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Abstract

The Multi-Moon Orbiter concept is introduced, wherein a single spacecraft orbits
several moons of Jupiter, allowing long duration observations. The ∆V requirements
for this mission can be low if ballistic captures and resonant gravity assists by Jupiter’s
moons are used. For example, using only 22 m/s, a spacecraft initially injected in a
jovian orbit can be directed into a capture orbit around Europa, orbiting both Callisto
and Ganymede enroute. The time of flight for this preliminary trajectory is four years,
but may be reduced by striking a compromise between fuel and time optimization during
the inter-moon transfer phases.

INTRODUCTION

Mission to Europa is Strongly Recommended

The National Academy of Sciences (NAS) recently issued a report calling on NASA to
deploy a large mission every decade, one in which extended observation and experiments
could be performed.[2] In particular, the NAS report called on NASA to resurrect a mis-
sion to Jupiter’s moon Europa—a project the space agency canceled earlier for budgetary
reasons.[13] Europa is thought to be a place hospitable to life because of the vast, liquid
oceans that may exist under its icy crust. Two other Jupiter moons, Ganymede and Cal-
listo, are now also thought to have liquid water beneath their surfaces.[21, 14] A proposed
mission to Europa, and perhaps also Ganymede and Callisto, would attempt to map these
regions of liquid water for follow-on missions. The recent discovery of life in the ice of
Lake Vostok, a lake deep beneath the Antarctic ice cap, lends impetus to a Europa mission
with the suggestion that life may be possible on Europa.[7] A mission to tour the moons of
Jupiter may likely be initiated in the near future.[3]
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Multi-Moon Orbiter: Orbiting Several of Jupiter’s Moons with a Single Spacecraft

In response to the scientific interest in Jupiter’s moons and the guidelines set forth by the
NAS, a tour concept called the Multi-Moon Orbiter is herein introduced, wherein a single
sophisticated spacecraft is capable of jumping from an orbit around one jovian moon to an
orbit around another.[8, 9, 4] This would allow long duration observations of each moon,
compared to brief flybys. The Multi-Moon Orbiter (MMO) embodies a radical departure
from the past four decades of planetary exploration. Such a capability will allow close,
detailed, and long-lerm studies to be made of many of the members of Jupiter’s retinue of
40 (or more) moons. Furthermore, the ∆V requirements for such a mission can be very
low if the technique of low energy inter-moon transfer via resonant gravity assists by jovian
moons are used.

As an example, by using small impulsive thrusts totaling only 22 m/s, a spacecraft
initially injected in a jovian orbit can be directed into an elliptical capture orbit around
Europa. Enroute, the spacecraft orbits both Callisto and Ganymede for long duration
using a ballistic capture and escape methodology developed previously. This example tour
is shown in Figure 1. The MMO, constructed using a patched three-body approach, should
work well with existing techniques, enhancing NASA’s trajectory design capabilities.

Low Energy Tour of Jupiter’s Moons
Seen in Jovicentric Inertial Frame

Jupiter

Callisto
   Ganymede
              Europa 

Figure 1: The Multi-Moon Orbiter space mission concept for the jovian moons involves long

duration orbits of Callisto, Ganymede, and Europa, allowing for extensive observation. By utilizing resonant

gravity assists with the moons, in addition to ballistic capture and escape orbits leading toward or away

from temporary capture orbits about a moon, a tour can be constructed using very little fuel. The trajectory

shown is a simulation of a restricted 5-body problem and requires a ∆V of only 22 m/s. The Multi-Moon

Orbiter is a general concept applicable for any multi-moon system and is not limited to the specific example

shown.
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Europa and Beyond

The MMO concept meets the requirement laid down by the NAS of extended observation
while staying within a reasonable ∆V budget. Furthermore, the techniques used to design a
MMO are very general. The same techniques may be applied to a broad rnage of multi-body
missions from the Earth’s Neighborhood to other regions of the solar system.

