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Abstract

In this paper we extend the matching technique to a
class of nonholonomic systems with symmetries. As-
suming that the momentum equation defines an inte-
grable distribution, we introduce a family of reduced
systems. The method of controlled Lagrangians is then
applied to these systems resulting in a smooth stabiliz-
ing controller.

1 Introduction

In this paper we consider the problem of stabilization
of relative equilibria of underactuated nonholonomic
systems with symmetry by the method of controlled
Lagrangians. The method of controlled Lagrangians
for holonomic systems originated in Bloch, Leonard,
and Marsden [?] and was then developed in Auckly [?],
Bloch, Leonard, and Marsden [?, ?, ?], Bloch, Chang,
Leonard, and Marsden [?], and Hamberg [?, ?]. A sim-
ilar approach for Hamiltonian controlled systems was
introduced and further studied in [?, ?, ?, ?].

According to this method, the original controlled sys-
tem is represented as a new, uncontrolled Lagrangian
system for a suitable controlled Lagrangian. The en-
ergy associated with this controlled Lagrangian is de-
signed to be positive or negative definite at the (rela-
tive) equilibrium to be stabilized. The time invariant
feedback control law is obtained from the equivalence
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requirement for the new and old systems. If asymp-
totic stabilization is desired, the dissipation emulating
terms are added to the control input.

Our goal is to extend this approach to systems sub-
ject to nonholonomic constraints. Some results in this
direction were obtained in Zenkov, Bloch, and Mars-
den [?]. An algorithm leading to the nonholonomic
version of the method of controlled Lagrangians was
suggested for stabilizing the steady state motions of un-
deractuated systems with two internal degrees of free-
dom. However, the practical implementation of this al-
gorithm can lead to substantial difficulties, which have
their roots in the complicated structure of the local in-
variant manifolds of the system in the neighborhood of
the relative equilibrium subject to stabilization.

In the present paper we consider a somewhat restricted
class of nonholonomic systems. We assume that the
momentum equation is in the form of an integrable
transport equation, which results in a simple structure
of the global invariant manifolds of the system. We
then apply the matching technique to the Lagrangian
systems on these invariant manifolds.

To illustrate the theory, we consider the problem of
stabilization of slow upright steady state motions of
the unicycle along a straight line. It is well known that
this motion becomes unstable if the forward speed of
the unicycle is smaller than some critical value. We
implement the controller by means of a balanced rotor
placed on the top of a rod attached to the center of the
unicycle. We then find the explicit stabilizing feedback
control input.
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2 Overview of Nonholonomic Dynamics

In this section we give a brief exposition of nonholo-
nomic dynamics. We refer the reader to Bloch, Krish-
naprasad, Marsden, and Murray [?] and Zenkov, Bloch,
and Marsden [?] for a complete exposition.

Symmetries. Suppose we are given a nonholonomic sys-
tem specified by the Lagrangian L : TQ → R and a
(nonintegrable) constraint distribution D. The Lagran-
gian has the form of kinetic minus potential energy. As
usual, the kinetic energy is defined by a Riemannian
metric on the manifold Q. We can then look for a group
G that acts (freely and properly) on the configuration
space Q. It induces an action on the tangent bundle
TQ and so it makes sense to ask that the Lagrangian
L and the distribution D are invariant. If these prop-
erties hold, we say that G is a symmetry group. In
many examples the symmetry group will be evident.
For instance, for the system considered below, the uni-
cycle with rotor, the symmetry group is SO(2)×SE(2).
The manifold Q/G is called the shape space. The phase
coordinates of a system with symmetry naturally form
three groups: the shape, the momentum, and the group
variables. The dynamics of the group variables is gov-
erned by the reconstruction equation. Since the system
is G-invariant, this reconstruction equation decouples
from the full system of equations of motion. Remaining
equations are specified in the next paragraph.

Reduced Equations. These equations govern the evolu-
tion of the shape and momentum variables of the sys-
tem. They are derived in Bloch, Krishnaprasad, Mars-
den, and Murray [?]. In the present paper we consider
a class of nonholonomic systems that satisfies the fol-
lowing assumptions:

1. The curvature of the nonholonomic connection is
zero.

2. The controls affect some of the shape variables
of the system.

3. The momentum equation is in the form of the
parallel transport equation.

The Routhian of the system equals

R(r, ṙ, p) =
1
2
gαβ(r)ṙαṙβ − U(r, p),

where the first term represents the shape metric and the
second term, called the amended potential, is defined by

U(r, p) =
1
2
Iab(r)papb + V (r).

