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Some Comments on the History, Theory,

and Applications of Symplectic Reduction

In this Preface, we make some brief remarks about the history, theory and applications
of symplectic reduction. We concentrate on developments surrounding our paper Marsden
and Weinstein [1974] and the closely related work of Meyer [1973], so the reader may find
some important references omitted. This is inevitable in a subject that has grown so large
and has penetrated so deeply both pure and applied mathematics, as well as into engineering
and theoretical physics.

We thank Klaas Landsman for the invitation to write these introductory remarks for this
exciting book. We hope that they will be especially useful for younger workers in the area.
Some of this preface is taken, with some revision, from an introductory section in Marsden,
Ratiu and Scheurle [2000]. We would like to thank Tudor Ratiu and Jürgen Scheuerle for
their permission to use this material here.

Reduction of Symplectic Manifolds. Most readers of this volume presumably know
how symplectic reduction goes: given a hamiltonian action of a Lie group on a symplectic
manifold, one divides a level set of a momentum map by the action of a suitable subgroup
to form a new symplectic manifold. Before the division step, one has a manifold (possibly
singular, an occurrence without which this volume would not exist) carrying a degenerate
closed 2-form. Removing such a degeneracy by passing to a quotient space was a well-known
differential-geometric operation promoted by Élie Cartan [1922]. The “suitable subgroup”
related to a momentum mapping was identified by Steven Smale [1970] in a special case,
without the symplectic trappings. It was Smale’s work that inspired the general symplectic
construction by Meyer and ourselves.

More should be said about momentum maps themselves. The idea that an action of a
Lie group G with Lie algebra g on a symplectic manifold P should be accompanied by a map
J : P → g∗ which is equivariant with respect to the coadjoint action, and the fact that the
orbits of this action are themselves symplectic manifolds both occur already in Lie [1890];
the links with mechanics also rely on the work of Lagrange, Poisson, Jacobi and Noether. In
modern form, the momentum map and its equivariance were rediscovered by Kostant [1966]
and Souriau [1966, 1970] in the general symplectic case and by Smale [1970] for the case of
the lifted action from a manifold Q to its cotangent bundle P = T ∗Q.

As for terminology, neither Lie nor Kostant gave the map J a special name. Smale
referred to it as the “angular momentum” by generalization from the special case G = SO(3),
while Souriau called it by the French word “moment”. In our paper Marsden and Weinstein
[1974], following usage emerging at that time, we used the English word “moment” for J ,
but we were soon set straight by Richard Cushman and Hans Duistermaat, who convinced
us that the proper English translation of Souriau’s French word was “momentum,” which
had the added benefit of meshing with Smale’s designation and standard usage in mechanics.
Since 1976 or so, we have referred to J as a momentum map (or mapping); for example, this
term is used in Abraham and Marsden [1978]. On the other hand, Guillemin and Sternberg
popularized the continuing use of “moment” in English, and both words coexist today. (See
the footnote on page 133 of Mikami and Weinstein [1988] for a semi-serious attempt to
bridge the gap.) It is a curious twist, as comes out in work on collective nuclear motion
(Guillemin and Sternberg [1980]) and plasma physics (Marsden and Weinstein [1982] and
Marsden, Weinstein, Ratiu and Schmid [1983]), that moments of inertia and moments of
probability distributions can actually be the values of momentum maps! See Marsden and
Ratiu [1999] for more on the history of the momentum map.
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Passing to reduction itself, we find many precursors in the case where G is abelian, the
components of the momentum map then forming a system of functions in involution (i.e.
the Poisson bracket of any two is zero). The use of k such functions to reduce a phase
space to one having 2k fewer dimensions may be found already in the work of Lagrange,
Poisson, Jacobi, and Routh; it is well described in, for example, Whittaker [1907]. Smale
[1970] noted that Jacobi’s “elimination of the node” in SO(3) symmetric problems is best
understood as division of a nonzero angular momentum level by the SO(2) subgroup which
fixes the momentum value. In his setting of cotangent bundles, Smale clearly stated that
the coadjoint isotropy group Gµ of µ ∈ g∗ leaves J−1(µ) invariant (Smale [1970], Corollary
4.5), but he only divided by Gµ after fixing the total energy as well, in order to obtain the
“minimal” manifold on which to analyze the reduced dynamics. The goal of his “topology
and mechanics” program was to use topology, and specifically Morse theory, to study relative
equilibria.