An Extension of the Petit Grand Tour

A tour of the moons of Jupiter of this type was introduced by Koon, Lo, Marsden, and
Ross,[8] and further elaborated upon by Gómez, Koon, Lo, Marsden, Masdemont, and
Ross.[4] The MMO tour, previously dubbed the Petit Grand Tour, grew out of a method
introduced in the foregoing papers; navigation via phase space tubes of ballistic capture (and
escape) trajectories going toward (or away) from each moon, respectively. An algorithm was
designed for constructing orbits with any prescribed tour itinerary. Some initial results on
a basic itinerary are illustrated in Figure 2.[4]
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Figure 2: The Petit Grand Tour of jovian moons, a precursor to the Multi-Moon Orbiter.[4]

(a) We show a spacecraft trajectory coming into the Jupiter system and transferring from Ganymede to

Europa using a single impulsive maneuver, shown in a Jupiter-centered inertial frame. (b) The spacecraft

performs one loop around Ganymede, using no propulsion at all, as shown here in the Jupiter-Ganymede

rotating frame. (c) The spacecraft arrives in Europa’s vicinity at the end of its journey and performs a

final propulsion maneuver to get into a high inclination circular orbit around Europa, as shown here in the

Jupiter-Europa rotating frame.
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By approximating the dynamics of the Jupiter-Europa-Ganymede-spacecraft 4-body
problem as two 3-body subproblems, we seek intersections between the channels of transit
orbits enclosed by the stable and unstable manifold tubes of different moons. In the example
shown in Figure 2, we show a low energy transfer trajectory from Ganymede to Europa that
ends in a high inclination orbit around Europa.

In this paper, the previous method is extended significantly, introducing the use of
resonant gravity assists. This method was inspired by the work of Sweetser and others
at JPL who designed the first nominal trajectory for a Europa orbiter mission.[20, 12] By
performing small maneuvers to achieve a particular moon/spacecraft geometry at close
approach, the spacecraft can jump between mean motion resonances with the moon. The
“jumping” provides an effective ∆V kick, and thereby the deterministic propulsive ∆V
required for the MMO trajectory is very low.

TRAJECTORY CONSTRUCTION: THE BUILDING BLOCKS

The objective of the multi-moon tour design is to find a numerically integrated and contin-
uous trajectory that starts in an initial jovian orbit and proceeds to get into orbits about
Callisto, Ganymede, and Europa, successively. We assume that after a Jupiter orbit inser-
tion maneuver, it is feasible to get into a jovian orbit with a period of several months and
a perijove near the orbit of Callisto.a For our initial study, we assume our control is an
impulsive propulsion system. For follow-on studies, we will incorporate low thrust propul-
sion. For the impulsive thrust case, our main goal is to find a fuel efficient trajectory, i.e.,
one which minimizes the total deterministic ∆V . Another constraint is a reasonable time
of flight. We will leave discussion of this final constraint to the end.

The point of view adopted in this study is to initially approximate the n-body tour
design problem as a series of 3-body problem solutions which will be patched together. The
building blocks of the MMO tour are then (1) inter-moon transfers using resonant gravity
assists with the various Galilean moons,b (2) ballistic capture and escape trajectories, and
(3) small impulsive maneuvers to gently steer the space vehicle between these two types of
trajectories.

By the term “ballistic capture and escape trajectories,” we mean trajectory arcs in which
the spacecraft, beginning on a jovian orbit, is captured, without using fuel, around a moon.
The spacecraft orbits around the moon for several revolutions and then escapes from the
moon, without using fuel, onto a jovian orbit once again. The number of revolutions around
the moon can be controlled using very low ∆V controls. For the final ballistic capture into
an operational orbit around Europa, we perform a Europa orbit insertion maneuver so that
the spacecraft does not escape.

In the paragraphs that follow, the building blocks are presented within the framework of
the patched three-body model, to be described shortly. In a subsequent section, we present
a numerical example constructed using these building blocks.

aWe assume this can be achieved via patched-conic methods.
bThe Galilean moons, so named because of their discovery by Galileo Galilei in 1610, are Io, Europa,

Ganymede, and Callisto, in the order of distance from Jupiter.
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Patched Three-Body Model

Our goal is to construct a solution of a 5-body problem, i.e., a spacecraft moving in the
gravitational field of Jupiter with three moons: Europa, Ganymede, and Callisto. We begin
by approximating the real system as a restricted 5-body problem (R5BP), wherein the three
moons of interest are in prescribed circular orbits about Jupiter within the same plane and
do not gravitationally influence one another or Jupiter.c

