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The invariant manifold structures of the collinear libration points for the
spatial restricted three-body problem provide the framework for under-
standing complex dynamical phenomena from a geometric point of view.
In particular, the stable and unstable invariant manifold “tubes” associ-
ated to libration point orbits are the phase space structures that provide a
conduit for orbits between primary bodies for separate three-body systems.
These invariant manifold tubes can be used to construct new spacecraft
trajectories, such as a “Petit Grand Tour” of the moons of Jupiter. Pre-
vious work focused on the planar circular restricted three-body problem.
The current work extends the results to the spatial case.

INTRODUCTION

New space missions are increasingly more complex. They require new and unusual kinds of orbits
to meet their scientific goals, orbits which cannot be found by the traditional conic approach. The
delicate heteroclinic dynamics employed by the Genesis Discovery Mission dramatically illustrates
the need for a new paradigm: study of the three-body problem using dynamical systems theory.1,2,3

Furthermore, it appears that the dynamical structures of the three-body problem (e.g., stable
and unstable manifolds, bounding surfaces), reveal much about the morphology and transport of
materials within the solar system. The cross-fertilization between the study of the natural dynamics
in the solar system and applications to engineering has produced a number of new techniques for
constructing spacecraft trajectories with desired behaviors, such as rapid transition between the
interior and exterior Hill’s regions, temporary capture, and collision.4

The invariant manifold structures associated to the collinear libration points for the restricted
three-body problem, which exist for a range of energies, provide a framework for understanding
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these dynamical phenomena from a geometric point of view. In particular, the stable and unstable
invariant manifold tubes associated to libration point orbits are the phase space structures that
provides a conduit for material to and from the smaller primary body (e.g., Jupiter in the Sun-
Jupiter-comet three-body system), and between primary bodies for separate three-body systems
(e.g., Saturn and Jupiter in the Sun-Saturn-comet and the Sun-Jupiter-comet three-body systems).5

Furthermore, these invariant manifold tubes can be used to produce new techniques for construct-
ing spacecraft trajectories with interesting characteristics. These may include mission concepts such
as a low energy transfer from the Earth to the Moon and a “Petit Grand Tour” of the moons of
Jupiter. See Figures 1 and 2. Using the invariant manifold structures of the 3-body systems, we were
able to construct a transfer trajectory from the Earth which executes an unpropelled (i.e., ballistic)
capture at the Moon.6 An Earth-to-Moon trajectory of this type, which utilizes the perturbation by
the Sun, requires less fuel than the usual Hohmann transfer.
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Figure 1: (a) Low energy transfer trajectory in the geocentric inertial frame. (c) Same trajectory in the Sun-Earth

rotating frame.
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Figure 2: The “Petit Grand Tour” space mission concept for the Jovian moons. In our previous study, we showed

an orbit coming into the Jupiter system and (a) performing one loop around Ganymede (shown in the Jupiter-

Ganymede rotating frame), (b) transferring from Ganymede to Europa using a single impulsive maneuver (shown

in the Jupiter-centered inertial frame), and (c) getting captured by Europa (shown in the Jupiter-Europa rotating

frame).
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Moreover, by decoupling the Jovian moon n-body system into several three-body systems, we
can design an orbit which follows a prescribed itinerary in its visit to Jupiter’s many moons. In
an earlier study of a transfer from Ganymede to Europa,7 we found our transfer ∆V to be half the
Hohmann transfer value. As an example, we generated a tour of the Jovian moons: starting beyond
Ganymede’s orbit, the spacecraft is ballistically captured by Ganymede, orbits it once and escapes,
and ends in a ballistic capture at Europa. One advantage of this Petit Grand Tour as compared
with the Voyager-type flybys is the “leap-frogging” strategy. In this new approach to space mission
design, the spacecraft can circle a moon in a loose temporary capture orbit for a desired number of
orbits, perform a transfer ∆V and become ballistically captured by another adjacent moon for some
number of orbits, etc. Instead of flybys lasting only seconds, a scientific spacecraft can orbit several
different moons for any desired duration.

The design of the Petit Grand Tour in the planar case is guided by two main ideas. First,
the Jupiter-Ganymede-Europa-spacecraft four-body system is approximated as two coupled planar
three-body systems. Then, the invariant manifold tubes of the two planar three-body systems are
used to construct an orbit with the desired behaviors. This initial solution is then refined to obtain
a trajectory in a more accurate 4-body model. See Figure 3.
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Figure 3: (a) Find an intersection between dynamical channel enclosed by Ganymede’s L1 periodic orbit unstable

manifold and dynamical channel enclosed by Europa’s L2 periodic orbit stable manifold (shown in schematic). (b)

Integrate forward and backward from patch point (with ∆V to take into account velocity discontinuity) to generate

desired transfer between the moons (schematic).

The coupled 3-body model considers the two adjacent moons competing for control of the same
spacecraft as two nested 3-body systems (e.g., Jupiter-Ganymede-spacecraft and Jupiter-Europa-
spacecraft). When close to the orbit of one of the moons, the spacecraft’s motion is dominated
by the 3-body dynamics of the corresponding planet-moon system. Between the two moons, the
spacecraft’s motion is mostly planet-centered Keplerian, but is precariously poised between two
competing 3-body dynamics. In this region, orbits connecting unstable libration point orbits of
the two different 3-body systems may exist, leading to complicated transfer dynamics between the
two adjacent moons. We seek intersections between invariant manifold tubes which connect the
capture regions around each moon. In the planar case, these tubes separate transit orbits (inside
the tube) from non-transit orbits (outside the tube). They are the phase space structures that
provide a conduit for orbits between regions within each three-body systems as well as between
primary bodies for separate three-body systems.4 The extension of this planar result to the spatial
case is the subject of the current paper.
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Extending Results from Planar Model to Spatial Model Previous work based on the pla-
nar circular restricted three-body problem (PCR3BP) revealed the basic structures controlling the
dynamics.4,5,6,7 But future missions will require three-dimensional capabilities, such as control of
the latitude and longitude of a spacecraft’s escape from and entry into a planet or moon. For ex-
ample, the proposed Europa Orbiter mission desires a capture into a high inclination polar orbit
around Europa. Three-dimensional capability is also required when decomposing an n-body system
into three-body systems that are not co-planar, such as the Earth-Sun-spacecraft and Earth-Moon-
spacecraft systems. These demands necessitate the extension of earlier results to the spatial model
(CR3BP). See Figure 4.
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Figure 4: The three dimensional Petit Grand Tour space mission concept for the Jovian moons. (a) We show a

