Discrete Mechanics and Variational Integrators

Marsden, J. E. and M. West

Acta Numerica, 357-514.

Abstract:

This paper gives a review of integration algorithms for finite dimensional mechanical systems that are based on discrete variational principles. The variational technique gives a unified treatment of many symplectic schemes, including those of higher order, as well as a natural treatment of the discrete Noether theorem. The approach also allows us to include forces, dissipation and constraints in a natural way. Amongst the many specific schemes treated as examples, the Verlet, SHAKE, RATTLE, Newmark, and the symplectic partitioned Runge-Kutta schemes are presented.

pdf.gif