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The Hamiltonian structure of a two-dimensional rigid circular cylinder
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This paper studies thedynamicalfluid plus rigid-body system consisting of a two-dimensional rigid
cylinder of general cross-sectional shape interacting withN point vortices. We derive the equations
of motion for this system and show that, in particular, if the vortex strengths sum to zero and the
rigid-body has a circular shape, the equations are Hamiltonian with respect to a Poisson bracket
structure that is the sum of the rigid body Lie–Poisson bracket onse(2)* , the dual of the Lie
algebra of the Euclidean group on the plane, and the canonical Poisson bracket for the dynamics of
N point vortices in anunboundedplane. We then use this Hamiltonian structure to study the linear
and nonlinear stability of the moving Fo¨ppl equilibrium solutions using the energy-Casimir method.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1445183#
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I. INTRODUCTION

The interaction of rigid and deformable bodies with i
compressible, vortical fluid flow fields at high Reynold
numbers and, in particular, the interaction with the vortic
shed by the bodies themselves due to the dynamics of
thin boundary layers, has been a subject of long-stand
interest in fluid mechanics. The classical von Karman vor
street behind a circular cylinder may be considered the
chetypical problem in this subject. Viscous effects are c
fined to the thin boundary layers and it is a reasonable
proximation to model the interactions on an inviscid basis
long as the mechanism of vortex shedding itself can be c
sidered unimportant to the dynamics of the interaction.

The subject has, of course, been extensively explore
the traditional aeronautics, mechanical, and civil enginee
areas along with numerous applications. Indeed, in areas
aeronautics, strong~though not spatially extensive! vorticity
fields are almost always in the vicinity of aircraft wings a
bodies. The highly nonlinear nature of these interactions
for a long time, however, ruled out the possibility of soph
ticated mathematical modeling. Typical and popular mod
have usually followed semi-empirical approaches wh
most of the nonlinear behavior is accounted for by the fo
coefficients whose values are obtained from experime
data assembled in look-up tables. Moreover, the effect of

a!Electronic mail: shashi@me.nmsu.edu
b!Electronic mail: marsden@cds.caltech.edu
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1211070-6631/2002/14(3)/1214/14/$19.00

Downloaded 22 Feb 2002 to 131.215.186.91. Redistribution subject to A
s
eir
g
x
r-
-

p-
s
n-

in
g
ke

as
-
ls
e
e
al
e

moving body on the vorticity field is usually ignored exce
in acoustical and aeroelastic studies and here too one
cally looks only at small oscillations of the body or bod
surface.

Mathematical advances in nonlinear dynamics in
past three decades, especially in the area of geometrical
chanics, and emerging engineering applications like the
sign of remotely piloted underwater vehicles,1 have moti-
vated the authors to look at this subject from the point
view of geometric mechanics and develop, at least on
ideal fluid level, sophisticated nonlinear models to study
dynamicsand control of these systems. In particular, on
overall goal is to study the role of vorticity and model th
dynamics of the system as a whole; that is, we want to al
the body and vorticity field to interact freely or in a con
trolled manner and develop coupled PDEs or ODEs for
simultaneous evolution of the body variables and the vor
ity field. Our specific goal in the present paper is to carry t
out for a two-dimensional~2D! rigid body interacting dy-
namically withN point vortices. Interacting fluid–solid sys
tems in such a framework have not been well-studied.
deed, the authors are not aware of the existence in litera
of even the equations of motion of the simple system we
considering in this paper. We use these equations to s
Hamiltonian structures and stability in the case of rigid bo
ies with a circular cross section.

Our long-term goal is to understand the geometry, d
namics, and control of a three-dimensional~3D! rigid or de-
formable body moving in the vortical field of an incompres
ible, inviscid fluid. Apart from the design of underwate
4 © 2002 American Institute of Physics
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1215Phys. Fluids, Vol. 14, No. 3, March 2002 Hamiltonian dynamics of cylinder and point vortices
vehicles, we expect such investigations to have releva
and applications in several other areas in engineering
physics: high angle-of-attack aerodynamics, the locomo
of fish that shed vortices by flapping their tails,2 and the
dynamics of bubbles.3 Theoretical investigations in these a
eas are not new. There are several papers that derive int
expressions for forces and moments on moving bodies
vortical fields, for example,4,5 but these do not consider th
dynamics of the interacting fluid–solid system. The work
Galper and Miloh6,7 has a dynamics perspective, howev
they extend Kirchhoff’s equations of motion to the case o
nonuniform potential flow field superimposed on the pote
tial field associated with the moving rigid or deformab
body. Extension to vortical fields is not considered. Kad
and Novikov8 consider a dynamically interacting vortex
cylinder system but with only one point vortex and the
focus is on chaotic capture. The works that come closes
addressing our problem are Koiller9 and Kelly.10 We hope to
subsequently apply to these problems the many ideas in
linear stability, relative equilibria and control that have be
developed in the general geometric theory of mechani11

and also introduce viscous effects such as boundary laye12

We will focus on some first steps toward this goal:
understand the Hamiltonian structure and stability of a
rigid cylinder that interactsdynamicallywith N point vorti-
ces external to it. This system may be viewed, in the con
of geometric mechanics, as the blend of two simpler, cla
cal systems each with a well-known Hamiltonian structu
One is the system of a 2D rigid cylinder moving in a fie
with zerovorticity. The equations of motion of this system
derived by Kirchhoff, can be shown to be Hamiltonian1 with
respect to the Lie–Poisson bracket structure onse(2)* , the
dual of the Lie algebra of the Euclidean group on the pla
The other system is that ofN point vortices moving exter-
nally to a closed, rigid,stationaryboundary. The equation
of the vortices were shown by Lin13 to be Hamiltonian with
respect to the same canonical symplectic structure as th
N vortices in anunboundedplane.

We present in this paper the equations of motion of
dynamically interacting system for a cylinder of gene
cross-sectional shape and show that, at least for circ
shapes and when the vortex strengths sum to zero, the e
tions are Hamiltonian with respect to a Poisson bracket st
ture that is simply thesumof the brackets of the two, simple
systems referred to above, i.e.,Lie–Poisson plus canonica
point vortex. The reason we assume that the sum of the p
vortex strengths is zero is that, in this case, as we shall s
later on, the relevant momenta depend only on the posit
of the vortices with respect to the body and this simplifi
matters considerably. We do not expect that this is a fun
mental restriction.

The equations of motion are derived from a stand
momentum balance analysis in the plane. The flow is
sumed to be inviscid, incompressible, at rest at infinity a
satisfies the zero normal velocity condition on the body.
the last subsection of this paper the Hamiltonian structur
used to investigate the linear and nonlinear stability of
Föppl equilibrium.14,15 Stability and control issues of thi
system in particular those with relevance to some of the a
Downloaded 22 Feb 2002 to 131.215.186.91. Redistribution subject to A
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of application mentioned above will be studied in more de
later.