Here and below, Iab(r) are the components of the in-
verse locked inertia tensor and V (r) is the potential
energy of the system. As usual, the shape configura-
tion variables and the nonholonomic momentum are de-
noted by r and p, respectively. The reduced equations

of a system satisfying the assumptions 1–3 become

d

dt

∂R
∂ṙα′ = ∇α′R,

d

dt

∂R
∂ṙα′′ = ∇α′′R + uα′′ ,

ṗa = Db
aαpbṙ

α.

In the above, rα′
and rα′′

are the unactuated and ac-
tuated shape variables, respectively, and uα′′ are the
control inputs. The operators ∇α are defined by

∇α =
∂

∂rα
+ Db

aαpb
∂

∂pa
.

See [?, ?] for details. The equilibria of these equations
represent the steady state motions of the original sys-
tem.

In the present paper we require, as a part of the
controller design, that the actuated variables rα′′

are
cyclic, in which case the reduced equations are written
as

d

dt

∂R
∂ṙα′ = ∇α′R, (1)

d

dt

∂R
∂ṙα′′ = uα′′ , (2)

ṗa = Db
aα′pbṙ

α′
. (3)

Note that our definition of cyclic variables allows only
non-cyclic shape velocities to occur in the momentum
equation (??). Hence, the internal position of the con-
troller has no impact on its performance.

Elimination of the Momentum Variables. Since the mo-
mentum equation is in the form of a parallel transport
equation, it defines a distribution

dpa = Dc
aα′pcdrα′

. (4)

We assume in this paper that the curvature of this dis-
tribution vanishes (hence the name flat in the title of
the paper). This defines the global invariant manifolds
Qc of (??)–(??):

pa = Pa(rα′
, cb), cb = const. (5)

Each of these invariant manifolds is diffeomorphic to
the tangent bundle T (Q/G) of the original system’s
shape space. The dynamics on these invariant mani-
folds is governed by the equations

d

dt

∂Lc

∂ṙα′ =
∂Lc

∂rα′ ,
d

dt

∂Lc

∂ṙα′′ = uα′′ , (6)

where

Lc(rα′
, ṙα) = R(rα′

, ṙα,Pa(rα′
, cb)).
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We thus obtain a family of the underactuated con-
trolled Lagrangian systems on Q/G. The Lagrangians
Lc of these systems are represented by the formula

Lc =
1
2
gαβ ṙαṙβ − U(rα′

,P(rα′
, c)). (7)

The structure of the Lagrangians Lc reveals the inde-
pendence of the kinetic energy Kc on the vector param-
eter c.

3 Matching and Controlled Lagrangians

In this section we briefly discuss the matching tech-
nique. We refer the reader to [1, 4–8, 11, 12], for a
detailed exposition.

Lagrangian Matching. Consider a mechanical system
specified by the Lagrangian L = K − V . The kinetic
energy K is given by the Riemannian metric gij on
the configuration manifold Q. The potential energy
V (q) has a critical point at q0. Assuming that the
equilibrium q0 is unstable, we would like to find the
feedback control inputs that stabilize this equilibrium.
This problem becomes interesting and nontrivial if the
system is underactuated, i.e., the number of the control
inputs is smaller than dimQ.

Denote the unactuated and actuated variables by x =
(x1, . . . , xm) and y = (y1, . . . , yn), respectively. The
controlled dynamics is governed by the equations

d

dt

∂L

∂ẋ
=

∂L

∂x
,

d

dt

∂L

∂ẏ
=

∂L

∂y
+ u, (8)

where u = (u1, . . . , un) represents the control inputs.

According to the method of controlled Lagrangians,
one introduces a new function L̃ = K̃ − Ṽ and con-
siders the system

d

dt

∂L̃

∂ẋ
=

∂L̃

∂x
,

d

dt

∂L̃

∂ẏ
=

∂L̃

∂y
. (9)

One then requires that the vector fields defined by (??)
and (??) are identical. This determines the feedback
control inputs u. If in addition K̃ + Ṽ has a minimum
(maximum) at (q0, 0), the equilibrium q0 of the closed
loop system (??) is neutrally stable.