spacecraft trajectory coming into the Jupiter system and transferring from Ganymede to Europa using a single impul-

sive maneuver, shown in a Jupiter-centered inertial frame. (b) The spacecraft performs one loop around Ganymede,

using no propulsion at all, as shown here in the Jupiter-Ganymede rotating frame. (c) The spacecraft arrives in

Europa’s vicinity at the end of its journey and performs a final propulsion maneuver to get into a high inclination

circular orbit around Europa, as shown here in the Jupiter-Europa rotating frame.

In our current work on the spatial three-body problem, we are able to show that the invariant
manifold structures of the collinear libration points still act as the separatrices for two types of mo-
tion, those inside the invariant manifold “tubes” are transit orbits and those outside the “tubes” are
non-transit orbits. We have also designed an algorithm for constructing orbits with any prescribed
itinerary and obtained some initial results on the basic itinerary. Furthermore, we have applied the
techniques developed in this paper to the construction of a three dimensional Petit Grand Tour of the
Jovian moon system. By approximating the dynamics of the Jupiter-Europa-Ganymede-spacecraft
4-body problem as two 3-body subproblems, we seek intersections between the channels of tran-
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sit orbits enclosed by the stable and unstable manifold tubes of different moons. In our example,
we have designed a low energy transfer trajectory from Ganymede to Europa that ends in a high
inclination orbit around Europa.

CIRCULAR RESTRICTED THREE-BODY PROBLEM

The orbital planes of Ganymede and Europa are within 0.3◦ of each other, and their orbital eccen-
tricities are 0.0006 and 0.0101, respectively. Furthermore, since the masses of both moons are small,
and they are on rather distant orbits, the coupled spatial CR3BP is an excellent starting model for
illuminating the transfer dynamics between these moons. We assume the orbits of Ganymede and
Europa are co-planar, but the spacecraft is not restricted to their common orbital plane.

The Spatial Circular Restricted Three Body Problem. We begin by recalling the equations
for the circular restricted three-body problem (CR3BP). The two main bodies, which we call
generically Jupiter and the moon, have a total mass that is normalized to one. Their masses are
denoted by mJ = 1−µ and mM = µ respectively (see Figure 5(a)). These bodies rotate in the plane
counterclockwise about their common center of mass and with the angular velocity normalized to
one. The third body, which we call the spacecraft, is free to move in the three-dimensional space
and its motion is assumed to not affect the primaries. Note that the mass parameters for the
Jupiter-Ganymede and Jupiter-Europa systems are µG = 7.802 × 10−5 and µE = 2.523 × 10−5,
respectively.

Choose a rotating coordinate system so that the origin is at the center of mass and Jupiter (J)
and the moon (M) are fixed on the x-axis at (−µ, 0, 0) and (1 − µ, 0, 0) respectively (see Figure
5(a)). Let (x, y, z) be the position of the spacecraft in the rotating frame.

Equations of Motion. There are several ways to derive the equations of motion for this system A
efficient technique is to use covariance of the Lagrangian formulation and use the Lagrangian directly
in a moving frame.9 This method gives the equations in Lagrangian form. Then the equations of
motion of the spacecraft can be written in second order form as

ẍ− 2ẏ = Ωx, ÿ + 2ẋ = Ωy, z̈ = Ωz . (1)

where

Ω(x, y, z) =
x2 + y2

2
+

1− µ

r1
+

µ

r2
+

µ(1 − µ)
2

,

where Ωx, Ωy, and Ωz are the partial derivatives of Ω with respect to the variables x, y, and z. Also,
r1 =

√
(x + µ)2 + y2 + z2, r2 =

√
(x − 1 + µ)2 + y2 + z2. This form of the equations of motion has

been studied in detail10 and are called the equations of the CR3BP.
After applying the Legendre transformation to the Lagrangian formulation, one finds that the

Hamiltonian function is given by

H =
(px + y)2 + (py − x)2 + p2

z

2
− Ω(x, y, z), (2)

Therefore, Hamilton’s equations are given by:

ẋ =
∂H

∂px
= px + y, ṗx = −∂H

∂x
= py − x + Ωx,

ẏ =
∂H

∂py
= py − x, ṗy = −∂H

∂y
= −px − y + Ωy,

ż =
∂H

∂pz
= pz, ṗz = −∂H

∂z
= Ωz,
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Figure 5: (a) Equilibrium points of the CR3BP as viewed, not in any inertial frame, but in the rotating frame,

where Jupiter and a Jovian moon are at fixed positions along the x-axis. (b) Projection of the three-dimensional Hill’s

region on the (x, y)-plane (schematic, the region in white), which contains a “neck” about L1 and L2. (c) The flow in

the region near L2 projected on the (x, y)-plane, showing a bounded orbit around L2 (labeled B), an asymptotic orbit

winding onto the bounded orbit (A), two transit orbits (T) and two non-transit orbits (NT), shown in schematic. A

similar figure holds for the region around L1.

Jacobi Integral. The system (1) have a first integral called the Jacobi integral, which is given
by

C(x, y, z, ẋ, ẏ, ż) = −(ẋ2 + ẏ2 + ż2) + 2Ω(x, y, z) = −2E(x, y, z, ẋ, ẏ, ż).

