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Abstract

This paper presents a variational and multisymplectic formulation of

both compressible and incompressible models of continuum mechanics on

general Riemannian manifolds. A general formalism is developed for non-

relativistic first-order multisymplectic field theories with constraints, such

as the incompressibility constraint. The results obtained in this paper set

the stage for multisymplectic reduction and for the further development of

Veselov-type multisymplectic discretizations and numerical algorithms. The

latter will be the subject of a companion paper.
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1 Introduction

The purpose of this paper is to give a variational multisymplectic formu-
lation of continuum mechanics from a point of view that will facilitate the
development of a corresponding discrete theory, as in the PDE Veselov for-
mulation due to Marsden, Patrick, and Shkoller [1998]. This discrete theory
and its relation to finite element methods will be the subject of a companion
paper, Marsden, Pekarsky, Shkoller, and West [2000].

In this paper, we restrict our attention to non-relativistic theories, but
on general Riemannian manifolds. The relativistic case was considered in
Kijowski and Tulczyjew [1979], where the authors take an alternative ap-
proach of inverse fields, effectively exchanging the base and fiber spaces. See
also Fernández, Garćia and Rodrigo [2000].1

1There are a number of reasons, both functional analytic and geometric for motivating
a formulation in terms of direct particle placement fields rather than on inverse fields.
For example, in the infinite dimensional context, this is the setting in which one has
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Two main applications of our theory are considered—fluid dynamics and
elasticity—each specified by a particular choice of the Lagrangian density.
The resulting Euler-Lagrange equations can be written in a well-known form
by introducing the pressure function P and the Piola-Kirchhoff stress tensor
P (equations (2.18) and (2.21) below, respectively).

We only consider ideal, that is nonviscous, fluid dynamics in this paper,
both compressible and incompressible cases. In the compressible case, we
work out the details for barotropic fluids for which the stored energy is a
function of the density. These results can be trivially extended to isentropic
(compressible) fluids, when the stored energy depends also on the entropy.
Both the density and the entropy are assumed to be some given functions in
material representation, so that our formalism naturally includes inhomoge-
neous ideal fluids. However, in our discussion of symmetries and correspond-
ing conservation laws considered in §5 we restrict ourselves, for simplicity
only, to fluids that are homogeneous in the reference configuration. We
elaborate on this point below.

For the theory of elasticity we restrict our attention to hyperelastic ma-
terials, that is to materials whose constitutive law is derived from a stored
energy function. Similarly, we assume that the material density is some given
function which describes a possibly heterogeneous hyperelastic material.

A general formalism for treating constrained multisymplectic theories is
developed in §3. Often, constraints that are treated in the multisymplectic
context are dynamically invariant, as with the constraint divE = 0 in elec-
tromagnetism (see, for example, Gotay, Isenberg, and Marsden [1997]), or
div E = ρ for electromagnetism interacting with charged matter. Our main
example of a constraint in this paper is the incompressibility constraint in
fluids, which, when viewed in the standard Eulerian, or spatial view of fluid
mechanics is often considered to be a nonlocal constraint (because the pres-
sure is determined by an elliptic equation and, correspondingly, the sound
speed is infinite), so it is interesting how it is handled in the multisymplectic
context, which is, by nature, a local formalism.

In the current work we restrict our attention to first-order theories, in
which both the Lagrangian and the constraints depend only on first deriva-
tives of the fields. Moreover, we assume that time derivatives do not enter
the constraints, which corresponds, using a chosen space-time splitting, to

the deeper geometric and analytical properties of the Euler equations and related field
theories, as in Arnold [1966], Ebin and Marsden [1970], Shkoller [1998], and Marsden,
Ratiu and Shkoller [2000]. Moreover, the relativistic approach adopted in Kijowski and
Tulczyjew [1979] cannot describe an incompressible fluid or elasticity because the notion
of incompressibility is not defined in the relativistic context.
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holonomic constraints on the corresponding infinite-dimensional configura-
tion manifold in material representation. We briefly discuss the issues re-
lated to extending this approach to non-holonomic constraints and to space-
time covariant field theories in the last section.

Symmetries and corresponding momentum maps and conservation the-
orems are considered in a separate section (§5) since they are very different
for different models of a continuous media, e.g. homogeneous fluid dynamics
has a huge symmetry, namely the particle relabeling symmetry, while stan-
dard elasticity (usually assumed to be inhomogeneous) has much smaller
symmetry groups, such as rotations and translations in the Euclidean case.
We emphasize that although the rest of the paper describes general hetero-
geneous continuous media, the results of §5.1 only apply to fluid dynamics
that is homogeneous in the reference configuration (e.g., the fluid starts out,
but need not remain, homogeneous), where the symmetry group is the full
group of volume-preserving diffeomorphisms Dµ. However, these results can
be generalized to inhomogeneous fluids, in which case the symmetry group
is a subgroup Dρ

µ ⊂ Dµ that preserves the level sets of the material density
for barotropic fluids, or a subgroup Dρ,ent

µ ⊂ Dµ that preserves the level sets
of the material density and entropy for isentropic fluids. This puts us in the
realm of a multisymplectic version of the Euler-Poincaré theory – one needs
to introduce additional advected quantities as basic fields to handle this sit-
uation (see the discussion on symmetry and reduction in §6). We remark
also that all continuum mechanics models should satisfy material frame in-
difference principle, which, as is well known, can be readily accomplished by
requiring the stored energy function to be a function of the Cauchy-Green
tensor alone (see, e.g. Marsden and Hughes [1983], Lu and Papadopoulos
[1999]).

We finally remark on the notation. The reader is probably aware that
typical fluids and elasticity literatures adhere to completely different sets of
notations, which both differ substantially from those adopted in multisym-
plectic theories. In our notations we follow Gotay, Isenberg, and Marsden
[1997]. The companion paper Marsden, Pekarsky, Shkoller, and West [2000]
uses primarily notation from Marsden and Hughes [1983] and concentrates
on models of continuum mechanics in Euclidean spaces and their variational
discretizations.
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2 Compressible Continuum Mechanics

To describe the multisymplectic framework of continuum mechanics, we
must first specify the covariant configuration and phase spaces. Once we
obtain a better understanding of the geometry of these manifolds we can
consider the dynamics determined by a particular covariant Lagrangian.

2.1 Configuration and Phase Spaces

The Jet Bundle. We shall set up a formalism in which a continuous
medium is described using sections of a fiber bundle Y over X; here X is
the base manifold and Y consists of fibers Yx at each point x ∈ X. Sections of
the bundle πXY : Y → X represent configurations, e.g. particle placement
fields or deformations.

Let (B, G) be a smooth n-dimensional compact oriented Riemannian
manifold with a smooth boundary and let (M, g) be a smooth N -dimensional
compact oriented Riemannian manifold. For the non-relativistic case, the
base manifold can be chosen to be a spacetime manifold represented by the
product X = B × R of the manifold B together with time; (x, t) ∈ X. Let
us set x0 = t, so that xµ = (xi, x0) = (xi, t), with µ = 0, . . . , n, i = 1, . . . , n,
denote coordinates on the (n + 1)-dimensional manifold X. Construct a
trivial bundle Y over X with M being a fiber at each point; that is, Y =
X × M � (x, t, y) with y ∈ M — the fiber coordinate. This bundle,

πXY : Y → X; (x, t, y) �→ (x, t),

with πXY being the projection on the first factor, is the covariant configura-
tion manifold for our theory. Let C ≡ C∞(Y ) be the set of smooth sections
of Y . Then, a section φ of C represents a time dependent configuration.

Let ya, i = 1, . . . , N denote fiber coordinates so that a section φ has a
coordinate representation φ(x) = (xµ, φa(x)) = (xµ, ya). The first jet bundle
J1Y is the affine bundle over Y whose fiber above y ∈ Yx consists of those
linear maps γ : TxX → TyY satisfying TπXY ◦ γ = IdTxX . Coordinates
on J1Y are denoted γ = (xµ, ya, va

µ). For a section φ, its tangent map at
x ∈ X, denoted Txφ, is an element of J1Yφ(x). Thus, the map x �→ Txφ is a
local section of J1Y regarded as a bundle over X. This section is denoted
j1φ and is called the first jet extension of φ. In coordinates, j1φ is given by
(xµ, φa(x), ∂µφa), where ∂0φ

a = ∂tφ
a and ∂kφ

a = ∂xkφa.
Notice that we have introduced two different Riemannian structures on

the configuration bundle. The internal metric on the spatial part B of the
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base manifold X is denoted by G and the fiber, or field, metric on M is
denoted by g. There are two main cases, which we consider in this paper:

(i) fluid dynamics on a fixed background with fixed boundaries, when
B and M are the same and the fiber metric g coincides with the
base metric G; a special case of this is fluid dynamics on a region in
Euclidean space;

(ii) elasticity on a fixed background, when the metric spaces (B, G) and
(M, g) are essentially different.

Both approaches result in background theories. The case of relativistic fluid
and elasticity was considered by Kijowski (see, e.g. Kijowski and Tulczyjew
[1979]).

Define the following function on the first jet bundle:

J(x, t, y, v) = det[v]

√
det[g(y)]
det[G(x)]

: J1Y → R. (2.1)

We shall see later that its pull-back by a section φ has the interpretation of
the Jacobian of the linear transformation Dφt.

A very important remark here is that even though in fluid dynamics
metrics g and G coincide, i.e. on each fiber Yx, g is a copy of G, there is
no cancellation because the metric tensors are evaluated at different points.
For instance, in (2.1) g(y) does not coincide with G(x) unless y = x or both
metrics are constant. Hence, only for fluid dynamics in Euclidean spaces,
can one trivially raise and lower indices and drop all metric determinants
and derivatives in the expressions in the next sections.