In Marsden and Weinstein [1974], we combined Souriau’s momentum map for general
symplectic actions, Smale’s idea of dividing the momentum level by the coadjoint isotropy
group, and Cartan’s idea of removing the degeneracy of a 2-form by passing to the leaf space
of the form’s null foliation. The key observation was that the leaves of the null foliation
are precisely the (connected components of the) orbits of the coadjoint isotropy group. The
same observation was made in Meyer [1973], except that Meyer worked in terms of a basis for
the Lie algebra g and identified the subgroup Gµ as the group which left the momentum level
set J−1(µ) invariant. In this way, he did not have to deal with the equivariance properties
of the coadjoint representation.

Perhaps our favorite example in Marsden and Weinstein [1974] was the construction of
the coadjoint orbits in g∗ by reduction of the cotangent bundle T ∗G with its canonical sym-
plectic structure. This example, which “explained” Kostant and Souriau’s formula for this
structure, is typical of many of the ensuing applications of reduction, in which the procedure
is applied to a “trivial” symplectic manifold to produce something interesting. When G is
the group of (volume preserving) diffeomorphisms of a compact manifold (possibly with
boundary), one obtains the Euler equations for (incompressible) fluids by reduction from
the lagrangian formulation of the equations of motion, an idea exploited by Arnold [1966a]
and Ebin and Marsden [1970]. This sort of description of a fluid goes back to Poincaré
(using the Euler-Poincaré equations) and to the thesis of Ehrenfest (as geodesics on the
diffeomorphism group), written under the direction of Boltzmann.

Another example in Marsden and Weinstein [1974] came from general relativity, namely
the reduction of the cotangent bundle of the space of riemannian metrics on a manifold M
by the action of the group of diffeomorphisms of M . In this case, restriction to the zero
momentum level is the so called divergence constraint of general relativity, and one is led to
a construction of a symplectic structure on a space of isometry classes of Einstein manifolds.
Here one sees a precursor of an idea of Atiyah and Bott [1982], which has led to some of
the most spectacular applications of reduction in mathematical physics and related areas of
pure mathematics, especially low-dimensional topology.

Atiyah and Bott start with the space A of connections on a principal bundle with compact
structure group K over a closed oriented surface S. For simplicity of description, assume
that this bundle is trivial. Using a bi-invariant inner product on its Lie algebra k and
integration over S, they define a skew-symmetric pairing on k-valued 1-forms on S which
gives a symplectic structure on A. This structure is invariant under the action of the gauge
group G of bundle automorphisms. The dual of the Lie algebra of G may be identified with
k-valued 2-forms on S, and the curvature map from connections to 2-forms turns out to be
an equivariant momentum map for the G action. Reducing at the momentum level zero
therefore amounts to taking the space of flat connections and passing to the moduli space of
their gauge equivalence classes. This moduli space M thus inherits a symplectic structure.
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But the holonomy construction allows one to identify M with the space of homomorphisms
into G from the fundamental group of S to K, modulo conjugation by elements of K. The
latter space is also identifiable with a space of isomorphism classes of holomorphic vector
bundles when S is equipped with a complex structure. One thus obtains a symplectic
structure on these other moduli spaces as well.

In the paragraphs above, we have blithely been assuming that the momentum levels
and their quotients are smooth manifolds. Of course, this is not always the case, as was
already noted in Smale [1970] and analyzed (even in the infinite-dimensional case) in Arms,
Marsden and Moncrief [1981]. We will make just a few more comments about singular
reduction below, leaving the reader to learn much more from the contents of this volume.

The rest of this preface will consist of further remarks about reduction, most of them
historical.

History before 1960. So far, we have presented reduction as a mathematical construc-
tion, but this construction is actually rooted in classical work on mechanical systems with
symmetry by such masters as Euler, Lagrange, Hamilton, Jacobi, Routh, Riemann, Liou-
ville, Lie, and Poincaré. The aim of their work was to eliminate variables associated with
symmetries in order to simply calculations in concrete examples.. Much of this work was
done with coordinates, although the deep connection between mechanics and geometry was
already evident. Whittaker [1907] gives a good picture of the theory as it existed before
about 1910.