We shall use E when we regard the Hamiltonian as a function of the positions and velocities and H
when we regard it as a function of the position and mementa.

Equilibrium Points and Hill’s Regions. The system (1) has five equilibrium points in the (x, y)
plane, 3 collinear ones on the x-axis, called L1, L2, L3 (see Figure 5(a)) and two equilateral points
called L4andL5. These equilibrium points are critical points of the (effective potential) function Ω.
The value of the Jacobi integral at the point Li will be denoted by Ci.

The level surfaces of the Jacobi constant, which are also energy surfaces, are invariant 5-
dimensional manifolds. Let M be that energy surface, i.e.,

M(µ, C) = {(x, y, z, ẋ, ẏ, ż) | C(x, y, z, ẋ, ẏ, ż) = constant}
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The projection of this surface onto position space is called a Hill’s region

M(µ, C) = {(x, y, z) | Ω(x, y, z) ≥ C/2}.

The boundary of M(µ, C) is the zero velocity curve. The spacecraft can move only within this
region. Our main concern here is the behavior of the orbits of equations (1) whose Jacobi constant
is just below that of L2; that is, C < C2. For this case, the three-dimensional Hill’s region contains
a “neck” about L1 and L2, as shown in Figure 5(b). Thus, orbits with a Jacobi constant just
below that of L2 are energetically permitted to make a transit through the two neck regions from
the interior region (inside the moon’s orbit) to the exterior region (outside the moon’s orbit)
passing through the moon (capture) region.

INVARIANT MANIFOLD AS SEPARATRIX

Studying the linearization of the dynamics near the equilibria is of course an essential ingredient for
understanding the more complete nonlinear dynamics.4,11,12,13

Linearization near the Collinear Equilibria. We will denote by (k, 0, 0, 0, k, 0) the coordinates
of any of the collinear Lagrange point. To find the linearized equations it, we need the quadratic
terms of the Hamiltonian H in equation (2) as expanded about (k, 0, 0, 0, k, 0). After making a
coordinate change with (k, 0, 0, 0, k, 0) as the origin, these quadratic terms form the Hamiltonian
function for the linearized equations, which we shall call Hl

Hl =
1
2
{(px + y)2 + (py − x)2 + p2

z − ax2 + by2 + cz2},

where, a, b and c are defined by a = 2ρ + 1, b = ρ− 1, and c = ρ and where

ρ = µ|k − 1 + µ|−3 + (1− µ)|k + µ|−3.

A short computation gives the linearized equations in the form

ẋ =
∂Hl

∂px
= px + y, ṗx = −∂Hl

∂x
= py − x + ax,

ẏ =
∂Hl

∂py
= py − x, ṗy = −∂Hl

∂y
= −px − y − by,

ż =
∂Hl

∂pz
= pz, ṗz = −∂Hl

∂z
= −cz.

It is straightforward to show that the eigenvalues of this linear system have the form ±λ, ±iν and
±iω, where λ, ν and ω are positive constants and ν 6= ω.

To better understand the orbit structure on the phase space, we make a linear change of coordi-
nates with the eigenvectors as the axes of the new system. Using the corresponding new coordinates
q1, p1, q2, p2, q3, p3, the differential equations assume the simple form

q̇1 = λq1, ṗ1 = −λp1,

q̇2 = νp2, ṗ2 = −νq2,

q̇3 = ωp3, ṗ3 = −ωq3, (3)

and the Hamiltonian function becomes

Hl = λq1p1 +
ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3). (4)
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Solutions of the equations (3) can be conveniently written as

q1(t) = q0
1eλt, p1(t) = p0

1e
−λt,

q2(t) + ip2(t) = (q0
2 + p0

2)e
−iνt,

q3(t) + ip2(t) = (q0
3 + ip0

3)e
−iωt, (5)

where the constants q0
1 , p

0
1, q0

2 +ip0
2, and q0

3 +ip0
3 are the initial conditions. These linearized equations

admit integrals in addition to the Hamiltonian function; namely, the functions q1p1, q2
2 + p2

2 and
q2
3 + p2

3 are constant along solutions.

The Linearized Phase Space. For positive h and c, the region R, which is determined by

Hl = h, and |p1 − q1| ≤ c,

is homeomorphic to the product of a 4-sphere and an interval I, S4× I; namely, for each fixed value
of p1 − q1 between −c and c, we see that the equation Hl = h determines a 4-sphere

λ

4
(q1 + p1)2 +

ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3) = h +

λ

4
(p1 − q1)2.

The bounding 4-sphere of R for which p1 − q1 = −c will be called n1, and that where p1 − q1 = c,
n2 (see Figure 6). We shall call the set of points on each bounding 4-sphere where q1 + p1 = 0
the equator, and the sets where q1 + p1 > 0 or q1 + p1 < 0 will be called the north and south
hemispheres, respectively.

p 1−
q 1=

−c

p 1−
q 1=

+c

p 1−
q 1=

0

p1+q1=0

n1 n2

p1q1
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projection

vertical oscillations
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q 1
p 1
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NTNT
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A

Figure 6: The flow in the equilibrium region has the form saddle × center × center. On the left is shown the

projection onto the (p1, q1)-plane (note, axes tilted 45◦). Shown are the bounded orbits (black dot at the center), the

asymptotic orbits (labeled A), two transit orbits (T) and two non-transit orbits (NT).

