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SUMMARY

A general approach to the dimensional reduction of non-linear �nite element models of solid dynamics
is presented. For the Newmark implicit time-discretization, the computationally most expensive phase
is the repeated solution of the system of linear equations for displacement increments. To deal with
this, it is shown how the problem can be formulated in an approximation (Ritz) basis of much smaller
dimension. Similarly, the explicit Newmark algorithm can be also written in a reduced-dimension basis,
and the computation time savings in that case follow from an increase in the stable time step length.
In addition, the empirical eigenvectors are proposed as the basis in which to expand the incremental
problem. This basis achieves approximation optimality by using computational data for the response of
the full model in time to construct a reduced basis which reproduces the full system in a statistical
sense. Because of this ‘global’ time viewpoint, the basis need not be updated as with reduced bases
computed from a linearization of the full �nite element model.
If the dynamics of a �nite element model is expressed in terms of a small number of basis vectors,
the asymptotic cost of the solution with the reduced model is lowered and optimal scalability of the
computational algorithm with the size of the model is achieved. At the same time, numerical experiments
indicate that by using reduced models, substantial savings can be achieved even in the pre-asymptotic
range. Furthermore, the algorithm parallelizes very e�ciently.
The method we present is expected to become a useful tool in applications requiring a large number of
repeated non-linear solid dynamics simulations, such as convergence studies, design optimization, and
design of controllers of mechanical systems. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In general, �nite element (FE) analysis of dynamic non-linear deformations of solids and
structures can be rather expensive, especially in situations when one requires many repeated
trials, as often happens in design and control applications. Explicit time discretization avoids
storage of large matrices and repeated costly solution of systems of linear equations, but is
limited by its conditional stability. Implicit time-stepping algorithms require repeated solutions
of large systems of linear equations, which consume considerable resources both in terms of
the computation time and in terms of the data storage requirements.
The standard FE approximation basis is non-optimal in the sense that the coherence and

relatively simple large-scale structures of the displacement �elds that one often sees are not
exploited. For instance, consider linear forced vibrations of solids: Decomposition of the dis-
placement �eld into vibration modes is optimal in the sense that, depending on the frequency
content of the loading, a relatively small number of modes is su�cient to describe the motion
for a given error tolerance.
The principal idea of dimensional model reduction is to �nd a small number of generalized

co-ordinates in which to express the dynamics, ideally with some bounds on the truncation
error. One way of applying this idea in the context of FE models is a transition from the
collection of individual nodal basis functions to several linear combinations of the nodal
basis functions (modes, or generalized co-ordinates). The question is how to compute the
amplitudes of the FE basis functions for the needed modes, and how to integrate the reduced
dynamical system in time. Recent results on model reduction of general Lagrangian systems
were developed in Reference [1], while the present paper focusses on using those methods
for reduction of �nite-element models.
Before proceeding with a short exposition of prior research, a terminological note is in order.

A globally supported generalized co-ordinate function is commonly called a Ritz function.
This notation appears to have been chosen to contrast this type of functions with the standard
compact-support FE basis functions.
In what follows, attention is given primarily to reduction of the incremental form of the

equations of motion. (The only model reduction alternative so far, the pseudo-force method
as proposed by Stricklin et al. [2], is limited to moderate non-linearities.)

1.1. Related literature

A recent overview of tangent spectrum methods in non-linear mechanics was given by
Leger and Dussault [3]. Nickell’s paper [4] is often cited in connection with extending the
principle of mode superposition of linear vibration analysis to linearizations of non-linear
dynamic motion (local mode superposition). The incremental motion problem is solved in
the modal basis derived from the tangent eigenvibration problem. As expected, the basis
needs to be changed quite frequently, because the linearization also changes. Repeated
solutions of the eigenvibration problem are costly. Even more importantly, it should be noted
that a change of approximation basis in general means that a time-dependent constraint had
been introduced, which may change dramatically the behaviour of the model. Subsequent
work was aimed at improvements in the �rst of these two areas; the second problem had
not been realized.
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Almroth et al. suggested use of the corrective displacement in the �rst equilibrium iteration
as the Ritz vector to enhance the current basis [5]. Noor and Peters used the path derivatives
of the current displacement solution as generalized co-ordinates [6], and Noor also proposed
using a mix of linear vibration eigenmodes combined with ‘steady-state’ modes (eigenmodes
obtained for structures with static pre-stress) [7].
Wilson et al. suggested an algorithm generating mass-orthogonal (Krylov) vectors by start-

ing from the static displacement [8]. A distinct advantage of this algorithm is that no eigen-
value problem needs to be solved. Also, it accounts directly for the spatial distribution of the
load.
Idelsohn and Cardona proposed using current tangent eigenvibration modes with their ap-

proximate time derivatives [9]. Each change of the reduced basis was found to lead to an
accumulation of error, because of the necessity to project the current displacements onto the
new basis as the initial conditions for the time integration. Idelsohn and Cardona advanced the
idea of using the load-dependent sequence of Ritz vectors with their derivatives with respect
to the modal coe�cients [10].
Chan and Hsiao proposed using the orthogonalized previous and current displacement vec-

tors with some selected equilibrium iteration displacement vectors as the basis for non-linear
static analyses [11]. The basis could be generated with little cost, and the results were of good
quality. The main disadvantage is that the full model is needed for each re-generation of the re-
duced basis. Chang and Engblom used load-dependent Ritz vectors with some rudimentary ran-
king of the participation of the individual Ritz vectors in the response at any given time [12].
The error introduced as a result of using a small number of modes (truncation error) needs