A highlight of this early theory was Routh [1860, 1884], on reduction of systems with
cyclic variables, introducing the amended potential for the reduced system. Routh’s work
was closely related to the reduction of systems with integrals in involution studied by Jacobi
and Liouville around 1870; it corresponds to the modern theory of Lagrangian reduction for
the action of Abelian groups.

The rigid body, whose equations were discovered by Euler around 1740, was a key exam-
ple of reduction–what we would call today either coadjoint orbit reduction or Euler-Poincaré
reduction, depending on one’s point of view. Lagrange [1788] already understood reduction
of the rigid body equation by a method not so far from what we do today with the symmetry
group SO(3). Later authors, unfortunately, relied so much on coordinates (especially Euler
angles) that there is little mention of SO(3) in classical mechanics books written before 1990!
In addition, there seemed to be little appreciation until recently for the role of topological
notions; for example, the fact that one cannot globally split off cyclic variables for the S1

action on the configuration space of the heavy top. The Hopf fibration was sitting, waiting
to be discovered, in the reduction theory for the classical rigid body, but it was not explicitly
found by H. Hopf until around 1940. Hopf was apparently unaware that this example is of
great mechanical interest; the gap between workers in mechanics and geometers seems to
have been particularly wide at that time.

Another noteworthy instance of reduction is Jacobi’s elimination of the node for reducing
the gravitational (or electrostatic) n-body problem by means of the group SE(3) of Euclidean
motions, around 1860 or so. This example has been of course been a mainstay of celestial
mechanics. It is related to the work done by Riemann, Jacobi, Poincaré and others on
rotating fluid masses held together by gravitational forces, such as stars. Hidden in these
examples is much of the beauty of modern reduction, stability and bifurcation theory for
mechanicals systems with symmetry.

Both symplectic and Poisson geometry have their roots in the work of Lagrange and
Jacobi and matured considerably at the hands of Lie, who discovered many remarkably
modern concepts such as the Lie-Poisson bracket on the dual of a Lie algebra (see Weinstein
[1983] and Marsden and Ratiu [1999] for more details). How Lie could have viewed it
so divorced from its roots in mechanics is a bit of a mystery. We can only guess that
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he was inspired by Jacobi, Lagrange and Riemann and then quickly abstracted the ideas.
In a famous paper, (Poincare [1901]) discovered what we call today the Euler-Poincaré
equations–a generalization of the Euler equations for both fluids and the rigid body to
general Lie algebras. It is also curious that Poincaré seemed not to stress the symplectic
ideas of Lie, and it is not clear to what extent he understood what we would call today
Euler-Poincaré reduction, a theme picked up later by Arnold [1966a].

It was only with the development and physical application of the notion of a manifold,
pioneered by Lie, Poincaré, Weyl, Cartan, Reeb, Synge and many others, that a more general
and intrinsic view of mechanics was possible.

1960-1972. Beginning in the 1960’s, the subject of geometric mechanics exploded with
the basic contributions of people such as (alphabetically and nonexhaustively) Abraham,
Arnold, Kirillov, Kostant, Mackey, MacLane, Segal, Sternberg, Smale, and Souriau. Kirillov
and Kostant found deep connections between mechanics and pure mathematics in their work
on the orbit method in group representations, while Arnold, Smale, and Souriau were in
closer touch with mechanics.

The modern vision of mechanics combines strong links to important questions in pure
mathematics with the traditional classical mechanics of particles, rigid bodies, fields, fluids,
plasmas, and elastic solids, as well as quantum and relativistic theories. Symmetries in
these theories vary from obvious translational and rotational symmetries to less obvious
particle relabeling symmetries in fluids and plasmas, to the “hidden” symmetries underlying
integrable systems. As we have already mentioned, reduction theory concerns the removal of
variables using symmetries and their associated conservation laws. Variational principles, in
addition to symplectic and Poisson geometry, provide fundamental tools for this endeavor.
In fact, conservation of the momentum map associated with a symmetry group action is
a geometric expression of the classical Noether theorem (discovered by variational, not
symplectic methods).

For us, the modern era of reduction theory began with the fundamental papers of Arnold
[1966a] and Smale [1970]. Arnold focused on systems whose configuration manifold is a Lie
group, while Smale focused on bifurcations of relative equilibria. Both Arnold linked their
theory strongly with examples. For Arnold, they were the same examples as for Poincaré,
namely the rigid body and fluids, for which he went on to develop powerful stability methods,
as in Arnold [1966b].