The fifth body, the spacecraft, is assumed to be of negligible mass and moving under the
influence of the four massive bodies, and we restrict its motion to be in the approximately
common orbital plane of the three moons. In order to begin construction of a R5BP solution,
we decompose the problem into several restricted 3-body problems. In particular, we use the
patched planar circular restricted 3-body problem (PCR3BP), which has been shown to be
an excellent starting model for illuminating the transfer dynamics between two co-orbiting
moons.[8, 9, 4]

Within each restricted 3-body problem, we use phase space structures understood from
earlier studies to find unpropelled trajectories with the desired characteristics. We then
“patch” two 3-body solutions (i.e., Jupiter-S/C-Europa and Jupiter-S/C-Ganymede) by
picking the phase of the two moons appropriately.[8]

Inter-Moon Transfer: Decreasing Jovian Orbit Energy Via Resonant Gravity Assists

As shown in Figure 1, we consider that the spacecraft begins its tour of the jovian moons
in an elliptical orbit which grazes Callisto’s orbit at perijove, with an apojove of several
tens of RJ .d For this construction, it is important that the initial orbit have a perijove near
the orbit of Callisto. Repeated flybys of Callisto when the spacecraft is at perijove (i.e.,
resonant gravity assists) are what decreases the jovicentric orbital energy and the apojove
for this portion of the tour.

The several Callisto flybys which constitute this portion of the tour exhibit roughly the
same spacecraft/Callisto geometry because the spacecraft orbit is in near-resonance with
Callisto’s orbital period and therefore must encounter Callisto at about the same point
in its orbit each time. This portion of the trajectory is expected to take several months
and culminates in a ballistic capture of the spacecraft by Callisto. The spacecraft then
transfers between Callisto and Ganymede, orbits Ganymede for a time, and then transfers
from Ganymede to Europa and finally orbits Europa.

During the inter-moon transfer–where one wants to leave a moon and transfer to another–
the control problem becomes one of performing appropriate small ∆V ’s to decrease the jovi-
centric orbit energy by jumping between orbital resonances with a moon, i.e., performing
resonant gravity assists. This is illustrated in the schematic spacecraft trajectory shown in
Figure 3.

After the spacecraft escapes from the vicinity of the outer moon, the outer moon’s
perturbation is only significant over a small portion of the spacecraft trajectory near apojove
(A). The effect of the moon is to impart an impulse to the spacecraft, equivalent to a

cThe orbital planes of Europa, Ganymede and Callisto are within 0.3◦ of each other, being 0.467◦, 0.172◦,
and 0.306◦ with respect to the local Laplace plane, respectively. Their orbital eccentricities are also very
small, being 0.0002, 0.0011, and 0.0074, respectively.

dThe initial apojove distance will be determined by the arrival trajectory coming from the Earth.
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(a) (b)

Figure 3: Inter-moon transfer via resonant gravity assists. (a) The orbits of two Jovian moons

are shown as circles. Upon exiting the outer moon’s sphere-of-influence at M1, the spacecraft proceeds

under third body effects onto an elliptical orbit. The spacecraft gets a gravity assist from the outer moon

when it passes through apojove (denoted A). The several flybys exhibit roughly the same spacecraft/moon

geometry because the spacecraft orbit is in near-resonance with the moon’s orbital period and therefore

must encounter the moon at about the same point in its orbit each time. Once the spacecraft orbit comes

close to grazing the orbit of the inner moon, the inner moon takes “control.” The spacecraft orbit where

this occurs is denoted E. (b) The spacecraft now receives gravity assists from the inner moon at perijove

(P ), where the near-resonance condition also applies. The spacecraft is then ballistically captured by the

inner moon at M2.

∆V in the absence of the moon. The strategy to achieve consecutive gravity assists is to
maneuver the spacecraft to pass through apojove a little behind the moon. As illustrated
in Figure 3(a), the result is a decrease in the perijove of the spacecraft’s orbit, while the
apojove remains (mostly) constant in inertial space due to the conservation of the Jacobi
constant. As long as the spacecraft’s trajectory repeatedly targets apojove a little behind
the moon—the near-resonance condition which can be achieved through small on-board
impulsive thrusts, to be discussed soon—it will decrease its perijove once more, and so on.