II. HAMILTONIAN FORM FOR THE DYNAMICS OF A
MOVING CIRCULAR CYLINDER OF RADIUS R,
AND N POINT VORTICES

In this section we present the Hamiltonian equations o
circular cylinder of radiusR interacting dynamically withN
point vortices in the plane whose strengths sum to zero
schematic sketch of the configuration when the cylinder
arbitrary shape and the vortex strengths have arbitrary su
given in Fig. 1. The equations of motion for that more ge
eral problem are derived in the Appendix and the equati
for the circular case follow directly from them. The gener
equations~A55!, ~A56!, ~A57!, and ~A58! are reproduced
below for convenience:

S d

dt
1V3 DL50,

dA

dt
1V3L50,

GkS dlk
dt

1V3 lk1VD5JS ]W

] lk
D , k51,...,N,

da

dt
5V1a3V,

whereV is the velocity of the body center of mass referred
the body-fixed frame,a is the position vector, referred to th
body-fixed frame, of the body center of mass from the orig
of the spatially fixed frame,V is the body rotational velocity,
L andA are the momenta of the system given by Eq.~A44!,
lk is the position vector of thekth point vortex in the body-
fixed frame, andW is the Kirchhoff–Routh function gener
alized to moving boundaries and given by Eq.~A53!.

Let the velocity of the center of mass of the circul
cylinder beV(t)5@u(t),v(t)#. Then, with reference to Eqs
~A49! and ~A50!,

( GkcB~ lk,V!5R2( GkK S 2
sinuk

l k
,
cosuk

l k
D ,VL ,

~1!

where (l k ,uk) are polar coordinates of thekth vortex in the
body-fixed frame. Note thatcB is independent ofV since the

FIG. 1. A 2D rigid cylinder interacting dynamically with point vortices.XY
is a reference frame fixed in space, whilexy is a body-fixed frame with
origin at the center of mass CM and axes parallel to the principal directi
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1216 Phys. Fluids, Vol. 14, No. 3, March 2002 Shashikanth et al.
rotation of the circular cylinder has no effect on the flu
Conversely, the fluid also has no effect onV since the pres-
sure forces act through the center of the cylinder. Theref
the equations of motion should givedV/dt50 and this can
indeed be confirmed.

The functionsG and g for a circular cylinder can be
calculated using the classical circle theorem
Milne-Thomson.16 This gives a simple representation of th
image vorticity in terms of two point vortices—one of th
same strength but opposite sign at the inverse point and
other of the same strength and sign at the center of
circle—for each point vortex outside the circle. Thus,

g~x,y;xk ,yk!5
1

2p
logu~x,y!u2

1

2p
logu~x,y!

2~R2xk / l k
2,R2yk / l k

2!u, ~2!

wherel k
25xk

21yk
2. Using Eqs.~A48! and~1! the functionW

can then be easily calculated. For future reference we w

W5( GkcB~ lk ,V!1WG , ~3!

where

WG5 (
k, j ~k. j !

GkG jG~ lk ; l j !1
1

2 ( Gk
2g~ lk ; lk!.

Evaluating the mass matrixM shows that all off-diagona
terms vanish and, further, the first two diagonal terms are
same and are each equal to themass plus added massof the
system. Denoting these terms byc, M simplifies to

M5F c 0 0

0 c 0

0 0 I
G ,

wherec5m1pR2. Therefore,

L5cV1p, A5p,

assumingV(0)50. Next, calculate

p5( G j l j3k1 R
]B

l3~nb3~uV!b!ds, ~4!

p52
1

2 ( G j^ l j ,l j&k2
1

2 R
]B

l 2~nb3~uV!b!ds. ~5!

In this probleml5Rnb on the body boundary. The contou
integral inp simplifies as

R
]B

l3~nb3~uV!b!ds52R R
]B

~uV!b ds,

and that inp vanishes:

R
]B

l 2~nb3~uV!b!ds50.
Downloaded 22 Feb 2002 to 131.215.186.91. Redistribution subject to A
.

e,

f

he
e

e

e

It can be checked after performing the necessary integrat
that

R
]B

~uV!b ds5( k3GkS 2
R

l k
cosuk ,2

R

l k
sinukD .

Comparing with Eq.~1! it is seen that the following relation
holds in this problem:

( GkcB~ lk ,V!5 R
]B

l3~nb3~uV!b!ds. ~6!

The general significance of this relation is not yet understo
but it plays a simplifying role when constructing the Ham
tonian structure of this system. It is conjectured that an
sight into this relation may help understand the Hamilton
structure for general body shapes.

The equations of motion for the circular cylinder whe
the vortex strengths sum to zero can now be deduced f
Eqs.~A55!, ~A56!, ~A57!, and~A58!. A fairly simple Hamil-
tonian structure for these equations emerges by inspec
The details are presented below.

For the case when the vortex strengths do not sum
zero this structure does not hold and it is obvious, by look
at the equations, that this is related to the center of mas
the cylinder becoming an additional dynamical variable
the problem. We believe, however, that there exists a Ham
tonian structure for this case too and will be revealed
invoking the same theories mentioned at the end of the
pendix for the problem of general body shapes.

Proposition. The freely interacting system of a rigid cir
cular cylinder of radius R in an incompressible, invisc
fluid, and N point vortices whose strengths sum to zero
are external to it, is governed by the following system
equations:

dL

dt
50, ~7!

dA

dt
1V3L50, ~8!

Gk

dlk
dt

52J
]H

] lk
, k51,...,N, ~9!

where

L ~ t !5L ~0!

5cV1( Gklk3k1R2( k3GkS xk

xk
21yk

2 ,
yk

xk
21yk

2D
and
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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1217Phys. Fluids, Vol. 14, No. 3, March 2002 Hamiltonian dynamics of cylinder and point vortices
H~L ,lk!52W~L ,lk!1
1

2c
^L ,L &2

1

c S ( Gk~L3 lk!"k

2
1

2 ( Gk
2^ lk ,lk&2(

k
(

j ~ j .k!
GkG j^ lk ,l j&

1
R4

2 K( Gk

lk
^ lk ,lk&

,( Gk

lk
^ lk ,lk&

L D . ~10!

In the preceding equation, W(L ,lk) is the Kirchhoff–Routh
function for the system and is given by Eq. (3) withV re-
written in terms ofL and lk . This is a Poisson vector field o
the space P5se(2)* 3(R2N\(DøB))[Pb3Pv equipped
with the following Poisson bracket. For F, GPC`(P), de-
fine

$F,G%5$FuPb
,GuPb

%Lie–Poisson1$FuPv
,GuPv

%point vortex.