The Linear Flow in R. To analyze the flow in R, one considers the projections on the (q1, p1)-
plane and (q2, p2) × (q3, p3)-space, respectively. In the first case we see the standard picture of
an unstable critical point, and in the second, of a center consisting of two uncoupled harmonic
oscillators. Figure 6 schematically illustrates the flow. The coordinate axes of the (q1, p1)-plane
have been tilted by 45◦ and labeled (p1, q1) instead in order to correspond to the direction of the
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flow in later figures which adopt the NASA convention that the larger primary is to the left of the
small primary. With regard to the first projection we see that R itself projects to a set bounded on
two sides by the hyperbola q1p1 = h/λ (corresponding to q2

2 + p2
2 = q2

3 + p2
3 = 0, see (4)) and on two

other sides by the line segments p1 − q1 = ±c, which correspond to the bounding 4-spheres.
Since q1p1 is an integral of the equations in R, the projections of orbits in the (q1, p1)-plane

move on the branches of the corresponding hyperbolas q1p1 = constant, except in the case q1p1 = 0,
where q1 = 0 or p1 = 0. If q1p1 > 0, the branches connect the bounding line segments p1 − q1 = ±c
and if q1p1 < 0, they have both end points on the same segment. A check of equation (5) shows
that the orbits move as indicated by the arrows in Figure 6.

To interpret Figure 6 as a flow in R, notice that each point in the (q1, p1)-plane projection
corresponds to a 3-sphere S3 in R given by

ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3) = h− λq1p1.

Of course, for points on the bounding hyperbolic segments (q1p1 = h/λ), the 3-sphere collapses to
a point. Thus, the segments of the lines p1 − q1 = ±c in the projection correspond to the 4-spheres
bounding R. This is because each corresponds to a 3-sphere crossed with an interval where the two
end 3-spheres are pinched to a point.

We distinguish nine classes of orbits grouped into the following four categories:

1. The point q1 = p1 = 0 corresponds to an invariant 3-sphere S3
h of bounded orbits (periodic

and quasi-periodic) in R. This 3-sphere is given by

ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3) = h, q1 = p1 = 0.

It is an example of a normally hyperbolic invariant manifold (NHIM).14 Roughly, this
means that the stretching and contraction rates under the linearized dynamics transverse to
the 3-sphere dominate those tangent to the 3-sphere. This is clear for this example since the
dynamics normal to the 3-sphere are described by the exponential contraction and expansion
of the saddle point dynamics. Here the 3-sphere acts as a “big saddle point”. See the black
dot at center the (q1, p1)-plane on the left side of Figure 6.

2. The four half open segments on the axes, q1p1 = 0, correspond to four cylinders of orbits
asymptotic to this invariant 3-sphere S3

h either as time increases (p1 = 0) or as time decreases
(q1 = 0). These are called asymptotic orbits and they form the stable and the unstable
manifolds of S3

h. The stable manifolds, W s(S3
h), are given by

ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3) = h, q1 = 0.

The unstable manifolds, W s(S3
h), are given by

ν

2
(q2

2 + p2
2) +

ω

2
(q2

3 + p2
3) = h, p1 = 0.

Topologically, both invariant manifolds look like 4-dimensional “tubes” (S3×R). See the four
orbits labeled A of Figure 6.

3. The hyperbolic segments determined by q1p1 = constant > 0 correspond to two cylinders
of orbits which cross R from one bounding 4-sphere to the other, meeting both in the same
hemisphere; the northern hemisphere if they go from p1 − q1 = +c to p1 − q1 = −c, and the
southern hemisphere in the other case. Since these orbits transit from one region to another,
we call them transit orbits. See the two orbits labeled T of Figure 6.
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4. Finally the hyperbolic segments determined by q1p1 = constant < 0 correspond to two cylin-
ders of orbits in R each of which runs from one hemisphere to the other hemisphere on the
same bounding 4-sphere. Thus if q1 > 0, the 4-sphere is n1 (p1 − q1 = −c) and orbits run
from the southern hemisphere (q1 + p1 < 0) to the northern hemisphere (q1 + p1 > 0) while
the converse holds if q1 < 0, where the 4-sphere is n2. Since these orbits return to the same
region, we call them non-transit orbits. See the two orbits labeled NT of Figure 6.

McGehee Representation. As noted above,R is a 5-dimensional manifold that is homeomorphic
to S4 × I. It can be represented by a spherical annulus bounded by two 4-spheres n1, n2, as shown
in Figure 7(b). Figure 7(a) is a cross-section of R. Notice that this cross-section is qualitatively
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Figure 7: (a) The cross-section of the flow in the R region of the energy surface. (b) The McGehee representation

of the flow in the region R.

the same as the illustration in Figure 6. The following classifications of orbits correspond to the
previous four categories:

1. There is an invariant 3-sphere S3
h of bounded orbits in the region R corresponding to the point

l. Notice that this 3-sphere is the equator of the central 4-sphere given by p1 − q1 = 0.

2. Again let n1, n2 be the bounding 4-spheres of region R, and let n denote either n1 or n2. We
can divide n into two hemispheres: n+, where the flow enters R, and n−, where the flow leaves
R. There are four cylinders of orbits asymptotic to the invariant 3-sphere S3

h. They form the
stable and unstable manifolds to the invariant 3-sphere S3

h. Let a+ and a− (where q1 = 0 and
p1 = 0 respectively) be the intersections with n of the stable and unstable manifolds. Then
a+ appears as a 3-sphere in n+, and a− appears as a 3-sphere in n−.

3. Consider the two spherical caps on each bounding 4-sphere given by

d+
1 = {(q1, p1, q2, p2, q3, p3) | p1 − q1 = −c, q1 < 0},

d−1 = {(q1, p1, q2, p2, q3, p3) | p1 − q1 = −c, p1 > 0},
d+
2 = {(q1, p1, q2, p2, q3, p3) | p1 − q1 = +c, q1 > 0},

d−1 = {(q1, p1, q2, p2, q3, p3) | p1 − q1 = +c, p1 < 0}.
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If we let d+
1 be the spherical cap in n+

1 bounded by a+
1 , then the transit orbits entering R on

d+
1 exit on d−2 of the other bounding sphere. Similarly, letting d−1 be the spherical cap in n−1

bounded by a−1 , the transit orbits leaving on d−1 have come from d+
2 on the other bounding

sphere.

