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Abstract

The method of controlled Lagrangians is a tech-
nique for stabilizing underactuated mechanical
systems which involves modifying a system’s en-
ergy and dynamic structure through feedback.
These modifications can obscure the effect of phys-
ical dissipation in the closed-loop. For example,
generic damping can destabilize an equilibrium
which is closed-loop stable for a conservative sys-
tem model. In this paper, we consider the ef-
fect of damping on Euler-Poincaré (special reduced
Lagrangian) systems which have been stabilized
about an equilibrium using the method of con-
trolled Lagrangians. We describe a choice of feed-
back dissipation which asymptotically stabilizes a
sub-class of controlled Euler-Poincaré systems sub-
ject to physical damping. As an example, we con-
sider intermediate axis rotation of a damped rigid
body with a single internal rotor.

1 Introduction

The method of controlled Lagrangians [6, 3] was
specialized to the problem of stabilizing equilibria
for Euler-Poincaré systems in [7]. A feedback con-
trol law was proposed which preserves the Euler-
Poincaré structure but which shapes the kinetic
energy of the closed-loop system. More generally,
one may choose feedback which also modifies the

dynamic structure [4]. Closed-loop stability can
be studied using Lyapunov methods.

This paper describes the effect of external damping
on an Euler-Poincaré system which has been stabi-
lized using the method of controlled Lagrangians.
Left uncompensated, generic damping may desta-
bilize the closed-loop equilibrium. We propose a
technique for choosing feedback dissipation which
yields asymptotic stability for a sub-class of con-
trolled Euler-Poincaré systems. The approach in-
volves the construction and analysis of a semidefi-
nite Lyapunov function for the closed-loop system.
This work builds on previous results for the under-
water vehicle with internal rotors [10, 11].

In addition to the previous work of the authors the
idea of kinetic energy shaping has been pursued in
the Lagrangian setting in [1, 8]. The method of
interconnection and damping assignment [2, 9] is
an equivalent approach in the Hamiltonian setting
[4]. The Hamiltonian approach was also used in
the earlier paper [5, 10, 11].

2 Review

The systems considered here have as their config-
uration space a product of Lie groups Q = H ×G
where H is non-abelian and G is Abelian. The
dynamics are invariant under the left action of H,
the Lagrangian is cyclic in the G-variables, and the



control enters in the G-direction [7]. Assuming the
control is chosen to preserve the H-symmetry, the
dynamics may be described in a reduced velocity
phase space isomorphic to h × G, where h is the
Lie algebra of H. Let ηα represent an element of h
and let θa represent an element of G. The reduced
Lagrangian has the form

l(ηα, θ̇a) =
1
2
gαβηαηβ + gαbηαθ̇b +

1
2
gabθ̇aθ̇b,

where gαβ , gαb, and gab are the (constant) com-
ponents of the local kinetic energy metric. In the
absence of generalized forces other than the con-
trol, the open-loop equations are

d
dt

∂l
∂ηα = cβ

αγηγ ∂l
∂ηβ (1)

d
dt

∂l
∂θ̇a

= ua. (2)

The coefficients cβ
αγ are structure constants for h.

Let Mα represent the momentum conjugate to ηα,

Mα =
∂l

∂ηα .

In examples, Mα typically represents the total sys-
tem momentum. In the Lagrangian setting, a
Casimir Ck(Mα) satisfies

d
dt

Ck =
∂Ck

∂Mα

(

cβ
αγηγ ∂l

∂ηβ

)

= 0.

Physically, Casimirs often correspond to conserva-
tion laws for total inertial momentum. For the
system described by (1) and (2), the functions Ck

are conserved for any choice of control; this obser-
vation relates to the fact that internal actuators
cannot affect total inertial momentum.