Therefore if p(t)5(m(t),lk(t))PP is an integral curve of
the system, wherem(t)5(L (t),A(t)), then

dF

dt
ª K ¹pF,

dp

dt L
5^¹mF,ad]H/]m* m&2 (

k51

N

^¹kF,J21¹k~H/Gk!&.

Proof. This is a straightforward exercise: one verifi
that the right hand side defines a vector field that is obtai
from the given Hamiltonian and Poisson bracket.

In verifying the momentum equations, recall that t
Lie–Poisson equations onse(2)* are given by

dm

dt
5addH/dm* m, mPg* , dH/dmPg

for the HamiltonianH and where

ad
~ d̂,w!
* ~a,s!5~2^s,Jw&,2 d̂s!.

Making the identificationm5(a,s)5(A,L ):

ad~]H/]A,]H/]L !
* ~A,L !5S 2 K L ,J

]H

]L L ,2
]H

]A
JL D .

Now if the momentum equations~7! and ~8! are Lie–
Poisson, we should have

V3L5 K L ,J
]H

]L L , 05
]H

]A
JL .

These relations are satisfied if

]H

]A
50,

]H

]L
5V. h
Downloaded 22 Feb 2002 to 131.215.186.91. Redistribution subject to A
d

Comments.

~1! D in the definition of the phase spaceP is the set of
collision points of vortices andB is the region occupied
by the circle.

~2! The system reduces to the correct Hamiltonian system
the two well-known cases:~i! the irrotational case, i.e.
no point vortices in the flow and~ii ! the stationary body
case. In case~i!, one obtains the equations of motion fo
the body asdV/dt50 and H5(1/2c)^L ,L &5(c/2)
3^V,V&. Kirchhoff’s equations give exactly the sam
result. In case~ii ! V50, and the terms within the larg
parentheses in Eq.~10! reduce to (1/2)̂L ,L & and one
obtainsH52WG( lk). The system thus reduces to th
one investigated by Lin.13

~3! The Hamiltonian can be re-written in terms ofV and lk
as

H~V,lk!52( GkcB~V,lk!2WG~ lk!

1
1

2c
^cV1p,cV1p&

2
1

c S cV3S ( GklkD "k1
1

2
^p,p& D

52WG~ lk!1
c

2
^V,V&.

Using Eq.~21! and theL2-orthogonality ofuV and¹FB

it can be checked that the above is the total kinetic
ergy of the system (fluid1body) minus the infinite con-
tributions associated with the point vortex velocity fiel

III. LINEAR AND NONLINEAR STABILITY OF THE
MOVING FÖPPL EQUILIBRIUM

Consider Fo¨ppl’s results14,15,17for equilibria of the sys-
tem of a circular cylinder in an ambient uniform stream
velocity V and two counter-rotating point vortices of equ
strength behind the cylinder located symmetrically with
spect to the freestream direction. The same results hold
translating frame if the cylinder moves with velocityV in a
fluid at rest at infinity, the point vortices now move with th
cylinder at the same velocity and are stationary in the bo
fixed frame, as shown in Fig. 2. We call this equilibrium th

FIG. 2. The Fo¨ppl equilibrium when the cylinder moves with constant v
locity V.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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movingFöppl equilibrium to distinguish it from the classica
case.

The loci of equilibrium positions are described by t
curves

l 0
22R2562l 0y0 , ~11!

where

l 0
25x0

21y0
2,

(x0 ,y0) and (x0 ,2y0) being the positions of the two vorti
ces in the body-fixed frame. At each equilibrium positio
there is a linear relation between the vortex strengthG andV:

G54pVy0

l 0
42R4

l 0
4 . ~12!

Linear stability results of the classical Fo¨ppl
equilibrium14,15 show that the point vortices are unstable
anti-symmetric infinitesimal perturbations and stable to sy
metric ones. Numerical simulations of the perturbed traj
tories for finite disturbances have been investigated in
Laat and Coene.18 An analytic investigation of the nonlinea
stability using the second term in the Taylor expansion
been done in Tordella.19

A. Linear stability

Analysis of the linear stability of themovingFöppl equi-
librium differs from the classical one in the following thre
ways. First, any perturbation of the vortex positions also
troduces a perturbation of the cylinder velocity because
the coupled dynamics. The phase space of the systemP,
Downloaded 22 Feb 2002 to 131.215.186.91. Redistribution subject to A
,

-
-
e

s
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f

~whose equilibrium we are studying! is larger by two dimen-
sions due to the presence of the additional variableL . The
linearized equations forL are trivial@as can be seen from Eq
~7!#, however, the linearized vector field for the point vort
locations has extra terms in it compared to the classical c
Second, because the phase space is larger, the complete
equilibria defined by Eqs.~11! and~12! definesa curvein P.
In other words, the equilibria arenot isolated fixed points in
phase space. Third, the eigenvalue behavior of the linear
system under symmetric disturbances is different from tha
the classical case, as we shall see. The main details o
linear stability analysis are given below.

The linearized equations about the moving Fo¨ppl equi-
librium are

¨

ddx1

dt

ddy1

dt

ddx2

dt

ddy2

dt

ddLx

dt

ddLy

dt

©
5D•S dx1

dy1

dx2

dy2

dLx

dLy

D ,

whereD is the 636 stability matrix given by
D52
1

G 1
2

]2H

]x1 ]y1
2

]2H

]y1
2 2

]2H

]x2 ]y1
2

]2H

]y2 ]y1
2

]2H

]Lx ]y1
2

]2H

]Ly ]y1

]2H

]x1
2

]2H

]x1 ]y1

]2H

]x1 ]x2

]2H

]x1 ]y2

]2H

]x1 ]Lx

]2H

]x1 ]Ly

]2H

]x1 ]y2

]2H

]y1 ]y2

]2H

]x2 ]y2

]2H

]y2
2

]2H

]Lx ]y2

]2H

]Ly ]y2

2
]2H

]x1 ]x2
2

]2H

]y1 ]x2
2

]2H

]x2
2 2

]2H

]y2 ]x2
2

]2H

]x2 ]Lx
2

]2H

]x2 ]Ly

0 0 0 0 0 0

0 0 0 0 0 0

2
uF.e.

.

