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Abstract. A number of Jupiter family comets such as Oterma and Gehrels 3 make a rapid transition
from heliocentric orbits outside the orbit of Jupiter to heliocentric orbits inside the orbit of Jupiter
and vice versa. During this transition, the comet can be captured temporarily by Jupiter for one to
several orbits around Jupiter. The interior heliocentric orbit is typically close to the 3:2 resonance
while the exterior heliocentric orbit is near the 2:3 resonance. An important feature of the dynamics
of these comets is that during the transition, the orbit passes close to the libration points L1 and
L2, two of the equilibrium points for the restricted three-body problem for the Sun-Jupiter system.
Studying the libration point invariant manifold structures for L1 and L2 is a starting point for under-
standing the capture and resonance transition of these comets. For example, the recently discovered
heteroclinic connection between pairs of unstable periodic orbits (one around the L1 and the other
around L2) implies a complicated dynamics for comets in a certain energy range. Furthermore, the
stable and unstable invariant manifold ‘tubes’ associated to libration point periodic orbits, of which
the heteroclinic connections are a part, are phase space conduits transporting material to and from
Jupiter and between the interior and exterior of Jupiter’s orbit.
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1. Introduction

A heteroclinic connection between periodic orbits about L1 and L2 was recently
discovered by Koon et al. (2000). The existence of such a connection has important
implications regarding the global dynamics of the three-body problem, and for the
motion of bodies in the solar system experiencing such dynamics. The present
paper summarizes earlier work on libration point orbits and their manifolds (see
Conley, 1968; McGehee, 1969; Llibre et al., 1985; Koon et al., 2000) and applies
the geometrical point of view to the comet resonance transition problem. The goal
is to clearly state the qualitative dynamical picture that is forming, which any
detailed investigation of transport between mean motion resonances must build
upon. In Section 4, the particular case of transport between resonances interior and
exterior to Jupiter’s orbit is covered, following the example of the Jupiter family
comet Oterma.

2. Jupiter Comets

2.1. RESONANCE TRANSITION IN COMET ORBITS

Some Jupiter comets such as Oterma and Gehrels 3 make a rapid transition from
heliocentric orbits outside the orbit of Jupiter to orbits inside that of Jupiter and vice
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versa. During this transition, the comet may be captured temporarily by Jupiter for
several orbits. The interior orbit is typically close to the 3:2 mean motion reson-
ance while the exterior orbit is near the 2:3 resonance. See Figure 1(a). During
the transition, the orbit passes close to the libration points L1 and L2, two of the
equilibrium points (in a rotating frame) for the planar circular restricted three-body
problem (PCR3BP) for the Sun–Jupiter system.

2.2. THE RELEVANCE OF INVARIANT MANIFOLDS

Lo and Ross (1997) used the two degree of freedom PCR3BP as the underlying
model for resonance transition and related the transition to invariant manifolds,
noticing that the orbits of Oterma and Gehrels 3 (in the Sun–Jupiter rotating frame)
closely follow the computed invariant manifolds of L1 and L2.1 Koon et al. (2000)
developed this viewpoint along with another key ingredient, a heteroclinic con-
nection between unstable periodic orbits around L1 and L2 with the same Jacobi
constant (a multiple of the energy for the PCR3BP). The dynamical consequences
of such an orbit are covered in great mathematical detail in that paper. Here, we
focus on the study of exotic comet motion and resonance transition in terms of the
libration point invariant manifolds.

2.3. HETEROCLINIC CONNECTIONS

A numerical demonstration is given in Koon et al. (2000) of a heteroclinic con-
nection between pairs of equal energy periodic orbits, one around L1, the other
around L2. This heteroclinic connection augments the previously known homo-
clinic orbits associated with the L1 and L2 periodic orbits (see McGehee, 1969).
Linking these heteroclinic connections and homoclinic orbits leads to dynamical
homoclinic–heteroclinic chains which form the backbone for temporary capture
and rapid resonance transition of Jupiter comets. See Figure 1.