to be understood to make the technique practically useful. Some understanding is available for
linear vibration problems: Kline explored truncation errors for linear systems approximated
with reduced bases consisting of exact vibration modes and load-dependent Ritz vectors [13],
and found that the residual error was composed of two sources, the �rst due to the inability
of the truncated basis to reproduce the loading, and the second following from the failure of
the reduced basis to reproduce the exact eigenvibration response of the full model. Joo et al.
suggested truncation criteria for the load-dependent Ritz basis [14], and again the omission
of the load components orthogonal to the modes included in the basis was related to the
truncation error. This issue was further investigated by Ricles and Leger [15]. Ibrahimbegovic
and Wilson presented a way of incorporating the frequency contents truncation criteria in the
process of generating the Ritz vectors that span the Krylov subspace [16], and Xia and Humar
enhanced the approximation properties of the load-dependent Ritz vectors by using a shift in
the Krylov sequence generation derived from the predominant excitation frequency [17]. Cabos
provided a posteriori error estimates for linear vibration problems discretized with Ritz load-
dependent vectors generated by a block-Lanczos algorithm [18], and Balm�es extended the
concept of model dimension reduction to parametric families of reduced basis vectors [19].
Joo and Wilson described an application of the Ritz vectors in FE mesh adaptation for dynamic
problems [20]. Compared to this wealth of results for linear systems, the understanding of the
truncation error in non-linear dynamic analyses is limited.
For control problems involving general sets of ordinary di�erential equations, some related

error-measures have been developed, particularly using the method of balanced truncation. In
the linear case, these error-bounds were derived by Glover [21] and Enns [22]; for non-linear
systems, error-bounds have been developed by Wood [23] and Scherpen [24].
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1.2. Organization of the paper

Following a brief introduction to �nite element modelling of deformations of non-linear con-
tinua (or structures) in Section 1, the model dimension reduction approach is explained �rst
for the implicit Newmark integrator (Section 2), and then for the explicit variant (Section
3). The empirical eigenvector basis is introduced in Section 4, which is followed by a short
Section 5 on error estimation and adaptivity issues. Comparison with existing approaches is
made in Section 6, and several illustrative examples of advantages and interesting features of
the present technique are given in Section 7.

2. FORMULATION OF FE MODELS

Our setting is that of displacement-based �nite element (FE) models of transient non-linear
deformation of general solids. The reference con�guration of a three-dimensional body B0⊂R3
is described in Cartesian co-ordinates by labelling material points with their position X∈B0.
The motion e :B0→B takes each reference point X to the current point x∈B; we write

x(X; t)=e(X; t)=X+ u(X; t) (1)

where u∈C is the displacement, which is to satisfy the essential boundary conditions on part
of the boundary @uB0:

C= {u(X; t) :B0→R3 | u(X; t)= �u(X; t) on @uB0} (2)

where �u is given. Note that the boundary condition (2) is easily modi�ed if only some
components of the displacement vector are prescribed.
The equations of motion are obtained from the following standard weak form of the varia-

tional principle [25], stated on the reference con�guration B0 in terms of the the displacement
u and the �rst Piola-Kirchho� stress tensor P as∫

B0
�0 �u · W dV =

∫
B0

�0 �b · W dV −
∫
B0
P · (∇∇∇0⊗ W)T dV +

∫
@tB0

�t · W dA (3)

where dot denotes material time derivative, �0 is the mass density in the reference con�gura-
tion, �b is the prescribed body load, W is the variation of the displacement, �t is the prescribed
traction, and the vector gradient operator ∇∇∇0⊗ is de�ned as

(∇∇∇0⊗ v)T = @vi=@Xj ei⊗ ej
with ek the Cartesian basis vectors, and Xj the components of the material point position
vector X.
The displacement variation W∈V needs to satisfy the homogeneous essential boundary

conditions

V= {W(X; t) | W(X; t)= 0 on @uB0} (4)

The deformation evolution is sought under given initial conditions on u and P which we write
as follows:

u̇(X; 0)= �v(X); X∈B0 (5)
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and

P(X; 0)= �P(X)= b(X; 0); X∈B0 (6)

Equation (3) may be re-written as

K(u; W)=Gext(u; W)−Gint(u; W) (7)

where

K(u; W) =
∫
B0

�0 �u · W dV (8a)

Gext(u; W) =
∫
B0

�0 �b · W dV +
∫
@tB0

�t · W dA (8b)

Gint(u; W) =
∫
B0
P · (∇∇∇0⊗ W)T dV (8c)

2.1. Finite element Galerkin approximation

The displacement u and the displacement variation W are approximated in the FE basis as

uh(X; t)=
N∑
I
NI (X)uI (t) and Wh(X; t)=

N∑
I
NI (X)WI (t) (9)

where NI (X) is the FE basis function, and uI (t) and WI (t) represent the nodal parameters.
The con�guration space C is approximated as

Ch=
{
uh(X; t)

∣∣∣∣uh(X; t)=∑
I
NI (X)�u(XI ; t) on @uB0

h

}
(10)

where @uB0
h is the FE discretization of the boundary @uB0, and similarly the space of varia-

tions V:

Vh= {Wh(X; t) | Wh(X; t)= 0 on @uB0
h} (11)

Substitution of (9) into (7) yields the discrete form of the variational principle

Kh(u; W)=Gext
h (u; W)−Gint

h (u; W) (12)

where

Kh(u; W) =
N∑
I; J
WI ·MIJ · �uJ

Gext
h (u; W) =

N∑
I
WI · f extI (u)

Gint
h (u; W) =

N∑
I
WI · f intI (u)
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Equation (12) is equivalent to the dynamic equilibrium equation

N∑
J
MIJ · �uJ = f extI − f intI (13)

for all I , where MIJ is the mass matrix linking nodes I and J , and fextI and f intI are the vectors
of impressed (external) and restoring (internal) forces acting on node I .