For Smale, the motivating example was celestial mechanics, especially the study of the
number and stability of relative equilibria by a topological study of the energy-momentum
mapping. He gave an intrinsic geometric account of the amended potential and in doing
so, discovered what later became known as the mechanical connection. (Smale seems not
to have recognized that the interesting object he called α is a principal connection; this
was first noted by Kummer [1981]). One of Smale’s key ideas in studying relative equilibria
was to link mechanics with topology via the fact that relative equilibria are critical points
of the amended potential. Besides giving a beautiful exposition of the momentum map,
he also emphasized the connection between singularities and symmetry, observing that the
symmetry group of a phase space point has positive dimension iff that point is not a regular
point of the momentum map restricted to a fibre of the cotangent bundle (Smale [1970],
Proposition 6.2). He went on from here to develop his topology and mechanics program and
to apply it to the planar n-body problem. The topology and mechanics program definitely
involved reduction ideas, as in Smale’s construction of the quotients of integral manifolds, as
in Ic,p/S1 (Smale [1970], page 320). He also understood Jacobi’s elimination of the node in
this context, although he did not attempt to give any general theory of reduction along these
lines. In summary, Smale set the stage for symplectic reduction: he realized the importance
of the momentum map and of quotient constructions, and he worked out explicit examples
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like the planar n-body problem with its S1 symmetry group. (Interestingly, he pointed out
that one should really use the nonabelian group SE(2); his feeling of unease with fixing the
center of mass of an n-body system is remarkably perceptive.)

To synthesize the Lie algebra reduction methods of Arnold [1966a] with the techniques
of Smale [1970] on the reduction of cotangent bundles by Abelian groups, we were led in our
paper (Marsden and Weinstein [1974]) to develop reduction theory in the general context
of symplectic manifolds and equivariant momentum maps. This takes us up to about 1972.

An important contribution was made by Marle [1976], who divides the inverse image
of an orbit by its characteristic foliation to obtain the product of an orbit and a reduced
manifold. In particular, one finds that Pµ is symplectically diffeomorphic to an “orbit-
reduced” space Pµ

∼= J−1(Oµ)/G, where Oµ is a coadjoint orbit of G. From this it follows
that the Pµ are symplectic leaves in the Poisson space P/G. The related paper of Kazhdan,
Kostant and Sternberg [1978] was one of the first to notice deep links between reduction
and integrable systems. In particular, they found that the Calogero-Moser systems could be
obtained by reducing a system that was trivially integrable; in this way, reduction provided
a method of producing an interesting integrable system from a simple one. This point of
view was used again by, for example, Bobenko, Reyman and Semenov-Tian-Shansky [1989]
in their spectacular group theoretic explanation of the integrability of the Kowalewski top.

Noncanonical Poisson Brackets. The Hamiltonian description of many physical sys-
tems, such as rigid bodies and fluids in Eulerian variables, requires noncanonical Poisson
brackets and constrained variational principles of the sort studied by Lie and Poincaré. An
example of a noncanonical Poisson bracket is the Lie-Poisson bracket on g∗, the dual of a
Lie algebra g. These Poisson structures, including the coadjoint orbits as their symplectic
leaves, were known to Lie around 1890, although Lie does not seem to have recognized their
importance in mechanics.

In mechanics, the remarkably modern (but rather out of touch with the corresponding
mathematical developments) book by Sudarshan and Mukunda [1974] showed via explicit
examples how systems like rigid bodies could be written in terms of noncanonical brackets.
See also Nambu [1973]. Others in the physics community, such as Morrison and Greene
[1980] also discovered noncanonical bracket formalisms for fluid and magnetohydrodynamic
systems. In the 1980’s, many fluid and plasma systems were shown to have a noncanonical
Poisson formulation. It was Marsden and Weinstein [1982, 1983] who first applied reduc-
tion techniques to these systems. The philosophy was that any mechanical system has its
roots somewhere as a cotangent bundle and that one can recover noncanonical brackets by
reduction. This ran contrary to the point of view, taken by some physicists, that one should
guess at what a Poisson structure might be and then to try to limit the guesses by the
constraint of Jacobi’s identity. In the simplest Poisson reduction process, one starts with a
Poisson manifold P on which a group G acts by Poisson maps and then forms the quotient
space P/G, which, if not singular, inherits a natural Poisson structure itself. Of course, the
Lie-Poisson structure on g∗ is inherited in exactly this way from the canonical symplectic
structure on T ∗G. One of the attractions of this Poisson bracket formalism was its use in
stability theory. This literature is now very large, but Holm, Marsden, Ratiu and Weinstein
[1985] is representative.