2.4. EXISTENCE AND CONSTRUCTION OF TRANSITION ORBITS

Koon et al. (2000) prove the existence of a large class of interesting orbits in the
neighborhood of a chain which a comet can follow in its rapid transition between
the inside and outside of Jupiter’s orbit via a Jupiter encounter. One can label orbits
near a chain with an itinerary giving their past and future whereabouts, making their
classification and manipulation possible. Furthermore, a systematic procedure for
the numerical construction of orbits with prescribed itineraries has been developed
using the stable and unstable invariant manifold tubes of L1 and L2 periodic orbits.

1 Belbruno and B. Marsden (1997) considered the comet transitions using a different approach,
the ‘fuzzy boundary’ (or ‘weak stability boundary’) concept, which they said “can be viewed as a
higher-dimensional analogue of the collinear Lagrange points L1 and L2 of Jupiter”. During their
investigation however, they suggested that resonance transition “does not seem to occur in the planar
circular restricted problem of two degrees of freedom”.
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Figure 1. (a) Orbit of comet Oterma in Sun-centered inertial frame during time interval AD
1910–1980 (ecliptic projection). (b) The homoclinic-heteroclinic chain corresponding to the Jupiter
comet Oterma. (c) The actual orbit of Oterma overlaying the chain.

3. A Few Key Features of the Three-Body Problem

3.1. PLANAR CIRCULAR RESTRICTED THREE-BODY PROBLEM

The comets of interest are mostly heliocentric, and the perturbations of their motion
away from Keplerian ellipses are dominated by Jupiter’s gravitation. Moreover,
their motion is nearly in Jupiter’s orbital plane, and Jupiter’s small eccentricity
(0.0483) plays little role during the fast resonance transition (less than or equal
to one Jupiter period in duration). The PCR3BP is therefore an adequate starting
model for illuminating the essence of the resonance transition process.

The PCR3BP describes the motion of a body moving in the gravitational field
of two main bodies that are moving in circles. The two main bodies we consider are
the Sun and Jupiter. The total mass is normalized to 1; they are denoted mS = 1−µ

and mJ = µ, where µ = 9.537 × 10−4. The Sun and Jupiter rotate in the plane of
their orbit in circles counterclockwise about their common center of mass and with
angular velocity also normalized to 1.

3.2. EQUATIONS OF MOTION

Choosing a rotating coordinate system so that the origin is at the center of mass, the
Sun and Jupiter are on the x-axis at the points (−µ, 0) and (1 − µ, 0) respectively,
that is, the distance from the Sun to Jupiter is normalized to be 1. Let (x, y) be
the position of the comet in the plane, then the equations of motion in this rotating
frame are

ẍ − 2ẏ = 
x, ÿ + 2ẋ = 
y,

where 
 = (x2 + y2)/2 + (1 − µ)/rS + µ/rJ. Here, the subscripts of 
 denote
partial differentiation in the variable. rS, rJ are the distances from the comet to the
Sun and the Jupiter, respectively. See Szebehely (1967) for the derivation.
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3.3. ENERGY MANIFOLDS

These equations are autonomous and can be put into Hamiltonian form. They have
an energy integral

E = 1
2 (ẋ2 + ẏ2) − 
(x, y),

which is related to the Jacobi constant C by C = −2E. Energy manifolds are
three-dimensional surfaces foliating the four-dimensional phase space. For fixed
energy, Poincaré sections are two-dimensional and therefore easily visualizable.

3.4. EQUILIBRIUM POINTS

The PCR3BP has three collinear equilibrium (Lagrange) points which are unstable,
but for the comets of interest, we examine only L1 and L2. See Figure 2(a). Eigen-
values of the linearized equations at L1 and L2 have one real and one imaginary
pair, having a saddle × center structure.

3.5. REGION OF POSSIBLE MOTION

The projection of the energy manifold onto the position space is the region in the
xy-plane where the comet is energetically permitted to move around (known as the
‘Hill’s region’). The forbidden region is the region that is not accessible for a given
energy. See Figure 2(b).