The d quantities denote infinitesimal perturbations and theD is evaluated at the moving Fo¨ppl equilibrium. The Hamiltonian
for the case of a circular cylinder translating with velocityV ~variable! and two vortices of equal and opposite strengths,G and
2G, located at (x1 ,y1) and (x2 ,y2), respectively, is given by

H52WG~ lk!1
1

2c
@^L ,L &1^p,p&22^p,L &#,

where
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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WG~x1 ,y1 ;x2 ,y2!5
G2

8p
logS l 2

2

l 1
2D 2

G2

8p
logF S x12R2

x1

l 1
2 D 2

1S y12R2
y1

l 1
2 D 2G2

G2

8p
logF S x22R2

x2

l 2
2 D 2

1S y22R2
y2

l 2
2 D 2G

1
G2

4p
logF S x12R2

x2

l 2
2 D 2

1S y12R2
y2

l 2
2 D 2G2

G2

4p
log@~x12x2!21~y12y2!2#

52
G2

8p
log@~ l 1

22R2!2#2
G2

8p
log@~ l 2

22R2!2#2
G2

4p
log@~x12x2!21~y12y2!2#

1
G2

4p
log@ l 1

2l 2
21R422R2~x1x21y1y2!#,
y

er
c

we

-
s
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e

-
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f
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-
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e

l-
e

L5cV1p,

and

p5GS y12y21R2S y2

l 2
2 2

y1

l 1
2 D , x22x11R2S x1

l 1
22

x2

l 2
2 D D .

At the Föppl equilibrium the vortex positions are related b

x25x15..x0 , y252y15..2y0

and one also has

Lx5cV12Gy0S 12
R2

l 0
2 D , Ly50, ~13!

whereV is the constant translational velocity of the cylind
which can, without loss of generality, be taken in the dire
tion of the positivex-axis ~see Fig. 2!.

B. Evaluating the stability matrix

To evaluate the eigenvalues of the stability matrix,
follow a procedure similar to the one in the classical Fo¨ppl
case. At any pointpPP, we split the tangent spaceTpP as

TpP5Fs
% ~Fs!c. ~14!

Here,Fs is the space ofsymmetricdisturbances. It is a three
dimensional subspace ofTpP and is defined by the relation

dx15dx25..dxs , dy152dy25..dys , dLy50.

Note thatFs is an invariant subspace under the vector field
the linearized system. The complementary space (Fs)c is the
space ofanti-symmetricdisturbances and is defined by th
relations

dx152dx25..dxa , dy15dy25..dya , dLx50.

It follows from Eq. ~14! that (Fs)c is also an invariant sub
space. The direct sum in Eq.~14! is defined as follows. Write
any vector (dx1 ,dy1 ,dx2 ,dy2 ,dLx ,dLy)PTpP as

dx15dxs1dxa , dy15dys1dya , dx25dxs2dxa ,

dy252dys1dya , dLy501dLy , dLx5dLx10,

where (dxs ,dys ,dLx)PFs and (dxa ,dya ,dLy)P(Fs)c.
The above linear change of variables helps identify

eigenvalue behavior of the linearized dynamics in each oFs

and (Fs)c separately. Denote byM the nonsingular matrix
that takes the vector (dx1 ,dy1 ,dx2 ,dy2 ,dLx ,dLy) to the
Downloaded 22 Feb 2002 to 131.215.186.91. Redistribution subject to A
-

f

e

vector (dxs ,dys ,dLx ,dxa ,dya ,dLy). The linear stability
matrix D assumes the following block form after the tran
formation of variables:

M 21DM52
1

G S S U

0 A D ,

whereS, A andU are 333 matrices.
The matrixA has the following two nontrivial eigenval

ues:

la
25~a212a23!~a121a14!1~a112a13!

2,

52S ]2H

]x1
2 2

]2H

]x1 ]x2
D S ]2H

]y1
2 1

]2H

]y1 ]y2
D

1S ]2H

]x2 ]y1
2

]2H

]x1 ]y1
D 2

,

and the matrixS has the following two nontrivial eigenval
ues:

ls
25~a211a23!~a122a14!1~a111a13!

2,

5S ]2H

]x1
2 1

]2H

]x1 ]x2
D S 2]2H

]y1
2 1

]2H

]y1 ]y2
D

1S ]2H

]x2 ]y1
1

]2H

]x1 ]y1
D 2

.

The eigenvalues are functions of the parameter

a5
R2

l 0
2 .

The plots in Figs. 3 and 4 show thatls
2.0 for 0<a,a0

andls
2,0 for 1.a.a0 , whereasla

2.0 everywhere in the
domain ofa. The plots are ofl2f (a) vs a, where

f ~a!5
16p2l 0

4

G4 ~12a!2~12a2!2.

The plots may be interpreted in the following manner. FixR
and, hence, the curve of Fo¨ppl equilibrium as per Eq.~11!.
Then the plots give us the linear stability of the system
different vortex locations on that curve. Alternatively, on
could fix l 0 and varyR. The plots then give the linear stabi
ity of the system for different vortex locations, all with th
same value ofl 0 but lying on different Fo¨ppl curves.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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In both interpretations, however, vanishinga corre-
sponds to vanishing effect of the cylinder motion on the s
tem. Indeed, in the limita50, the moving Fo¨ppl equilibrium
becomes the equilibrium of two point vortices of equal b
opposite strengths in an unbounded flow translating with
locity G/(4py0).

From Fig. 3, it is seen that one gets linear instability
small values ofa for symmetric disturbances in contrast
the linear stability for alla of the classical Fo¨ppl equilib-
rium.

To summarize, in the case of infinitesimalanti-
symmetricdisturbances one gets the same results for
moving Föppl equilibria as for the classical equilibria, that i
the equilibria are linearlyunstablefor all a. However, for the
case of infinitesimalsymmetricdisturbances there is a differ
ence. There is a range of values 0<a,a0 for which the
moving equilibria on the Fo¨ppl curve are linearlyunstable.

FIG. 3. The plot ofls
2f (a) vs a5R2/ l 0

2 in the case of symmetric infinitesi
mal disturbances.

FIG. 4. The plot ofla
2f (a) vs a5R2/ l 0

2 in the case of anti-symmetric
infinitesimal disturbances.
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This result is completely missed in the analysis of the cl
sical equilibria where one gets linear stability for alla. The
reason for this is the artificial constraint imposed on the
namics by keeping the free-stream velocity constant whic
equivalent to keeping the cylinder velocity fixed in our mo
ing system. It is possible that this instability, when prope
understood, can be harnessed for some motion planning
by a suitable control mechanism.

C. Nonlinear stability and the energy-Casimir method

The study of the stability of the Fo¨ppl equilibria tofinite
perturbations does not seem to have been previously un
taken. A weakly nonlinear stability analysis has been done
Tordella.19 The Hamiltonian structure described in the la
section strongly suggests that one can carry out a comp
nonlinear stability analysis of the moving equilibria using t
energy-Casimir method.11 Nonlinear stability here refers to
the Lyapunov definition.

The energy-Casimir method involves showing the ex
tence ofF(C), whereC is a Casimir function of the system
such that the first variation of the augmented Hamilton
function

HF5H1F~C! ~15!

vanishes at the Fo¨ppl equilibrium and the second variatio
quadratic form is positive or negative definite. This is asuf-
ficientcondition for stability, in the Lyapunov sense, to fini
disturbances.