3. MODEL DIMENSION REDUCTION FOR IMPLICIT NEWMARK INTEGRATION

Equations (13) are a system of non-linear second-order ordinary di�erential equations, which
is commonly integrated in time either by an explicit integrator (central di�erences), or by one
of the popular implicit integrators. The Newmark time-stepping algorithm is widely used in
structural dynamics, and has been recently shown to be a variational integrator [26]. Equation
(13) discretized in time with this algorithm reads

Mat+� t = f extt+� t − f intt+� t

ut+� t = ut +� tvt +
� t2

2
[(1− 2�)at + 2�at+� t] (14)

vt+� t = vt +�t[(1− )at + at+� t]

where u�, v� and a� are discrete-time analogs of u(�), u̇(�), and �u(�); M is the time-
independent global mass matrix. We set =1=2 for second-order accuracy, and �¿1=4.
The time-stepping algorithm (14) is customarily implemented with a Newton–Raphson equi-

librium iteration loop. By linearizing Gint
h from (8a) we obtain the tangent sti�ness matrix

L[Gint
h (u; W);�u]=

N∑
I

N∑
J
WI ·KIJ ·�uJ (15)

where L[�; v] is the linearization of � in the direction of v. Here, KIJ is the submatrix of the
tangent sti�ness linking nodes I and J , which may be expressed as sum of two matrices, KmIJ
and K�

IJ . The �rst part corresponds to the constitutive tangent sti�ness

N∑
I

N∑
J
WI ·KmIJ ·�uJ =

∫
B0

L[E(u); W] ·C · L[E(u);�u] dV (16)

where C is the constitutive tangent tensor, and E is the Green–Lagrange strain tensor,

E(u)=
1
2

[(
∇∇∇0⊗ u

)T
+∇∇∇0⊗ u+

(
∇∇∇0⊗ u

)T
·∇∇∇0⊗ u

]

The constitutive tangent sti�ness should in fact be formulated by linearization of a particular
stress update algorithm, see, for instance, Reference [27], but the above simpli�cation saves
space while not a�ecting our conclusions regarding model reduction.
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The second constituent incorporates the e�ect of stress in the current state

N∑
I

N∑
J
WI ·K�

IJ ·�uJ =
∫
B0

(
∇∇∇0⊗ u

)T
P :
(
∇∇∇0⊗ W

)
·
(
∇∇∇0⊗�u

)T
dV (17)

Linearization of the Kh(u; W) term is easily established as

L[Kh(u; W);�u]=
N∑
I; J
WI ·MIJ ·��uJ (18)

If we assume that the loads are con�guration independent, that is if

L[Gext
h (u; W);�u]= 0

the linearization of (12) is expressed as

N∑
I; J
WI ·MIJ ·��uJ =

N∑
I; J
WI ·KIJ ·�uJ (19)

With these results, the Newmark algorithmic equations (14) including the Newton–Raphson
equilibrium iteration loop can be cast in the well-known predictor-corrector form

i← 0
u(i)t+�t = ut ;

a(i)t+�t = −
1

��t
vt +

(
1− 1

2�

)
at ;

v(i)t+�t = vt +�t
[
(1− ) at + a(i)t+�t

]




predictor

i← i + 1 next iteration

Ke�(i) =
1

��t2
M+Km(i) +K�(i) e�ective sti�ness

R(i) =Ma(i)t+� t − f ext(i)t+� t + f
int(i)
t+� t residual

�u(i) =Ke�(i)
−1
R(i) displ: increment

u(i)t+�t = u(i−1)t+�t +�u
(i)

v(i)t+�t = v(i−1)t+�t +


��t
�u(i)

a(i)t+�t = a(i−1)t+�t +
1

��t2
�u(i)




corrector

If ||R(i)||¿�||R(0)|| repeat for next iteration;
else t ← t +�t and go to the top:

(20)

The iteration is broken o� if the norm of the force residual in iteration i drops below a certain
fraction, 0¡�.1, of the residual computed from the predictor (iteration 0).
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Table I. Asymptotic costof the Newmark
implicit algorithm operations.

Operation Cost

Predictor O(N )
Force assembly O(N )
Tangent assembly O(N )
Solve for displ. incr. O [s(N )]
Con�guration update O(N )

3.1. Cost analysis

The computational cost of algorithm (20) may be expressed in terms of the total number of
FE nodes, N (assuming the number of �nite elements, and the number of degrees of freedom
per node are constant multiples of N ). Table I summarizes the per operation costs. The two
most expensive operations, in terms of both computation time and storage, are the tangent
sti�ness assembly and the solution for the displacement increment. Even though the e�ective
sti�ness matrix Ke�(i) is sparse, it may be unsymmetric, possibly badly conditioned. Therefore,
its storage and the solution of the system of linear equations is often very expensive compared
to the other operations. Perhaps most importantly, scalability of the overall algorithm with
the growing size of the discrete system is adversely a�ected: The solution cost of the sparse
system of linear equations grows as O[s(N )]¿O(N ), where s(N ) is a function depending on
the solver characteristics. For instance, for a direct solution of a banded system s(N )=N 2; for
iterative solvers, each iteration costs O(N ), and the number of iterations in general depends
on N , hence again s(N )¿N .

3.2. Reduced dimensional basis

The main idea of model dimension reduction as applied to the system of equations (14) is to
�nd a spatial representation of the primary variable u, which would ensure the response of the
full and reduced models to be close in a certain sense, and which would be at the same time
much terser than the full FE model. In other words, we would like to �nd a representation
minimizing the number of degrees of freedom which need to be included in the computation
to reach a certain error level (measured with respect to the full FE model).
The full FE model represents the con�guration in the FE space Ch. It seems quite natural

to look for a more succinct representation of the con�guration in a linear subspace Ĉh of the
full FE space

Ĉh⊂Ch (21)

The reduced con�guration space Ĉh is represented as follows:

Ĉh=
{
ûh(X; t) | ûh(X; t) = uh(X; t) on @uB0

h

}
(22)

with

ûh(X; t)=
M∑
j
M j(X)pj(t) (23)

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 51:479–504



MODEL REDUCTION IN SOLIDS AND STRUCTURES 487

where pj(t) are the mode coe�cients, and M.N is the number of modes. The (Ritz) basis
functions Mj(X) are, by virtue of (21), expressible as linear combinations of the functions
NI (X)

M j(X)=
N∑
I
NI (X)Mj

I (24)

where the coe�cient vectors Mj
I are given a priori. Their choice is crucial to the success of

the reduction process, and we discuss one approach to their computation in Section 4.
The reduced con�guration space Ĉh conforms to the boundary condition (22) if

ûh(X; t)|@uB0
h
= uh(X; t)|@uB0

h
(25)

i.e.

