain width are forced in such a way that t
forcing spectrum follows Kolmogorov’s25/3 scaling law

f̂ i5
d

N

ûi

Aûkûk*
k25/3 ~31!

this is done in order to obtain as long a range of near-iner
behavior as possible. This type of forcing ensures that
energy spectrum assumes inertial range scaling starting f
the lowest wave modes and thus an extended inertial rang
artificially created. Imposing inertial range scaling is partic
larly useful for studying inertial range transfer as well
scaling laws at higher wave numbers. We have chosenk0

52 andd50.03 in all the runs.

D. Results for forcing scheme A

To present the results in a nondimensional form, we
the integral length scalel and the root mean square of velo
ity urms. Throughout the forced simulations, these two qua
tities vary significantly; however, as equilibrium is ap
proached, the integral length scale for the simulation w
forcing scheme A approaches the value of approximatel
'0.2, and the root mean square of velocity isurms'0.25. It
follows, that the corresponding eddy-turnover time isT
5 l /urms50.8. The computations are continued for more th
30 eddy-turnover times. The equilibrium Taylor Reynol
number in this simulation is approximately 80.

The energy spectra at the nondimensional timet530.5 is
depicted in Fig. 2. It is interesting to note that for fixed val
of a the lower resolution LANS-a cases (643) are good rep-
resentations of the higher resolution LANS-a cases (1703)
for a large range of wave numbers. The low wavemodes
the DNS energy spectra are well captured by the LANSa
simulations with the expected trend; asa→0 the LANS-a
simulations approach the DNS spectra over the fully
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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solved wavemodes. The total kinetic energy (L2(u)) for the
DNS and LANS-a computations are shown in Fig. 3. I
these runs the flow is initialized from a fully developed tu
bulent flow at a higher Reynolds number. Consequently,
total kinetic energy drops as time evolves. The total kine
energy passes through an initial transient state but eventu
reaches a relative steady state. The plot of flatness and s
ness of the DNS run~shown in Fig. 4! and the plot of the
total kinetic energy indicate that after 10 eddy turnover tim
the flow is essentially in statistical equilibrium.

E. Results for forcing scheme B

The integral length scale for this run is approximatelyl
'0.32, and the root mean square of velocity isurms'1.4.
Consequently the eddy-turnover time can be calculated
T5 l /urms50.23. All of the computations for the forcin
scheme B are continued for almost 25 eddy-turnover t

FIG. 2. The energy spectra at the nondimensional timet525/0.82530.5 for
forcing scheme A.

FIG. 3. Total kinetic energy for forcing scheme A.
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units. The Taylor Reynolds number,Rl , is approximately
115 for these computations. The energy spectra at the no
mensional time 14.1 are shown in Fig. 5. There is a w
developedk25/3 region over one decade in wave numbe
The LANS-a calculations at the same full resolution follow
the same behavior up to the spatial scale of ordera, where
the inverse Helmholtz operator in the LANS-a computations
sharply steepens the energy cascades to smaller scales. W
it takes a relatively long time for the total kinetic energy
settle~see Fig. 6!, the values of the skewness and the flatn
reach an almost statistical equilibrium at around timet'5, as
shown in Fig. 7.

F. Subgrid energy transfer and alignment of subgrid
stress eigenvectors

In order to evaluate the performance of any SGS mod
it is ~in principle! possible to compare the modeled SG

FIG. 4. Flatness and skewness for forcing scheme A in the DNS run

FIG. 5. The energy spectra at the nondimensional timet53.25/0.23514.1
for forcing scheme B. The straight line represents a slope of25/3.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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stressta with the corresponding stress obtained by filteri
DNS and computing correlation coefficients between S
stress components. However, Piomelliet al.65 demonstrated
that such ana priori technique does not account for the d
namic effects of the subgrid models and therefore can
represent a definitive test of a subgrid model.