Once the spacecraft orbit comes close to grazing the orbit of the inner moon, the inner
moon takes “control” (has the dominant effect) and the outer moon no longer has much
effect. The spacecraft orbit where this occurs is denoted E. The spacecraft now gets
gravity assists from the inner moon at perijove (P ). Once again, we use small maneuvers to
maintain the near-resonance condition, i.e., pass through perijove a little ahead of the moon.
This causes the apojove to decrease at every close encounter with the inner moon, causing
the spacecraft’s orbit to get more and more circular, as in Figure 3(b). When a particular
resonance is reached, the spacecraft can then be ballistically captured by the inner moon at
M2.[9] We note that a similar phenomenon has been observed in previous studies of Earth
to lunar transfer trajectories.[17, 18]
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Small Impulsive Maneuvers

Using several small impulsive maneuvers, each less than or equal to some threshold,e we
desire to steer the spacecraft trajectory from the initial jovicentric orbit beyond Callisto
to a capture orbit around Europa. To simplify the numerical procedure for this study,
we perform these maneuvers when the spacecraft and the dominant moon are in opposition
when viewed from Jupiter, as in Figure 4. In this figure, showing the motion of the spacecraft
in the rotating frame, one can imagine that we are viewing the motion of the spacecraft

eWe have chosen 2 m/s, an arbitrary figure. For an actual mission, the lower and upper bounds on this
figure would be set by the capabilities of the engine used.

Exterior Realm

Interior Realm

Moon Realm

L2L2J L1 M

Spacecraft Maneuvers

Performed When

Opposite Moon

Forbidden Realm

S/C

∆a−

∆a+

∆a−

∆a+

Semimajor Axis vs. Time

Figure 4: Small impulsive maneuvers are performed when the spacecraft (S/C) and a moon (M)

are in opposition when viewed from Jupiter (J). We schematically show example effects of small ∆V ’s

performed at this location in the rotating frame. The uncontrolled dashed trajectory reaches perijove just

behind the moon, and thus increases in semimajor axis as shown in the time history. But by performing a

small ∆V , the spacecraft can travel along the solid trajectory, reach perijove just ahead of the moon, and

subsequently decrease in semimajor axis. Also shown here are the three realms through which the spacecraft

can move as viewed in a rotating frame: an exterior realm external to the moon’s orbit, a moon realm,

and an interior realm around Jupiter and interior to the moon’s orbit. For a range of values of the Jacobi

constant, there are bottlenecks around L1 and L2, through which orbits passing between realms must pass.

There are special periodic orbits inside the bottlenecks which generate the tubes of transit orbits between

realms, as shown in Figure 5. Not all trajectories, such as the ones shown here, enter the moon realm upon

closely approaching the bottlenecks. Only those trajectories inside a phase space tube of capture orbits can

get captured, as described in the text.
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from a camera which is above the orbital plane of the moon and co-orbiting with it in a
counter-clockwise direction, such that the moon appears stationary. The familiar elliptical
orbits of the inertial frame are replaced by winding curves in the rotating frame due to
the Coriolis effect. Although at first unfamiliar, using the rotating frame simplifies the
calculation.

The problem of decreasing the semimajor axis of the jovicentric orbit becomes one of
performing appropriate small ∆V ’s at opposition such that the geometry of the subsequent
encounter with the moon lowers the jovian energy of the spacecraft. For example, consider
the dashed trajectory in Figure 4. Let us presume this is the uncontrolled trajectory, and
under the natural dynamics reaches perijove just behind the moon. The result will be an
increases in semimajor axis as shown in the time history. The solid trajectory, on the other
hand, was altered by performing a small ∆V at opposition. It reaches perijove just ahead
of the moon, and subsequently decrease in semimajor axis. By repeating this procedure,
one can construct the types of orbits shown schematically in inertial space in Figure 3.

Orbiting Each Moon: Ballistic Capture and Escape

To effect a ballistic capture of the spacecraft by a jovian moon, one finds the tube of transit
orbits which are heading toward that moon (the procedure is described in Refs. [9] and
[11]). The tube exists in the phase space (positions and velocities), but when projected
down to just position, as in Figure 5(a), it appears as a winding strip of variable width.

From the set of trajectories inside this tube, all of which will be ballistically captured
by the moon, one picks the trajectory with the most desirable properties. Most trajectories
come in from the exterior realm, experience a close approach of the moon, and will be on

(a) (b)

Figure 5: Construction of a spacecraft trajectory captured by a jovian moon. (a) The tube

going to the region around the moon from outside the moon’s orbit is shown schematically. (b) A close-up

near the moon shows the complex of tubes going toward or away from the moon’s L2 neighborhood.
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an elliptical orbit around the moon if no maneuver is performed. The orbit may linger
over particular regions of the moon which are desirable to study for a scientific mission.
Subsequent escape from the moon either toward the interior or exterior realm is easily
achieved using a very small ∆V , and is simply the time-reversed process of ballistic capture.
For the mission we have in mind, the spacecraft will proceed from the exterior realm to the
moon realm to the interior realm, and thence onto the next moon.