It follows from the linear stability results that one cann
expect nonlinear stability of the moving Fo¨ppl equilibria to
arbitrary finite disturbances. However, stability tosymmetric
finite disturbances can be expected and this is what we s
below.

A set of Casimirs for the system ofN point vortices and
a circular cylinder, as can be easily checked, is

C5k1^L ,L &1k2 ,

wherek1 andk2 are scalar constants. Without loss of gen
ality, one can assumek151 andk250. Consider now varia-
tions of the function

HF5H1F~C!.

For the first derivative of this to vanish at the Fo¨ppl equilib-
rium,

]~H1F~C!!

]L uF.e.
50, ~16!

which implies

F8~C!
]C

]L uF.e.
52

]H

]L uF.e.
5

1

c S G
2y0~ l 0

22R2!

l 0
2 2Lx~0! D ,

~17!

and so
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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F8~C! uF.e.5
1

2cLx~0! S G
2y0~ l 0

22R2!

l 0
2 2Lx~0! D ~18!

and since]C/]A5]C/]x15.....5]C/]y250 the first de-
rivatives of H1F(C) with respect to these variables als
vanish.

Now compute the second derivatives. The only no
trivial second derivatives ofF(C) at the Fo¨ppl equilibria are

]2F~C!

]Lx
2

uF.e.
5F8~C! uF.e.

]2C

]Lx
2 1F9~C! uF.e.S ]C

]Lx
D 2

52F8~C! uF.e.1F9~C!~2Lx~0!!2,
g
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]2F~C!

]Ly
2

uF.e.
5F8~C! uF.e.

]2C

]Ly
2 1F9~C! uF.e.S ]C

]Ly
D 2

52F8~C! uF.e. .

Note that at this point theF8(C) uF.e. has been deter
mined by the vanishing first variation condition Eq.~18!.
However,F9(C) uF.e. is undetermined and will be used as
handle to make~if possible! the matrix of second variation
positive or negative definite.

The matrix of second variations ofHF is given by
W5

¨

]2HF

]x1
2

]2HF

]x1 ]y1

]2HF

]x1 ]x2

]2HF

]x1 ]y2

]2HF

]Lx ]x1

]2HF

]Ly ]x1

•

]2HF

]y1
2

]2HF

]y1 ]x2

]2HF

]y1]y2

]2HF

]Lx ]y1

]2HF

]Ly]y1

• •

]2HF

]x2
2

]2HF

]x2 ]y2

]2HF

]Lx ]x2

]2HF

]Ly ]x2

• • •

]2HF

]y2
2

]2HF

]Lx ]y2

]2HF

]Ly ]y2

• • • •

]2HF

]Lx
2

]2HF

]Lx ]Ly

• • • • •

]2HF

]Ly
2

©
.

ility
Denote the elements ofW by wi j . Using the various rela-
tions between the second derivatives at the equilibria we

W5S w11 w12 w13 w14 w15 w16

• w22 2w14 w24 w25 2w15

• • w11 2w12 w15 w16

• • • w22 w25 2w15

• • • • w55 0

• • • • • w66

D .

The second variation quadratic form is
et
d2HF5~dx1 ,dy1 ,dx2 ,dy2 ,dLx ,dLy!

•W~dx1 ,dy1 ,dx2 ,dy2 ,dLx ,dLy!T.

Performing the change of variables as in the linear stab
analysis gives

d2HF5~dxs ,dys ,dLx ,dxa ,dya ,dLy!

•MTWM~dxs ,dys ,dLx ,dxa ,dya ,dLy!T,

where
MTWM5S 2w1112w13 2~2w141w12! 2w15 0 0 2w16

2w1222w14 2~2w241w22! 0 0 0 0

2w15 0 w55 0 2w25 0

0 0 0 2~w112w13! 2~w121w14! 0

0 0 2w25 2~w121w14! 2~w221w24! 22w15

2w16 0 0 0 22w15 w66

D .
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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We next check this matrix for definiteness. Since

w111w13

5S ]2HF

]x1
2 1

]2HF

]x1 ]x2
D

5
G2a2

4pR2

3F ~a23!~112a21a!1~11a!2~32a!~12a!4

~12a!2~11a! G
,0

~as can be checked by plotting!, we check fornegativedefi-
niteness. The second order principal minor is

PM2524ls
2.0, a0,a,1,

where ls is an eigenvalue of the linearized system und
symmetric disturbances anda0 is the value at which the plo
in Fig. 3 crosses thea-axis. The third order principal mino
is

PM35w55PM228w15
2 ~w222w24!.

Since

~w222w24!5S ]2HF

]y1
2 2

]2HF

]y1 ]y2
D ,0, 0,a,1,

we get

PM3,0⇔w55,@8w15
2 ~w222w24!#/PM2 .

Since

w555
]2HF

]Lx
2 5

1

c
12F8~C! uF.e.1F9~C! uF.e.~2Lx~0!!2,

we can makew55 as small as possible by a suitable choice
F9(C) uF.e. .

Recall that the symmetric subspace is an invariant s
space under the linearized dynamics. It is not difficult to s
thatfinite symmetric perturbations of the equilibria also le
to symmetric motions for all time. Hence there exists a sy
metric submanifoldof the phase spaceP which is invariant
under thefull dynamics. Indeed, using the theory of discre
reduction11 one can show that this submanifold is the fix
point set under the action of the discrete groupZ2 and is thus
a symplectic submanifold of the phase spaceP. It is invariant
under Hamiltonian vector fields onP.

Consequently the upper left 333 block of the matrix
MTWM can be viewed as the matrix of second variations
the Hamiltonian subsystem on the symmetric submanifo
The above calculations show that this block isnegative defi-
nite in the rangea0,a,1 and this is a sufficient condition
for nonlinear stability. Hence, we make the following prop
sition.

Proposition. In the range of the radius parameter R2/ l 0
2

where the moving Fo¨ppl equilibria are linearly stable to in-
finitesimal, symmetric disturbances, they are also non
early Lyapunov stable to finite, symmetric disturbances.
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Continuing with the calculations, one finds that th
fourth order minor is given by

PM452~w112w13!PM3,0,

since

w112w13.0.

Hence the matrixMTWM fails to be positive or negative
definite and no sufficient condition for nonlinear stability
arbitrary finite disturbances emerges. This is consistent w
the result of linear instability to arbitrary infinitesimal distu
bances.
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APPENDIX: EQUATIONS OF MOTION OF A 2D RIGID
CYLINDER OF ARBITRARY SHAPE IN AN
INVISCID, INCOMPRESSIBLE, VORTICAL FIELD

In this Appendix we derive the equations for thedynami-
cal interaction of a 2D rigid body of arbitrary shape movin
in a fluid with vorticity.