With the development of novel experimental techniqu
and the availability of high resolution DNS data, it is no
possible to study basic structural properties of subg
stresses with respect to the large scale characteristics o
flow field. A general feature of homogeneous isotropic t
bulence is the observation of the tubelike fine sc
eddies,66–68 which are considered as the smallest struct
related to the intermittency of turbulence. The fine sc
structures of turbulence have been one of the most impor
subjects in turbulence research. A comprehensive knowle
of the fine scale motions is essential in the development
proper turbulent theory and any turbulent model. These

FIG. 6. Total kinetic energy for forcing scheme B.

FIG. 7. Flatness and skewness for forcing scheme B in the DNS run
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herent fine scale structures have been observed in other t
of turbulent flows such as turbulent mixing layers and turb
lent channel flows where they exhibited simil
characteristics.69,70

A three-dimensional measurement technique such as
lographic particle velocimetry~HPIV! was used by Tao
et al.71–73 to study the alignment of the eigenvectors of a
tual and modeled components of the subgrid stresses as
as the alignments between eigenvectors of the rate of s
tensor and vorticity vector. They confirmed the preferred
cal alignment of the eigenvector of the rate of strain ten
corresponding to the intermediate eigenvalue with the vor
ity vector, which was previously observed using pointwi
DNS data.74,75 They also found a preferred relative ang
between the most compressive eigendirection of the rat
strain tensor and the most extensive eigendirection of
SGS tensor.

Following the work of Taoet al., we will discuss the
statistics of alignment between the eigenvectors of the S
tensor ta, and both the eigenvectors of the rate of stra
tensor,D, and the unit vorticity vector,v, respectively de-
fined by Eq.~9! and

v5
¹3u

u¹3uu
. ~32!

The actual SGS tensor,t, can be computed by filtering th
DNS data and using the definition

t5~u^ u2ū^ ū!. ~33!

Here, overline denotes filtered quantities. We filter the D
data by applying a wave cut-off filter with cut-off wave num
ber kc521, corresponding to the largest wave number
solved in LANS-a simulation with 483 grid points.

We denote the eigenvectors ofD by @e1 ,e2 ,e3#, ordered
according to the corresponding eigenvalues (l1 ,l2 ,l3),
with l3,l2,l1 . The eigenvectors ofta are@ t1 ,t2 ,t3# with
eigenvalues (g1 ,g2 ,g3), such thatg3,g2,g1 . Thus, for
example, we refer toẽ1 as the most extensional eigendire
tion of D, and tot3 as the most compressive eigendirecti
of ta. Also, ẽ2 , t2 are intermediate eigendirections with co
responding intermediate eigenvaluesl2 , g2 , respectively.

We first use 1703 DNS data obtained using forcin
scheme A and the data from a 483 LANS-a simulation to
compute the distribution of the energy transfer,esgs5t:D,
due to the contribution of the subgrid term. The distributio
are presented in Fig. 8. Note thatesgs,0 corresponds to
backscatter. In Fig. 9, the same energy transfer is comp
for the cases with the forcing scheme B. Slightly skew
distributions presented in these figures with a significant p
tion of negative energy transfer indicate not only that t
LANS-a model is capable of predicting backscatter of e
ergy, but also that it can predict the probability distributio
of the level of backscatter accurately.

Using the same data sets we computed the distribut
of the alignment~cosine of the angles! between the eigen
vectors of the rate of strain tensor and vorticity vector as w
as the SGS tensor. We first use forcing scheme A and
LANS-a simulations with 643 grid points anda51/8. Fig-
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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534 Phys. Fluids, Vol. 15, No. 2, February 2003 Mohseni et al.
ures 10 and 12 indicate that in the LANS-a simulations, the
preferential alignment between the vorticity vector and
eigendirection of the rate of strain tensor corresponding
the intermediate eigenvalue is not as pronounced as in D
As can be seen in Figs. 11 and 13 the eigenvectors of
modeled subgrid tensorta display qualitatively similar
alignment as that computed from DNS data. In particular,
experimentally observed preferred angle betweene3 andt1 is

FIG. 8. Probability distribution ofesgs5t:D; solid line—forced DNS
1703—forcing scheme A, Rel580; dotted line—forced LANS-a483 with
a51/8 anda51/16—forcing scheme A. The scalings are done based on
energy transferT, sample sizeN, and the bin sizeDesgs.