Ballistic capture and escape trajectories are linked to particular resonances.[9, 10] After
reaching the appropriate resonance, a small maneuver is performed at opposition prior to the
next encounter (as in Figure 4) to provide the appropriate conditions for the ballistic capture
into an elliptical orbit about the moon. The capture orbit achieved this way is unstable, in
the sense that it may collide with the surface of the moon or naturally escape after some
time, both of these fates being due to third body effects of Jupiter. Three approaches can
be considered to resolve this: (1) an energy reducing maneuver can be performed at the
closest approach to the moon to place the spacecraft in a stable orbit about the moon, (2)
a maneuver can be performed to place the spacecraft on a stable precessing ellipse around
the moon,[1, 17] or (2) small station-keeping maneuvers can be performed periodically to
keep the spacecraft’s periapse from going below the moon’s surface. Options (2) and (3)
may be the more fuel efficient, but this needs to be studied.[15] Furthermore, option (3)
may require sophisticated on-board autonomous navigation and control.

We remark that unstable orbits have been used for operations in previous missions, for
instance the Genesis Discovery Mission.[6, 22] Using appropriate station-keeping maneu-
vers, the instability of such orbits need not be detrimental to a mission. Quite the contrary.
“Unstable” orbits are easy to escape from, but are also easy to enter. This lies at the heart
of the fuel efficiency of missions such as the MMO and Genesis, which theoretically required
no deterministic maneuvers, 0 m/s, in the optimal case.[19]

Supposing one chose option (1), one picks the trajectory from the incoming tube in
Figure 5 which has a close approach to the moon equal to the orbital distance of the desired
operational orbit. A close up near L2 is shown in Figure 5(b), where the black spacecraft
trajectory, after a close approach of the moon, will be on an elliptical orbit around the
moon if no maneuver is performed. For the trajectory shown in Figure 1, one can, for
example, perform a 450 m/s maneuver at a 100 km altitude close approach to Europa to
put the spacecraft on a stable circular 100 km altitude orbit around Europa, as is shown in
a close-up around Europa in Figure 2(c).

TRAJECTORY CONSTRUCTION: NUMERICAL RESULTS

The preliminary tour trajectory, generated using the above building blocks, is shown in Fig-
ure 1. The entire trajectory is shown with time histories of semimajor axis and jovicentric
distance in Figure 6. Assuming that the spacercaft enters the jovian system in an ellipti-
cal jovian orbit which grazes Callisto’s orbit at perijove, the spacecraft has its jovicentric
semimajor axis decreased by resonant gravity assists with the moons in sequence. First the
spacecraft trajectory gets its energy reduced by Callisto, then temporarily orbits Callisto
(closest approach ∼1400 km altitude) before escaping inward of Callisto’s orbit, getting
its energy further reduced by Callisto. The spacecraft then changes control naturally from
Callisto to Ganymede and gets its energy reduced by Ganymede. After temporarily orbiting
Ganymede (closest approach ∼2100 km altitude), and passing to the control of Europa, the

9



Figure 6: Starting in an elliptical jovian orbit with perijove near Callisto’s orbit, the spacecraft trajectory

gets successively reduced in jovicentric energy by resonant gravity assists with the various moons, effectively

jumping to lower resonances at each close approach. The trajectory has its jovicentric energy reduced by

Callisto, Ganymede, and Europa. As the orbit converges upon the orbit of Europa, it will get ballistically

captured by Europa. At that point, a ∆V of approximately 450 m/s is needed to get into a 100 km altitude

orbit about Europa.

final stage of the trajectory begins. The spacecraft has its jovicentric energy further reduced
until it gets ballistically captured by Europa. At that point, a ∆V of approximately 450
m/s is needed to get into a 100 km altitude orbit about Europa.