Our main concern is the behavior of orbits whose energy is just above that
of L2, for which the Hill’s region is a connected region with an interior region
(inside Jupiter’s orbit), exterior region (outside Jupiter’s orbit), and a Jupiter (cap-
ture) region (bubble surrounding Jupiter). These regions are connected by ‘necks’

Figure 2. (a) Equilibrium points of the PCR3BP in the rotating frame. (b) Energetically forbidden
region is gray ‘C’. Hill’s region (region in white), contains a ‘neck’ about L1 and L2. (c) The flow
in the region near L2, showing a periodic orbit around L2 (labeled PO), a typical asymptotic orbit
winding onto the periodic orbit (A), two transit orbits (T) and two non-transit orbits (NT). A similar
figure holds for the region around L1.
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about L1 and L2 and the comet can make transitions between the regions only
through these necks. This equilibrium neck region and its relation to the global
orbit structure is critical and is discussed next.

3.6. FOUR TYPES OF ORBITS IN EQUILIBRIUM REGIONS

In each equilibrium region (one around L1 and one around L2), there exist four
types of orbits (see Figure 2(c)) as given in Conley (1968): (1) an unstable periodic
Lyapunov orbit; (2) four cylinders of asymptotic orbits that wind onto or off this
period orbit, which form pieces of stable and unstable manifolds; (3) transit orbits
which the comet must use to make a transition from one region to the other; and
(4) nontransit orbits where the comet bounces back to its original region.

3.7. INVARIANT MANIFOLDS AS SEPARATRICES

McGehee (1969) first observed that the asymptotic orbits are pieces of the two-
dimensional stable and unstable invariant manifold ‘tubes’ associated to the
Lyapunov orbit and they form the boundary between transit and nontransit orbits.
The transit orbits, passing from one region to another, are those inside the cyl-
indrical manifold tube. The nontransit orbits, which bounce back to their region
of origin, are those outside the tube. Most importantly, to transit from outside
Jupiter’s orbit to inside (or vice versa), or get temporarily captured, a comet must
be inside a tube of transit orbits, as in Figure 3. The invariant manifold tubes
are global objects – they extend far beyond the vicinity of the equilibrium re-
gion, partitioning the energy manifold into regions of qualitatively different orbit
behavior.

Figure 3. (a) Transit orbit from outside to inside Jupiter’s orbit, passing by Jupiter. The tubes con-
taining transit orbits (bounded by the cylindrical stable (lightly shaded) and unstable (darkly shaded)
manifolds) intersect such that a transition is possible. (b) Orbit, beginning inside stable manifold tube
in exterior region, is temporarily captured by Jupiter.
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3.8. NUMERICAL COMPUTATION OF INVARIANT MANIFOLDS

Periodic Lyapunov orbits can be computed using a high order analytic expansion
(see Llibre et al., 1985). Their stable and unstable manifolds can be approximated
as given in Parker and Chua (1989). The basic idea is to linearize the equations of
motion about the periodic orbit and then use the monodromy matrix provided by
Floquet theory to generate a linear approximation of the periodic orbit’s stable and
unstable manifold. The linear approximation, in the form of a state vector, is numer-
ically integrated in the nonlinear equations of motion to produce the approximation
of the stable and unstable manifolds.

3.9. RAPID TRANSITION MECHANISM

The heart of the rapid transition mechanism from outside to inside Jupiter’s orbit
(or vice versa) is the intersection of transit orbit tubes. We can see the intersection
clearly on a two-dimensional Poincaré section in the three-dimensional energy
manifold. We take our section along a vertical line (parallel to the y-axis) through
Jupiter as in Figure 4(a). Plotting ẏ versus y along this line, we see that the tube
cross-sections are distorted circles (see Figure 4(b)). Upon magnification, it is clear
the tubes indeed intersect (see Figure 4(c)).

Any point within the region bounded by the curve corresponding to the stable
tube cut is on an orbit that will go from the Jupiter region into the interior region.
Similarly, a point within the unstable tube cut is on an orbit that came from the
exterior region into the Jupiter region. A point inside the region bounded by the
intersection of both curves (lightly shaded in Figure 4(c)) is on an orbit that makes
the transition from the exterior region to the interior region, via the Jupiter region.
The timescale for such a transition is short, less than one Jupiter period (Jupiter
period ≈ 12 years).