M∑
j
M j(X)pj(t)=

∑
I
NI (X) �u(XI ; t) on @uB0

h (26)

Substituting (24), we get the condition

M∑
j

N∑
I
NI (X)Mj

I pj(t)=
∑
I
NI (X) �u(XI ; t) on @uB0

h (27)

which may be met provided

M∑
j
Mj

I pj(t)= �u(XI ; t) ∀I (28)

for all time t. It is evident that Equation (28) will not be satis�ed exactly for general inhomo-
geneous boundary conditions, since the mode mixing coe�cients pj(t) are determined not only
by the boundary conditions, but also (mainly) by the overall dynamics. On the other hand,
Equation (28) is easily satis�ed for the homogeneous constraints u(X; t)= 0 by setting the
coe�cient vectors Mj

I identically equal to zero, M
j
I = 0, for all the FE nodes I on the boundary

@uB0
h.
Given the above, we limit the discussion here to homogeneous boundary conditions only,

i.e. we consider problems with

C= {u(X; t): B0 → R3 | u(X; t)= 0 on @uB0} (29)

and

Ch= {uh(X; t) | uh(X; t)= 0 on @uB0
h} (30)

Hence, also (22) becomes

Ĉh= { ûh(X; t) | ûh(X; t)= 0 on @uB0
h} (31)

A discussion of general boundary value problems with inhomogeneous essential boundary
conditions of type (2) is o�ered at the end of this section.
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3.3. Increment representation

So far, we have found a reduced representation of the con�guration variable u (con�guration
space), which may be applied in Equation (14). However, our ultimate goal is to reduce the
dimension in the Newmark algorithm (20).
It is important to realize that the Newton–Raphson algorithm, which constitutes the equilib-

rium iteration in (20), is formulated in the tangent space to the con�guration space C, i.e. in
the space of variations V. Hence, we need to �nd a reduced representation for two spaces, Ĉh

and V̂h (the space of reduced variations). However, comparing (11) and (30) it is evident
that for homogeneous boundary conditions Vh=Ch, and therefore also V̂h=Ĉh.

3.4. Newmark implicit algorithm in the reduced basis

The increment of displacement �u(i) in the ith iteration is expanded into the Ritz basis of M
functions Mj(X) as

�u(i)(X)=
M∑
j
Mj(X)�p(i)j =���(X)�p

(i) (32)

where we have introduced the matrix ���(X), constituted of the functions Mj(X) as columns.
Note that the coe�cients �p(i)j in (32) are just numbers, not functions of time. They express
the contribution of the individual modes to the con�guration correction generated by the
current residual vector.
Using (32) for the variations W and increments �u in the linearization of (19) leads to the

reduced tangent. For simplicity, let us look at the transformation of the right-hand side of
Equation (15):

N∑
I; J
WI ·KIJ ·�uJ

Transformation (32) yields WI =���W̃I and �uJ =����pJ , and the above expression is re-written
in terms of the new variables as

N∑
I; J
WI ·KIJ ·�uJ =

N∑
I; J
(���W̃I)·KIJ ·(����pJ )=

N∑
I; J
W̃I ·���TKIJ���·�pJ

This procedure allows us to rewrite the expression for the displacement correction from
algorithm (20),

�u(i) =Ke�(i)
−1
R(i)

as

�u(i) =����p(i) =���
{(
���TKe�(i)���

)−1 [
���TR(i)

]}
(33)

where the order of evaluation is indicated by the parentheses. The reduced e�ective tan-
gent sti�ness matrix ���TKe�(i)��� is an M ×M matrix, which is assembled from transformed

elementwise matrices Ke�(i)e using the standard assembly operator A (see for example,
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Reference [27]),

���TKe�(i)���=
E

A
e=1
���TeK

e�(i)
e ���e (34)

The matrices ���e are extracted from the appropriate rows of the matrix ���, and collect the
modal amplitudes for the nodes of the element e. Favourable computational cost and storage
requirements are obtained by assembling the reduced element matrices as opposed to reducing
the full assembled matrix Ke�(i) (operation count of O(N ) vs O(N 2) and negligible storage
for the M ×M matrix).
The overall Newmark algorithm for the reduced FE model is summarized as (the operations

which experienced any changes are labelled on the left with boxed text)

i← 0
u(i)t+�t = ut ;

a(i)t+�t = −
1

��t
vt +

(
1− 1

2�

)
at ;

v(i)t+�t = vt +�t
[
(1− )at + a(i)t+�t

]




predictor

i← i + 1 next iteration

���TKe�(i)���=
E

A
e=1
���Te

(
1

��t2
Me +Km(i)e +K�(i)

e

)
���e e�. sti�ness

R(i) =Ma(i)t+� t − f ext(i)t+� t + f
int(i)
t+� t residual

�u(i) =���(���TKe�(i)���)−1���TR(i) displ. increment

u(i)t+�t = u(i−1)t+�t +�u
(i)

v(i)t+�t = v(i−1)t+�t +


��t
�u(i)

a(i)t+�t = a(i−1)t+� t +
1

��t2
�u(i)




corrector

If ||R(i)||¿ �||R(0)|| repeat for next iteration;

else t← t +�t and go to the top:

(35)

3.5. Asymptotic costs

The solution costs for the full and reduced-dimension models are summarized in Table II
(N is the number of nodes, and M is the number of modes in the Ritz basis). The exact
form of the function s(N ) depends on the solver used, on the sparsity of the e�ective tangent
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Table II. Asymptotic cost of the Newmark implicit
algorithm operations.

Operation Full system Reduced system

Predictor O(N ) O(N )
Force assembly O(N ) O(NM)
Tangent assembly O(N ) O(NM 2)
Solve for displ. incr. O [s(N )] O(M 3)
Con�guration update O(N ) O(NM)

sti�ness matrix, etc. For instance, sparse-matrix iterative solvers typically incur O(N ) cost per
iteration, and the number of iterations itself might depend on the dimension of the matrix.
The asymptotic cost estimates of Table II clearly indicate potential savings if the number

of modes M grows much more slowly than N , or if M is bounded from above. While it
may not be easy to come up with some general theoretical statements regarding M , numerical
experiments indicate that the dependence of M on N is very weak indeed.