One can gain a better physical understanding of what is going on by considering the
following. The spacecraft trajectory can be shown in eccentricity (e) vs. semimajor axis
(a), as in Figure 7(a) along with lines of constant Jacobi constant (approximated as the
Tisserand parameter[9]). The spacecraft begins the jovian tour at the top right corner
of Figure 7(a). As it has its a reduced via resonant gravity assists, it will also have its
e decreased (since it is in the exterior realm and the Tisserand parameter must remain
roughly constant). As the orbit gets more and more circular, converging upon the orbit of
Callisto, it will at some point get ballistically captured by Callisto, and orbit Callisto for a
time. Small ∆V ’s can be used to steer the spacecraft such that it escapes Callisto and goes
into a jovicentric orbit inside the orbit of Callisto. Like the schematic trajectory shown in
Figure 3(a), the spacecraft will continue to decrease in a, but now e will climb (since it’s in
the interior realm).

When the spacecraft reaches the orbit labeled E in Figure 3, the spacecraft will switch
control to Ganymede. Physically, switching control occurs when the spacecraft’s jovicentric
periapse comes close to the orbit of Ganymede. The right side of the V shaped curve above
Ganymede (G) in Figure 7(a) is approximately the line of all orbits whcih graze the orbit
of Ganymede. This is a property of Tisserand parameters (and Jacobi constants) with
values close to those of L1 and L2, like the values we have used for this numerical example.
We note that one can also plot the spacecraft trajectory in jovicentric orbital period (P )
vs. periapse (rp), shown in Figure 7(b). This follows the convention of Heaton, Strange,
Longuski, and Bonfiglio.[5] Contours of the Tisserand parameter are here shown as contours
of hyperbolic excess velocity (V∞) with respect to the moon to which they correspond.
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Figure 7: (a) The same trajectory as shown in Figures 1 and 6 is shown here, now plotting eccentricity

(e) vs. jovicentric semimajor axis (a). The trajectory is the thick line, and jumps along curves of constant

three-body energy (or the Jacobi constant, also approximated as the Tisserand parameter), depending on

which moon has the dominant third body effect on the spacecraft. (b) One can also plot the trajectory in

jovicentric orbital period (P ) vs. perijove (rp), following the convention of Heaton, Strange, Longuski, and

Bonfiglio.[5] Note that now contours of the Jacobi constant are labeled with the V∞ (in km/s) and the moon

to which they correspond. The actual V∞ of the spacecraft trajectory at each moon is also shown.

Trade-Off Between Fuel and Time Optimization

A few small ∆V ’s adding up to 22 m/s are used throughout the tour. The dramatically low
∆V is achieved at the expense of time—the present trajectory has a time of flight (TOF)
of about four years, mostly spent in the inter-moon transfer phase. This is likely too long
to be acceptable for an actual mission. With refinement, we believe the method could be
applied to an actual mission, maintaining both a low ∆V for the tour and low accumulated
radiation dose (a concern for an actual mission in the jovian system).f

We conjecture that for slightly larger ∆V , a reasonable time of flight of several months
can be achieved. This conjecture is based upon evidence in a similar astrodynamics problem
using the planar, circular, restricted three-body problem as the model; a time and fuel
optimized trajectory from an Earth orbit to a lunar orbit. Bollt and Meiss[1] considered the
transfer from a circular Earth orbit of radius 59669 km to a quasi-periodically precessing
ellipse around the moon, with a perilune of 13970 km. Their method takes advantage of
the fact that long trajectories in a compact phase space are recurrent. Starting with a long
unperturbed chaotic trajectory that eventually reaches the target, the use small well chosen
∆V ’s to cur recurrent loops from the trajectory, shortening it whenever possible. They find
a transfer (see Figure 8(a)) that achieves ballistic capture requiring 749.6 m/s, 38% less
total velocity boost than a comparable Hohmann transfer, but requiring a transfer time
of 748 days. Later, Schroer and Ott[17] considered this problem with the same initial and

fThe current trajectory spends about 260 days inside of 12 RJ (never lower than 10 RJ) before Europa
orbit insertion.

11



TOF = 65 days
∆V = 860 m/s
1 Day Tick Marks

Earth Moon

(a) (b)

Figure 8: Much lower time-of-flight achieved using only slightly more fuel. (a) The transfer from

a circular earth orbit of radius 59669 km to precessing lunar orbit of perilune 13970 km found by Bollt and

Meiss[1] is shown in the rotating frame. The ∆V is 749.6 m/s and the time of flight is 748 days. (b) A

transfer between the same initial and final orbits, using a ∆V of 860.1 m/s, but requiring a flight time of 65

days.

final orbits, but found a transfer requiring about half the flight time, 377.5 days, but using
roughly the same total ∆V , 748.9 m/s, suggesting that this is near the minimum required
for a transfer between these two orbits.