The Dual Jet Bundle. Recall that the dual jet bundle J1Y ∗ is an affine
bundle over Y whose fiber at y ∈ Yx is the set of affine maps from J1Y to
Λn+1Xx, where Λn+1X denotes the bundle of (n+1)-forms on X. A smooth
section of J1Y ∗ is an affine bundle map of J1Y to Λn+1X covering πXY .
Fiber coordinates on J1Y ∗ are (Π, pa

µ), which correspond to the affine map
given in coordinates by va

µ �→ (Π + pa
µva

µ)dn+1x.
To define canonical forms on J1Y ∗, another description of the dual bun-

dle is convenient. Let Λ = Λn+1Y denote the bundle of (n + 1)-forms on Y ,
with fiber over y ∈ Y denoted by Λy and with projection πY Λ : Λ → Y . Let
Z be its “vertically invariant” subbundle whose fiber is given by

Zy = {z ∈ Λy | v w z = 0 for all v, w ∈ VyY },
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where VyY = {v ∈ TyY | TπXY · v = 0} is a vertical subbundle. Elements
of Z can be written uniquely as

z = Πdn+1x + pa
µdya ∧ dnxµ

where dnxµ = ∂µdn+1x, so that (xµ, ya, Π, pa
µ) give coordinates on Z.

Equating the coordinates (xµ, ya, Π, pa
µ) of Z and of J1Y ∗ defines a vec-

tor bundle isomorphism Z ↔ J1Y ∗. This isomorphism can also be defined
intrinsically (see Gotay, Isenberg, and Marsden [1997]).

Define the canonical (n + 1)-form ΘΛ on Λ by ΘΛ(z) = (π∗
Y Λz), where

z ∈ Λ. The canonical (n + 2)-form is given by ΩΛ = −dΘΛ. If iΛZ : Z → Λ
denotes the inclusion, the corresponding canonical forms on Z are given by
Θ = i∗ΛZΘΛ and Ω = −dΘ = i∗ΛZΩΛ. In coordinates they have the following
representation

Θ = pa
µdya ∧ dnxµ + Πdn+1x, Ω = dya ∧ dpa

µ ∧ dnxµ − dΠ ∧ dn+1x.

Ideal Fluid

We now recall the classical material and spatial descriptions of ideal (i.e.,
nonviscous) fluids moving in a fixed region, i.e., with fixed boundary condi-
tions. We set B = M and call it the reference fluid container. A fluid
flow is given by a family of diffeomorphisms ηt : M → M with η0 = Id,
where ηt(M) is the fluid configuration at some later time t. Let x ∈ M
denote the original position of a fluid particle, then y ≡ ηt(x) ∈ M is its
position at time t; x and y are called material and spatial points, respec-
tively. The material velocity is defined by V (x, t) = (∂/∂t)ηt(x). The
same velocity viewed as a function of (y, t) is called the spatial velocity.
It is denoted by u; that is, u(y, t) = V (x(y), t), where x = η−1

t (y), so that
u = V ◦ η−1

t = η̇ ◦ η−1
t .

Thus, in the bundle picture above, the spatial part of the base manifold
B ⊂ X has the interpretation of the reference configuration, while an extra
dimension of X corresponds to the time evolution. All later configurations
of the fluid are captured by a section φ of the bundle Y , which gets the
interpretation of a particle placement field. Pointwise this implies that x in
the base point (x, t) represents the material point, while y ∈ Y(x,t) represents
the spatial point and corresponds to a position y = φ(x, t) = ηt(x) of the
fluid particle x at time t.
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Elasticity

For the theory of elasticity (as well as for fluids with a free boundary), the
base and fiber spaces are generally different; (B, G) is traditionally called
the reference configuration, while (M, g) denotes the ambient space. For
classical 2 or 3 dimensional elasticity, M and B have the same dimension,
while for rods and shells models the dimension of the reference configuration
B is less than that of the ambient space.

For a fixed time t, sections of the bundle Y , denoted by φt, play the role
of deformations; they map reference configuration B into spatial configu-
ration M . Upon restriction to the space of first jets, the fiber coordinates v
of γ = (x, y, v) ∈ J1Y become partial derivatives ∂φa/∂xµ; they consist of
the time derivative of the deformation φ̇a and the deformation gradient,
F a

i = ∂φa/∂xi. The first jet of a section φ then has the following local
representation j1φ = ((x, t), φ(x, t), φ̇(x, t), F (x, t)) : X → J1Y .

Using the map φ, one can pull back and push forward metrics on the
base and fiber manifolds. In particular, a pull-back of the field metric g on
M to B ⊂ X defines the Green deformation tensor (also called the right
Cauchy-Green tensor) C by C� = φ∗

t (g), while a push-forward of the base
metric G on B ⊂ X to M defines the inverse of the Finger deformation
tensor b (also called the left Cauchy-Green tensor): c = b−1 = (φt)∗(G). In
coordinates,

Cij(x, t) = gabF
a
iF

b
j(x, t), cab(y) = Gij(F−1)i

a(F
−1)j

b(y), (2.2)

where F−1 is thought of as a function of y. We remark that C is defined
whether or not the deformation is regular, while b and c rely on the regularity
of φt. Another important remark is that operations flat � and sharp � are
taken with respect to the corresponding metrics on the space, so that, e.g
(φ∗

t g)� 
= φ∗
t (g

�).
Notice that J restricted to the first jets of sections is the Jacobian of

Dφt, that is, the determinant of the linear transformation Dφt; it is given
in coordinates by

J(j1φ) = det[F ]

√
det[g]
det[G]

(j1φ) : X → R.

It is a scalar function of x and t, invariant under coordinate transforma-
tions. Notice also that J(x, t) > 0 for regular deformations with φ(x, 0) =
x, F (x, 0) = Id because J(x, 0) = 1.
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2.2 Lagrangian Dynamics.

To obtain the Euler-Lagrange equations for a particular model of a contin-
uous medium, one needs to specify a Lagrangian density L. Naturally, it
should contain terms corresponding to the kinetic energy and to the po-
tential energy of the medium. Such terms depend on material properties
such as mass density ρ as well as on the constitutive relation. The latter is
determined by the form of the potential energy of the material. We remark
that such an approach excludes from our consideration non-hyperelastic ma-
terials whose constitutive laws cannot be obtained from a potential energy
function.

Lagrangian Density. Let the mass density ρ : B → R be given for a par-
ticular model of continuum mechanics. The Lagrangian density L : J1Y →
Λn+1X for a multisymplectic model of continuum mechanics is a smooth
bundle map

L(γ) = L(γ)dn+1x = K − P =
1
2

√
det[G]ρ(x)gabv

a
0v

b
0d

n+1x

−
√

det[G]ρ(x)W (x, G(x), g(y), va
j)dn+1x, (2.3)

where γ ∈ J1Y and W is the stored energy function. The first term
in (2.3) corresponds to the kinetic energy of the matter when restricted to
first jet extensions, as va

0 becomes the time derivative ∂tφ
a of the section

φ. The second term reflects the potential energy and depends on the spatial
derivatives of the fields (upon restriction to first jet extensions), i.e. on the
deformation gradient F .

A choice of the stored energy energy function specifies a particular model
of a continuous medium. While different general functional forms distinguish
various broad classes of materials (elastic, fluid, etc.), the specific functional
forms determine specific materials. Typically, for elasticity, W depends on
the field’s partial derivatives through the (Green) deformation tensor C,
while for Newtonian fluid dynamics, W is only a function of the Jacobian J
(2.1).

Legendre Transformations. The Lagrangian density (2.3) determines
the Legendre transformation FL : J1Y → J1Y ∗. The conjugate momenta
are given by the following expressions

pa
0 =

∂L

∂va
0

= ρgabv
b
0

√
det[G], pa

j =
∂L

∂va
j

= −ρ
∂W

∂va
j

√
det[G], (2.4)
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Π = L − ∂L

∂va
µ
va

µ =
[
−1

2
gabv

a
0v

b
0 − W +

∂W

∂va
j
va

j

]
ρ
√

det[G]

Define the energy density e by

e = pa
0va

0 − L or, equivalently edn+1x = K + P, (2.5)

then
Π = −pa

jva
j −

√
det[G]e.

The Cartan Form. Using the Legendre transformation (2.4), we can pull-
back the canonical (n + 1)-form from the dual bundle. The resulting form
on J1Y is called the Cartan form and is given by

ΘL = ρgabv
b
0

√
det[G]dya ∧ dnx0 − ρ

∂W

∂va
j

√
det[G]dya ∧ dnxj

+
[
−1

2
gabv

a
0v

b
0 − W +

∂W

∂va
j
va

j

]
ρ
√

det[G]dn+1x. (2.6)

We set ΩL = −dΘL.
Theorem 2.1 below provides a nicer method for obtaining the Cartan

form via the Calculus of Variations and remains entirely on the Lagrangian
bundle J1Y . Moreover, the variational approach is essential for the Veselov
type discretization of our multisymplectic theory. We present it here for
the benefit of the reader, but remark that it is not essential for our current
exposition and can be omitted on a first reading (see Marsden, Patrick, and
Shkoller [1998] for details).

Variational Approach. To make the variational derivation of the equa-
tions of motion rigorous as well as that of the geometric objects, such as the
multisymplectic form and the Noether current, we need to introduce some
new notations (see Marsden, Patrick, and Shkoller [1998]). These are gener-
alizations of the notations used in the rest of the paper. They only apply to
the variational derivation described here and later in Subsection 5.1 and do
not influence the formalism and results in the rest of the paper. The reason
for such generalizations is very important yet subtle: one should allow for
arbitrary and not only vertical variations of the sections.

Vertical variations are confined to the vertical subbundle V Y ⊂ TY ,
VyY = {V ∈ TyY |TπXY · V = 0}; this allows only for fiber-preserving varia-
tions, i.e., if φ(X) ∈ Yx and φ̃ is a new section, then φ̃ ∈ Yx. In general, one
should allow for arbitrary variations in TY , when φ̃ ∈ Yx̃ for some x̃ 
= x.
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Introducing a splitting of the tangent bundle into a vertical and a horizontal
parts, TyY = VyY ⊕HyY (HyY is not uniquely defined), one can decompose
a general variation into a vertical and horizontal components, respectively.