4. Note that the intersection b (where q1 +p1 = 0) of n+ and n− is a 3-sphere of tangency points.
Orbits tangent at this 3-sphere “bounce off,” i.e., do not enter R locally. Moreover, if we let
r+ be a spherical zone which is bounded by a+ and b, then non-transit orbits entering R on
r+ exit on the same bounding 4-sphere through r− which is bounded by a− and b.

Invariant Manifolds as Separatrices. The key observation here is that the asymptotic orbits
form 4-dimensional stable and unstable manifold “tubes” (S3 × R) to the invariant 3-sphere S3

h in
a 5-dimensional energy surface and they separate two distinct types of motion: transit orbits and
non-transit orbits. The transit orbits, passing from one region to another, are those inside the 4-
dimensional manifold tube. The non-transit orbits, which bounce back to their region of origin, are
those outside the tube.

In fact, it can be shown that for a value of Jacobi constant just below that of L1 (L2), the
nonlinear dynamics in the equilibrium region R1 (R2) is qualitatively the same as the linearized
picture that we have shown above.15,16,17 This geometric insight will be used below to guide our
numerical explorations in constructing orbits with prescribed itineraries.

Construction of Orbits with Prescribed Itineraries
in the Planar Case

In previous work on the planar case,4 a numerical demonstration is given of a heteroclinic con-
nection between pairs of equal Jacobi constant Lyapunov orbits, one around L1, the other around
L2. This heteroclinic connection augments the homoclinic orbits associated with the L1 and L2 Lya-
punov orbits, which were previously known.12 Linking these heteroclinic connections and homoclinic
orbits leads to dynamical chains.

X

J J

L1
L2

U3

U2
U1

U4

U3

U2

M

Unstable

Stable

Stable

StableUnstable

Unstable

Stable

Unstable

Figure 8: Location of Lagrange point orbit invariant manifold tubes in position space. Stable manifolds are lightly

shaded, unstable manifolds are darkly. The location of the Poincaré sections (U1, U2, U3, and U4) are also shown.

We proved the existence of a large class of interesting orbits near a chain which a spacecraft
can follow in its rapid transition between the inside and outside of a Jovian moon’s orbit via a
moon encounter. The global collection of these orbits is called a dynamical channel. We proved
a theorem which gives the global orbit structure in the neighborhood of a chain. In simplified form,
the theorem essentially says:
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For any admissible bi-infinite sequence (. . . , u−1; u0, u1, u2, . . .) of symbols {I, M, X} where
I, M , and X stand for the interior, moon, and exterior regions respectively, there corre-
sponds an orbit near the chain whose past and future whereabouts with respect to these three
regions match those of the given sequence.

For example, consider the Jupiter-Ganymede-spacecraft 3-body system. Given the bi-infinite
sequence (. . . , I; M, X, M, . . .), there exists an orbit starting in the Ganymede region which came
from the interior region and is going to the exterior region and returning to the Ganymede region.

Moreover, we not only proved the existence of orbits with prescribed itineraries, but develop
a systematic procedure for their numerical construction. We will illustrate below the numerical
construction of orbits with prescribed finite (but arbitrarily large) itineraries in the three-body
planet-moon-spacecraft problem. As our example, chosen for simplicity of exposition, we construct
a spacecraft orbit with the central block (M, X ; M, I, M). See Figures 9(a) and 9(b).

∆M = (X;M,I)
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Figure 9: (a) The projection of invariant manifolds W s,M
L1,p.o. and W u,M

L2,p.o. in the region M of the position space.

(b) A close-up of the intersection region between the Poincaré cuts of the invariant manifolds on the U3 section

(x = 1−µ, y > 0). (c) Intersection between image of ∆X and pre-image of ∆I labeled (M, X; M, I, M). (d) Example

orbit passing through (M, X; M, I, M) region of (c).

Example Itinerary: (M, X ; M, I, M). For the present numerical construction, we adopt the
following convention. The U1 and U4 Poincaré sections will be (y = 0, x < 0, ẏ < 0) in the interior
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region, and (y = 0, x < −1, ẏ > 0) in the exterior region, respectively. The U2 and U3 sections will
be (x = 1 − µ, y < 0, ẋ > 0) and (x = 1 − µ, y > 0, ẋ < 0) in the moon region, respectively. See
Figure 8 for the location of the Poincaré sections relative to the tubes.

A key observation for the planar case is a result which has shown that the invariant manifold
tubes separate two types of motion. The orbits inside the tube transit from one region to another;
those outside the tubes bounce back to their original region.

Since the upper curve in Figure 9(b) is the Poincaré cut of the stable manifold of the periodic
orbit around L1 in the U3 plane, a point inside that curve is an orbit that goes from the moon
region to the interior region, so this region can be described by the label (;M, I). Similarly, a point
inside the lower curve of Figure 9(b) came from the exterior region into the moon region, and so
has the label (X ; M). A point inside the intersection ∆M of both curves is an (X ; M, I) orbit, so it
makes a transition from the exterior region to the interior region, passing through the moon region.
Similarly, by choosing Poincaré sections in the interior and the exterior region, i.e., in the U1 and
U4 plane, we find the intersection region ∆I consisting of (M ; I, M) orbits, and ∆X , which consists
of (M ; X, M) orbits.

Flowing the intersection ∆X forward to the moon region, it stretches into the strips in Figure
9(c). These strips are the image of ∆X (i.e., P (∆X )) under the Poincaré map P , and thus get the
label (M, X ; M). Similarly, flowing the intersection ∆I backward to the moon region, it stretches
into the strips P−1(∆I) in Figure 9(c), and thus have the label (;M, I, M). The intersection of these
two types of strips (i.e., ∆M ∩ P (∆X ) ∩ P−1(∆I)) consist of the desired (M, X ; M, I, M) orbits.
If we take any point inside these intersections and integrate it forward and backward, we find the
desired orbits. See Figure 9(d).