3.6. Inhomogeneous boundary conditions

It would seem that limiting our model-dimension reduction approach to the case of homoge-
neous boundary condition (BC) is overly restricting in practical applications. However, in a
number of important applications a co-ordinate frame may be chosen which converts prob-
lems with inhomogeneous boundary condition (BC) (Equation (10)) into the homogeneous
BC case. One example is found in earthquake engineering: the synchronous seismic base ex-
citation. It is common practice to formulate the equations of motion in the accelerated frame
attached to the base, and include the excitation via an inertial load term. Other approaches to
the solution of the general case of inhomogeneous BC include penalty methods or methods
of Lagrangian multipliers, which convert an essential BC into a natural BC. Therefore, it is
our opinion that the restriction to homogeneous BC does not detract from the practicality of
our approach.
Other classes of mechanical systems with constraints, for instance incompressibility, have

been discussed in Reference [13], which also deals with more general con�guration manifolds.

4. MODEL DIMENSION REDUCTION FOR EXPLICIT INTEGRATION

Central di�erence discretization of the equations of motion is widely used in solid mechanics,
for instance in the form of the explicit Newmark beta method (�=0), whose algorithmic
equations are

vt = vt−� t +
�t
2
(at + at−� t)

ut+� t = ut +�tvt +
�t2

2
at (36)

Mat+� t = f extt+� t − f intt+� t
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Table III. Asymptotic cost of the central di�erence
algorithm operations.

Operation Full system Reduced system

Force assembly O(N ) O(N )
Solve for accelerations O(N ) O(NM)
Con�guration update O(N ) O(NM)

where M is a time-independent, diagonal mass matrix; u�; v�; a� are the vectors of displace-
ments, velocities, and accelerations, and f ext� and f int� are the external and internal forces, all
at time �.

4.1. Implementation of explicit dynamics in the reduced basis

Reduction of the last equation in (36) analogous to that of equation (33) yields

at+� t =���
(
���TM���

)−1
���T f̂t+� t (37)

where f̂t+� t = f extt+� t−f intt+� t . The temptation to precompute the matrix ���(�
TM���)−1���T (both M

and ��� are time-independent matrices), and to solve for the accelerations by multiplying with
this precomputed matrix, should be resisted: the cost would grow asymptotically as O(N 2),
not to mention the need to store a big dense matrix. The two alternative orders of evaluation
are

���
[(
���TM���

)−1
(���T f̂t+� t)

]
(38)

where the part precomputed before the time stepping starts is the matrix (���TM���)−1, and

���
{[(

���TM���
)−1
���T
]
f̂t+� t

}
(39)

where the precomputed matrix is (���TM���)−1���T. The asymptotic cost of both (38) and (39)
is O(MN ). We have adopted Equation (38) because of lower storage requirements.

4.2. Asymptotic costs

The solution costs for the full and reduced-dimension models are summarized in Table III,
where N is the number of nodes, and M is the number of modes in the Ritz basis. While
Table III seems to indicate that nothing is in fact gained by using the reduced basis (the
operations per time step cost more, not less), there is one important aspect which ‘saves the
day’, and that is the stable time step magnitude: Using global modes in general increases the
stable time step, and since the transformations into and from the reduced basis are relatively
inexpensive, the longer stable time step projects almost fully into decreased run-times.
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5. EMPIRICAL EIGENVECTOR BASIS

Up to now, the issue of the choice of the basis vectors to be used in the incremental Ritz
algorithm was intentionally left unresolved. In this section, a particular set of generalized co-
ordinates is proposed, the empirical eigenvector (EE), which is based on the statistical view
of the response of the full �nite element (FE) model.
Empirical eigenvectors are obtained by a procedure which goes back at least to the papers

of Pearson [28], and Schmidt [29], and which (re)appears under a multitude of names as
Karhunen–Lo�eve expansion [30; 31], principal component analysis [32], empirical orthogonal
eigenfunctions [33], factor analysis [34], proper orthogonal decomposition [35], and total least
squares [36]. The singular value decomposition algorithm [36] is the key to the understanding
of these methods. Applications of this approach are found in many engineering and scienti�c
disciplines; consult, for instance, References [37; 38]. The only application of EEs to solid
mechanics known to the authors is a conversion a �nite di�erence model of torsional vibrations
of drill-strings to a lower-dimensional analytical dynamic system [39].

5.1. Use of EEs in solid dynamics

The exposition of Reference [40] is adapted here to FE models. Consider a solid body sub-
jected to some dynamic loads during a time interval I. Mark arbitrary N points on the surface
of the body and=or in its interior, and record the positions of these N points at S instants
during the interval I. Collect the observations into an ensemble of 3N -dimensional vectors,
u j ∈R3N , j=1; : : : ; S (there are three displacement components for each of the N points).
Centre the ensemble by subtracting its average, �u,

�u= 〈ui〉= 1
S

S∑
i=1
ui (40)

and collect the centred vectors as columns of the matrix U

U
N×S

=
[
�u1; �u2; : : : ; �uS

]
(41)

where

�u j= u j − �u
If an approximation to the vector ensemble u j is sought in the form

ũ= v0 +
M∑
i=1

wi(u − �u)v i (42)

with M¡N , the expectation

E

(∥∥∥∥u −
(
v0 +

M∑
i=1

wi(u − �u)v i
)∥∥∥∥

2
)

(43)

is minimized by v0 = �u, v i=Mi, and wi(x)=xT ·Mi, where Mi are the orthonormal eigenvectors
of the covariance matrix

Cd =
1
M
UUT (44)
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corresponding to the eigenvalues �1¿ �2¿ · · ·¿ �N . (See Reference [41] for a proof.) In
other words,

ũ= �u+
M∑
i=1

[
(u − �u)T ·Mi]Mi (45)

is the best M -dimensional linear approximation to u in the quadratic mean. The approximation
error is

E(‖u − ũ‖2)= �M+1 + · · ·+ �N (46)

If the number of samples S is smaller than 3N , the EEs may be computed advantageously
by the method of snapshots [42–44]. The sample covariance matrix Cs is constructed as

Cs =
1
M
UTU (47)

The non-zero spectra of Cs and Cd are the same, and the eigenvectors of Cd corresponding
to the non-zero eigenvalues are recovered by the procedure described in Reference [38].