Explicit calculations show (see Marsden, Pekarsky, Shkoller, and West
[2000]) that while both vertical and arbitrary variations result in the same
Euler-Lagrange equations, the Cartan form obtained from the vertical vari-
ations only is missing one term (corresponding to the dn+1x from on X);
the horizontal variations account precisely for this extra term and make the
Cartan form complete.

One can account for general variations either by introducing new “tilted
sections”, or by introducing some true new sections that compensate for the
horizontal variation. The later can be implemented in the following way.
Let U ⊂ X be a smooth manifold with smooth closed boundary. Define the
set of smooth maps

C = {ϕ : U → Y |πXY ◦ ϕ : U → Xis an embedding}.

For each ϕ ∈ C, set ϕX = πXY ◦ϕ and UX = πXY ◦ϕ(U), so that ϕX : U →
UX is a diffeomorphism and ϕ ◦ ϕ−1

X is a section of Y . The tangent space
to the manifold C at a point ϕ is the set TϕC defined by

{V ∈ C∞(X, TY )|πY,TY ◦ V = ϕ & TπXY ◦ V = VX , a vector field onX}.

Arbitrary (i.e., including both vertical and horizontal) variations of sec-
tions of Y can be induced by a family of maps ϕ defined through the action
of some Lie group. Let G be a Lie group of πXY bundle automorphisms ηY

covering diffeomorphisms ηX . Define the action of G on C by composition:
ηY ·ϕ = ηY ◦ϕ. Hence, while ϕ ◦ϕ−1

X is a section of πUX ,Y , ηY ·ϕ induces a
section ηY ◦ (ϕ · ϕ−1

X ) ◦ η−1
X of πηX(UX),Y .

A one parameter family of variations can be obtain in the following way.
Let ε �→ ηε

Y be an arbitrary smooth path in G with η0
Y = e, and let V ∈ TϕC

be given by

V =
d

dε

∣∣∣∣
ε=0

ηε
Y · ϕ.

Define the action function

S(ϕ) =
∫

UX

L(j1(ϕ ◦ ϕ−1
X )) : C → R,

and call ϕ a critical point (extremum) of S if

dS(ϕ) · V ≡ d

dε

∣∣∣∣
ε=0

S(ηε
Y · ϕ) = 0.
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The Euler-Lagrange equations and the Cartan form can be obtained by
analyzing this condition. We summarize the results in the following theorem
from Marsden, Patrick, and Shkoller [1998] which illustrates the application
of the variational principle to multisymplectic field theory.

Theorem 2.1. Given a smooth Lagrangian density L : J1Y → Λn+1(X),
there exist a unique smooth section DELL ∈ C∞(Y

′′
, Λn+1(X) ⊗ T ∗Y ))

(Y
′′

being the space of second jets of sections) and a unique differential form
ΘL ∈ Λn+1(J1Y ) such that for any V ∈ TφC, and any open subset UX such
that UX ∩ ∂X = ∅,

dS(ϕ) · V =
∫

UX

DELL(j2(ϕ ◦ ϕ−1
X )) · V +

∫
∂UX

j1(ϕ ◦ ϕ−1
X )∗[j1(V) ΘL].

(2.7)

Furthermore,

DELL(j2(ϕ ◦ ϕ−1
X )) · V = j1(ϕ ◦ ϕ−1

X )∗[j1(V) ΩL] in UX . (2.8)

In coordinates, the action of the Euler-Lagrange derivative DELL on Y
′′

is
given by

DELL(j2(ϕ ◦ ϕ−1
X )) =

[
∂L

∂ya
(j1(ϕ ◦ ϕ−1

X )) − ∂2L

∂xµ∂va
µ
(j1(ϕ ◦ ϕ−1

X ))

− ∂2L

∂yb∂va
µ
(j1(ϕ ◦ ϕ−1

X )) · (ϕ ◦ ϕ−1
X )b

,µ

− ∂2L

∂vb
ν∂va

µ
(j1(ϕ ◦ ϕ−1

X )) · (ϕ ◦ ϕ−1
X )b

,µν

]
dya ∧ dn+1x, (2.9)

while the form ΘL matches the definition of the Cartan form obtained via
Legendre transformation and has the coordinate expression

ΘL =
∂L

∂va
µ
dya ∧ dnxµ +

(
L − ∂L

∂va
µ
va

µ

)
dn+1x. (2.10)

Corollary 2.1. The (n + 1)-form ΘL defined by the variational principle
satisfies the relationship

L(z) = z
∗ΘL

for all holonomic sections z ∈ C∞(πX,J1Y ).

Another important general theorem, which we quote from Marsden,
Patrick, and Shkoller [1998], is the so-called multisymplectic form for-
mula

12



Theorem 2.2. If φ is a solution of the Euler-Lagrange equation (2.9), then∫
∂UX

(j1(ϕ ◦ ϕ−1
X ))∗

[
j1V j1W ΩL

]
= 0 (2.11)

for any V,W which solve the first variation equations of the Euler-Lagrange
equations, i.e. any tangent vectors to the space of solutions of (2.9).

This result is the multisymplectic analog of the fact that the time t map
of a mechanical system consists of canonical transformations. See Marsden,
Patrick, and Shkoller [1998] for the proofs.

Finally we remark that in order to obtain vertical variations we can
require ϕX (and, hence, ϕ−1

X ) to be the identity map on X. Then, φ = ϕ◦ϕ−1
X

becomes a true section of the bundle Y .

Euler-Lagrange Equations. Treating (J1Y,ΩL) as a multisymplectic
manifold, the Euler-Lagrange equations can be derived from the following
condition on a section φ of the bundle Y :

(j1φ)∗(W ΩL) = 0,

for any vector field W on J1Y (see Gotay, Isenberg Marsden [1997] for the
proof). This translates to the following familiar expression in coordinates

∂L

∂ya
(j1φ) − ∂

∂xµ

(
∂L

∂va
µ
(j1φ)

)
= 0, (2.12)

which is equivalent to equation (2.9).
Substituting the Lagrangian density (2.3) into equation (2.12) we obtain

the following Euler-Lagrange equation for a continuous medium:

ρgab

(
Dgφ̇

Dt

)b

− 1√
det[G]

∂

∂xk

(
ρ

∂W

∂va
k
(j1φ)

√
det[G]

)
=

− ρ
∂W

∂gbc

∂gbc

∂ya
(j1φ), (2.13)

where (
Dgφ̇

Dt

)b

≡ ∂φ̇b

∂t
+ γa

bc φ̇bφ̇c

is the covariant time derivative, which corresponds to material accelera-
tion, with

γc
ab =

1
2
gcd

(
∂gad

∂yb
+

∂gbd

∂ya
− ∂gab

∂yd

)
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being the Christoffel symbols associated with the ‘field’ metric g. We remark
that all terms in this equation are functions of x and t and hence have the
interpretation of material quantities.

Equation (2.13) is a PDE to be solved for a section φ(x, t) for a given
type of potential energy W . As the gravity here is treated parametrically,
the term on the right hand side of (2.13) can be thought of as a derivative
with respect to a parameter, and we can define a multisymplectic analogue
of the Cauchy stress tensor σ as follows

σab =
2ρ

J

∂W

∂gab
(j1φ) : X → R, (2.14)

where J = det[F ]
√

det[g]/ det[G] is the Jacobian. Equation (2.14) is known
in the elasticity literature as the Doyle-Ericksen formula (recall that our ρ
corresponds to ρRef , so that the Jacobian J in the denominator disappears).

Another important remark is that the balance of moment of momentum

σT = σ

follows from definition (2.14) and the symmetry of the metric tensor g.
Finally, in the case of Euclidean manifolds with constant metrics g and

G, equation (2.13) simplifies to

ρ
∂2φa

∂t2
=

∂

∂xk

(
ρ

∂W

∂va
k
(j1φ)

)
. (2.15)

Barotropic Fluid

For standard models of barotropic fluids, the potential energy of a fluid
depends only on the Jacobian of the fluid’s “deformation”, so that W =
W (J(g, G, v)). For a general inhomogeneous barotropic fluid, the material
density is a given function ρ(x). In material representation, this formalism
also includes the case of isentropic fluids in which there is a possible depen-
dence on entropy. Since, in that case, entropy is advected, this dependency
in the material representation is subsumed by the dependency of the stored
energy function on the deformation gradient. 2

2In spatial representation, of course one has to introduce the entropy as an independent
variable, but this naturally happens via reduction. See Holm, Marsden and Ratiu [1998]
for related results from the point of view of the Euler-Poincaré theory with advected
quantities.
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The Legendre transformation can be thought of as defining the pressure
function P . Notice that

pa
i = −ρ

∂W

∂va
i

√
det[G] = −ρ

∂W

∂J

∂J

∂va
i

√
det[G] = −ρ

∂W

∂J
J(v−1)a

i√det[G]

and define the pressure function to be

P (φ, x) = −ρ(x)
∂W

∂J
(j1φ(x)) : C × X → R. (2.16)

Then for a given section φ, P (φ) : X → R has the interpretation of the
material pressure which is a function of the material density. In this case,
the Cauchy stress tensor defined by (2.14) is proportional to the metric with
the coefficient being minus the pressure itself:

σab(x) =
2ρ

J

∂W

∂J

∂J

∂gab
(j1φ) = −2P

J
J

1
2
gab(j1φ) = −P (x) gab(y(x)).