The way in which the Poisson structure on Pµ is related to that on P/G was clarified in
a generalization of Poisson reduction due to Marsden and Ratiu [1986], a technique that has
also proven useful in integrable systems (see, e.g., Pedroni [1995] and Vanhaecke [1996]).

Reduction theory for mechanical systems with symmetry has proven to be a power-
ful tool enabling advances in stability theory (from the Arnold method to the energy-
momentum method) as well as in bifurcation theory of mechanical systems, geometric phases
via reconstruction—the inverse of reduction—as well as uses in control theory from stabiliza-
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tion results to a deeper understanding of locomotion. For a general introduction to some of
these ideas and for further references, see Marsden, Montgomery and Ratiu [1990], Marsden
and Ostrowski [1998] and Marsden and Ratiu [1999] .

Lagrangian Reduction. Routh reduction for Lagrangian systems is classically associated
with systems having cyclic variables (this is almost synonymous with having an Abelian
symmetry group); modern expositions of this theory can be found in Arnold, Kozlov and
Neishtadt [1988] and in Marsden and Ratiu [1999], §8.9. A key feature of Routh reduction is
that when one drops the Euler–Lagrange equations to the quotient space associated with the
symmetry, and when the momentum map is constrained to a specified value (i.e., when the
cyclic variables and their velocities are eliminated using the given value of the momentum),
then the resulting equations are in Euler–Lagrange form not with respect to the Lagrangian
itself, but with respect to a modified function called the Routhian. Routh [1877] applied
his method to stability theory; this was a precursor to the energy-momentum method for
stability that synthesizes Arnold’s and Routh’s methods (Simo, Lewis and Marsden [1991];
see Marsden [1992] for an exposition and references). Routh’s stability method is still widely
used in mechanics.

Another key ingredient in Lagrangian reduction is the classical work of Poincare [1901] in
which the Euler–Poincaré equations were introduced. Poincaré realized that the equations
of fluids, free rigid bodies, and heavy tops could all be described in Lie algebraic terms in a
beautiful way. The importance of these equations was realized by Hamel [1904, 1949] and
Chetayev [1941].

Tangent and Cotangent Bundle Reduction. The simplest case of cotangent bundle
reduction is reduction of P = T ∗Q at µ = 0, giving P0 = T ∗(Q/G) with the canonical
symplectic form. Another basic case is when G is Abelian. Here, (T ∗Q)µ

∼= T ∗(Q/G), but
the latter has a symplectic structure modified by magnetic terms, that is, by the curvature
of the mechanical connection.

The Abelian version of cotangent bundle reduction was developed by Smale [1970] and
Satzer [1977] and was generalized to the nonabelian case in Abraham and Marsden [1978].
Kummer [1981] introduced the interpretations of these results in terms of a connection, now
called the mechanical connection. The geometry of this situation was used to great effect
in, for example, Guichardet [1984], Iwai [1987, 1990], and Montgomery [1984, 1990, 1991a].
Routh reduction may be viewed as the Lagrangian analogue of cotangent bundle reduction.

Tangent and cotangent bundle reduction evolved into what we now term as the “bundle
picture” or the “gauge theory of mechanics”. This picture was first developed by Mont-
gomery, Marsden and Ratiu [1984] and Montgomery [1984, 1986]. That work was motivated
and influenced by the work of Sternberg [1977] and Weinstein [1978] on a “Yang-Mills con-
struction” which is, in turn, motivated by Wong’s equations, i.e. the equations for a particle
moving in a Yang-Mills field. The main result of the bundle picture gives a structure to
the quotient spaces (T ∗Q)/G and (TQ)/G when G acts by the cotangent and tangent lifted
actions.