FIG. 9. Probability distribution ofesgs5t:D; solid line—forced DNS
1703—forcing scheme B, Rel5115; dotted line—forced LANS-a 643 with
a51/4 anda51/16—forcing scheme B. The scalings are done based on
energy transferT, sample sizeN, and the bin sizeDesgs.
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captured by the LANS-a model. Similar observations can b
made based on the simulations where the forcing schem
was used. For these cases, probability distributions of
cosine of the angles between eigenvectors and the vort
vector are obtained by filtering the DNS data using a wa
cut-off filter with cut-off wave numberkc532 and is given
in Figs. 14 and 15. These results are compared to
LANS-a results corresponding to simulations with 643 grid
points anda51/16 which are presented in Figs. 16 and 1
We remark that commonly used linear, Smagorinsky-ty

FIG. 11. Probability distribution ofe1•t3 , e2•t2 , and e3•t1 ; forced DNS
1703—forcing scheme A; Rel580.

e

e

FIG. 10. Probability distribution ofv•ea ; forced DNS 1703—forcing
scheme A; Rel580.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



th
th
t

st
ou
on

a
ow
re-

own-
dary

-
of

535Phys. Fluids, Vol. 15, No. 2, February 2003 Numerical simulations of the Lagrangian
SGS models implicitly assume that the eigenvectors of
SGS stress are locally aligned with the eigenvectors
eigenvectors of the rate of strain tensor, which is contrary
the experimental evidence.

VI. DECAYING TURBULENCE

Decaying homogeneous turbulence is a more reali
idealization of a turbulent flow than the forced homogene
case. Numerous theoretical, experimental, and computati
studies followed the influential work of Taylor.76 The major-

FIG. 12. Probability distribution ofv•ea ; forced LANS-a 483 with a
51/8—forcing scheme A.

FIG. 13. Probability distribution ofe1•t3 , e2•t2 , and e3•t1 ; forced
LANS-a 483 with a51/8—forcing scheme A.
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ity of the initiated experimental work was generated by
grid in wind tunnels, where the turbulence decays as the fl
convects downstream. This grid-generated turbulence is
garded as homogeneous and isotropic some distance d
stream by using special arrangements such as a secon
contraction of the test section.28 The comparison of experi
mental data with theory or computation assumes validity
the frozen turbulence hypothesis of Taylor.76 Other tech-

FIG. 14. Probability distribution ofv•ea ; forced DNS 1703—forcing
scheme B; Rel5115.

FIG. 15. Probability distribution ofe1•t3 , e2•t2 , and e3•t1 ; forced DNS
1703—forcing scheme B; Rel5115.
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niques for generating turbulence without a mean flow are
towing a grid through a stationary sample of fluid77 or by
using an oscillating grid.78

In this section we consider two different decaying turb
lent flows. In the first case an initial condition from a rea
ization of the experiments by Comte-Bellot and Corrsin28,29

is used. This initial condition has a broad energy spectr
with the peak of the energy spectrum at a relatively h
wave number. In the second case we generate a sha
peaked initial energy spectrum with the peak of the ene

FIG. 16. Probability distribution ofv•ea ; forced LANS-a 643 with a
51/16—forcing scheme B.

FIG. 17. Probability distribution ofe1•t3 , e2•t2 , and e3•t1 ; forced
LANS-a 643 with a51/16—forcing scheme B.
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spectrum at a relatively low wave number. In this way t
effects of the initial energy spectrum on the performance
the LANS-a calculations are investigated.

A. Initial data from Comte-Bellot and Corrsin test
case

The most widely used published data on decaying g
turbulence are due to Comte-Bellot and Corrsin28,29 which
we will hereafter refer to as CBC. Their data are well doc
mented and has been used widely in the developmen
DNS, LES, and other turbulence models.