Figure 4. (a) Take a Poincaré section of the L1 and L2 periodic orbit invariant manifold tubes – a
vertical line through Jupiter (J). (b) Look at unstable tube cut for L2 and stable tube cut for L1. (c) A
small portion of the tubes intersect – this set in the phase space contains the comet orbits which pass
from the exterior to the interior region.
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4. Invariant Manifold Tubes and Resonance Transition

4.1. GENERIC TRANSPORT MECHANISM

This dynamical mechanism effecting transfer between the interior and exterior re-
gions has not been previously recognized. It was previously believed that a third
degree of freedom was necessary or that ‘Arnold diffusion’ was somehow involved.
But clearly, only the planar CR3BP is necessary. The dynamics and phase space
geometry involved in the heteroclinic connection now provide a language with
which to discuss and further explore resonance transition.

4.2. TRANSPORT BETWEEN RESONANCES

The dynamical channel discussed in the previous section is a generic transport
mechanism connecting the interior and exterior regions. We now focus on the case
of transport between resonances, and in particular, the rapid transport mechanism
connecting interior and exterior mean motion resonances (e.g. the 3:2 and 2:3
Jupiter resonances). By numerically computing the connection between the interior
and exterior resonances, we will obtain a deeper understanding of the mean motion
resonance transition of actual Jupiter comets, such as Oterma.

4.3. TUBE LOCATION

In Figure 5, the location of the tubes is shown schematically. To perform an Oterma-
like transition from outside to inside Jupiter’s orbit, a comet orbit would begin
inside the stable manifold tube of L2 on the outside, then pass through the L2 equi-
librium region to the L2 unstable manifold in the Jupiter region (as in Figure 3(a)).
Intersecting the L1 stable manifold tube in the Jupiter region, the trajectory would
pass by L1 into the interior region. Note, we will occasionally refer to the interior,
Jupiter, and exterior regions with the letters S, J, and X, respectively.

A comet orbit which circles the Sun once in the interior region of the rotating
frame (as Oterma does as seen in Figure 1(c)) would have to be in a part of phase
space where the L1 stable and and unstable tubes intersect. We can see such an
intersection along the U1 section (see Figure 5).

4.4. INTERIOR AND EXTERIOR RESONANCES

In Figure 6(a), we see a cross-section of the stable and unstable tubes of the
L1 Lyapunov orbit, transformed into Delaunay variables (see Szebehely, 1967).
The vertical axis is an angular variable, thus we can identify the top and bottom
boundaries. The background points reveal the mixed character of the interior region
phase space for this energy surface: stable periodic and quasiperiodic tori ‘islands’
embedded in a bounded chaotic ‘sea’. The families of stable tori lie along strips of
nearly constant semimajor axis, and correspond to mean motion resonances.
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Figure 5. Location of L1 and L2 orbit invariant manifold tubes in position space (schematically).
Stable manifolds are lightly shaded, unstable manifolds are darkly shaded. Location of Poincarè
sections (U1, U2, U3, and U4) also shown. Magnification of Jupiter region at right.

The first cuts of the stable and unstable tubes intersect at the 3:2 resonance.
Any point inside the unstable curve is on an orbit which came from J and any point
inside the stable curve is on an orbit going toward J. Their intersection (the small
diamond) contains all orbits that have come from J, have gone around the Sun
once in the rotating frame, and will return to J. Because this intersection lies along
the strip of 3:2 resonant orbits, we conclude that any comet which has an energy
similar to Oterma’s and which circles around the Sun once in the interior region
must be in 3:2 resonance with Jupiter.

Similar to Figure 6(a) for the interior region, Figure 6(b) shows the first exterior
region Poincaré cuts of the stable and unstable manifold tubes of an L2 Lyapunov
orbit with the U4 section for the same energy, plotted using Delaunay variables. A
similar mixed phase space structure is seen.