5.2. Application to FEM model reduction

The above recipe is directly applied to �nite element (FE) models by collecting displacements
at all FE nodes. The EEs of the ensemble covariance matrix are then used in the incremental
Ritz algorithm. Given current lack of proper a priori error estimation, the number of basis
vectors required for given accuracy is found by trial and error.
The EEs are the optimal generalized co-ordinates for a given FE model and given boundary

and initial conditions. However, using the EEs computed for a particular FE model for a
similar model as a near-optimal basis is feasible when the response of the two full FE models
is not drastically di�erent. One example of this is given in the section on numerical tests.
The sampled displacements may be obtained either from experiments or from computations

with the full FE model. If the EE basis can be used many times over, for example to explore
a large design space, or in the design of a non-linear controller, the cost of the computation
of the EEs from the full model simulation may be amortized.

5.3. Alternate interpretation of the EEs

Assume that each centred sample in the con�guration space, �u j, represents a particle of unit
mass. The moment of inertia of the ensemble �u j, j=1; : : : ; S

I=
(∑

i
‖ �ui‖2

)
1−UUT = IR1−UUT (48)

where

IR=
∑
i
‖ �ui‖2

is the polar moment of inertia, ‖ �ui‖2 = �ui · �ui, and U was de�ned in (41). An eigenvalue
problem is now formulated for the moment of inertia I as

Iv=�v=
(
IR1−UUT

)
v=�v (49)
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and it immediately follows that

UUTv=(IR − �)v (50)

However, since the eigenvalue problem for the covariance matrix Cd is

Cdw= �w=
1
M
UUTw

we arrive at the result

w= v (51)

�=
IR − �
M

(52)

In words, the principal directions of the covariance matrix Cd correspond to the principal
directions of the moment of inertia I, and there is a one-to-one correspondence between the
eigenvalues. The directions that are selected for the optimal representation from the eigen-
problem (49) are such that the moment of inertia of the samples about the eigenvector is as
small as possible.

6. ERROR ESTIMATION AND ADAPTIVITY

The discussion in this section is limited to the model dimension reduction for the implicit
Newmark integration algorithm. Furthermore, the e�ects of deterministic chaos are excluded
from consideration by limiting the discussion to relatively short-term dynamics.

6.1. Error estimation

Assume that the a posteriori error of the full �nite element model can be determined. Then,
the error in the response of the reduced-dimension model may be estimated, provided the
di�erence between the response of the full and reduced models can be bounded. The source
of the di�erence in the response of the full and reduced models in our incremental Ritz
algorithm is the expansion of the incremental displacement in a reduced number of modes.
In other words, the failure of the reduced basis of M terms to represent the incremental
displacements of the full FE model prevents the equilibrium iteration from reducing the force
residual to a zero vector.
The e�ects of basis truncation are more or less well understood in problems of linear vibra-

tion [13; 14; 16–19], but do not appear to have been seriously studied for non-linear dynamic
deformation problems. Attempts to quantify the truncation error have so far been directed
at the usual approach, that is the time integration of the modal model. Thus, for instance,
Idelsohn and Cardona [10] monitored the magnitude of the error in the residual force, and
recomputed the reduced basis when the normalized error exceeded an arbitrarily set tolerance.
Joo et al. [14] suggested truncation criteria based on the error in the projection of the applied
load (or alternatively, the residual force) onto the Ritz vectors, and Chang and Engblom [12]
used so-called mode participation factors to guide the generation of the reduced basis. How-
ever, the most important piece of information that is still missing is how to link the residual
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imbalance to other error measures, most importantly to those relevant to the applicability of
the model reduction algorithm in applications: Among others, energy dissipation rate, kinetic
energy (global measures); and displacement, strain, force, stress, damage or other material
history variable (local measures).
To �x ideas, consider the representation of the residual force vector in the reduced basis

R̃=
∑
j

[
(M j)TR

]
M j (53)

where orthonormality of modes has been assumed. Now note that the (convergent) equilibrium
iteration in the reduced basis works towards decreasing |(M j)TR| to zero. This occurs for either
(i) ‖R‖→ 0, or (ii) |(M j)TR|→ 0 for each j. The latter possibility is just an expression of the
orthogonality of the basis vectors to the residual R. Therefore, if R can be expressed fully in
the basis M j, convergence in the reduced basis implies ‖R‖→ 0; on the other hand, failure to
reproduce R by R̃ indicates that ‖R‖ cannot in general be made to approach the zero vector
during the equilibrium iteration in the reduced basis. De�ne the normalized residual projection
error, for example, as

�R=
|RT(R − R̃)|

RTR
(54)

To relate �R to some error measure of practical interest, for instance the L2-norm of the
di�erence in kinetic energy, does not seem feasible without knowing the importance of the
irremovable residual force compared to the external loads and inertial forces acting on the FE
model. This aspect of the error estimation is currently under investigation.

6.2. Adaptivity

Provided truncation error can be related to some practical measures of error, the issue of
adaptive reduced basis control can be attacked. In other words, the truncation error may
be adaptively controlled by enhancing the approximation basis, or by adopting a completely
di�erent basis (if necessary, at any equilibrium iteration). Selection of a few modes from a
larger set by the magnitude of the participation factor (M j)TR, or from an explicit Euler step
or from the various forms of the Newmark predictor are currently being considered, among
other options.

6.3. Convergence analyses

An area of application which is currently being explored are convergence studies, where
the EE basis obtained for a coarse model is applied after intelligent re-interpolation to a
re�ned model, and the response of the re�ned model is obtained by time integration with the
incremental Ritz procedure.

7. COMPARISON WITH THE LINEARIZATION-BASED APPROACH

The di�erence between our approach and the traditional linearization-based approach may be
illustrated very well on the following example of a two-degree-of-freedom mechanical system;
see Figure 1. The solid curve represents the evolution of the full mechanical system in time
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Figure 1. Concentrated mass supported by two
springs with elastic constant k in a plane. Forc-
ing: Fi(t)= F̂i cos(!it +  i), !1 6=!2,  1 6=  2.
Displacements are on the order of one-�fth of

the length of the springs.

Figure 2. Comparison of local (linearization-
based) reduced basis and global (statistics-
based) reduced basis for a two-degree-of-

freedom mechanical system.