1. Smooth vorticity fields

The equations are first derived for a smooth vortic
field and then specialized to a field of point vortices. A sch
matic sketch in the case of point vortices is shown in Fig.

a. Linear momentum

We start by deriving an expression for the linear mome
tum of the fluid. We make use of the following vecto
identity17 ~p. 65 in cited reference!:

E adA5E ~r3curla!dA1 R r3~n3a!ds, ~A1!

wherea is a divergence-free vector field on some bound
domainA,R2, r is the position vector with respect to som
fixed reference frame,n is the unitinward normal vector on
the boundary. Now leta5u5the velocity field of the flow.
Let CR denote a fixed circular boundary of radiusR centered
on some arbitrary point in the domain.CR encloses the body
and all of the vorticity ~for all time!. Let ]B denote the
moving boundary of the body. Then the momentum of t
fluid ~of constant, unit density! in the domainAR between
these two boundaries is

E
AR

u dA5E
AR

~vr3k!dA1 R
]B

r3~n3u!ds

1 R
CR

r3~n3u!ds, ~A2!

wherevk5curlu is the vorticity field,k being the unit vec-
tor normal to the plane. Note that the normal in the bo
contour integral pointsaway from the body and the norma
in the CR contour integral points radiallyinward. Counter-
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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clockwise circulation is considered positive with the asso
ated vorticity vector pointing out of the plane.

Write

u5¹FB1uV , ~A3!

where the notation will now be explained. First of all,¹FB

denotes the curl-free velocity field inR2\B ~here,B,R2 is
the region occupied by body! determined uniquely by the
motion of the body satisfying the boundary conditions:

¹FB•n5q"n on ]B, ~A4!

¹FB→0, R→`, ~A5!

whereq is the velocity of the body boundary point. Also,uV

denotes the velocity field due to the vorticity satisfying t
boundary conditions

uV•n50 on ]B, ~A6!

uV→0, R→`. ~A7!

It should be noted thatuV5u01uI , whereu0 is the velocity
field due to the vorticity in the absence of boundaries an
naturally defined on all ofR2 ~u0→0 asR→`, and¹3u0

50 in B!. uI is the velocity field that is curl-free inR2\B and
is henceuniquely determined inR2\B by the boundary con-
ditions

uI "n52u0"n on ]B, ~A8!

uI→0 as R→`. ~A9!

Now apply Newton’s second law to the fluid inAR . The
following assumptions are made during the derivation:
force of gravity on the fluid is balanced by the hydrosta
pressure, there is no other external force on the fluid,
total vorticity in the fluid is constant in time, there is n
circulation around the body and the weight of the body
balanced by the force of buoyancy. We further make
simplifying assumption that the fluid and body have co
stant, uniform density equal to unity. Hence,

FS1 R
CR

pRn ds5
d

dt EAR

u dA2 R
CR

u~u"n!ds,

whereFS is the force~per unit span! exerted by the solid on
the fluid at the boundary]B and is equal and opposite to th
exerted by the fluid on the solid~denoted by 2FS!,
rCR

pRn ds is the total contribution of the pressure forc
acting onCR , andrCR

u(u"n) ds is the net flux of momen-
tum acrossCR . Since2FS5Ab(dU/dt), whereAb is the
cross-sectional area of the cylinder, we get the follow
vector equation for the system comprising of a rigid bo
and an incompressible, inviscid fluid in the domainAR :

Ab

dU

dt
1

d

dt R
]B

r3~n3¹FB!ds1
d

dt EAR

~vr3k!dA

1
d

dt R
]B

r3~n3uV!ds1PR50, ~A10!

where
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PR5
d

dt R
CR

r3~n3u!ds2 R
CR

u~u"n!ds2 R
CR

pRn ds.

b. Angular momentum
We use the elementary vector identity17 ~p. 55 and the

comment above Eq.~18!, p. 65 in cited reference!:

E r3adA52
1

2 E ~r 2 curla!dA2
1

2 R r 2~n3a!ds,

~A11!

wherer 5ir i . Here againn is the inward pointing unit nor-
mal. Hence the angular momentum of the fluid in the dom
AR is

E
AR

r3u dA52
1

2 EAR

vr 2 dA2
1

2 R
]B

r 2~n3u!ds

2
1

2 R
CR

r 2~n3u!ds. ~A12!

Applying Newton’s second law for angular momentu
for the fluid in AR , we get

MS1 R
CR

pRr3n ds5
d

dt EAR

r3u dA2 R
CR

r3u~u"n!ds,

~A13!

whereMS is the torque exerted by the solid on the fluid a
is equal and opposite to that exerted by the fluid on the so
The other terms are analogous to those in the force equa
Since 2MS5d(Abb3U1I V)/dt, whereb(t) is the posi-
tion vector in the inertial frame of the center of mass of t
body, we thus get the following scalar equation from t
conservation of angular momentum for the system comp
ing of a rigid body and an incompressible, inviscid fluid
the domainAR :

d

dt
~Abb3U1I V!2

1

2

d

dt R
]B

r 2~n3¹FB!ds

2
1

2

d

dtEAR

vr 2k dA2
1

2

d

dt R
]B

r 2~n3uV!ds1MR50.

~A14!

Here I is the principal moment of inertia tensor andV
5Vk is the angular velocity of the body~which can be iden-
tified as a scalar in this 2D case!. The first two terms repre-
sent the total angular momentum of the body with respec
the origin of the fixed reference frame, and

MR52
1

2

d

dt R
CR

r 2~n3u!ds2 R
CR

pR~r3n!ds

2 R
CR

r3u~u"n!ds. ~A15!

The contribution of thePR and MR terms. A straightfor-
ward computation shows that the termsPR and MR go to
zero in the limitR→`, that is,

PR5OS 1

RD , ~A16!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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MR5OS 1

RD . ~A17!

The details of this simplification are given below, the un
terested reader may directly skip to the next subsection.

The far field behavior of the velocity field is given, a
any timet, by

u5ucs1u~2!1u~3!1OS 1

R4D , ~A18!

wheres is the unit tangent vector onCR . The field ucs is
time-invariant and given by

ucs5S *AR
v dA

2pR
D s. ~A19!

Here we have made use of the assumption that there is n
circulation about the body and hence*Bv dA50. The fields
u(2) andu(3), which contain the first and second moments
the vorticity distribution, respectively, may be time-varying20

and their far field behavior is given by

u~2!5OS 1

R2D , ~A20!

u~3!5OS 1

R3D . ~A21!

It follows, from the decomposition Eq.~A18!, that

R
CR

u~2!
•ds52k" R

CR

n3u~2! ds50, ~A22!

R
CR

u~3!
•ds52k• R

CR

n3u~3! ds50. ~A23!

Using s3n5k andr52Rn, the integral in the first term in
PR may be evaluated:

R
CR

r3~n3u!ds52 R
CR

Rn3~n3u~2!!ds1OS 1

RD .