We remark that this can be a defining equation for the pressure from which
(2.16) would follow. With this notation the left hand side of the Euler-
Lagrange equations (2.13) becomes

ρgab

(
Dgφ̇

Dt

)b

− 1√
det[G]

∂

∂xk


−PJ

((
∂φ

∂x

)−1
)k

a

√
det[G]


 =

ρgab

(
Dgφ̇

Dt

)b

+
∂P

∂xk
J

((
∂φ

∂x

)−1
)k

a

+
P det

(
∂φ

∂x

)
√

det[G]

((
∂φ

∂x

)−1
)k

a

∂ det[g]
∂xk

+ (I) + (II) = ρgab

(
Dgφ̇

Dt

)b

+
∂P

∂xk
J

((
∂φ

∂x

)−1
)k

a

+
P

2
Jgbc ∂gbc

∂ya
, (2.17)

where terms (I) and (II) arise from differentiating det[v] and (v−1)a
k and

cancel each other. The right hand side of (2.13) is given by

−ρ
∂W

∂gbc

∂gbc

∂ya
= −ρ

∂W

∂J

∂J

∂gbc

∂gbc

∂ya
=

P

2
Jgbc ∂gbc

∂ya
.

Notice that the last term in (2.17) and in the equation above coincide, so
that the Euler-Lagrange equations for the barotropic fluid have the following
form

ρgab

(
Dgφ̇

Dt

)b

= − ∂P

∂xk
J

((
∂φ

∂x

)−1
)k

a

, (2.18)
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where the pressure depends on the section φ and the density ρ and is de-
fined by (2.16). Both the metric gab and the Christoffel symbols γc

ab in the
covariant derivative are evaluated at y = φ(x, t).

One can re-write (2.18) introducing the spatial density ρsp = ρ/J
and defining the spatial pressure p(y) by the relation P (x) = p(y(x)) =
p(φt(x). This yields

DgV

Dt
(x, t) = − 1

ρsp
grad p ◦ φ (x, t),

where V = φ̇. Compare this to the equations for incompressible ideal hy-
drodynamics in §4.

Elasticity

The Legendre transformation defines the first Piola-Kirchhoff stress tensor
Pa

i. It is given, up to the multiple of −1/
√

det[G], by the matrix of the
partial derivatives of the Lagrangian with respect to the deformation gradi-
ent:

Pa
i(φ, x) = ρ(x)

∂W

∂va
i
(j1φ(x)), (2.19)

and for a given section φ, Pa
i is a stress tensor defined on X.

Notice that the first Piola-Kirchhoff stress tensor is proportional to the
spatial momenta, Pa

i = −pa
i/

√
det[G]. The coefficient

√
det[G] arises from

the difference in the volume forms used in standard and multisymplectic
elasticity. In the former, the Lagrangian density is integrated over a space
area using the volume form µG =

√
det[G]dnx associated with the metric

G, while in the latter, the integration is done over the space-time using
dn+1x = dt∧ dnx. We also remark that though traditionally the first Piola-
Kirchhoff stress tensor is normally taken with both indices up, our choice
is more natural in the sense that it arise from the Lagrange transformation
(2.19) which relates Pa

i with the spatial momenta.
Using definitions (2.14) and (2.19), we can re-write equation (2.13) in

the following form

ρgab

(
Dgφ̇

Dt

)b

= Pa
i
|i + γb

ac(Pb
jF c

j − Jgbdσ
dc), (2.20)

where we have introduced a covariant divergence according to

Pa
i
|i = DIVP =

∂Pa
i

∂xi
+ Pa

jΓk
jk − Pb

iγb
acF

c
i.
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Here Γi
jk are the Christoffel symbols corresponding to the base metric G on

B ⊂ X (see, for example, Marsden and Hughes [1993] for an exposition on
covariant derivatives of two-point tensors).

We emphasize that in (2.20) there is no a-priori relationship between the
first Piola-Kirchhoff stress tensor and the Cauchy stress tensor, that is, W
has the most general form W (x, G, g, v). Such a relationship can, however,
be derived from the fact that for standard models of elasticity the stored
energy function W depends on the deformation gradient F (i.e. on v) and
on the field metric g only via the Green deformation tensor C given by (2.2),
that is W = W (C(v, g)). Thus, the partial derivatives of W with respect to
g and v are related, and the following equation

Pa
i = J(σF−1)a

i

follows from definitions (2.14) and (2.19). This relation immediately follows
from the form of the stored energy function; it recovers the Piola transfor-
mation law, which in conventional elasticity relates the first Piola-Kirchhoff
stress tensor and the Cauchy stress tensor. Substituting this relation in
(2.20) one easily notices that the last term on the right hand side cancels,
so that the Euler-Lagrange equation for the standard elasticity model can
be written in the following covariant form

ρ
DgV

Dt
= DIVP, (2.21)

where V = φ̇. For elasticity in a Euclidean space, this equation simplifies
and takes a well-known form:

ρ
∂V a

∂t
=

∂Pai

∂xi
.

3 Constrained Multisymplectic Field Theories

Multisymplectic field theory is a formalism for the construction of Lagran-
gian field theories. This is to be contrasted with the formalism in which
one takes the view of infinite dimensional manifolds of fields as configura-
tion spaces. The multisymplectic view makes explicit use of the fact that
many Lagrangian field theories are local theories, that is, the Lagrangian
depends only pointwise on the values of the fields and their derivatives. In
formulating a constrained multisymplectic theory, we will therefore only be
concerned with the imposition of pointwise constraints Φ(γ), γ ∈ J1Y , de-
pending on point values of the fields and their derivatives. In the current
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work we also restrict our attention to first-order theories, in which only first
derivatives of the fields are considered.

Despite the pointwise nature of the Lagrangian L(γ), γ ∈ J1Y , the
variational principle assumes variations of local sections over some region
U ⊂ X, that is, it is the action S(φ) =

∫
U L(j1φ) as a function of sections

that is being minimized. In order to use the theory of Lagrange multipliers
to impose the constraints, it is therefore necessary to form a function Ψ(φ) of
local sections which is defined through point values of the constraint Φ(j1φ)
evaluated at the first jets of sections. It is then possible, however, to use
the pointwise nature of the Lagrangian and the constraint function to derive
a purely local condition, the Euler-Lagrange equations, for the constrained
field variables. We will make these ideas precise in Section 3.2.

For holonomic constraints it is well known that Hamilton’s principle
constrained to the space of allowable configurations gives the correct equa-
tions of motion. Hamilton’s principle can be naturally extended by either
extremizing over the space of motions satisfying the constraints (so-called
vakonomic mechanics), which is appropriate for optimal control, but not for
dynamics, or by requiring stationarity of the action with respect to varia-
tions which satisfy the constraints (the Lagrange-d’Alembert or virtual work
principle). The equations of motion derived in each case are, however, dif-
ferent.

Derivations from balance laws (Jalnapurkar [1994]), evidence from ex-
periments (Lewis and Murray [1995]) and comparison to Gauss’ Principle of
Least Constraint and the Gibbs-Appell equations (Lewis [1996]) indicates
that it is the Lagrange-d’Alembert principle which gives the correct equa-
tions of motion; see Bloch and Crouch [1999] for further discussion and
references.

While the subject of linear and affine non-holonomic constraints is rel-
atively well-understood (see Bloch, Krishnaprasad, Marsden, and Murray
[1996]), it is less clear how to proceed for non-linear non-holonomic con-
straints. Part of the problem lies in the lack of examples for which the
correct equations are clear from physical grounds. In the context of con-
strained field theories, however, there are many cases where nonlinear con-
straints involving spatial derivatives of the fields need to be applied, such
as incompressibility in fluid mechanics, and it is clear what the physically
correct equations should be. Here we deliberately avoid the use of the term
non-holonomic, to avoid confusion with its standard meaning in the ODE
context, where it applies only to time derivatives. Other examples of nonlin-
early constrained field theories include constrained director models of elastic
rods and shells.
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The fact that the constraints involve only spatial and not time deriva-
tives means that imposing the constraints is equivalent to restricting the
infinite-dimensional configuration manifold used to formulate the theory as
a traditional Hamiltonian or Lagrangian field theory. In this case, the con-
straint is simply a holonomic or configuration constraint and it is known
that restricting Hamilton’s principle to the constraint submanifold gives the
correct equations for the system.

3.1 Lagrange Multipliers

The Lagrange multiplier theorem naturally makes use of the dual of the
space of constraints. In a finite-dimensional setting this is a well defined
object, with all definitions being equivalent. When considering infinite-
dimensional constraint spaces, however, the issue of what is being used as
the dual becomes less clear and more important.

We shall consider constrained multisymplectic field theories for which
the constraint space is the space of smooth sections of a particular vector
bundle. In the case of the incompressibility constraint, the vector space
is one-dimensional and the constraint bundle is, effectively, the space of
real valued functions on the base space X. A dual of the constraint space
is then defined with respect to an inner product structure on the vector
bundle. This is made explicit in the following statement of the Lagrange
multiplier theorem where we assume that fields and Lagrange multipliers
are sufficiently regular (see Luenberger [1969]).

Theorem 3.1 (Lagrange multiplier theorem). Let πM,E : E → M be
an inner product bundle over a smooth manifold M, Ψ a smooth section
of πM,E , and h : M → R a smooth function. Setting N = Ψ−1(0), the
following are equivalent:

1. ϕ ∈ N is an extremum of h|N

2. there exists an extremum ϕ̄ ∈ E of h̄ : E → R such that πM,E(ϕ̄) = ϕ

where h̄(ϕ̄) = h(πM,E(ϕ̄)) − 〈ϕ̄, Ψ(πM,E(ϕ̄))〉E .

If E is a trivial bundle over M, then in coordinates of the trivialization
we have ϕ̄ = (ϕ, λ), where λ : M → E/M is a Lagrange multiplier function.

In the next section we shall use this theorem to relate the constrained
Hamilton’s principle with the extremum of the augmented action integral
which contains the constraint paired with a Lagrange multiplier. Both of
them result in constrained Euler-Lagrange equations. We shall furthermore
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demonstrate that, using the trivialization coordinates, these equations can
be equivalently obtained from a Lagrangian defined on an extended con-
figuration bundle. In this picture, the Lagrange multiplier corresponds to
a new field, which extends the dimension of the fiber space, and the aug-
mented Lagrangian contains an additional part corresponding to the pairing
of this field with the constraint. The Euler-Lagrange equations of motion
then follow from unconstrained Hamilton’s principle in a standard way.