The stable and unstable tubes intersect at the region of the 2:3 resonance (the
diamond). Any point inside the unstable curve is on an orbit which came from J
and any point inside the stable curve is on an orbit going toward J. Although there
is another intersection at the 1:2 resonance, the cross-section of the tube is widest
near the 2:3 resonance. These are close to canonical coordinates, thus the vicinity
of the 2:3 resonance is the more important. Therefore, we expect any comet with
this energy which just came from J or is about to go to J, to be in 2:3 resonance
with Jupiter. Their intersection (the diamond at the 2:3 resonance) contains the
orbits that have come from J, circled the Sun once in the rotating frame, and will
return to J.

4.5. CONNECTION BETWEEN RESONANCES

These two resonances (the 3:2 in the interior and the 2:3 in the exterior) are dynam-
ically linked for this energy via the intersection between tubes in the Jupiter region.
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Figure 6. (a) The interior region U1 Poincarè section showing the first cuts of the stable and unstable
manifold tubes of an L1 Lyapunov orbit. Notice their intersection at the 3:2 resonance. (b) The
exterior region U4 Poincarè section showing the first cuts of the stable and unstable manifold tubes
of an L2 Lyapunov orbit. Notice their intersections at the 2:3 and 1:2 resonances.
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Figure 7. (a) Interior region tube intersection �S. (b) The Jupiter region U3 Poincarè section showing
a portion of the image of �X and the pre-image of �S. Notice their intersections, the largest of which
is labeled �. (c) Exterior region tube intersection �X .

In Figure 7(b), we reproduce Figure 7(c), showing the collection of orbits passing
from the exterior to interior region. Superimposed upon this large shaded region
are pieces of the image and pre-image of the 2:3 and 3:2 intersection diamonds,
respectively (�X in the exterior region and �S in the interior region, respect-
ively). The diamonds are mapped to highly stretched and folded strips P(�X) and
P −1(�S) in the Jupiter region. Here, P denotes the Poincaré map connecting the
sections U1, U2, U3, and U4.

Note that P(�X) and P −1(�S) intersect; the largest of these intersections is
labeled �. The image and pre-image of � are small strips in the interior and
exterior regions respectively (see Figures 7(a) and (c)). This is an open set in the
energy surface which dynamically links the 3:2 and 2:3 resonances via the Jupiter
region. One can pick any point inside the strip � and integrate it forward and
backward, generating an Oterma-like transition from the 2:3 to the 3:2 resonance.
See Figure 8 and compare with Figure 1.

Figure 8. (a) An Oterma-like resonance transition in the rotating frame. (b) The same orbit in the
heliocentric inertial frame. (c) Plot of semimajor axis versus time for the same orbit. Important mean
motion resonances 3:2 and 2:3 are also shown for comparison.
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We conclude that L1 and L2 invariant manifold tubes and their intersections lead
to the resonance transition exhibited by comets like Oterma. We expect that Oterma
executes a transition near the full model analogue of this dynamical channel. For
example, the L1 and L2 invariant manifold structures in the three degree of freedom
system are important for comets of similar energy like Helin–Roman–Crockett (see
Howell et al., 2000).

4.6. OTHER RESONANCE CONNECTIONS

A similar resonance connection should exist for all nearby energies, as confirmed
by numerical experiment. We have seen a link between only first order resonances
(p:q, where |p − q| = 1) because we looked only at the first Poincaré cut of
the tubes on our chosen surface in this study. Looking at cuts beyond the first
reveals transitions between higher order resonances. In addition, higher energies
have ‘larger’, more dispersive tubes, which have more intersections for a given cut
number.

5. Conclusions

We have applied dynamical systems techniques developed in Koon et al. (2000) to
the problem of resonance transitions and capture of Jupiter comets with energies
near Oterma’s. The fundamental mechanism is the rapid transport between the
outside and inside of Jupiter’s orbit via L1 and L2 periodic orbit invariant man-
ifold tubes containing transit orbits. This mechanism provides a starting point for
understanding the transport between mean motion resonances in more complicated
models. Furthermore, the invariant manifold structures associated with L1 and L2

periodic orbits may prove valuable for understanding transport throughout the solar
system.
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