The initial field is taken from Wray.79 Wray provides a
filtered velocity field in physical space, derived from 513

data by a sharp truncation in Fourier space to 1283. All of the
computations performed in this study were started with t
data. The initial Taylor Reynolds number is Rel572. We
increased the physical Reynolds number so that the evolu
of this initial data is well resolved in a 1283 computation
~before dealiasing it is 1923).

The evolution of the energy spectrum as predicted
DNS using 1283 points is illustrated in Fig. 18. The energ
of fully developed isotropic turbulence decays in time wh
the scales of motion grow; the resulting Rel decreases with
time. Consequently, a well resolved, fully developed fie
will remain well resolved as it decays. On the other hand,
integral scales grow in time and will eventually becom
comparable to the size of the computational box. Since
computational box contains only a small sample of the la
est representable eddies, eventually the computation will
fer from a lack of sample in the energy-containing scal
The rather wide initial energy spectrum with a peak arou
the eighth Fourier mode provides a harsh test case for
turbulence model at such a resolution. The initial conditi
for LES and LANS-a simulations is obtained by spectrall
filtering fully resolved velocity field to the resolution of thes
simulations. The best behavior of the LANS-a modeling is
expected for applications in which the scalea is within, or at

FIG. 18. Spectrum of the energy for the CBC initial data, Rel572, NDNS
3

51283, t50 ~solid!; t51 ~dash!; t52 ~dash dot!; t53 ~dotted!.
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FIG. 19. Decay of kinetic energy with the CBC initial data, full DNS 1283 ~solid!; ~a! Na
35483, LANS-a with a51/16 ~dash dot!; LANS-a with a51/8

~dash!; dynamic LES with a filter ratio 2~dotted!; DNS sharply filtered to 483 ~dash dot dot!; ~b! Na
35643, LANS-a with a51/16 ~dash!; LANS-a with

a51/20~dash dot!; dynamic LES with a filter ratio 4~dotted!; DNS sharply filtered to 643 ~dash dot dot!. The filter aspect ratio in the dynamic LES is an ext
free parameter. The dynamic LES computations were repeated for many filter aspect ratios~at least four!, and only the results for the filter ratio with the be
match with the DNS data are reported here~see also Fig. 20!.
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least close to, an inertial subrange. The CBC experimen
Rel572 barely satisfy this criterion and provide a severe t
case of the LANS-a turbulence modeling capability.

The evolution of total kinetic energy~TKE! of the DNS
data is contrasted against various dynamic LES and LANa
simulations in Fig. 19, for two resolutions: 483 and 643.
TKEs for DNS data, spectrally filtered to the resolution
the LES and LANS-a computations, are also presented. T
filter aspect ratio in the dynamic LES model is a free para
eter and the final result depends on the value of this par
eter particularly in severe test cases such as the one co
ered here. In order to avoid introducing any further arbitra
parameters, the LES computations were repeated for m
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filter aspect ratios, and the parameter that matched the
with the turbulence decay of the DNS data or the DNS
ergy spectra was used for comparison with the LANSa
equations. The best match between the DNS data and
dynamic LES results is achieved for a filter aspect ratio o
and 4 in the 483 and 643 calculations, respectively~see Fig.
20!. In the 643 computation both LES and LANS-a satisfac-
torily predict the decay rate. However, at the lower resolut
of 483 both models underestimate the decay rate, with
LANS-a model being more under-dissipative. It is clear th
at such a low resolution the energy-containing part of
spectrum is barely resolved. This is demonstrated in F
21–23 where the evolution of the energy spectrum of vari
FIG. 20. The effect of the filter aspect ratio in the dynamic LES with the CBC initial data.~a! Dynamic LES 483, ~b! dynamic LES 643. dynamic LES with
a filter ratio 1.3~dash!; dynamic LES with a filter ratio 2~dotted!; dynamic LES with a filter ratio 4~dash dot!; full DNS 1283 ~solid!; DNS sharply filtered
to 643 ~dash dot dot!.
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FIG. 21. The energy spectra att51 for the CBC initial data.
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computations are presented. The pile-up of energy at hig
wave numbers in the 483 runs indicates insufficient dissipa
tion of energy due to inadequate resolution. This is m
pronounced in the LANS-a computations where the model
heavily dependent on the nonlinear energy redistribut
mechanism of the Lagrangian-averaged equations as
posed to the dissipative model in the LES. For 643 calcula-
tions the energy spectrum is predicted reasonably well
both the LANS-a and dynamic LES. The LANS-a compu-
tations show better agreement for higher wave numbers
later times a dip at the peak of the energy spectrum is
served, which is more pronounced in the LANS-a simula-
tions. This might be due to the introduction of the nonline
energy redistribution effects in the LANS-a equations at
scales of the order ofa. However, due to the broadban
nature of the energy spectrum with the maximum of
spectrum at a relatively high wave number, we could
movea far from the energy-containing range. It is expect
that in a higher Reynolds number flow, where there is
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extended inertial range and therefore a larger gap betw
the energy-containing scales and thea scale, this effect will
be diminished. Existence of such a clearance betweea
scales and the location of the energy peak requires resol
at least a portion of the inertial subrange. LES methods w
of course also work better in such a situation.