We wish to stabilize an unstable equilibrium

(ηα, θ̇a)|e = (ηα
e , 0) (3)

of the uncontrolled dynamics (1) and (2). (This
equilibrium corresponds to a relative equilibrium
for the unreduced system.) The method of con-
trolled Lagrangians provides a control-modified re-
duced Lagrangian lc. Under certain conditions on
the parameters defining lc, and for a particular

control law ua, the closed-loop dynamics are

d
dt

∂lc
∂ηα = cβ

αγηγ ∂lc
∂ηβ (4)

d
dt

∂lc
∂θ̇a

= 0. (5)

Lyapunov stability analysis gives conditions on
control gains for closed-loop stability of (3).

Choosing the modified energy such that

∂l
∂ηα =

∂lc
∂ηα ,

leads to “matching” of equations (1) and (4). The
Euler-Poincaré matching conditions [7] lead to the
controlled Lagrangian

lc(ηα, θ̇a) =
1
2
gαβηαηβ + gαbηαθ̇b +

1
2
ρabθ̇aθ̇b

where ρab is a constant control parameter. To state
the control law, we first define

Bαβ = gαβ − gαagabgbβ ,

Dab = gab + (gac − ρac)gcαBαβgβegeb,

kβ
a = Dab(gbc − ρbc)gcαBαβ .

By convention, gab denotes the inverse of gab.
The control law which gives the closed-loop equa-
tions (4) and (5) is

ua = kα
a

(

d
dt

∂l
∂ηα

)

= kα
a cγ

αβηβ ∂l
∂ηγ . (6)

Note that the coefficient kα
a depends on the control

parameter ρab. Choosing ua as in (6) gives the
closed-loop equations (4) and (5).

Define the controlled momenta

J̃a =
∂lc
∂θ̇a

= gaαηα + ρabθ̇b

M̃α =
∂lc
∂ηα = Aαβηβ + gαaρabJ̃b

where
Aαβ = gαβ − gαaρabgbβ .

Written in terms of ηα and J̃a, the controlled en-
ergy takes the block diagonal form

Ec(ηα, J̃a) =
1
2
Aαβηαηβ +

1
2
ρabJ̃aJ̃b. (7)

This form is useful for studying stability of relative
equilibria, as described in Section 3.



3 Including Generalized Forces

Assume that the control law ua has been chosen
according to (6). Furthermore, assume that there
is a function EΦ,Ψ(ηα, J̃a) =

1
2
Aαβηαηβ +

1
2
ρabJ̃aJ̃b + Φ(Ck) + Ψ(J̃a). (8)

which has a minimum or a maximum at the desired
equilibrium (3). One method for generating such a
function is the energy-Casimir method, which im-
poses conditions on the control gains and on the
equilibrium values of the first and second partial
derivatives of Φ and Ψ. The conditions on the first
derivatives ensure that the equilibrium is a criti-
cal point of EΦ,Ψ. The conditions on the second
derivatives ensure that the equilibrium is a strict
minimum or maximum. Simple candidates for Φ
and Ψ are functions which are linear and quadratic
in their arguments. We let

Φ(Ck) = ϕkCk +
ϕkl

2
(Ck − Ck

e )(C l − C l
e) (9)

and

Ψ(J̃a) =
1

2ψ
ρabJ̃aJ̃b, (10)

where the scalar constants ϕk, ϕkl, and ψ are
chosen to satisfy conditions imposed during the
energy-Casimir stability analysis. (Note: If θ̇|e 6=
0, then Ψ must include a linear term.)

In the absence of damping, the controlled energy
Ec, the Casimirs Ck, and the controlled momenta
J̃a are all conserved. Thus d

dtEΦ,Ψ = 0 and Lya-
punov stability follows immediately. More gener-
ally, suppose the system is subject to generalized
forces Fα and Fa, so that

d
dt

∂l
∂ηα = cβ

αγηγ ∂l
∂ηβ + Fα (11)

d
dt

∂l
∂θ̇a

= ua + Fa. (12)

One may consider Fα as “external” forces and Fa
as “internal” forces. In general, the internal forces
Fa destroy conservation of Ec and J̃a. These forces
do not affect the total momentum M̃α = Mα,
so the Casimirs Ck are unaffected. The external
forces Fα typically destroy all conservation laws.