The equivalence of the systems (??) and (??) imposes
certain restrictions on L and L̃ represented by a sys-
tem of nonlinear partial differential equations called the
matching conditions. See [?, ?, ?] for details and dis-
cussion of solvability of this system.

In [4–7] the technique of controlled Lagrangians is de-
veloped for stabilization of relative equilibria of me-
chanical systems with cyclic symmetries. The algo-
rithm suggested in this series of papers allows one to

find the explicit solution of the system of partial dif-
ferential equations that represents the matching condi-
tions for a special class of Lagrangians. The controlled
Lagrangian is constructed in the form of L̃ = K̃ − V ,
where

K̃ = K(x, ẋ, ẏ + k(x)ẋ) + Kσ(x, k(x)ẋ), (10)

K and V are the original kinetic and potential energies,
Kσ is the quadratic form in ẏ (with coefficients depend-
ing on x), and k(x) is a vector-valued linear form in ẋ.
The coefficients of the forms k and Kσ are denoted by
kα′′

α′ and σα′′β′′ , respectively. According to [?], one can
match equations (??) and (??) if the following match-
ing conditions are satisfied:

kα′′

α′ = −σα′′β′′
gα′β′′ , (11)

σα′′β′′
(σβ′′γ′′,α′ + gβ′′γ′′,α′) = 2gα′′β′′

gβ′′γ′′,α′ , (12)

kα′′

α′,β′ − kα′′

β′,α′ = gα′′β′′
gβ′′γ′′,α′kγ′′

β′ .(13)

There is a certain freedom in choosing k(x) and Kσ,
which allows one to accomplish the problem of stabi-
lization of relative equilibria. We omit here the details
(see [?]), but note that this approach is applicable to
systems whose kinetic energy is a quadratic form with
constant coefficients. After L̃ is constructed, the con-
trol inputs can be evaluated explicitly.

Application to Nonholonomic Systems with Integrable
Momentum Equation. We now apply the matching pro-
cedure to the family of systems (??). Recall that the
flatness of the distribution (??) is essential for defining
this family. Each of the matching procedures outlined
above starts from kinetic shaping, i.e., from construct-
ing the controlled kinetic energy form. Since the ki-
netic energy of each system in (??) is c-independent,
the kinetic shaping can be accomplished for the whole
family of Lagrangians Lc at once. In particular, if ki-
netic shaping is sufficient for stabilization, the control
law obtained this way is represented by the same for-
mula for all of the systems in (??). If potential shaping,
i.e., the change of the potential energy, is required for
stabilization, it is performed for each of the systems in
(??) separately.

Assuming that potential shaping is not needed, we
now discuss the procedure of obtaining the controlled
Routhian from the family of the controlled Lagrangians
(??). First, apply (??) to the family (??) and ob-
tain the family of controlled Lagrangians L̃c = K̃ −
U(rα′

,P(rα′
, c)). Then define the controlled Routhian

by

R̃ = K̃ − U(r′, p). (14)

Theorem 1 Assume that the distribution (??) is flat
and the matching conditions (??)–(??) are satisfied.
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Then equations (??)–(??) are equivalent to the equa-
tions of motion of a nonholonomic system associated
with the controlled Routhian (??) and the original con-
strained distribution D:

d

dt

∂R̃
∂ṙα′ = ∇α′R̃,

d

dt

∂R̃
∂ṙα′′ = 0,

ṗa = Db
aα′pbṙ

α′
.

The control inputs u are given by

uα′′ = −
[
gα′′β′′kβ′′

β′,γ′

− gα′′β′′kβ′′

δ′ Aδ′α′(
gα′β′,γ′ − gβ′γ′,α′/2

− gα′δ′′gδ′′α′′
gβ′α′′,γ′ − gα′δ′′kδ′′

β′,γ′
)]

ṙβ′
ṙγ′

− gα′′β′′kβ′′

δ′ Aδ′α′[ − (
gα′γ′′,γ′ − gγ′γ′′,α′

− gα′δ′′gδ′′β′′
gγ′′β′′,γ′

)
ṙγ′

ṙγ′′

+ gγ′′β′′,α′ ṙγ′′
ṙβ′′

+ ∇α′U
]
.

In the above,

Aα′β′ = gα′β′ + gα′δ′′gβ′α′′(σδ′′α′′ − gδ′′α′′
)

and ṙβ′′
can be eliminated, if desired, by making use of

the relation

ṙβ′′
= gα′′β′′

J̃α′′ − (gα′′β′′
gα′α′′ + kβ′′

α′ )ṙα′
.