Extension of Results in Planar Model to Spatial Model

Since the key step in the planar case is to find the intersection region inside the two Poincaré cuts,
a key difficulty is to determine how to extend this technique to the spatial case. Take as an example
the construction of a transit orbit with the itinerary (X ; M, I) that goes from the exterior region
to the interior region of the Jupiter-moon system. Recall that in the spatial case, the unstable
manifold “tube” of the NHIM around L2 which separates the transit and non-transit orbits is
topologically S3 × R. For a transversal cut at x = 1 − µ (a hyperplane through the moon), the
Poincaré cut is a topological 3-sphere S3 (in R

4). It is not obvious how to find the intersection
region inside these two Poincaré cuts (S3) since both its projections on the (y, ẏ)-plane and the
(z, ż)-plane are (2-dimensional) disks D2. (One easy way to visualize this is to look at the equation:
ξ2 + ξ̇2 + η2 + η̇2 = r2 = r2

ξ + r2
η. that describes a 3-sphere in R

4. Clearly, its projections on the
(ξ, ξ̇)-plane and the (η, η̇)-plane are 2-disks as rξ and rη vary from 0 to r and from r to 0 respectively.)

However, in constructing an orbit which transitions from the outside to the inside of a moon’s
orbit, suppose that we might also want it to have other characteristics above and beyond this gross
behavior. We may want to have an orbit which has a particular z-amplitude when it is near the moon.
If we set z = c, ż = 0 where c is the desired z-amplitude, the problem of finding the intersection
region inside two Poincaré cuts suddenly becomes tractable. Now, the projection of the Poincaré
cut of the above unstable manifold tube on the (y, ẏ)-plane will be a closed curve and any point
inside this curve is a (X ; M) orbit which has transited from the exterior region to the moon region
passing through the L2 equilibrium region. See Figure 10.

Similarly, we can apply the same techniques to the Poincaré cut of the stable manifold tube to
the NHIM around L1 and find all (M, I) orbits inside a closed curve in the (y, ẏ)-plane. Hence,
by using z and ż as the additional parameters, we can apply the similar techniques that we have
developed for the planar case in constructing spatial trajectories with desired itineraries. See Figures
11, 12 and 13. What follows is a more detailed description.
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+(M2

h) with the Poincaré section x = 1−µ. The set of points in the yẏ projection which approximate

a curve, γz′ ż′ , all have (z, ż) values within the small box shown in the zż projection (which appears as a thin strip),

centered on (z′, ż′). This example is computed in the Jupiter-Europa system for C = 3.0028.
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computed in the Jupiter-Europa system for C = 3.0028.

Finding the Poincaré Cuts. We begin with the 15th order normal form expansion near L1 and
L2.18,19,20 The behavior of orbits in the coordinate system of that normal form, (q1, p1, q2, p2, q3, p3),
are qualitatively similar to the behavior of orbits in the linear approximation. This makes the proce-
dure for choosing initial conditions in the L1 and L2 equilibrium regions rather simple. In particular,
based on our knowledge of the structure for the linear system, we can pick initial conditions which
produce a close “shadow” of the stable and unstable manifold “tubes” (S3 × R) associated to the
normally hyperbolic invariant manifold (NHIM), also called central or neutrally stable manifold, in
both the L1 and L2 equilibrium regions. As we restrict to an energy surface with energy h, there is
only one NHIM per energy surface, denoted Mh(' S3).

The initial conditions in (q1, p1, q2, p2, q3, p3) are picked with the qualitative picture of the linear
system in mind. The coordinates (q1, p1) correspond to the saddle projection, (q2, p2) correspond
to oscillations within the (x, y) plane, and (q3, p3) correspond to oscillations within the z direction.
Also note that q3 = p3 = 0 (z = ż = 0) corresponds to an invariant manifold of the system, i.e., the
planar system is an invariant manifold of the three degree of freedom system.
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z′ ż′), respectively, where (z′, ż′) = (0.0035, 0). Note the lemon shaped region of intersection, int(γ1

z′ ż′) ∩
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z′ ż′), in which all orbits have the itinerary (X; M, I). The appearance is similar to Figure 9(b). The point shown

within int(γ1
z′ ż′) ∩ int(γ2

z′ ż′) is the initial condition for the orbit shown in Figure 13.

The initial conditions to approximate the stable and unstable manifolds (W s±(Mh), Wu±(Mh))
are picked via the following procedure. Note that we can be assured that we are obtaining a roughly
complete approximation of points along a slice of W s±(Mh) and Wu±(Mh) since such a slice is
compact, having the structure S3. Also, we know roughly the picture from the linear case.

1. We fix q1 = p1 = ±ε, where ε is small. This ensures that almost all of the initial conditions
will be for orbits which are transit orbits from one side of the equilibrium region to the other.
Specifically + corresponds to right-to-left transit orbits and − corresponds to left-to-right
transit orbits. We choose ε small so that the initial conditions are near the NHIM Mh (at
q1 = p1 = 0) and will therefore integrate forward and backward to be near the unstable and
stable manifold of Mh, respectively. We choose ε to not be too small, or the integrated orbits
will take too long to leave the vicinity of Mh.

2. Beginning with rv = 0, and increasing incrementally to some maximum rv = rmax
v , we look

for initial conditions with q2
3 + p2

3 = r2
v, i.e. along circles in the z oscillation canonical plane.

It is reasonable to look along circles centered on the origin (q3, p3) = (0, 0) on this canonical
plane since the motion is simple harmonic in the linear case and the origin corresponds to an
invariant manifold.

3. For each point along the circle, we look for the point on the energy surface in the (q2, p2) plane,
i.e., the (x, y) oscillation canonical plane. Note, our procedure can tell us if such a point exists
and clearly if no point exists, it will not used as an initial condition.

After picking the initial conditions in (q1, p1, q2, p2, q3, p3) coordinates, we transform to the con-
ventional CR3BP coordinates (x, y, z, ẋ, ẏ, ż) and integrate under the full equations of motion. The
integration proceeds until some Poincaré section stopping condition is reached, for example x = 1−µ.
We can then use further analyses on the Poincaré section, described below.