One can show that

d
dt

EΦ,Ψ

= Aαβηαη̇β + ρabJ̃a
˙̃Jb +

∂Φ
∂Ck

∂Ck

∂M̃α

˙̃Mα +
∂Ψ
∂J̃a

˙̃Ja

=

(

ηαAαβBβγ +
∂Φ
∂Ck

∂Ck

∂M̃γ

)

Fγ − ηαgαaDabFb

+
(

1 +
1
ψ

)

J̃aDab
(

Fb − kβ
b Fβ

)

. (13)

If Fα = 0, equation (13) suggests a choice of feed-
back dissipation Fa that will drive the modified
energy to its minimum or maximum value [7]. Un-
fortunately, EΦ,Ψ is not generally suitable as a
Lyapunov function when Fα 6= 0. The quadratic
terms in (9) can make d

dtEΦ,Ψ indefinite, regardless
of the choice of feedback dissipation. By omitting
the quadratic terms from Φ(Ck), one might obtain
a semidefinite function whose rate could be made
semidefinite, with opposite sign, by an appropriate
choice of feedback dissipation. Stability could then
be studied using LaSalle’s invariance principle.

Assumption 3.1 The truncated function

EΦ̄,Ψ =
1
2
Aαβηαηβ +

1
2
ρabJ̃aJ̃b + ϕkCk + Ψ(J̃a)

has a (non-strict) minimum or maximum at the
desired equilibrium (3).

Assumption 3.1 is somewhat restrictive, although
it holds for many interesting examples.

Suppose the external force Fα represents physical
damping, with a thrust term to balance damping
at the desired equilibrium. For simplicity, we as-
sume that the damping is linear in velocity and
that any internal damping is cancelled through
feedback:

d
dt

∂l
∂ηα = cβ

αγηγ ∂l
∂ηβ − dαβ(ηβ − ηβ

e )

d
dt

∂l
∂θ̇a

= ua,

where dαβ is a positive definite tensor. Though we
assume linear damping, the results should hold for
more general drag models, provided these models



reflect some basic properties of physical dissipation
(e.g., that drag “opposes velocity”).

Under the following assumption, d
dtEΦ̄,Ψ given by

(13) (with Φ replaced by Φ̄) can be made quadratic
in ηα and J̃a through dissipative feedback.

Assumption 3.2

Ck =
1
2
hkαβM̃αM̃β (14)

where hkαβ is constant and symmetric in α, β.

We note that Casimirs for a number of physically
interesting systems, including the free rigid body,
the heavy top, and the underwater vehicle, can
be expressed as quadratic forms. Substituting the
dissipation model and equation (14) into (13) gives

d
dt

EΦ̄,Ψ =
(

−gαaηα +
(

1 +
1
ψ

)

J̃a

)

DabFb

−J̃aXaγdγβ(ηβ − ηβ
e )− ηαY γ

α dγβ(ηβ − ηβ
e )

where

Xaα =
(

ρabgbβϕkhkβα −
(

1 +
1
ψ

)

Dabkα
b

)

(15)

Y β
α = Aαγ

(

Bγβ + ϕkhkγβ
)

. (16)

Assumption 3.3 dαβηβ
e is in the null space of

Xaα and Y β
α .

Assumption (3.3) implies that d
dtEΦ̄,Ψ is indefinite

in the direction of the propulsive force.

Theorem 3.4 The feedback dissipation

Fa = Dabd̃bc
(

−gcβηβ +
(

1 +
1
ψ

)

J̃c

)

, (17)

with d̃ab symmetric and negative (positive) defi-
nite, makes d

dtEΦ̄,Ψ ≤ (≥)0 provided

Y γ
α dγβ + dαγY γ

β +
(

1 +
1
ψ

)−2

dαγXaγ d̃abXbδdδβ

+ 2
(

1 +
1
ψ

)−1 (

dαγXaγgaβ + gδbXbδdδβ

)

+ 2gαad̃abgbβ ≥ (≤) 0.