In the last formula, J̃α′′ are constants.

Stability of the relative equilibria of the system associ-
ated with R̃ can be analyzed using the nonholonomic
energy-momentum method (see [?]).

Remark. The equilibria and steady state motions of
nonholonomic systems are not isolated. The above
technique is used to stabilize the manifold of relative
equilibria, but not a single relative equilibrium. For
the latter goal, one needs a discontinuous feedback
controller. However, it is possible to include dissipa-
tion emulating terms in the control input and achieve
asymptotic stabilization of the manifold of steady state
motions (see [?, ?] for details).

4 Stabilization of the Unicycle with Rotor

In this section we apply the technique developed above
to the problem of stabilization of the slow vertical
steady state motions of the unicycle with rotor.

The Model. We now present the dynamical model of a
homogeneous disk on a horizontal plane with a rotor.
The rotor is free to rotate in the plane orthogonal to

the disk. The rod connecting the centers of the disk
and rotor keeps the direction of the radius of the disk
through the contact point with the plane (i.e., the ap-
propriate controller has already been implemented).

The configuration space for this system is Q = S1×S1×
S1 × SE(2), which we parameterize with coordinates
(θ, χ, ψ, φ, x, y). As in Figure ??, θ is the tilt of the
unicycle itself, and ψ and χ are the angular positions
of the wheel of the unicycle and the rotor, respectively.
The variables (φ, x, y), regarded as a point in SE(2),
represent the angular orientation and position of the
point of contact of the wheel with the ground.

Figure 1: The configuration variables for the unicycle
with rotor.

This mechanical system is SO(2)×SE(2)-invariant; the
groups SO(2) represent the symmetry of the wheel,
that is, the symmetry in the ψ variable, while the
group SE(2) represents the Euclidean symmetry of
the overall system. The action by the group ele-
ment (α, β, a, b) on the configuration space is given by
(θ, χ, ψ, φ, x, y) �→ (θ, χ, ψ + α, φ + β, x cos β − y sinβ +
a, x sinβ + y cos β + b).

System Parameters. We will use the following nota-
tions:

M = the mass of the disk,

R = the radius of the disk,

A, B = the principal moments of inertia of the disk,

A,B = the principal moments of inertia of the rotor,
r = the rod length,

µ = the rotor mass.

Lagrangian and Constraints. The Lagrangian of this
system has the standard form of kinetic minus potential
energy:

L = Kd + Kr +
M

2
v2

M +
µ

2
v2

µ − V,
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where,

Kd =
1
2
[
A(θ̇2 + φ̇2 cos2 θ) + B(φ̇ sin θ + ψ̇)2

]
,

Kr =
1
2
[
A(φ̇2 sin2 θ) + B(χ̇ + θ̇)2

]
,

v2
M = (ẋ − Rφ̇ sin θ cos φ)2 + (ẏ − Rφ̇ sin θ sinφ)2

+ R2θ̇2 + 2Rφ̇ cos θ(ẏ cos φ − ẋ sinφ),

v2
µ = (ẋ − (R + r)φ̇ sin θ cos φ)2

+ (ẏ − (R + r)φ̇ sin θ sinφ)2 + (R + r)2θ̇2

+ 2(R + r)φ̇ cos θ(ẏ cos φ − ẋ sin φ),
V = MgR cos θ + µg(R + r) cos θ.

The constraints are given by the standard conditions
of rolling without slipping:

ẋ = −ψ̇R cos φ, ẏ = −ψ̇R sin φ.

Constrained Lagrangian and Nonholonomic Momen-
tum. The reduced Lagrangian for the unicycle with
rotor is

Lc =
1
2
(
αθ̇2 + 2βθ̇χ̇ + βχ̇2

+ I11(θ)φ̇2 + 2I12φ̇ψ̇ + I22ψ̇
2
)
− V (θ),

where

α = A + MR2 + µ(R + r)2 + B, β = B

are the components of the shape metric, and

I11 = A cos2 θ + A + (B + MR2 + µ(R + r)2) sin2 θ,

I12 = (B + MR2 + µR(R + r)) sin θ,

I22 = B + MR2 + µR2

are the components of the locked inertia tensor. The
components of the nonholonomic momentum are

p1 =
∂Lc

∂φ̇
= I11φ̇ + I12ψ̇,

p2 =
∂Lc

∂ψ̇
= I12φ̇ + I22ψ̇.