(‘full’ means with both degrees of freedom, q1 and q2). If a linearization-based reduced model
(with just a single degree of freedom) is constructed at point A, the point in the q1, q2 plane
representing the con�guration of the system is restricted to move along a line given by the
arrow at point A, and passing through A. This one-mode reduced model is a very good ap-
proximation of the full model in the immediate vicinity of A, but becomes progressively worse
as the solutions diverge from point A. Evidently, basing the reduced model on the tangent
direction at point B would lead to even worse accuracy away from the linearization point.
In contrast, the statistics-based (global) basis is not tailored to the response at any particular

point on the curve, but rather it �ts the elongated shape of the curve in a statistical sense.
As explained in Section 4, intuitive insight follows from viewing the data points as massive
particles in the con�guration space: the optimal modes (directions) are those which minimize
the moment of inertia of the particles about that direction as axis of rotation.
It is evident from the above, that the reduced model based on a local expansion of the

response is likely to require frequent change or update of the basis. In addition to being
costly, any change to the basis is also precarious, for at least two reasons. Firstly, removal or
addition of a basis function amounts to the introduction of a time-dependent constraint into
the formulation of the mechanical problem. That means that the original characteristics of the
solution (conservation of energy, for example) may be lost by the change in the basis during
the time stepping. Secondly, if the time stepping is done in terms of the modal coe�cients
(which was the rule in the existing literature [4; 6; 9; 12; 15], Tao and Ramm [45] being the
only exception), the change in the basis needs to be accompanied by a projection of the
current solution into the new basis as the initial state for the new modal coe�cients. This
procedure introduces an uncontrolled imbalance into the equations of motion, which may
adversely a�ect the accuracy of the subsequent solution. Moreover, this is a cumulative e�ect,
which a�ects all solutions later in time, directly by the force imbalance, and indirectly by
deteriorating quality of subsequent tangent-response bases.
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The distinction between the con�guration and variation spaces does not appear to have been
made in the literature. This might be the result of the implicit assumption of homogeneous
boundary conditions. Thus, either the need for two reduced bases (for the con�guration and
variation spaces) had been overlooked, or unacknowledged (unknowing, perhaps) use had
been made of the identi�cation of the two spaces for the case of homogeneous boundary
condition.

8. EXAMPLES

The complete speci�cation of the mechanical problems referred to in this section is available
from the web site [45].
Empirical eigenvectors are used exclusively in the incremental-Ritz reduced models of this

section. The set of basis vectors is not changed during the simulations.

8.1. Tall truss frame

A tall frame composed of truss beams and columns is subjected to gravity loads combined
with a horizontal force with a triangular pulse time dependence. The material is linear elas-
tic, roughly corresponding to construction steel. The �nite element (FE) model consists of
7180 nodes (21540 degrees of freedom, of which 180 at the base are constrained to zero),
and 27540 rod elements. The horizontal load is applied as indicated by the arrow, and the
displacement is monitored in the upper-right corner (point A in Figure 3). (The amplitude of
the horizontal motion is roughly 2=3 of the column spacing.)
Figure 4 shows the response of the full FE model at point A for the given horizontal load,

and for three magnitudes of the vertical (gravity) load, 1=2g, g, and 2g. As predicted by the
well-known engineering P-� theory, the apparent period increases with larger vertical load,
and decreases with smaller load. The amplitude is also a�ected.
The response of the full FE model has been obtained for the full gravity load g by an

implicit integration with full Newton–Raphson equilibrium iteration, and with a time step
500 time longer than the largest stable explicit time step. The empirical eigenfunctions have
been computed by the snapshot method from 150 samples uniformly spaced in the interval
06 t 6 1:5 s. Figures 5 and 6 show the deection in the direction of the horizontal force at
point A, and the kinetic energy, respectively, for the full model compared with various-order
reduced models. Nine modes provide decent approximation, especially in the kinetic energy,
and with 15 modes even the deections are virtually indistinguishable from those computed
with the full system.
The empirical basis computed for the vertical load g=1 is no longer optimal for models

loaded by gravity loads g=1=2 or 2. However, since the response of the full models has a
similar character, it might be intuitively expected that even a non-optimal empirical basis will
capture the dynamics well. To verify that this is the case, the response for g=1=2 and 2 has
been computed with reduced-dimension models based on the EE obtained for g=1. Figures 7
(for g=1=2) and 8 (for g=2) demonstrate convincingly the near-optimality of the EE basis:
results for the reduced models with the same number of modes are of quality similar to that
of Figure 5.
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Figure 3. Tall truss frame structure. Figure 4. Response of the full system for di�-
erent magnitudes of the vertical load.

8.2. Timing comparisons for the tall frame simulation

An implicit Newmark simulation with full Newton–Raphson iteration of equilibrium, run with
a time step 500 times longer than the largest stable explicit time step, takes 8540 s:¶ A
single step of the Newton–Raphson iteration in the implicit simulation requires: residual force
assembly 0:33 s, e�ective tangent sti�ness assembly 1:50 s, solve 26:86 s (sparse LU decom-
position), and the con�guration predictor and corrector take roughly 0:02 s each. An explicit
simulation consumes 14700 s. Finally, simulations with the reduced model require 6 per cent
of the implicit simulation run time for three modes, 7.5 per cent for six modes, 10.5 per cent

¶All timings in this paper given as wall-clock measurements on an 225 MHz SGI Octane workstation with R10K
processor, 128 MB of memory, and 32 KB instruction and data caches, and 1 MB secondary cache.
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Figure 5. Tall truss frame. Displacement of point
A in the direction of the horizontal load for g=1.

Figure 6. Tall truss frame. Kinetic energy
for g=1.

Figure 7. Tall truss frame. Displacement of
point A in the direction of the horizontal load

for g=1=2.

Figure 8. Tall truss frame. Displacement of point
A in the direction of the horizontal load for g=2.

for nine modes, 13.3 per cent for 12 modes and 16.9 per cent for 15 modes. Therefore, even
with the costliest reduced model the run time is reduced by a factor of six with respect to
the full implicit model.