B. Second decaying turbulence case

In this section we perform a DNS computation of a d
caying isotropic homogeneous turbulence with an ene
spectrum peaked at the wave number 3, and the resolutio
the DNS computation is increased to 1703 (2563 before
dealiasing!.

We start with a divergence free velocity field with
specified energy spectrum given by

E~k!5Ak4 exp22k2/k0
2
, ~34!

wherek is the wave number,k0 is the wave number of the
FIG. 22. The energy spectra att52 for the CBC initial data.
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FIG. 23. The energy spectra att53 for the CBC initial data.
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peak of the energy spectrum, andA is a normalizing factor.
In all of the computations presented in this study we usek0

53, and we chooseA such that the total kinetic energy of th
initial velocity field is 0.5. The initial Taylor Reynolds num
ber is Rel5220.

The evolution of the energy spectrum in the DNS us
1703 points is illustrated in Fig. 24. The energy of fully de
veloped isotropic turbulence decays in time while the sca
of motion grow. As a result of the total kinetic energy~TKE!
decay the resulting Rel decreases with time. Consequently
well resolved, fully developed field will remain well resolve
as the TKE decays.

In Fig. 25 the evolution of the TKE of the DNS data
contrasted against various dynamic LES and the LANSa
simulations, for two resolutions: 483 and 643. TKEs for the
DNS data, sharply filtered to the resolution of the LES a
the LANS-a computations, are also presented. Dynamic L

FIG. 24. Energy spectrum for the second decay case, Rel5220, NDNS
3

51703.
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computations for filter aspect ratios of 1.11, 1.33, 2, and
are performed. We found that the best match between
DNS data and the dynamic LES results is achieved fo
filter aspect ratio of 1.11 for both 483 and 643 calculations
~see Fig. 26!. In both the 483 and 643 computations the LES
and the LANS-a satisfactorily predict the decay rate. Th
should be contrasted with the results for the simulation of
CBC experiment in Sec. VI A where a low resolution calc
lation at 483 was significantly in error. This confirms th
speculation that for an accurate calculation based on
LANS-a or LES the bulk part of the energy containing wa
modes should be included in the simulation. The same c
clusion is drawn from Figs. 27 and 28 where the evolution
the energy spectrum of various computations are presen
All 483 simulations indicate insufficient dissipation of ener
at later times due to inadequate resolution. This is more p
nounced in the LANS-a computations witha51/16 where
the model is heavily dependent on the nonlinear energy
distribution mechanism of the Lagrangian-averaged eq
tions ~activated at a higher wave number! as opposed to the
dissipative model in LES. For 643 calculations the energy
spectrum is predicted reasonably well by both the LANSa
and the dynamic LES.