3.2 Multisymplectic Field Theories

In the setting above, the configuration bundle is a fiber bundle πX,Y : Y → X
and πY,J1Y : J1Y → Y is the corresponding first jet bundle with xµ and ya

being a local coordinate system on X and Y respectively, and va
µ the fiber

coordinates on J1Y .
Choose the configuration manifold M to be the space C of smooth sec-

tions φ of πX,Y . Recall that for a Lagrangian density L : J1Y → Λn+1X, a
section φ ∈ M is said to satisfy Hamilton’s principle if φ is an extremum of
the action function S(φ) =

∫
X L(j1φ) : M → R. Choose the h above to be

the action function S and use S̄ instead of h̄.
To apply the Lagrange multiplier theorem we need to define constraints

as a section of some bundle E → M (below called the constraint bundle).
As mentioned above, we restrict our attention to constraints Φ which de-
pend only on point values of the fields and their derivatives. Using such
constraints we can construct induced constraints Ψ according to (3.1). This
is made precise below. We point out, however, that our treatment excludes
inherently global constraints, such as those on the inverse Laplacian of the
field, which can not be derived from pointwise values.

On the other hand, we also exclude from the consideration a (simple)
case when the constrained subbundle of J1Y can be trivially realized as the
first jet of some subbundle of Y .

Define an inner product vector bundle πX,V : V → X with the inner
product denoted by 〈·, ·〉V whose fibers are isomorphic to R

n. Let C∞(V) be
the inner product space of smooth sections of πX,V with the inner product
given by

〈a, b〉 =
∫

X
〈a(x), b(x)〉Vdn+1x.

The constraint function is an R
n-valued function on J1Y :

Φ : J1Y → R
n.
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We say that a point γ ∈ J1Y satisfies the constraint if Φ(γ) = 0. By
restricting Φ to the space of first jets of sections φ of Y , we can define the
induced constraint function Ψ from Φ by setting

Ψ(φ)(x) = Φ((j1φ)(x)) (3.1)

for all φ ∈ M and x ∈ X. By construction, Ψ is a map from the space M of
sections of Y to the space C∞(V) of sections of V, hence it can be thought of
as a smooth section Ψ : M → E of the constraint bundle E . This bundle
is the trivial inner product bundle given by M× C∞(V) over M. Then, a
configuration φ ∈ M is said to satisfy the constraints if Φ((j1φ)(x)) = 0 for
all x ∈ X, that is, the section Ψ(φ) must be a zero function on X. This
implies that the space of configurations which satisfy the constraints is given
by N = Ψ−1(0).

The constrained Hamilton’s principle now seeks a φ ∈ N which is an
extremum of S|N . The Lagrange multiplier theorem given in the previous
subsection can be applied to conclude that this is equivalent to the existence
of φ̄ ∈ E with πM,E(φ̄) = φ which is an extremum of S̄. Using the coordinates
of the trivialization of E we can write φ̄ = (φ, λ), where φ = πM,E(φ̄) is the
base point, i.e. section φ of Y , and λ is thought of as a section of the bundle
πX,V , i.e. an R

n-valued function on X. Then S̄ : E → R is given by

S̄(φ̄) = S(φ) − 〈λ, Ψ(φ)〉E

=
∫

X
L((j1φ)(x))dn+1x −

∫
X
〈λ(x), Φ((j1φ)(x))〉Vdn+1x

=
∫

X

[
L((j1φ)(x)) − 〈λ(x), Φ((j1φ)(x))〉V

]
dn+1x

In the next section, we demonstrate these constructions for the incom-
pressibility constraint for continuum theories.

The requirement that S̄ be stationary with respect to variations in λ at
the point φ̄ implies that

0 =
δS̄

δλ
(φ̄) · δλ =

∫
X

[
−〈δλ(x), Φ((j1φ)(x))〉V

]
dn+1x

for all variations δλ, and thus that Φ((j1φ)(x)) = 0 for all x ∈ X. This
therefore recovers the condition that φ must satisfy the constraints.

Stationarity of S̄ with respect to variations in φ can be used to derive
the constrained Euler-Lagrange equations, which have the form
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∂

∂xµ

(
∂L

∂va
µ
((j1φ)(x))

)
− ∂L

∂ya
((j1φ)(x))

+
〈

λ(x),
∂Φ
∂ya

((j1φ)(x))
〉
− ∂

∂xµ

〈
λ(x),

∂Φ
∂va

µ
((j1φ)(x))

〉
= 0. (3.2)

Alternatively, one can handle the constraints by introducing another
bundle, denoted by E, which is a product bundle over X with fibers diffeo-
morphic to Yx × Vx. One can think of E as a configuration bundle of the
corresponding unconstrained system whose Lagrangian contains an addi-
tional part corresponding to the pairing of the constraint with the Lagrange
multiplier:

LΦ = L + 〈λ, Φ〉V .

The Euler-Lagrange equations of motion then follow from unconstrained
Hamilton’s principle in a standard way and coincide with (3.2). We work
out the details for the incompressibility constraint in the next section.

4 Incompressible Continuum Mechanics

In this section we shall consider the incompressibility constraint using the
multisymplectic description of continuum mechanics. The main issue is a
proper interpretation of the constraint using the Lagrange multiplier for-
malism developed in the previous section.

4.1 Configuration and Phase Spaces

Here we briefly summarize the results. See the analogous parts of §2 for
more details.

Extended Covariant Configuration Bundle. The fibers of V in this
case are one-dimensional and sections φ̄ = (φ, λ) of E contain both the
deformation field and the Lagrange multiplier, i.e., E denotes a bundle over
X whose fibers are diffeomorphic to the product manifold M × R with the
projection map

πXE : E → X; (x, t, y, λ) �→ (x, t).

Here λ is a section of the trivial bundle X× R over X, which can be thought
of as a function λ(x, t) on X. The phase space is then the first jet bundle J1E
with coordinates γ̄ = (xµ, ya, λ, va

µ, βµ); the first jet extension of a section
φ̄ = (φ, λ) has the following coordinate representation (xµ, ya, λ, ∂µφa, ∂µλ).
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The Dual Jet Bundle. We can consider the affine dual bundle J1E∗

as a “vertically invariant” subbundle Z of the bundle Λ = Λn+1E of all
(n + 1)-forms on E. Elements of Z can be written uniquely as

z = Πdn+1x + pa
µdya ∧ dnxµ + πµdλ ∧ dnxµ,

where dnxµ = ∂µdn+1x, so that (xµ, ya, λ, Π, pa
µ, πµ) give coordinates on Z.

The canonical (n + 1)-form is constructed in a standard manner and in
the above coordinates has the following representation

Θ = pa
µdya ∧ dnxµ + πµdλ ∧ dnxµ + Πdn+1x.

We set Ω = −dΘ.
The primary constraint manifold C is a subbundle of the dual jet bundle

and corresponds to the incompressibility constraint. The pull-back of the
inclusion map iC : C → J1E∗ defines a degenerate (n+2)-form ΩC on C. We
shall discuss the explicit form of the constraint in the next subsection.

Incompressibility Constraint. Recall that such a constraint in, for ex-
ample, incompressible fluid dynamics, is a reflection of the divergence-free
property of the Eulerian fluid velocity and, hence, has a pointwise character.
The divergence-free character of the velocity field arises from the require-
ment that the particle placement map be volume preserving at each instant
of time. Then, according to the general theory of constrained multisymplec-
tic fields outlined above, it can be obtained from a pointwise constraint Φ
defined on the first jet bundle J1Y .

For γ ≡ (xµ, ya, va
µ) ∈ J1Y we impose the constraint Φ(γ) = 0 on the

Jacobian of the deformation, where

Φ : J1Y → R; γ �→ J(γ) − 1, J(γ) = det[v]

√
det[g(y)]
det[G(x)]

, (4.1)

where we have used the definition of J given in (2.1). Restricting Φ to the
first jet of a section φ results in a constraint on the matrix of spatial partial
derivatives ∂jφ

a.
For the Lagrange multiplier itself, we choose the following Ansatz

λ(x) =
√

det[G]P (x) : X → R, (4.2)

where P will be shown later to have the interpretation of the material pres-
sure. Equation (4.2) guarantees that λ transforms like a density under the
transformations of the base manifold X, so that the pairing of λ and Φ,
defined by integrating over X, has the correct transformation law.
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4.2 Lagrangian Dynamics.

As we have already mentioned, the main distinguishing feature of incom-
pressible models of continuum mechanics is the presence of the constraint
(4.1). We shall now explain how this modification to the Lagrangian alters
the Legendre transform as well as the Euler-Lagrange equations.

The Lagrangian Density. The Lagrangian density L : J1E → Λn+1X
for the multisymplectic model of incompressible continuum mechanics is a
smooth bundle map defined by

LΦ(γ̄) = (L(γ) + λ · Φ(γ)) dn+1x = K − P + λ · Φ dn+1x, (4.3)

where L (i.e. K and P) is given by (2.3) and depends on the choice of the
stored energy function W .

The Legendre Transformation. For the above choice of the Lagrangian,
the Legendre transform thought of as a fiber preserving bundle map FLΦ :
J1E → J1E∗ over E is degenerate due to the constrained character of
the dynamics. Indeed, the Lagrange multiplier λ is a cyclic variable as
the Lagrangian (4.3) does not depend on its derivatives, βµ. Hence, the
conjugate momentum to λ is identically zero: πµ ≡ ∂LΦ/∂βµ = 0. The set
{πµ = 0} defines the primary constraint set as a subset of the dual bundle
J1E∗ to which we restrict the Legendre transformation to make it non-
degenerate. The rest of the momenta are given by the following expressions

pa
0 =

∂LΦ

∂va
0

= ρgabv
b
0

√
det[G],

pa
j =

∂LΦ

∂va
j

=
(

PJ(v−1)a
j − ρ

∂W

∂va
j

) √
det[G], (4.4)

Π =
[
−ρ

1
2
gabv

a
0v

b
0 + ρ

∂W

∂va
j
va

j − ρW − P (J(n − 1) + 1)
]√

det[G].