8.3. Frame under body-load pulse

A frame composed of straight square cross-section beams is clamped at one end, and a pulse
of body load is applied in the vertical direction. The material is hyperelastic of the St.Venant–
Kirchho� type. Three FE models have been used, the coarsest with 41 hexahedral eight-noded
elements (h=1), and the �ner ones obtained by tri-section of the elements on the previous
level (h=1=2 with 168 elements, and h=1=4 with 1344 elements). The frame experiences
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Figure 9. Selected shapes of the spatial frame
during the simulation (FE model h=1=4).

Figure 10. Spatial frame. Kinetic energy com-
puted with full FE models.

large displacements with moderate strains; Figure 9 shows some of the deformed shapes of the
frame, and Figure 10 records the variation of the kinetic energy for the three full FE models.
The empirical basis has been computed from 140 snapshots uniformly distributed in the

interval I=06t60:01 s. The di�erence in the response of the full FE model and its reduced
version was measured in the kinetic energy (Kfull is the kinetic energy computed with the full
model, and Kred is the kinetic energy computed with the reduced model)

�K =

∫
I

|Kfull − Kred| dt∫
I

Kfull dt

and the results are summarized in Figure 11: The error in kinetic energy �K is plotted on a
logarithmic scale versus the number of modes. Figure 12 gives an indication of the accuracy of
other quantities of possible interest, in this case vertical displacement of the tip. The response
for M =30 is visually indistinguishable from the response of the full model, and even for
M =20 the displacement agrees well with the full model results in the initial stages.
As apparent in Figure 10, there are substantial point-wise di�erences in the kinetic energy

for the three FE models, but the overall variations in the three curves are comparable
(amplitude, apparent period). That is a strong indication that the response could be per-
haps described with about the same number of modes (basis functions), and indeed, results
obtained with the reduced models con�rm this conjecture. Given an error tolerance, for in-
stance �K =0:01, the number of modes needed grows from 26 (h=1) to 30 (h=1=4), which
is a 15 per cent increase, while the number of degrees of freedom of the full FE models
increases roughly 24 times between h=1 and 1=4. Hence, the conclusion may be drawn that
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Figure 11. Spatial frame. Convergence in the
kinetic energy.

Figure 12. Vertical displacement of point T for
h=1=4. Full and reduced models.

Figure 13. Elastoplastic deformation of notched
beam. Problem setup.

Figure 14. Elastoplastic deformation of notched
beam. Deformed mesh at the end of the simu-

lation. Actual scale.

the number of Ritz modes grows much more slowly than the number of degrees of freedom
of a full FE model, which is a key to the success of the reduction technique.

8.4. Notched beam

A notched copper beam, supported at both ends, is loaded by a force pulse just above the
notch which simulates the impact of a mass; see Figure 13. The beam deforms under this
load inelastically; compare with Figure 14 demonstrating the relatively large deections on the
FE mesh. The material model is rate-independent J2 elastoplasticity with kinematic hardening.
The full FE model is comprised of 4788 quadratic tetrahedral elements and 5996 nodes. The
time evolution is integrated in time by the explicit version of the Newmark algorithm.
Figure 15 shows the vertical deection and the evolution of the equivalent plastic strain

at the notch tip. The reduced models are based on three and six modes, respectively. It is
evident that even with the coarsest reduced model the response of the beam is reproduced
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Figure 15. Elastoplastic deformation of notched beam. Deection and
equivalent plastic strain in the notch.

surprisingly well, and the curves for six modes can be hardly distinguished from the full-
model results. Simulation time for the six-mode reduced model decreases to one-ninth (1=9)
of the full-model run time due to an increase in the stable time step.

9. CONCLUSIONS AND FUTURE DIRECTIONS

We have shown how both the explicit and implicit Newmark time-stepping algorithms, which
are commonly used with non-linear �nite element (FE) models in solid and structural
dynamics, can be expressed in a much smaller number of approximation basis functions than
are contained in the underlying FE model. That enables considerable savings in computing
time and storage. The presented approach shares features with the well-known principle of
modal superposition, which is often used in linear FE dynamics and in incremental formula-
tions of non-linear FE models. However, in contrast to the traditional approach, the optimal
representation preserves the mechanical structure of the unreduced FE model, and the basis is
derived from a statistical viewpoint: the overall, global response of the full model is closely
approximated in a statistical sense by the reduced model. In other words, a linear subspace
of the con�guration space is identi�ed such that it matches the subset of the con�guration
space in which the response of the full model is expected to be located. Furthermore, the
time stepping is performed entirely in terms of the primary unknowns (FE displacements),
and only the solution for the incremental quantities is cast in the reduced space. The above
properties, and the fact that the optimal representation does not need to be updated during the
simulation, lead to increased robustness and exibility, and allows for more e�ective control
of the truncation error.
The reduced basis is derived by resorting to a well-known statistical theory of empirical

eigenvector (EE) basis (also known as principal components or factor analysis, proper orthog-
onal decomposition, Karhunen–Lo�eve expansion, and total least squares). It is shown that the
EE basis has certain optimality properties, which enable the algorithm to dispense with the
usual cost of solving an eigenvibration problem or of generating the Ritz or Lanczos sequence
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a number of times during the simulation with the reduced model. The robustness of the optimal
basis is governed by the robustness of the statistical ensemble from which it was derived.
The good properties of the present approach are documented on a number of examples, and

even though the selected models are fairly small by today’s standards, valuable savings in
computing resources are demonstrated. Even more importantly, an optimal scalability of the
overall algorithm is achieved, and execution on both shared- and distributed-memory parallel
computer architectures may be expected to be scalable and very e�cient.

9.1. Future directions

Applications for the proposed methodology are numerous, for instance in design optimization,
convergence analyses, design of mechanical controllers and elsewhere. Error analysis (control
of the truncation error) and techniques for assessing the accuracy and robustness of the reduced
model solution, as well as methods for using the computed solution to generate a more accurate
solution using a higher dimensional reduced model, are currently being actively investigated.
Treatment of more general con�guration manifolds, especially in conjunction with con-

straints (for instance, incompressibility) had been sketched in Reference [1], and is also the
subject of current investigations.
An important area of adaptive methodologies may be addressed by using the empirical

eigenvector (EE) basis to drive mesh adaptation. The EE basis identi�es patterns, or modes,
and the mesh may be conceivably adapted to the solution by adapting it to the major response
modes.
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