In the present work, we seek transfer trajectories that provide a compromise between
time and fuel optimization. Using the method of Schroer and Ott[17], together with methods
for achieving ballistic capture [9, 10], we find a transfer, shown in Figure 8(b), with a flight
time of 65 days which uses a total ∆V of 860.1 m/s. Thus the trajectory takeis one-tenth
of the time as the Bollt and Meiss[1] trajectory using only about 100 m/s more fuel. The
previously described trajectories are shown in Figure 9 compared with other trajectories
produced using this method.

The method of determining the ∆V vs. TOF trade-off has been applied to only one
three-body system thus far.[15] In the future, we would like to adapt the method to missions
combining several restricted three-body systems, such as the MMO, in order to seek more
reasonable flight times. As has been proposed, the time of flight may be drastically reduced
by using only slightly more fuel during the inter-moon transfer phases.

FUTURE WORK

In addition to exploring the important compromise between time and fuel optimization,
future studies will investigate the following.

• The use of low-thrust continuous propulsion and optimal control: The maturity of
current ion engine technology has brought low thrust controls into the practical world
of mission design in industry and in NASA (cf. the Deep Space 1 mission). Similar
work is being done at the European Space Agency as well. Therefore, low thrust
trajectory control is of great interest to current mission design. Our current work
on the MMO considers several small impulsive burns. But an actual mission may
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Figure 9: Trade-off between fuel and time optimization. The ∆V vs. time of flight plot for several

transfer trajectories to the moon which use nonlinear third-body effects, compared with the Hohmann

transfer. As can be seen, a trajectory of one-fifth to one-tenth of the flight-time of some previous fuel

optimized trajectories can be achieved using only about 100 m/s more ∆V .

want to save on spacecraft weight by using low thrust propulsion. How could our
method be modified to incorporate low-thrust? Theoretically, one of the most favored
approaches is to use optimal control in generating low thrust trajectories. We have
found that a good first guess is often vital for numerical optimization algorithms,
especially for an n-body problem, which is numerically very sensitive. Dynamical
systems theory can provide geometrical insight into the structure of the problem
and even good approximate solutions, as we found in an earlier paper.[19] There is
evidence that optimal trajectories using multiple low thrust burns are “geometrically
similar” to impulsive solutions.[18, 23] Thus, multiple burn impulsive trajectories that
we construct for the MMO can be good first guesses for an optimization scheme which
uses low thrust propulsion to produce a fuel efficient mission.

• Radiation effects: The current model does not include radiation effects. Evidence
suggests it is desirable to keep the spacecraft outside of a 12 RJ from Jupiter, in
which the radiation may destroy sensitive electronics on board the spacecraft. The
orbit of Europa is located at 10 RJ , so the transfer between Ganymede and Europa
must minimize the time spent near its perijove for the final resonant gravity assists
that lead to a capture by Europa.g One needs to determine what is the best way
to minimize radiation effects and still achieve a very low thrust transfer. On the

gThe perijove for this portion of the tour is just outside the radial distance of Europa’s L2 point, which
is located slightly within 12 RJ .
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other hand, the strong magnetic field of Jupiter may make the use of tethers a viable
propulsion or power generation option.

• More control over operational orbits for scientific observation: For a mission to Eu-
ropa and the other moons, some control strategy is necessary to maximize desirable
scientific observation and avoid collisions with the moon surface or escape from the
moon’s vicinity. Exotic strategies might be considered. For instance, what is the
optimal thrusting strategy during the ballistic capture approach in order to achieve
an operational orbit which maximizes observation time over an interesting portion
of a moon’s surface? Also, what is the optimal station-keeping strategy for elliptical
operational orbits? In the short term, it may be desirable to target particular stable
operational orbits, but still save fuel using third body effects.[4, 16]

• Autonomous on-board navigation and control: A trajectory of this type, which is sensi-
tive to ∆V errors and modeling errors, will need to have the capability of autonomous
on-board navigation and control. The first step toward this which one can look at
is the trajectory correction maneuver problem, in which errors are modeled and a
control algorithm corrects for those errors.[19]
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