Euler-Lagrange Equations Using the trivialization (φ, λ), we now con-
sider the Euler-Lagrange equations for a section φ̄ of E, both with respect
to the deformation φ and with respect to the Lagrange multiplier λ. The
former can be written in coordinates as follows

∂LΦ

∂ya
(j1φ̄) − ∂

∂xµ

(
∂LΦ

∂va
µ
(j1φ̄)

)
= 0. (4.5)
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The Euler-Lagrange equation for λ trivially recovers the constraint Φ = 0
itself restricted to the first jet :

∂LΦ

∂λ
(j1φ̄) − ∂

∂xµ

(
∂LΦ

∂βµ
(j1φ̄)

)
= Φ(j1φ)dn+1x = (J(j1φ) − 1)dn+1x = 0.

(4.6)

These two equations are to be solved for the Lagrange multiplier λ (equiv-
alently, for the pressure P ) and for the section φ.

Substituting Lagrangian (4.3) into (4.5), we obtain the Euler-Lagrange
equation (2.13) modified by the pressure term:

ρgab

(
Dgφ̇

Dt

)b

− 1√
det[G]

∂

∂xk

(
ρ

∂W

∂va
k
(j1φ)

√
det[G]

)
=

− ρ
∂W

∂gbc

∂gbc

∂ya
(j1φ) − ∂P

∂xk
(v−1)a

k
J(j1φ). (4.7)

Notice that in the case of parameterized non-constant metrics, the extra
pressure term in (4.4) gives rise to the term

∂

∂yb

((
P J(v−1)a

j√det[G]
)

(j1φ)
) ∂yb

∂xj
,

which follows from the chain rule applied to ∂xjg(y(x)). This term exactly
cancels another term coming from differentiating the constraint with respect
to y due again to the composition g = g(y) :

λ
∂Φ
∂ya

=
P

2
Jgbc ∂gbc

∂ya

√
det[G]

and other cancellations occur as in equation (2.17).
In the case of Euclidean manifolds with constant metrics g and G, the

Euler-Lagrange equations simplify to

ρ
∂2φa

∂t2
=

∂

∂xk

(
ρ

∂W

∂va
k
(j1φ)

)
− ∂P

∂xk
(v−1)a

k
J(j1φ) (4.8)

together with the constraint (4.6).

4.3 Incompressible Ideal Hydrodynamics

For fluid dynamics, the stored energy term in the Lagrangian is a constant
function precisely because of the incompressibility constraint. Indeed, as we
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have mentioned above, W in ideal fluid models is a function of the Jacobian
J , but the latter is constrained to be 1. For simplicity, consider an ideal
homogeneous incompressible fluid, so that the material density ρ is constant,
and we can set ρ = 1 (for inhomogeneous fluids the dependence of material
density on the point x is implicit in the pressure function P ).

The Lagrangian is given by (4.3) with P = const. Hence, two terms in
equation (4.7) which correspond to the derivatives of W vanish, so that the
dynamics of an incompressible ideal fluid is described by

gab

(
Dgφ̇

Dt

)b

= − ∂P

∂xk
J

((
∂φ

∂x

)−1
)k

a

, (4.9)

together with the constraint

J(j1φ) =

(√
det[G ◦ φ]√

det[G]
det

(
∂φ

∂x

))
(x, t) = 1, (4.10)

where we have used the fact that g = G.
Compare (4.9) with (2.18) and notice that the incompressibility con-

straint J(j1φ) = 1 implies that the spatial density ρsp = ρ/J is constant,
e.g., 1. Introducing the spatial pressure p = P ◦ φ−1

t , the above equation
can be written as

Dgφ̇

Dt
(x, t) = − grad p ◦ φ(x, t), (4.11)

where we have set ρsp = 1. We remark again that the covariant derivative
is evaluated at y = φ(x, t).

A New Look at the Pressure. Here we shall demonstrate that the same
equations of motion are obtained if the potential energy in the Lagrangian
(4.3) is not set to a constant, but rather is treated as a function of the
Jacobian, W = W (J). This will also clarify the relation between the two
definitions of pressure that we have thus far examined.

Recall the definition of the pressure function for barotropic fluids given
by (2.16) as a partial derivative of the stored energy function W with respect
to the Jacobian J . Compare this to the definition (4.2) of the pressure as a
Lagrange multiplier corresponding to the incompressibility constraint (4.1)
(modulo a

√
det[G] term). In this subsection we shall denote these objects

by PW and Pλ, respectively:

PW = −ρ
∂W

∂J
, Pλ =

1√
det[G]

λ.
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The resulting Euler-Lagrange equations can be obtained by combining
(2.18) with (4.9) and are given by:

gab

(
Dgφ̇

b

Dt

)b

= −∂(PW + Pλ)
∂xk

J

((
∂φ

∂x

)−1
)k

a

together with the constraint (4.10). We can define a new pressure function

P = PW + Pλ. (4.12)

Notice that when the constraint J = 1 is enforced by the Euler-Lagrange
equation (4.6), PW (J) = const, so that P = Pλ + const. This is equivalent
to a re-definition of the Lagrange multiplier λ. At the same time, the above
Euler-Lagrange equation coincides with (4.9) because ∂kP = ∂kPλ.

Relation to Standard Ideal Hydrodynamics. Recall the Lie-Poisson
description of fluid dynamics as a right-invariant system on the group Dµ(M)
of volume-preserving diffeomorphisms of a Riemannian manifold (M, G).
Here we follow Marsden and Ratiu [1999] and Arnold and Khesin [1998],
using our notations. The Lie algebra of Dµ(M) is the algebra of divergence-
free vector fields on M tangential to the boundary with minus the Jacobi-Lie
bracket. The L2 inner-product on this algebra is given by

〈u, v〉L2 =
∫

M
〈u(x), v(x)〉Gµ,

where µ is the Riemannian volume form on M .
We extend this metric by right invariance to the entire group. The

resulting Riemannian manifold with right invariant L2 metric, denoted by
(Dµ(M), L2), is the configuration space for the Lie-Poisson or Euler-Poincaré
model of ideal hydrodynamics. Its tangent bundle is the phase space, so that
(ηt, η̇t) are the basic “coordinates”; here ηt ∈ Dµ(M) is a diffeomorphism
that transforms the reference fluid configuration to its configuration at time
t. Then, using the kinetic energy of fluid particles as a Lagrangian, one
obtains the following covariant equations of motion:

Dη̇

Dt
(x) = − grad p ◦ η(x), (4.13)

where
Dη̇

Dt
= η̈ + Γη(η̇, η̇)
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denotes covariant material time derivative with respect to the metric (Γη

denotes the connection associated to the metric) and p is the spatial pressure.
Notice that covariant derivative is evaluated at η(x).

Now define ηt(x) = η(t, x) to be the flow of the time-dependent vector
field u(t, x), so that ∂tη(t, x) = u(t, η(t, x)). Then composing (4.13) on the
right with η−1 gives the classical Eulerian description of incompressible ideal
fluids :

∂tu(t, x) + (u · ∇)u = − grad p, div u = 0.

Taking the divergence of both sides of this expression yields the equation
for the pressure

∆p = −div ((u · ∇)u) . (4.14)

One readily notices that equations (4.11) and (4.13) coincide provided
ηt(x) = φ(x, t). Upon this identification, the Euler-Lagrange equations for
the multisymplectic model of incompressible ideal hydrodynamics recover
the well-known evolution of fluid diffeomorphisms (4.13). Similarly, taking
the divergence of both sides of (4.11) results in the Poisson equation on the
pressure (4.14).

4.4 Incompressible Elasticity

In a manner similar to the previous subsection, we modify the elasticity
Lagrangian by the constraint and extend the phase space to include the
Lagrange multiplier. Recall that the stored energy is a function of the Green
deformation tensor W = W (C) and use the definition of the first Piola-
Kirchhoff stress tensor Pa

i (2.19) to write down the equations of motion:

ρgab

(
Dgφ̇

Dt

)b

= Pa
i
|i −

∂P

∂xk
J

((
∂φ

∂x

)−1
)k

a

,

together with the constraint (4.6). The above equation can be written in a
fully covariant form

ρ
DgV

Dt
= DIVP − grad p ◦ φ,

where V = φ̇ is the velocity vector field, P is the first Piola-Kirchhoff stress
tensor, and p is the spatial pressure.
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5 Symmetries, Momentum Maps and Noether’s
Theorem

We already mentioned in the introduction that homogeneous fluid dynamics
has a huge symmetry, namely the particle relabeling symmetry, while stan-
dard elasticity (usually assumed to be inhomogeneous) has much smaller
symmetry groups, such as rotations and translations in the Euclidean case.
While inhomogeneous fluids (especially the compressible ones) are of great
interest, the results worked out in §5.1 only apply to homogeneous fluid
dynamics, when the symmetry group is the full group of volume-preserving
diffeomorphisms Dµ. However, these results can be generalized to inhomo-
geneous fluids, in which case the symmetry group is a subgroup Dρ

µ ⊂ Dµ

that preserves the level sets of the material density for barotropic fluids, or
a subgroup Dρ,ent

µ ⊂ Dµ that preserves the level sets of the material density
and entropy for isentropic fluids.

A general model of continuum mechanics will have the metric g isometry
as its symmetry. In particular, the group of rotations and translations is a
symmetry for models of fluid dynamics and elasticity in Euclidean spaces.
The later is treated in Marsden, Pekarsky, Shkoller, and West [2000], where
the overall emphasis is on continuum mechanics in Euclidean spaces.