Example Itinerary: (X ; M, I). As an example, suppose we want a transition orbit going from
outside to inside the moon’s orbit in the Jupiter-moon system. We therefore want right-to-left
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Figure 13: The (X, M, I) transit orbit corresponding to the initial condition in Figure 12. The orbit is shown in a

3D view and in the three orthographic projections. Europa is shown to scale. The upper right plot includes the z = 0

section of the zero velocity surface (compare with Figure 5(b)).

transit orbits in both the L1 and L2 equilibrium regions. Consider the L2 side. The set of right-
to-left transit orbits has the structure D4 × R (where D4 is a 4-dimensional disk), with boundary
S3 × R. The boundary is made up of W s

+(M2
h) and Wu

+(M2
h), where the + means right-to-left,

M2
h is the NHIM around L2 with energy h, and 2 denotes L2. We pick the initial conditions to

approximate W s
+(M2

h) and Wu
+(M2

h) as outlined above and then integrate those initial conditions
forward in time until they intersect the Poincaré section at x = 1−µ, a hyperplane passing through
the center of the moon.

Since the Hamiltonian energy h (Jacobi constant) is fixed, the set of all values C = {(y, ẏ, z, ż)}
obtained at the Poincaré section, characterize the branch of the manifold of all Lagrange point
orbits around the selected equilibrium point for the particular section. Let us denote the set as
C+uj

i , where + denotes the right-to-left branch of the s (stable) or u (unstable) manifold of the Lj ,
j = 1, 2 Lagrange point orbits at the i-th intersection with x = 1 − µ. We will look at the first
intersection, so we have C+u2

1 .
The object C+u2

1 is 3-dimensional (' S3) in the 4-dimensional (y, ẏ, z, ż) space. For the Jupiter-
Europa system, we show C+u2

1 for Jacobi constant C = 3.0028 in Figure 10.
Thus, we suspect that if we pick almost any point (z′, ż′) in the zż projection, it corresponds to

a closed loop γz′ż′ (' S1) in the yẏ projection (see Figure 10). Any initial condition (y′, ẏ′, z′, ż′),
where (y′, ẏ′) ∈ γz′ż′ will be on Wu

+(M2
h), and will wind onto a Lagrange point orbit when integrated

backwards in time. Thus, γz′ż′ defines the boundary of right-to-left transit orbits with (z, ż) =
(z′, ż′). If we choose (y′, ẏ′) ∈ int(γz′ż′) where int(γz′ż′) is the region in the yẏ projection enclosed
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by γz′ż′ , then the initial condition (y′, ẏ′, z′, ż′) will correspond to a right-to-left transit orbit, which
will pass through the L2 equilibrium region, from the moon region to outside the moon’s orbit, when
integrated backward in time.

Similarly, on the L1 side, we pick the initial conditions to approximate W s
+(M1

h) and Wu
+(M1

h)
as outlined above and then integrate those initial conditions backward in time until they intersect
the Poincaré section at x = 1 − µ, obtaining C+s1

1 . We can do a similar construction regarding
transit orbits, etc. To distinguish closed loops γz′ż′ from L1 or L2, let us call a loop γj

z′ż′ if it is
from Lj , j = 1, 2.

To find initial conditions for transition orbits which go from outside the moon’s orbit to inside
the moon’s orbit with respect to Jupiter, i.e. orbits which are right-to-left transit orbits in both
the L1 and L2 equilibrium regions, we need to look at the intersections of the interiors of C+u2

1 and
C+s1
1 . See Figure 11.

To find such initial conditions we first look for intersections in the zż projection. Consider the
projection πzż : R

4 → R
2 given by (y, ẏ, z, ż) 7→ (z, ż). Consider a point (y′, ẏ′, z′, ż′) ∈ πzż(C+u2

1 ) ∩
πzż(C+s1

1 ) 6= ∅, i.e. a point (y′, ẏ′, z′, ż′) where (z′, ż′) is in the intersection of the zż projections of
C+u2
1 and C+s1

1 . Transit orbits from outside to inside the moon’s orbit are such that (y′, ẏ′, z′, ż′) ∈
int(γ1

z′ż′)∩ int(γ2
z′ż′). If int(γ1

z′ż′)∩ int(γ2
z′ż′) = ∅, then no transition exists for that value of (z′, ż′).

But numerically we find that there are values of (z′, ż′) such that int(γ1
z′ż′) ∩ int(γ2

z′ż′) 6= ∅. See
Figures 11 and 12.

In essence we are doing a search for transit orbits by looking at a two parameter set of intersections
of the interiors of closed curves, γ1

zż and γ2
zż in the yẏ projection, where our two parameters are given

by (z, ż). Furthermore, we can reduce this to a one parameter family of intersections by restricting
to ż = 0. This is a convenient choice since it implies that the orbit is at a critical point (often a
maximum or minimum in z when it reaches the surface x = 1− µ.)

Technically, we are not able to look at curves γj
zż belonging to points (z, ż) in the zż projection.

Since we are approximating the 3-dimensional surface C by a scattering of points (about a million for
the computations in this paper), we must look not at points (z, ż), but at small boxes (z±δz, ż±δż)
where δz and δż are small. Since our box in the zż projection has a finite size, the points in the
yẏ projection corresponding to the points in the box will not all fall on a close curve, but along a
slightly broadened curve, a strip, as seen in Figure 12. For our purposes, we will still refer to the
collection of such points as γj

zż .

Transfer from Ganymede to High Inclination Europa Orbit.

Petit Grand Tour. We now apply the techniques we have developed to the construction of a fully
three dimensional Petit Grand Tour of the Jovian moons, extending an earlier planar result.7 We
here outline how one systematically constructs a spacecraft tour which begins beyond Ganymede in
orbit around Jupiter, makes a close flyby of Ganymede, and finally reaches a high inclination orbit
around Europa, consuming less fuel than is possible from standard two-body methods.