For the unicycle with rotor, p1 is the vertical (i.e., or-
thogonal to the xy-plane) component of the angular
momentum of the system while p2 is the component of
the disk’s angular momentum along the normal direc-
tion to the disk. See Zenkov, Bloch, and Marsden [?]
for details concerning the nonholonomic momenta.

Reduced Equations. The reduced dynamics of the uni-
cycle is governed by equations (??)–(??) with r1 = θ,
r2 = χ, and the Routhian

R =
1
2
(
αθ̇2 + 2βθ̇χ̇ + βχ̇2 − Iab(θ)papb

)
− V (θ).

As usual, Iab are the components of the inverse inertia
tensor.

The shape equations for (θ, χ) describe the motion of
the rod and rotor system, while the momentum equa-
tions for (p1, p2) model the (coupled) wheel dynamics.
The coefficients Db

aα in (??) for the unicycle with rotor
are computed to be

Da
11 = I2a(MR + µ(R + r))R cos θ,

Da
21 = −I1a(MR + µ(R + r))R cos θ.

See Zenkov, Bloch, and Marsden [?] for the details con-
cerning how one derives and organizes such equations.

The slow vertical steady state motions of this system
are represented by the relative equilibria

θ = 0, χ̇ = 0, p1 = 0, p2 = p0
2.

Momentum Reduction and Stabilization. This system
satisfies all conditions of section ??. The momentum
equations define an integrable distribution. The dy-
namics on the invariant manifolds Qc is governed by
the equations

d

dt

∂Lc

∂θ̇
=

∂Lc

∂θ
,

d

dt

∂Lc

∂χ̇
= uc, (15)

where

Lc =
1
2
(αθ̇2 + 2βθ̇χ̇ + βχ̇2) − Uc(θ),

and

Uc(θ) =
1
2
Iab(θ)Pa(θ, c),Pb(θ, c) + V (θ)

is the amended potential for the unicycle with rotor
restricted to the invariant manifolds (??). Observe that
the components of the shape metric for the unicycle
with rotor are constants. We thus apply the approach
of Bloch, Leonard, and Marsden [?, ?, ?] and construct
the controlled Lagrangians of the form

L̃c =
1
2
(αθ̇2 + 2βθ̇(χ̇ + kθ̇) + β(χ̇ + kθ̇)2)

+
σ

2
(kθ̇)2 − Uc(θ),

where k and σ are constants. The uncontrolled dynam-
ics associated with L̃c,

d

dt

∂L̃c

∂θ̇
=

∂L̃c

∂θ
,

d

dt

∂L̃c

∂χ̇
= 0,

is then forced to be equivalent to the controlled dy-
namics (??). This requirement implies σ = −β/k and
defines the control laws by

uc =
kβ

α − β − kβ

∂Uc

∂θ
.
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These control laws act on the systems on appropriate
invariant manifolds (??). See [4–7] for details concern-
ing the matching process and identification of the con-
trol inputs.

Using the approach of section ??, we obtain the con-
trolled Routhian for the unicycle with rotor:

R̃ =
1
2
(αθ̇2 + 2βθ̇(χ̇ + kθ̇) + β(χ̇ + kθ̇)2)

+
σ

2
(kθ̇)2 − 1

2
Iabpapb − V (θ).

The control law rewritten in the terms of the amended
potential U(θ, p) becomes:

u =
kβ

α − β − kβ
∇θU(θ, p).

Recall that p in the amended potential is a dynamic
variable and not a function of r. We emphasize that
the derivative ∇θU can be evaluated explicitly:

∇θU(θ, p) =
∂(Iabpapb/2 + V (θ))

∂θ
+ Dc

aθI
abpbpc.

We can conclude stability of the relative equilibria θ =
0, p1 = 0, p2 = p0

2 using the nonholonomic energy-
momentum method applied to the controlled Routhian.
The steady state motions under consideration become
stable if one chooses

k >
α − β

β2
.

5 Conclusions

The proposed method allows one to establish explicitly
the stabilizing control inputs for a class of underac-
tuated nonholonomic systems. We intend in a future
publication to relax some of the assumptions on the
Lagrangian and constraints made in this paper.
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