Semidirect Product Reduction. Recall that in the simplest case of a semidirect prod-
uct, one has a Lie group G that acts on a vector space V (and hence on its dual V ∗) and then
one forms the semidirect product S = G � V , generalizing the semidirect product structure
of the Euclidean group SE(3) = SO(3)� R

3.
Consider the isotropy group Ga0 for some a0 ∈ V ∗. The semidirect product reduction

theorem states that each of the symplectic reduced spaces for the action of Ga0 on T ∗G is
symplectically diffeomorphic to a coadjoint orbit in (g� V )∗, the dual of the Lie algebra
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of the semi-direct product. This semidirect product theory was developed by Guillemin
and Sternberg [1978, 1980], Ratiu [1980, 1981, 1982], and Marsden, Ratiu and Weinstein
[1984a,b]. The Lagrangian reduction version of this theory was developed by Holm, Mars-
den and Ratiu [1998a]. This construction is used in applications where one has advected
quantities (such as the direction of gravity in the heavy top, density in compressible flow and
the magnetic field in MHD). Its Lagrangian counterpart was developed in Holm, Marsden
and Ratiu [1998b] along with applications to continuum mechanics. Cendra, Holm, Hoyle
and Marsden [1998] applied this idea to the Maxwell–Vlasov equations of plasma physics.
Cendra, Holm, Marsden and Ratiu [1998] showed how Lagrangian semidirect product theory
fits into the general framework of Lagrangian reduction.

Nonabelian Routh Reduction. The paper Marsden and Scheurle [1993a,b] showed how
to generalize the Routh theory to the nonabelian case and how to get the Euler–Poincaré
equations for matrix groups by the important technique of reducing variational principles.
This approach was motivated by related earlier work of Cendra and Marsden [1987] and
Cendra, Ibort and Marsden [1987]. Related ideas stressing the groupoid point of view were
given in Weinstein [1996]. The work of Bloch, Krishnaprasad, Marsden and Ratiu [1996]
generalized the Euler–Poincaré variational structure to general Lie groups, and Cendra,
Marsden and Ratiu [2000a] carried out a Lagrangian reduction theory that extends the
Euler–Poincaré case to arbitrary configuration manifolds. This work is the Lagrangian
analogue of Poisson reduction, in the sense that no momentum map constraint is imposed.

Until recently, the Lagrangian side of the reduction story has lacked a general category
that is the Lagrangian analogue of Poisson manifolds. One candidate is the category of
Lie algebroids, as explained in Weinstein [1996]. Another is that of Lagrange-Poincaré
bundles, developed in Cendra, Marsden and Ratiu [2000a]. Both have tangent bundles and
Lie algebras as basic examples. The latter work also develops the Lagrangian analogue of
reduction for central extensions and, as in the case of symplectic reduction by stages (see
Marsden, Misiolek, Perlmutter and Ratiu [1998, 2000]), cocycles and curvatures enter in a
natural way.

The Lagrangian analogue of the symplectic bundle picture is the bundle (TQ)/G, which
is a vector bundle over Q/G; In particular, the equations and variational principles live on
this space. For Q = G this reduces to Euler–Poincaré reduction and for G Abelian, it reduces
to the classical Routh procedure. A G-invariant Lagrangian L on TQ induces a Lagrangian
l on (TQ)/G. The resulting equations inherited on this space are the Lagrange–Poincaré
equations (or the reduced Euler–Lagrange equations).

Lagrangian reduction has proven very useful in optimal control problems. It was used
in Koon and Marsden [1997] to extend the falling cat theorem of Montgomery [1990] to the
case of nonholonomic systems as well as to non-zero values of the momentum map.

Reduction by Stages and Group Extensions. There are many precursors to the
general theory of reduction by stages. A simple version for the product of two groups was
given in Marsden and Weinstein [1974]. Other versions are due to Sjamaar and Lerman
[1991] and Landsman [1995, 1998].

The semidirect product reduction theorem can be very nicely viewed using reduction by
stages: one reduces T ∗S by the action of the semidirect product group S = G � V in two
stages, first by the action of V at a point a0 and then by the action of Ga0 . Semidirect
product reduction by stages for actions of semidirect products on general symplectic man-
ifolds was developed and applied to underwater vehicle dynamics in Leonard and Marsden
[1997]. Motivated partly by semidirect product reduction, Marsden, Misiolek, Perlmutter
and Ratiu [1998, 2000] gave a generalization of semidirect product theory in which one has
a group M with a normal subgroup N ⊂ M (so M is a group extension of N) and M acts
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on a symplectic manifold P . One wants to reduce P in two stages, first by N and then
by M/N . On the Poisson level this is easy: P/M ∼= (P/N)/(M/N), but on the symplectic
level it is quite subtle.