VII. CONCLUSIONS

Our objective in this study was to investigate the utili
of the Lagrangian averaged Navier–Stokes~the LANS-a!
equations as a subgrid scale model for three-dimensional
tropic forced and decaying turbulence. Both viscous and
viscid computations were carried out. The essence of
Lagrangian averaging method is the nonlinear redistribut
~not dissipative! nature of the energy decay in the Lagran
ian averaged Euler~LAE-a! equations, where the energy
removed from the small scales while maintaining the cruc
features of the large scale flow. The finalL2(u) level de-
pends on the spectrum of the initial field, the size of t
computational box, anda. In the viscous counterpart~the
LANS-a equations! the nonlinear redistributing energy de
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 25. Decay of kinetic energy for the second decay case;~a! Na
35483; ~b! Na

35643. The filter aspect ratio in the dynamic LES is an extra free parame
The dynamic LES computations were repeated for many filter aspect ratios~at least four!, and only the results for the filter ratio with the best match with t
DNS data are reported here~see also Fig. 26!.
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cay is accompanied by a viscous dissipation. Therefore,
LANS-a equations can be considered as a nonlinearly ene
redistributive modification of the Navier–Stokes equatio
This modification appears in the nonlinearity, depends on
scalea, limits the effect of vortex stretching, and causes
energy spectrum to fall rapidly for scales smaller thana. To
determine the slope of this drop at higher wave modes
can in principle use an argument similar to Kolmogoro
argument which gives25/3 inertial range slope. Results o
various simulations of the LANS-a equations are compare
with the dynamic large eddy simulations~LES! and fully
Downloaded 24 Feb 2003 to 131.215.186.7. Redistribution subject to A
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resolved direct numerical simulations~DNS!. The filter as-
pect ratio in the dynamic LES model is a free parameter
the final result depends on the value of this parameter
ticularly in severe test cases such as the one considered
In order to avoid introducing any further arbitrary param
eters, the LES computations were repeated for many fi
aspect ratios~at least four!, and the parameter that matche
the best with the turbulence decay of the DNS data or
DNS energy spectra was used for comparison with
LANS-a equations.

We performed two sets of forced isotropic turbulen
FIG. 26. The effect of the filter aspect ratio in the dynamic LES with the second initial data depicted in Fig. 24.~a! Dynamic LES 483, ~b! dynamic LES 643.
Dynamic LES with a filter ratio 1.11~long dash!; dynamic LES with a filter ratio 1.3~dash!; dynamic LES with a filter ratio 2~dotted!; full DNS 1283 ~solid!;
DNS sharply filtered to 643 ~dash dot dot!.
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FIG. 27. The energy spectra att51 for the second decay case;~a! Na
35483, ~b! Na

35643.
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simulations of the LANS-a equations and studied their equ
librium states. The results of the LANS-a simulations were
compared to the results obtained from high-resolution D
simulations, characterized by the equilibrium Taylor Re
nolds numbers Rel580 and 115 for two different forcing
schemes. Furthermore, we studied the effect of varying
model scalea. In general, selecting an appropriatea is a
compromise between the accuracy at large scales and
minimum resolution requirement in the LANS-a simula-
tions. The LANS-a equations accurately mimic the behavi
of the Navier–Stokes equations at small wave numb
~large scales! as long as a minimum resolution is observe
At the wave numberka'1/a the slope of the spectr
changes from the Navier–Stokes spectra to a much ste
slope. The smaller thea the larger the overlapping region o
the low wave number spectra of the LANS-a and the
Navier–Stokes equations. However, this higher accur
comes with a price: The smalleras require higher resolution
for the LANS-a simulations. An underresolved LANS-a
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computation with the scalea close to the peak of the energ
spectrum could result in the contamination of large sca
and loss of accuracy.