The proof follows from linear algebra. Having
found feedback dissipation which makes d

dtEΦ̄,Ψ ≤
(≥)0, one may conclude that the positive (nega-
tive) semidefinite function EΦ̄,Ψ approaches a con-
stant value. LaSalle’s invariance principle can be
used to show asymptotic stability.

4 Example

The problem of stabilizing steady intermediate
axis rotation of a rigid body with a single internal
rotor using the method of controlled Lagrangians is
discussed in [7] and references therein (see also [5]).
Let Ii represent the rigid body principal moments
of inertia (i = 1, 2, 3), let J1 = J2 and J3 represent
the rotor principal moments of inertia, and define
λi = Ii + Ji. We assume that λ1 > λ2 > λ3. Let
Ω = (Ω1, Ω2, Ω3)T be the angular velocity of the
carrier and let φ be the relative angle of the inter-
nal rotor about its spin axis, the body 3-axis. The
reduced Lagrangian is the total kinetic energy:

l(Ω, φ̇) =
1
2

(

λ1Ω2
1 + λ2Ω2

2 + I3Ω2
3 + J3(Ω3 + φ̇)2

)

.

With a control torque u acting on the internal ro-
tor, the equations of motion are

d
dt

∂l
∂Ω

= −Ω× ∂l
∂Ω

d
dt

∂l
∂φ̇

= u.

The square magnitude of total angular momen-
tum, C = 1

2‖
∂l

∂Ω‖
2, is a Casimir for the system.

Let [ρab] = ρJ3 where ρ is a dimensionless scalar.
(Square brackets denote the matrix form of a ten-
sor.) Applying the control law u = ucL with

ucL =
(

1 +
ρ

ρ− 1
I3

J3

)−1

(λ1 − λ2)Ω1Ω2 (18)

yields the closed-loop equations

d
dt

∂lc
∂Ω

= −Ω× ∂lc
∂Ω

d
dt

∂lc
∂φ̇

= 0,

where the controlled Lagrangian is lc(Ω, φ̇) =

1
2

(

λ1Ω2
1 + λ2Ω2

2 + I3Ω2
3
)

+ J3Ω3φ̇ +
1
2
ρJ3φ̇2.



The momentum conjugate to φ is the controlled
conserved quantity l̃3 = J3(Ω3 + ρφ̇). Define the
“controlled inertia”

IC3 = I3 +
ρ− 1

ρ
J3.

For this example, [Aαβ] = diag(λ1, λ2, IC3) and,
referring to equation (7), the controlled energy is

Ec(Ω, l̃3) =
1
2

(

λ1Ω2
1 + λ2Ω2

2 + IC3Ω
2
3 +

l̃23
ρJ3

)

.

The equilibrium

Ωe = [ 0, Ω̄, 0 ]T , φ̇e = 0, (19)

with Ω̄ 6= 0, corresponds to steady rotation about
the intermediate axis with zero relative rotor ve-
locity. This equilibrium is unstable for the uncon-
trolled system. The control law (18) can be shown
to stabilize (19) for appropriate choices of ρ. Con-
ditions on ρ for stability may be found by applying
the energy-Casimir method to

EΦ,Ψ(Ω, l̃3) = Ec(Ω, l̃3) + Φ(C) + Ψ(l̃3).

In the absence of dissipation, a sufficient condition
for nonlinear stability is [7]

0 < ρ <
J3

J3 + I3
. (20)

In this case, a negative definite Lyapunov function
for (19) is

EΦ,Ψ = Ec −
1
λ2

C +
ϕ11

2
(C − Ce)2 +

l̃23
2ψρJ3

,

where the constant ϕ11 < 0 and ψ satisfies
(

1 +
1
ψ

)

<
J3

ρ (λ2 − IC3)
.

An appropriate choice of feedback dissipation leads
to asymptotic stability [7].