An interesting extension which is not a semidirect product is the Bott-Virasoro group,
where the Gelfand-Fuchs cocycle may be interpreted as the curvature of a mechanical con-
nection. The work of Cendra, Marsden and Ratiu [2000a] briefly described above, contains
a Lagrangian analogue of reduction for group extensions and reduction by stages.

Singular Reduction. Singular reduction starts with the observation of Smale [1970] that
we have already mentioned: z ∈ P is a regular point of a momentum map J iff z has no con-
tinuous isotropy. Motivated by this, Arms, Marsden and Moncrief [1981, 1982] showed that
(under hypotheses on ellipticity of the relevant operators that plays the role of a properness
assumption in the finite dimensional case) the level sets J−1(0) of an equivariant momen-
tum map J have quadratic singularities at points with continuous symmetry. While such a
result is easy to prove for compact group actions on finite dimensional manifolds (using the
equivariant Darboux theorem), the main examples of Arms, Marsden and Moncrief [1981]
were, in fact, infinite dimensional—both the phase space and the group. Singular points in
the level sets of the momentum map are related to convexity properties of the momentum
map in that the singular points in phase space map to corresponding singular points in the
the image polytope.

The paper of Otto [1987] showed that if G is a compact Lie group acting freely, J−1(0)/G
is an orbifold. The detailed structure of J−1(0)/G for compact Lie groups acting on finite
dimensional manifolds was determined by Sjamaar and Lerman [1991]; their work was ex-
tended to proper Lie group actions and to J−1(Oµ)/G by Bates and Lerman [1997], with
the assumption that Oµ be locally closed in g∗. Ortega [1998] and Ortega and Ratiu [2001]
redid the entire singular reduction theory for proper Lie group actions starting with the
point reduced spaces J−1(µ)/Gµ and also connected it to the more algebraic approach of
Arms, Cushman and Gotay [1991]. Specific examples of singular reduction, with further
references, may be found in Cushman and Bates [1997]. Huebschmann [1998] (see other
papers cited therein as well as his paper in this volume) has made an unusually careful
study of the singularities of moduli spaces of flat connections.

The Method of Invariants. This method seeks to parametrize quotient spaces by group
invariant functions. It has a rich history going back to Hilbert’s invariant theory. It has
been of great use in bifurcation with symmetry (see Golubitsky, Stewart and Schaeffer [1988]
for instance). In mechanics, the method was developed by Kummer, Cushman, Rod and
coworkers in the 1980’s. We will not attempt to give a literature survey here, other than
to refer to Kummer [1990], Kirk, Marsden and Silber [1996], Alber, Luther, Marsden and
Robbins [1998] and the book of Cushman and Bates [1997] for more details and references.

Nonholonomic Systems. Nonholonomic mechanical systems (such as systems with rol-
ling constraints) provide a very interesting class of systems where the reduction procedure
has to be modified. In fact this provides a class of systems that gives rise to an almost Poisson
structure. Reduction theory for nonholonomic systems has made a lot of progress, but many
interesting questions still remain. A few key references are Koiller [1992], Bates and Sniatycki
[1993], Bloch, Krishnaprasad, Marsden and Murray [1996] and Koon and Marsden [1998].
We refer to Cendra, Marsden and Ratiu [2000b] for a more detailed historical review.

Quantum Mechanics. Of course geometric mechanics has a lot to say about quantum
mechanics. One popular topic (perhaps more among mathematicians than physicists) is
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the issue of quantization. This large subject is considered in detail in many works, such
as Guillemin and Sternberg [1977], Abraham and Marsden [1978], Woodhouse [1992] and
Bates and Weinstein [1997]. This is intimately connected with important topics such as the
geometric phase. In our own attempt to understand some of this (Marsden and Weinstein
[1979]; see also Eckmann and Seneor [1976]), we found much to be gained by studying simple
examples.

A whole industry has grown up (led by Guillemin and Sternberg [1982]) around the
question of reduction and quantization and the issue of whether or not these operations
commute; the answer is generally “yes.” While the subject has matured very much mathe-
matically, there is a surprising lack of attention to examples. For instance, it is hard to find
references that even treat the classical and supposedly well understood example of the rigid
body, which, by the way, was the topic of Casimir’s thesis (see Casimir [1931].)