The equilibrium energy spectrum in our LANS-a simu-
lations were in good agreement with the DNS data at l
wave numbers. Our simulations, in agreement with previ
results by Chenet al.,26 show dependency of the equilibrium
turbulence spectra on the model scalea. In the forced com-
putations the slope of the energy spectra changes from
inertial range slope ofk25/3 to a much steeper slope fo
scales smaller thana. Even with 1703 grid-point LANS-a
simulations, due to the insufficient resolution, we were n
able to determine this second slope and confirm or falsify
existing estimates~e.g., Foiaset al.39!. We analyzed the en
ergy transfer and the capability of the LANS-a in represent-
ing the backscatter of energy by comparison with the D
data. We found that the LANS-a simulations accurately pre
dict the transfer of energy to small scales. We have a
tested the ability of the LANS-a equations to reproduce th
FIG. 28. The energy spectra att52 for the second decay case;~a! Na
35483, ~b! Na

35643.
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observed alignments of eigenvectors of the subgrid stre
with respect to eigenvectors of the resolved stress tensor
vorticity vector. The LANS-a qualitatively reproduce the ob
served alignments in experiments and DNS data. In this
spect the LANS-a equations are superior to linear turbulen
models ~including the dynamic LES! which imply perfect
alignment between eigenvectors of the subgrid stress and
resolved strain rate tensor. The average relative angle
tween the most compressive eigendirection of the reso
strain rate tensor and the most extensive eigendirection o
subgrid stress tensor is captured accurately by the LANa
equations.

Our conclusions for the decaying turbulence are m
based on two separate numerical simulations. In the first c
we start with a broad initial energy spectrum at Rel572
~CBC initial spectrum! where the peak of the energy spe
trum is around the eighth Fourier mode. Correct predict
of the TKE decay rate and the corresponding spectra for s
a broadband initial spectrum represents a difficult test c
for any turbulence model. In the second decaying case
performed direct numerical simulation of the Navier–Stok
equations at a Taylor Reynolds number of Rel5220 in a
periodic box. The initial energy spectrum was peaked a
relatively low wave number~third Fourier mode!, making it
a suitable test case for testing the LANS-a modeling capa-
bilities.

We found that, if a minimum resolution requirement~for
the first decaying experiment at Rel572 half of the DNS
resolution! is satisfied, then the LANS-a equations provide a
satisfactory turbulence closure comparable with the dyna
LES. This minimum resolution depends on the initial ene
spectrum. The only free parameter in the LANS-a simula-
tions is a scalea which is representative of the spatial sca
of the Lagrangian averaging. However, for lower resolutio
both the LANS-a and dynamic LES show a pile-up of en
ergy at higher wave numbers. This indicates insufficient d
sipation of energy due to the lack of resolution.

Any conclusion on the performance of the LANS-a
equations depends strongly on the way that the DNS data
compared with the results of the LANS-a calculations. First
of all, appropriate interpretation of the Lagrangian averag
process of the DNS data is crucial for obtaining the init
velocity field for the LANS-a computations. The same issu
arises in comparing the LANS-a results with DNS data a
later times. We considered a few different approaches. A
from truncation of the DNS data to the resolution of t
LANS-a simulations, we have initialized the LANS-a simu-
lations by Helmholtz filtering or spatially averaging of th
DNS data. For initial energy spectrum with sharp peaks
low wave numbers and a value ofa sufficiently away from
this peak, one expects that the Helmholtz filtering of t
initial data will not have a significant effect on the resolv
TKE. However, for the very broad initial energy spectrum
the CBC experiment we found that using a filter based on
Helmholtz operator or spatial averaging resulted in a sev
reduction of the initial resolved kinetic energy to a fracti
of that of a field truncated in Fourier space~i.e., using a
Fourier cut-off filter!. We point out that such a reduction
independent of the model used and diminishes the valu
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the tests. We therefore use sharply truncated DNS data a
initial velocity field ~u! in the LANS-a simulations.

Recently, Chenet al.40 simulated a forced homogeneou
turbulent flow and reported favorable results using
LANS-a equations. Here, we demonstrated the modeling
pabilities of the LANS-a equations in decaying turbulen
flows. Apart from these satisfactory results the LANSa
equations have many attractive theoretical features that m
them a promising candidate for more complicated proble
In this process the next natural step is to test the LANSa
model in anisotropic flows. Numerical simulation of chann
flow based on the anisotropic LANS-a equations is the topic
of our future research.

In summary we conclude that for the test cases con
ered in this study the LANS-a equations can capture most o
the large scale features of the turbulent flow while the eff
of small scales on the large scales were modeled by Lagr
ian averaging.
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