~A24!

In the irrotational region traversed byCR , Eq. ~18! can also
be written as

u5¹F5¹FV1¹F~2!1¹F~3!1OS 1

R4D ,

whereFV is themultiple-valuedvelocity potential, invariant
in time, due to a single vortex of strength*AR

v dA, and
whereF (2) is single-valued because of Eq.~A22!. We use
the identity Eq.~A1! and the divergence theorem to get

R
CR

Rn3~n3u~2!!ds5 R
CR

Rn3~n3¹F~2!!ds

52 R
CR

F~2!n ds. ~A25!

The leading order term in the second integral inPR is easily
seen to beO(1/R2). Using Bernoulli’s theorem in the irrota
tional region traversed byCR , the pressure integral inPR is
written as
Downloaded 22 Feb 2002 to 131.215.186.91. Redistribution subject to A
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R
CR

pRn ds5 R
CR

S ]F

]t
2

uuu2

2
1 f ~ t ! Dn ds.

The only O(1) contribution to the pressure integral com
from the first term on the right. It follows that

d

dt R
CR

Rn3~n3u~2!!ds1 R
CR

]F

]t
n ds50, ~A26!

and one obtains Eq.~A16!.
The evaluation ofMR proceeds on similar lines. Rewrit

the first integral inMR as

1

2 R
CR

^r ,r &~n3u!ds

52
1

2
R2kE

AR

v dA1
1

2
R2 R

CR

~n3u~2!!ds

1
1

2
R2 R

CR

~n3u~3!!ds1OS 1

RD . ~A27!

On the right hand side, the first term is invariant in time a
it follows from Eqs. ~A22! and ~A23! that the second and
third terms vanish. Hence,

d

dt

1

2 R
CR

^r,r &~n3u!ds501OS 1

RD . ~A28!

The other terms inMR give

R
CR

r3u~u"n!ds5OS 1

RD ,

R
CR

pR~r3n!ds52 R
CR

pR~Rn3n!ds50 ~A29!

and one obtains Eq.~A17!.

2. Point vortices

Now assume that the given vorticity field is a singul
distribution ofN point vortices, as shown in Fig. 1.

The vector identities Eqs.~A1! and ~A11! are not di-
rectly applicable to the given fluid domain but to amodified
domain in which one removes small circles centered aro
each point vortex. It can then be shown that the same ve
identities hold with the vorticity written as a delta distribu
tion, v(r j )5(G jd(r2r j ).

Substituting Eqs.~A16! and~A17! into ~A10! and~A14!,
the following equations in the limitR→` are then obtained

Ab

dU

dt
1

d

dt R
]B

r3~n3¹FB!ds1
d

dt ( G j r j3k

1
d

dt R
]B

r3~n3uV!ds50, ~A30!

and
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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d

dt
~Abb3U1I V!2

1

2

d

dt R
]B

r 2~n3“FB!ds

2
1

2

d

dt ( G j r j
2k2

1

2

d

dt R
]B

r 2~n3uV!ds50. ~A31!

3. Body-fixed frame

We now transfer Eqs.~A30! and ~A31!, which were de-
rived in a spatially fixedor inertial frame,XY in Fig. 1, to
equations in abody-fixedframe. We choose a principal ax
frame with origin at the body center of mass, shown asxy in
Fig. 1. For a given point in the domain the position vector
in the inertial frame is related to the position vectorl in the
body-fixed frame by

r5R~ t !l1b~ t !,

whereR(t)PSO(2) gives the orientation of the body-fixe
frame with respect to the inertial frame, andb(t)PR2 is the
position vector of the origin of the body-fixed frame me
sured in the inertial frame. Puttingb(t)50 in the above
gives the law for transforming vectors of the same nor
Time derivatives in the inertial frame are related to tim
derivatives in the body-fixed frame as follows:

dw

dt
5R~ t !

dv

dt
1R~ t !~V3v!,

wherew5R(t)v and V is the angular velocity of the bod
referred to the body-fixed frame. The following relation
used often:

Ṙ~ t !v5R~ t !~V3v!.

We also make repeated use of the following vector ident

A3~B3C!5~A"C!B2~A"B!C. ~A32!

Transferring Eqs.~A30! and ~A31! term by term using
the above relations one finally obtains the linear and ang
momentum equations as

S d

dt
1V3 DL50, ~A33!

dA

dt
1V3L50, ~A34!

where

L5AbV1 R
]B

l3~nb3¹bFB!ds1( G j l j3k

1 R
]B

l3~nb3~uV!b!ds1S ( G j Da3k, ~A35!

A5I V2
1

2 R
]B

l 2~nb3“bFB!ds2
1

2 ( G j^ l j ,l j&k

2
1

2 R
]B

l 2~nb3~uV!b!ds2
1

2 S ( G j Da3~a3k!,

~A36!
Downloaded 22 Feb 2002 to 131.215.186.91. Redistribution subject to A
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U5R(t)V, b5R(t)a, and the subscriptb denotes reference
to the body-fixed frame. SinceU5db/dt, vectorsa and V
are related as

V5
da

dt
1V3a. ~A37!

The expressions forL andA can be written more elegantl
as follows. Recall16 that FB can be linearly decomposed u
ing theKirchhoff potentialsas

FB~ l,V~ t !,V~ t !!5V~ t !•f~ l!1V~ t !j, ~A38!

5Vxfx1Vyfy1Vj, ~A39!

where the functionsfx , fy , andj are unit potential func-
tions harmonic in the fluid domain, have vanishing gradie
at infinity and satisfy the following body boundary cond
tions:

]fx

]n
5nx

]fy

]n
5ny

]j

]n
5nyx2nxy. ~A40!

Making use of Eqs.~A1! and~A11! and the divergence theo
rem one sees that

R
]B

l3~nb3¹bFB!ds5 R
]B

FBnb ds, ~A41!

and that

1

2 R
]B

l 2~nb3¹bFB!ds5 R
]B

FB~nb3 l!ds. ~A42!

Using these relations, and the following one obtainable fr
Green’s theorem:

R
C
S f

dg

dn
2g

d f

dnDds50, ~A43!

for f, g harmonic in a bounded domain, the momentum va
ables can be re-written as

S L
A D5M S V

VD1S p
p D , ~A44!

where

p5( G j l j3k1 R
]B

l3~nb3~uV!b!ds1S ( G j Da3k

and

p52
1

2 ( G j^ l j ,l j&k2
1

2 R
]B

l 2~nb3~uV!b!ds

2
1

2 S ( G j Da3~a3k!,

andM is a 333 symmetric mass tensorthat depends only on
the body shape and body mass. Note that if the sum of
point vortex strengths is zero, thenp andp depend only on
the positions of the vortices with respect to the body. T
contour integrals are uniquely determined from the bound
conditions Eqs.~A8! and ~A9!.
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4. The Kirchhoff–Routh function and the symplectic
phase space of the point vortices

The phase space ofN point vortices in bounded domain
was shown to have a symplectic structure appropriate for
dynamics by Lin.13 The symplectic form is the same as
unbounded flow,Vsymp5(Gk dxk∧dyk , and the Hamil-
tonian vector field is

Gk

dxk

dt
52

]W

]yk
, ~A45!