Another interesting issue, which is directly the subject of this volume, is that of the role
of singular reduction in quantum problems. As far as we know, one of the first papers in
this topic and still one of the interesting ones is that of Emmrich and Romer [1990] which
was written when most of the literature on singular reduction was just getting started.
This paper indicates that wave functions often ‘congregate’ near singular points, which goes
counter to the sometimes quoted statement that singular points in quantum problems are a
set of measure zero so cannot possibly be important. It is also noteworthy that some of the
most fundamental and important field theories have singularities in their solution space at
some of the most interesting and physically relevant solutions, namely the symmetric ones in
Einstein’s gravitational theory; it is still not understood what role these singularities might
have on quantum gravity. See for example, Moncrief [1978], Fischer, Marsden and Moncrief
[1980], Arms, Marsden and Moncrief [1982], and Fischer and Moncrief [1997] and references
therein and for other interesting links with Teichmüller and Thurston theory.

The uses of geometric mechanics in quantum mechanics goes much beyond the issues
already mentioned, especially in the physics and chemistry communities, where one is inter-
ested in topics such as separating rotational and vibrational motions; the ideas of reduction
are central here (see Marsden [1992] for some of the classical aspects of this subject). We
mention only the recent papers of Littlejohn and Reinsch [1997] and Tanimura amd Iwai
[2000] as examples of the wonderful things one can do with geometric mechanics in quantum
theory.

Multisymplectic Reduction and Discrete Mechanical Systems. Reduction theory
is by no means completed. For example, for PDE’s, the multisymplectic (as opposed to
symplectic) framework seems appropriate, both for relativistic and nonrelativistic systems.
In fact, this approach has experienced somewhat of a revival since it has been realized that
it is rather useful for numerical computation (see Marsden, Patrick and Shkoller [1998]).
Only a few instances and examples of multisymplectic reduction are really well understood
(see Marsden, Montgomery, Morrison and Thompson [1986] and Castrillon Lopez, Ratiu
and Shkoller [2000]), so one can expect to see more activity in this area as well.

Another emerging area, also motivated by numerical analysis, is that of discrete me-
chanics. Here the idea is to replace the velocity phase space TQ by Q × Q, with the role
of a velocity vector played by a pair of nearby points. This has been a powerful tool for
numerical analysis, reproducing standard symplectic integration algorithms and much more.
See, for example, Kane, Marsden, Ortiz and West [2000] for a recent article. This subject,
too, has its own reduction theory. See Marsden, Pekarsky and Shkoller [1999], Bobenko
and Suris [1999] and Jalnapurkar, Leok, Marsden and West [2001]. Discrete mechanics also
has some intriguing links with quantization, since Feynman himself first defined path inte-
grals through a limiting process using the sort of discretization used in the discrete action
principle (see Feynman and Hibbs [1965]).
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tions, and semidirect products. Letters in Mathematical Physics, 49, 79–93.
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Poincaré Equations and Semidirect Products, Amer. Math. Soc. Transl., 186, 1–25.

Cendra, H., A. Ibort and J. E. Marsden [1987], Variational principal fiber bundles: a geometric
theory of Clebsch potentials and Lin constraints, J. Geom. Phys., 4, 183–206.

Cendra, H. and J. E. Marsden [1987], Lin constraints, Clebsch potentials and variational principles,
Physica D , 27, 63–89.

Cendra, H., J. E. Marsden and T. S. Ratiu [2000a], Lagrangian reduction by stages, Mem. Amer.
Math. Soc.; (to appear).

Cendra, H., J. E. Marsden and T. S. Ratiu [2000b], Geometric Mechanics, Lagrangian Reduction
and Nonholonomic Systems, in Mathematics Unlimited , Springer-Verlag, New York; (to appear).

Chetayev, N. G. [1941], On the equations of Poincaré, J. Appl. Math. Mech., 5, 253–262.
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Boston.

Eckmann, J.P., and R. Seneor [1976], The Maslov–WKB method for the (an-)harmonic oscillator,
Arch. Rational Mech. Anal., 61, 153–173.

Ebin, D. G. and J. E. Marsden [1970], Groups of diffeomorphisms and the motion of an incom-
pressible fluid, Ann. of Math., 92, 102–163.
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supérieurs, 100, 11–122, Les Presses de L’Univ. de Montréal, Montréal.
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