Assume that the rigid body is subject to an
external torque −D(Ω − Ωe) where D =
diag(d1, d2, d3) > 0,

d
dt

∂l
∂Ω

= −Ω× ∂l
∂Ω

−D(Ω−Ωe)

d
dt

∂l
∂φ̇

= u.

Choose the new control law

u = ucL + udiss (21)

where ucL is given by (18) and udiss is a dissipative
feedback term to be chosen.

To illustrate that d
dtEΦ,Ψ is indefinite, assume that

at an instant Ω1 = Ω3 = 0 and l̃3 = 0. At that
instant, regardless of the choice of udiss,

d
dt

EΦ,Ψ = ϕ11(C − Ce)(λ2Ω2)(−d2(Ω2 − Ω̄)).

Since (C − Ce)(Ω2 − Ω̄) > 0 at this instant, the
sign of d

dtEΦ,Ψ depends on Ω2. Thus, EΦ,Ψ cannot
be a Lyapunov function.

Instead, we consider the negative semidefinite
function

EΦ̄,Ψ = Ec −
1
λ2

C +
l̃23

2ψρJ3

and apply the procedure outlined in Section 3. In
accordance with Assumption 3.2, we may write C
as a quadratic form where [h1αβ ] is the 3× 3 iden-
tity matrix. One may verify that Assumption 3.3
is satisfied by computing Xaα and Y β

α according
to definitions (15) and (16).

Define the dissipative feedback gain [d̃ab] = J3/d̃,
where d̃ is a scalar parameter, and choose udiss =
[Fa] given in equation (17). Applying Theorem 3.4,
one finds that choosing ψ to satisfy

0 < 1 +
1
ψ

< min
(

− I3

(ρ− 1)λ2
,

J3

ρ (λ2 − IC3)

)

(22)
and choosing d̃ =

d3

(

ψ+1
ψρλ2

+ ρ−1
ρ

1
I3

)2

(

− IC3
J3

(

1
λ3
− 1

λ2

)

+ 2

(

1�
1+ 1

ψ

�
ρλ2

+ ρ−1
ρ

1
I3

))

(23)
makes d

dtEΦ̄,Ψ ≥ 0.

LaSalle’s invariance principle applies to systems
with semidefinite Lyapunov functions, although
the task of finding a trapping region is not triv-
ial. For this example, one may find a trapping
region using a physical argument. Since drag in-
creases with angular velocity and the propulsive



torque is constant, ‖Ω‖ is bounded; i.e., there is a
“maximum sustainable angular rate” above which
the body is slowed by drag. Using the Casimir
C, one may define a noncompact, positively in-
variant region whose boundary is determined by
the larger of the initial angular rate and the maxi-
mum sustainable angular rate. The intersection of
this region and the noncompact, positively invari-
ant region obtained by bounding the value of EΦ̄,Ψ
is a global trapping region.

Examining the dynamics on the set where
d
dtEΦ̄,Ψ = 0, one finds that

λ2Ω̇2 = −d2(Ω2 − Ω̄).

The largest invariant set within the set where
d
dtEΦ̄,Ψ = 0 contains only the desired equilibrium
(19). By LaSalle’s principle, one concludes that
the equilibrium is globally asymptotically stable.

Theorem 4.1 Consider the control law (21) with
ucL given by (18) and udiss = [Fa] given by (17),
where [d̃ab] = J3/d̃. If ρ satisfies (20) and d̃
is given by (23), the equilibrium (19) is globally
asymptotically stable.

5 Conclusions

To be of practical value, stabilization techniques
which rely on kinetic energy shaping must account
for the effect of physical dissipation. Here we
have considered the effect of damping on a class
of Euler-Poincaré systems which have been stabi-
lized using the method of controlled Lagrangians.
For a sub-class of these systems, we have described
a choice of feedback dissipation which can yield
asymptotic stability in the presence of generic lin-
ear damping. The choice of control law and the
proof of asymptotic stability rely on the construc-
tion and analysis of a semidefinite Lyapunov func-
tion for the conservative, closed-loop system.
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