Gk

dyk

dt
5

]W

]xk
, ~A46!

whereW is theKirchhoff–Routhfunction given by

W5( GkcB~xk ,yk!1 (
k, j ~k. j !

GkG jG~xk ,yk ;xj ,yj !

1
1

2 ( Gk
2g~xk ,yk ;xj ,yj !, ~A47!

with G being a Green’s function satisfying appropria
boundary conditions and of the form

G~x,y;x0 ,y0!5g~x,y;x0 ,y0!1
1

4p
log@~x2x0!2

1~y2y0!2#, ~A48!

andcB is the stream function due to agencies other than
point vortices. The functiong is harmonic everywhere in th
fluid domain and is the stream function of the irrotation
velocity field uI , see Eq.~A8!, which annuls the nonzero
normal velocities on the body due to the external vortic
All three functionsG, g, andcB depend on the body shap

Lin13 derived these equations for fixed boundaries.W is
an invariant of the motion ifcB has no explicit time depen
dency. The theory remains valid for moving boundaries
W in general will no longer be an invariant. Denote it
follows:

W8~r k ,t !5( GkcB8 ~r k ,t !1 (
k, j ~k. j !

GkG jG8~r k ;r j ;t !

1
1

2 ( Gk
2g8~r k ;r k ;t !, ~A49!

where for any givent the functionsG8 and g8 satisfy the
same properties asG and g. To write W8 in terms of lk ,
V(t), andV(t), note that the termcB8 (r k ,t), which in this
problem is solely due to the motion of the body, can
written in body-fixed coordinates as

cB8 ~r k ,t !5cB@ lk ,V~ t !,V~ t !#,

5V~ t !•h~ l!1V~ t !k~ l!. ~A50!

The fieldsh( l) ~of 2-vectors! andk( l) ~of 1-vector! depend
only on the shape of the body. Their components are
harmonic conjugates of the Kirchhoff potentials that app
in the analogous linear decomposition of the potential fu
tion of the irrotational flow associated with the motion of t
body Eq.~A38!.
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We make the following claim forG8 andg8. Let r de-
note the position vector in the fixed frame andl the position
vector in the body-fixed frame as before. Then we make
following proposition.

Proposition. The following holds:

G8~r ;r0 ;t !5G~ l; l0!, ~A51!

g8~r ;r0 ;t !ªG8~r ;r0 ;t !21/~2p!logir2r0i

5G~ l; l0!21/~2p!logi l2 l0i

5g~ l; l0!. ~A52!

Proof. We check thatG8 satisfies all the properties ou
lined by Lin13 for all t. Note that

¹G85R~ t !¹bG, ¹g85R~ t !¹bg,

¹cB8 ~r ,t !5R~ t !¹bcB8 ~R~ t !l1b~ t !,t !

5R~ t !¹bcB~ l,t !,

¹2g85¹b
2g.

~i! ¹2g85¹b
2g50. Henceg8(r ;r0 ;t) is harmonic in the

domain.
~ii ! The condition of zero circulation around the body i

R
]B

]G8

]n
ds5 R

]B
¹G8•n ds50.

This is satisfied since

R
]B

¹G8•n ds5 R
]B

R~ t !¹bG•R~ t !nb ds

5 R
]B

¹bG•nb ds50.

~iii ! The far-field behavior ofG8 should be

G8~r ;r0 ;t !5
1

2p
logir2r0i1OS 1

ir2r0i D ,

]G8

]s
5OS 1

ir2r0i2D ,

]G8

]n
5

1

2pir2r0i 1OS 1

ir2r0i2D .

Since ir2r0i5i l2 l0i , and using the relations be
tween gradients and vectors in the two frames, o
sees thatG8 does possess the above behavior. h

Thus,

W8~r k ,t !5W~ lk ,V~ t !,V~ t !!

5( GkcB@ lk ,V~ t !,V~ t !#

1 (
k, j ~k. j !

GkG jG~ lk ; l j !1
1

2 ( Gk
2g~ lk ; lk!,

~A53!

and
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]W8

]r k
5R~ t !

]W

] lk
. ~A54!

The equations of motion of the vortices in the body-fix
frame can then be derived from Eqs.~A45! and~A46! using
the above results. Fork51,.....,N, this gives

GkR~ t !S d

dt
lk1V3 lk1VD5JR~ t !S ]W

] lk
D ,

GkS d

dt
lk1V3 lk1VD5JS ]W

] lk
D .

HereJ is the matrix

J5S 0 21

1 0 D .

Thus, to summarize, the equations of motion of the
namically interacting system of a 2D rigid cylinder andN
point vortices external to it are

S d

dt
1V3 DL50, ~A55!

dA

dt
1V3L50, ~A56!

GkS dlk
dt

1V3 lk1VD5JS ]W

] lk
D , k51,...,N, ~A57!

da

dt
5V1a3V, ~A58!

whereV is the velocity of the body center of mass referred
the body-fixed frame,a is the position vector, referred to th
body-fixed frame, of the body center of mass from the ori
of the spatially fixed frame,V is the body rotational velocity
L andA are the momenta of the system given by Eq.~A44!,
lk is the position vector of thekth point vortex in the body-
fixed frame, andW is the Kirchhoff–Routh function gener
alized to moving boundaries and given by Eq.~A53!.

This is a (2N15)-dimensional system in the variable
L , A, a, andlk (k51,...,N). We note important special case
of these equations: when the vortices are absent, they re
to Kirchhoff’s equations of motion, when the body is abse
or stationary, they reduce to the canonicalN-point vortex
equations and when the fluid is absent, they reduce to
Lie–Poisson equations for a free rigid body.

The Hamiltonian structure of Eqs.~A55!, ~A56!, ~A57!,
and ~A58! for general body shapes is, as yet, unknown.
expect, however, a Hamiltonian structure to exist~irrespec-
Downloaded 22 Feb 2002 to 131.215.186.91. Redistribution subject to A
-

n

ce
t

he

e

tive of the shape of the body! due to the conservation of th
kinetic energy and the fact that the equations form a fin
dimensional system. To find this structure and also the a
ciated Lagrangian formulation one has to invoke the f
power of reduction theories for systems with symmetry.21,22

Such a project has already been embarked upon by the
thors and Jim Radford~Caltech!.
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