The only symmetry which is universal for non-relativistic continuum
mechanics is the time translation invariance. This is due to the fact that the
base manifold is a tensor product of the spatial part and the time direction,
rather than a space-time, so that all material quantities, such as density
ρ, metric G, etc. depend only on x ∈ B ⊂ X. In this section we shall
treat these symmetries separately. We start with the particle relabeling
symmetry, introducing the necessary notations.

5.1 Relabeling Symmetry of Ideal Homogeneous Hydrody-
namics

In this subsection we shall consider both the barotropic model and the in-
compressible model of ideal homogeneous fluids with fixed boundaries at the
same time. Their corresponding Lagrangians differ only by the constraint
term and both are equivariant with respect to the action of the group of
volume-preserving diffeomorphisms.

The Group Action. The action of the diffeomorphism group Dµ(B) on
the (spatial part of the) base manifold B ⊂ X captures precisely the meaning
of particle relabeling. For any η ∈ Dµ(B), denote this action by ηX : (x, t) �→
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(η(x), t). The lifts of this action to the bundles Y and E are given by
ηY : (x, t, y) �→ (η(x), t, y) and ηE : (x, t, y, λ) �→ (η(x), t, y, λ), respectively.
Both lifts are fiber-preserving and act on the fibers themselves by the identity
transformation. The coordinate expressions have the following form:

η0
X = Id ·t, ηi

X = ηi(x), ηa
Y = δa

b yb, ηa
E = (δa

b yb, Id ·λ). (5.1)

Jet Prolongations. The jet prolongations are natural lifts of automor-
phisms of Y to automorphisms of its first jet J1Y and can be viewed as
covariant analogues of the tangent maps (see Gotay, Isenberg and Marsden
[1997]).

Let γ be an element of J1Y and γ̄ be a corresponding element of the
extended phase phase space J1E, in coordinates γ = (xµ, ya, va

µ) and γ̄ =
(xµ, ya, λ, va

µ, βµ). The prolongation of ηY is defined by

ηJ1Y (γ) = TηY ◦ γ ◦ Tη−1
X , ηJ1E(γ̄) = TηE ◦ γ̄ ◦ Tη−1

X . (5.2)

We shall henceforth consider ηJ1E , since it includes ηJ1Y as a special case.
In coordinates, we have

ηJ1E(γ̄) =

(
ηk(x), t; yb, λ; va

0, v
a
m

(
(
∂η

∂x
)−1

)m

j

; β0, βm

(
(
∂η

∂x
)−1

)m

j

)
.

If ξ is a vector field on E whose flow is ηε, then its prolongation j1ξ is the
vector field on J1E whose flow is j1(ηε), that is j1ξ ◦ j1(ηε) = (d/dε)j1(ηε).
In particular, the vector field ξ corresponding to ηE given by (5.1) has
coordinates (ξi, 0, 0, 0) and is divergence-free; its prolongation j1ξ, which
corresponds to the prolongation ηJ1E of ηE , has the following coordinate
expression:

j1ξ =
(

ξi, 0; 0, 0; 0,−va
m

∂ξm

∂xj
; 0,−βm

∂ξm

∂xj

)
. (5.3)

Noether’s Theorem. Suppose the Lie group G acts on C and leaves the
action S invariant. This is equivalent to the Lagrangian density L being
equivariant with respect to G, that is, for all η ∈ G and γ ∈ J1Y ,

L(ηJ1Y (γ)) = (η−1
X )∗L(γ),

where (η−1
X )∗L(γ) = (ηX)∗L(γ) is a push-forward; this equality means equal-

ity of (n + 1)-forms at η(x). Denote the covariant momentum map on
J1Y by JL ∈ L(g, Λn(J1Y )). It is defined by the following expression

j1(ξ) ΩL = dJL(ξ) (5.4)
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and can be thought of as a Lie algebra valued n-form on J1Y .
Recall that φ is a solution of the Euler-Lagrange equations if and only if

(j1φ)∗(W ΩL) = 0

for any vector field W on J1Y . In particular, setting W = j1(ξ) and applying
(j1φ)∗ to (5.4), we obtain the following basic Noether conservation law:

Theorem 5.1. Assume that group G acts on Y by πXY -bundle automor-
phisms and that the Lagrangian density L is equivariant with respect to this
action for any γ ∈ J1Y . Then, for each ξ ∈ g

d
(
(j1φ)∗JL(ξ)

)
= 0 (5.5)

for any section φ of πXY satisfying the Euler-Lagrange equations. The quan-
tity (j1φ)∗JL(ξ) is called the Noether current.

See Gotay, Isenberg and Marsden [1997] for a proof.

The Variational Route to Noether’s Theorem. The variational route
to the covariant Noether’s theorem on J1Y was first presented on pages 374–
375 in Marsden, Patrick, and Shkoller [1998]. We shall briefly describe this
formulation now.

Recall the notations of the maps ϕ : U → Y and the corresponding
induced local sections ϕ ◦ ϕ−1

X of Y from Subsection 2.2. Here again it is
important to allow for both vertical and horizontal variations of the sections.
Vertical variations alone capture only fiber preserving symmetries (i.e., spa-
tial symmetries), while taking arbitrary variations allows for both material
and spatial symmetries to be included.

The invariance of the action S =
∫
UX

L under the Lie group action is
formally represented by the following expression:

S(ηY · ϕ) = S(ϕ) for all ηY ∈ G. (5.6)

Equation (5.6) implies that for each ηY ∈ G, ηY · ϕ is a solution of the
Euler-Lagrange equations, whenever ϕ is a solution. We restrict the action
of G to the space of solutions, and let ξC be the corresponding infinitesimal
generator on C restricted to the space of solutions; then

0 = (ξC dS)(ϕ) =
∫

∂UX

j1(ϕ ◦ ϕ−1
X )∗[j1(ξ) ΘL]

=
∫

UX

j1(ϕ ◦ ϕ−1
X )∗[j1(ξ) ΩL],
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since the Lie derivative Lj1(ξ)ΘL = 0 by (5.6) and Corollary 2.1.
Using (5.4), we find that

∫
UX

d[j1(ϕ ◦ ϕ−1
X )∗JL(ξ)] = 0, and since this

holds for arbitrary regions UX , the integrand must also vanish. Recall that
φ = ϕ ◦ ϕ−1

X is a true section of the bundle Y , so that this is precisely a
restatement of the Noether’s Theorem 5.1.

Covariant Canonical Transformations. The computations of the mo-
mentum map from definition (5.4) can be simplified significantly in some spe-
cial cases which we discuss here. A πXJ1Y -bundle map ηJ1Y : J1Y → J1Y
covering the diffeomorphism ηX : X → X is called a covariant canonical
transformation if η∗J1Y ΩL = ΩL. It is called a special covariant canon-
ical transformation if η∗J1Y ΘL = ΘL. Recall that forms ΩL and ΘL can
be obtained either by variational arguments or by pulling back canonical
forms Ω and Θ from the dual bundle using the Legendre transformation FL.

From Gotay, Isenberg and Marsden [1997], any ηJ1Y which is obtained
by lifting some action ηY on Y to J1Y , is automatically a special canonical
transformation. In this case the momentum mapping is given by

JL(ξ) = j1ξ ΘL. (5.7)

We remark that the validity of this expression does not rely on the way
in which the Cartan form was derived, i.e., for simplicity of the computa-
tions in concrete examples, one can forgo the issues of vertical vs. arbitrary
variations in the variational derivation and obtain the Cartan form directly
from the dual bundle by means of Legendre transformations. Then, evalu-
ating this form on the prolongation of a vector of an infinitesimal generator
gives the momentum n-form.

Equivariance of the Lagrangian. To apply Theorem 5.1 to our case we
need to establish equivariance of the fluid Lagrangians:

Proposition 5.1. The Lagrangian of an ideal homogeneous barotropic fluid
(2.3) and the Lagrangian of an ideal homogeneous incompressible fluid (4.3)
are equivariant with respect to the Dµ(B) action (5.1):

L(ηJ1E(γ̄)) = (η−1
X )∗L(γ̄),

for all γ̄ ∈ J1E.

Proof. First observe that the material density of an ideal homogeneous (com-
pressible or incompressible) fluid is constant. Notice also that Lagrangians
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(2.3) and (4.3) differ only in the potential energy terms. Both these terms
are functions of the Jacobian, which is equivariant with respect to the action
of volume preserving diffeomorphisms given by (5.3). Indeed,

f (J(ηJ1E(γ̄))) dn+1x = f

( √
det[g]√
det[G]

det(v) det
(

∂η

∂x

)−1
)

dn+1x

= (η−1
X )∗

(
f(J(γ̄))dn+1x

)
due to the fact that det ∂iη

j = 1 for a volume preserving diffeomorphism η;
here f can be any function, e.g. the stored energy W or the constraint Φ.

For the same reason, and the fact that (5.3) acts trivially on va
0, the

kinetic part of both Lagrangians is also equivariant.

Proposition 5.1 enables us to use (5.7) for explicit computations of the
momentum maps for the relabeling symmetry of homogeneous hydrodynam-
ics. We shall consider barotropic and incompressible ideal fluids separately
because their Lagrangians and, hence, their momentum mappings are dif-
ferent.