Our approach involves the following three key ideas:

1. treat the Jupiter-Ganymede-Europa-spacecraft 4-body problem as two coupled circular re-
stricted 3-body problems, the Jupiter-Ganymede-spacecraft and Jupiter-Europa-spacecraft
systems;

2. use the stable and unstable manifolds of the NHIMs about the Jupiter-Ganymede L1 and L2

to find an uncontrolled trajectory from a jovicentric orbit beyond Ganymede to a temporary
capture around Ganymede, which subsequently leaves Ganymede’s vicinity onto a jovicentric
orbit interior to Ganymede’s orbit;

3. use the stable manifold of the NHIM around the Jupiter-Europa L2 to find an uncontrolled
trajectory from a jovicentric orbit between Ganymede and Europa to a temporary capture
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around Europa. Once the spacecraft is temporarily captured around Europa, a propulsion
maneuver can be performed when its trajectory is close to Europa (100 km altitude), taking
it into a high inclination orbit about the moon. Furthermore, a propulsion maneuver will be
needed when transferring from the Jupiter-Ganymede portion of the trajectory to the Jupiter-
Europa portion, since the respective transport tubes exist at different energies.

Ganymede to Europa Transfer Mechanism. The construction begins with the patch point,
where we connect the Jupiter-Ganymede and Jupiter-Europa portions, and works forward and back-
ward in time toward each moon’s vicinity. The construction is done mainly in the Jupiter-Europa
rotating frame using a Poincaré section. After selecting appropriate energies in each 3-body sys-
tem, respectively, the stable and unstable manifolds of each system’s NHIMs are computed. Let
GanWu

+(M1) denote the unstable manifold of Ganymede’s L1 NHIM and EurW s
+(M2) denote the

stable manifold for Europa’s. L2 NHIM. We look at the intersection of GanWu
+(M1) and EurW s

+(M2)
with a common Poincaré section, the surface U1 in the Jupiter-Europa rotating frame, defined earlier.
See Figure 14.
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Figure 14: The curves Ganγ1
zż and Eurγ2

zż are shown, the intersections of GanW u
+(M1) and EurW s

+(M2) with

the Poincaré section U1 in the Jupiter-Europa rotating frame, respectively. Note the small region of intersection,

int(Ganγ1
zż) ∩ int(Eurγ2

zż), where the patch point is labeled.

Note that we have the freedom to choose where the Poincaré section is with respect to Ganymede,
which determines the relative phases of Europa and Ganymede at the patch point. For simplicity,
we select the U1 surface in the Jupiter-Ganymede rotating frame to coincide with the U1 surface in
the Jupiter-Europa rotating frame at the patch point. Figure 14 shows the curves Ganγ1

zż and Eurγ2
zż

on the (x, ẋ)-plane in the Jupiter-Europa rotating frame for all orbits in the Poincaré section with
points (z, ż) within (0.0160±0.0008,±0.0008). The size of this range is about 1000 km in z position
and 20 m/s in z velocity.

From Figure 14, an intersection region on the xẋ-projection is seen. We pick a point within this
intersection region, but with two differing y velocities; one corresponding to GanWu

+(M1), the tube
of transit orbits coming from Ganymede, and the other corresponding to EurW s

+(M2), the orbits
heading toward Europa. The discrepancy between these two y velocities is the ∆V necessary for
a propulsive maneuver to transfer between the two tubes of transit orbits, which exist at different
energies.
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Four-Body System Approximated by Coupled PCR3BP. In order to determine the transfer
∆V , we compute the transfer trajectory in the full 4-body system, taking into account the grav-
itational attraction of all three massive bodies on the spacecraft. We use the dynamical channel
intersection region in the coupled 3-body model as an initial guess which we adjust finely to obtain
a true 4-body bi-circular model trajectory.

Figure 4 is the final end-to-end trajectory. A ∆V of 1214 m/s is required at the location marked.
We note that a traditional Hohmann (patched 2-body) transfer from Ganymede to Europa requires
a ∆V of 2822 m/s. Our value is only 43% of the Hohmann value, which is a substantial savings of
on-board fuel. The transfer flight time is about 25 days, well within conceivable mission constraints.
This trajectory begins on a jovicentric orbit beyond Ganymede, performs one loop around Ganymede,
achieving a close approach of 100 km above the moon’s surface. After the transfer between the two
moons, a final additional maneuver of 446 m/s is necessary to enter a high inclination (48.6◦) circular
orbit around Europa at an altitude of 100 km. Thus, the total ∆V for the trajectory is 1660 m/s,
still substantially lower than the Hohmann transfer value.

Conclusion and Future Work.

In our current work on the spatial three-body problem, we have shown that the invariant manifold
structures of the collinear libration points still act as the separatrices for two types of motion, those
inside the invariant manifold “tubes” are transit orbits and those outside the “tubes” are non-transit
orbits. We have also designed a numerical algorithm for constructing orbits with any prescribed finite
itinerary in the spatial three-body planet-moon-spacecraft problem. As our example, we have shown
how to construct a spacecraft orbit with the basic itinerary (X ; M, I) and it is straightforward to
extend these techniques to more complicated itineraries.

Furthermore, we have applied the techniques developed in this paper towards the construction of
a three dimensional Petit Grand Tour of the Jovian moon system. Fortunately, the delicate dynamics
of the Jupiter-Europa-Ganymede-spacecraft 4-body problem are well approximated by considering
it as two 3-body subproblems. One can seek intersections between the channels of transit orbits
enclosed by the stable and unstable manifold tubes of the NHIM of different moons using the method
of Poincaré sections. With maneuvers sizes (∆V ) much smaller than that necessary for Hohmann
transfers, transfers between moons are possible. In addition, the three dimensional details of the
encounter of each moon can be controlled. In our example, we designed a trajectory that ends in
a high inclination orbit around Europa. In the future, we would like to explore the possibility of
injecting into orbits of all inclinations.
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