Barotropic Fluid

Using (5.7) we can compute the Noether current corresponding to the rela-
beling symmetry of the Lagrangian (2.3) to be

j1(φ)∗JL(ξ) =
(

1
2
ρgabφ̇

aφ̇b − ρW − PJ

) √
det[G]ξkdnxk −(

gabφ̇
bφa

,k

)
ρ
√

det[G]ξkdnx0, (5.8)

where j1ξ is the prolongation of the vector field ξ and is given by (5.3).
The differential of this quantity restricted to the solutions of the Euler-

Lagrange equation is identically zero according to Theorem 5.1. Conversely,
requiring the differential of (5.8) to be zero for arbitrary sections φ recovers
the Euler-Lagrange equation. Indeed, computing the exterior derivative and
taking into account that the vector field ξ is divergence free, we obtain:

gab

(
Dgφ̇

Dt

)b

= − ∂P

∂xk
J

((
∂φ

∂x

)−1
)k

a

,

which coincides with the Euler-Lagrange equation (2.18).
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Incompressible Ideal Fluid

Similar computations using Lagrangian (4.3) with the potential energy set
to a constant give the following expression for the Noether current corre-
sponding to the relabeling symmetry:

j1(φ)∗JL(ξ) =
(

1
2
ρgabφ̇

aφ̇b − P

) √
det[G]ξkdnxk −(

gabφ̇
bφa

,k

)
ρ
√

det[G]ξkdnx0. (5.9)

The assumptions of Theorem 5.1 are satisfied; hence the exterior dif-
ferential of this Noether current d

(
j1(φ)∗JL(j1ξ)

)
is equal to zero for all

section φ which are solutions of the Euler-Lagrange equations.
Now consider the inverse statement. That is, let us analyze whether

the Noether conservation law implies the Euler-Lagrange equations for in-
compressible ideal fluids. Computing the exterior differential of (5.9) for an
arbitrary section φ̄ = (φ, λ) we obtain:

gab

(
Dgφ̇

Dt

)b

= − ∂P

∂xk

((
∂φ

∂x

)−1
)k

a

.

Here, we have used the fact that ξ is a divergence free vector field on X.
This is precisely the Euler-Lagrange equation (4.9) with the constraint J = 1
substituted in it. We point out that the above equation is not equivalent to
the Euler-Lagrange equations, i.e. the constraint cannot be recovered from
the Noether current. Notice also that the Noether currents (5.8) and (5.9)
are different due to the difference in the corresponding Lagrangians.

5.2 Time Translation Invariance

Lagrangian densities (2.3) and (4.3) are equivariant with respect to the group
R action on Y , given by τY : (x, t, y) �→ (x, t + τ, y) for any τ ∈ R. This is
because the Lagrangians are explicitly time independent. One can readily
compute the jet prolongation of the corresponding infinitesimal generator
vector field ζY = (0, ζ, 0), where τ = exp ζ. Then, the pull-back by j1φ of
the covariant momentum map corresponding to this symmetry, which we
denote by J t

L to distinguish it from expressions in the previous section, is
given by the following n-form on X:

(j1φ)∗J t
L(ζ) = ζ

(
L(j1φ)dnx0 − pa

µ(j1φ)φ̇adnxµ

)
=
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− ζ
(
e(j1φ)dnx0 + pa

j(j1φ)φ̇adnxj

)
(j1φ),

where, in the last equality, we have used the definition of the energy density
e given by (2.5).

Noether’s Theorem 5.1 implies that the exterior derivative of this expres-
sion will be zero along solutions of the Euler-Lagrange equations. Comput-
ing this divergence for an arbitrary ζ recovers the energy continuity equation.
For a barotropic fluid, it is given by

ė = −
√

det[G] DIV


PJ

((
∂φ

∂x

)−1
)j

a

φ̇a


 ,

while for standard elasticity the equation has the form:

ė =
√

det[G] DIV(Pa
jφ̇a).

The expressions for an incompressible fluid and elastic medium are similar.
Alternatively, one can consider the inverse statement and require that

d
(
J t
L(ζ)

)
= 0. This forces the energy continuity equation to be satisfied for

some arbitrary section φ.

6 Concluding Remarks and Future Directions

In the last section of our paper we would like to comment on the work
in progress and point out general future directions of the multisymplectic
program. Some of the aspects discussed here are analyzed in detail in our
companion paper Marsden, Pekarsky, Shkoller, and West [2000].

Other Models of Continuum Mechanics. The formalism set up in
this paper naturally includes other models of three-dimensional linear and
non-linear elasticity and fluid dynamics, as well as rod and shell models. For
elasticity, the choice of the stored energy W determines a particular model
with the corresponding Euler-Lagrange equation given by (2.13); this is a
PDE to be solved for the deformation field φ. Introducing the first Piola-
Kirchhoff stress tensor P, the same equation can be written in a compact
fully covariant form (2.21). An explicit form of the Euler-Lagrange equations
and conservation laws for rod and shell models are not included in this
paper but can be easily derived by following the steps outlined above. The
constrained director models which are common in such models are handled
well by the formulation of constraints that we use in §3.
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Constrained Multisymplectic Theories. The issue of holonomic vs.
non-holonomic constraints in classical mechanics has a long history in the
literature. Though there are still many open questions, the subject of linear
and affine non-holonomic constraints is relatively well-understood (see, e.g.
Bloch, Krishnaprasad, Marsden, and Murray [1996]). We already mentioned
in §3 that this topic is wide open for multisymplectic field theories, partly
due to the fact that there is simply no well-defined notion of a non-holonomic
constraint for such theories – it appears that one needs to distinguish be-
tween time and space partial derivatives.

As all of the examples under present consideration are non-relativistic
and do not have constraints involving time derivatives, we used the restric-
tion of Hamilton’s principle to the space of allowed configurations to derive
the equations of motion. Note that this reduces to vakonomic mechanics
in the case of an ODE system with non-holonomic constraints, and is thus
incorrect. Of course a multisymplectic approach to non-holonomic field the-
ories (such as one elastic body rolling, while deforming, on another, such
as a real automobile tire on pavement), would be of considerable interest to
develop.

Multisymplectic Form Formula and Conservation Laws. A very
important aspect of any multisymplectic field theory is the existence of the
multisymplectic form formula (2.11) which is the covariant analogue of the
fact that the flow of conservative systems consists of symplectic maps. We
deliberately avoid here any detailed analysis of the implications of this for-
mula to the multisymplectic continuum mechanics and refer the reader to
Marsden, Pekarsky, Shkoller, and West [2000], where it is treated in the
context of Euclidean spaces and discretization. Preliminary results indi-
cate, however, that applications of the multisymplectic form formula not
only can be linked to some known principles in elasticity (such as the Betti
reciprocity principle), but also can produce some new interesting relations
which depend on the space-time direction of the first variations V,W in
(2.11). An accurate and consistent discretization of the model then results
in so called multisymplectic integrators which preserve the discrete ana-
logues of the multisymplectic form and the conservation laws.

Discretization. This is another very interesting and important part of
our project which is addressed in detail in our companion paper Marsden,
Pekarsky, Shkoller, and West [2000], where the approach of finite elements
for models in Euclidean spaces is adopted. It is shown that the finite ele-
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ment method for static elasticity is a multisymplectic integrator. Moreover,
based on the result in Marsden and West [2000], it is shown that the finite
elements time-stepping with the Newmark algorithm is a multisymplectic
discretization.

As we mentioned in the previous paragraph, a consistent discretization
based on the variational principle would preserve the discrete multisymplec-
tic form formula together with the discrete multi-momentum maps corre-
sponding to the symmetries of a particular system. Then, the integral form
of the discrete Noether’s Theorem implies that a sum of the values of the
discrete momentum map over some set of nodes is zero. One implication of
this statement for incompressible fluid dynamics is a discrete version of the
vorticity preservation. Such discrete conservations are among the hot topics
of the ongoing research.

Symmetry Reduction. In the previous section we discussed at length
the particle relabeling symmetry of ideal homogeneous hydrodynamics and
its multisymplectic realization. Reduction by this symmetry takes us from
the Lagrangian description in terms of material positions and velocities to
the Eulerian description in terms of spatial velocities. In the compressible
case one only reduces by the subgroup of the particle relabeling group that
leaves the stored energy function invariant; for example, if the stored energy
function depends on the deformation only through the density and entropy,
then this means that one introduces them as dynamic fields in the reduction
process, as in Euler-Poincaré theory (see Holm, Marsden and Ratiu [1998].)

In the unconstrained (i.e., defined on the extended jet bundle J1E) mul-
tisymplectic description of ideal incompressible fluids, the multisymplectic
reduced space is realized as a fiber bundle Υ over X whose fiber coordinates
include the Eulerian velocity u and some extra field corresponding to com-
pressibility. Then, the reduced Lagrangian density determines, by means
of a constrained variational principle, the Euler-Lagrange equations which
give the evolution of the spatial velocity field u(x) ∈ Υx together with a
condition of u being divergence-free. A general Euler-Poincaré type theo-
rem relates this equation with equation (4.11) by relating the corresponding
variational principles.

Such a description is a particular example of a general procedure of
multisymplectic reduction. The case of a finite-dimensional vertical group
action was first considered in Castrillón-López, Ratiu and Shkoller [2000].
More general cases of an infinite-dimensional group action such as that for
incompressible ideal hydrodynamics, electro-magnetic fields and symmetries
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in complex fluids is planned for a future publication. The reader is also
referred to a related work by Fernández, Garćia, and Rodrigo [2000].

Vortex Methods. One of our ultimate objectives is to further develop,
using the multisymplectic approach, some methods and techniques which
were derived in the infinite-dimensional framework and which proved to be
very useful. One of them is the vortex blob method developed by Chorin
[1973], which recently has been linked to the so-called averaged Euler equa-
tions of ideal fluid (see Oliver and Shkoller [1999]).

Higher Order Theories. Constraints involving higher than first-order
derivatives are beyond the current exposition and should be treated in the
context of higher-order multisymplectic field theories defined on JkY, k > 1.

The averaged Euler equations (see Holm, Marsden and Ratiu [1998] and
Marsden, Ratiu and Shkoller [2000] and references therein) provide an in-
teresting example of a higher order fluid theory with constraints (depending
only on first derivatives of the field) to which the multisymplectic meth-
ods can presumably be applied by using the techniques of Kouranbaeva and
Shkoller [2000]. It would be interesting to carry this out in detail. In the
long run, this promises to be an important computational model, so that
its formulation as a multisymplectic field theory and the multisymplectic
discretization of this theory is of considerable interest.

Covariant Hamiltonian description. Finally, another very interesting
aspect of the project is developing the multi-Hamiltonian description of con-
tinuum mechanics along the lines outlined in Marsden and Shkoller [1999].
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