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Abstract

This paper obtains feedback stabilization of an in-
verted pendulum on a rotor arm by the “method of con-
trolled Lagrangians”. This approach involves modify-
ing the Lagrangian for the uncontrolled system so that
the Euler-Lagrange equations derived from the modi-
fied or “controlled” Lagrangian describe the closed-loop
system. For the closed-loop equations to be consistent
with available control inputs, the modifications to the
Lagrangian must satisfy “matching” conditions. The
pendulum on a rotor arm requires an interesting gen-
eralization of our earlier approach which was used for
systems such as a pendulum on a cart.

1 Introduction

We present a method for stabilizing an inverted pen-
dulum attached to the end of a rotating robotic arm (a
system described in Åström and Furuta [1996]). We
use our constructive approach for stabilizing (underac-
tuated) Lagrangian mechanical systems, which we re-
fer to as the method of controlled Lagrangians. The
idea is to consider a class of control laws that yield
closed-loop dynamics which remain in Lagrangian form.
The advantage of requiring Lagrangian closed-loop dy-
namics is that stabilization can be understood in terms
of energy, and the associated energy provides a Lya-
punov function. Being Lyapunov-based, the method
yields large and computable basins of stability, which
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become asymptotically stable when dissipative controls
are added. The Lagrangian for the closed-loop system is
called the controlled Lagrangian. The conditions which
ensure that the Euler-Lagrange equations derived from
the controlled Lagrangian are consistent with available
control inputs, i.e., they match the controlled Euler-
Lagrange equations for the given mechanical system,
are called matching conditions. The method of con-
trolled Lagrangians is developed in Bloch, Leonard and
Marsden [1997], [1998a,b] and has its origins in Bloch,
Krishnaprasad, Marsden and Sánchez de Alvarez [1992]
and Bloch, Marsden and Sánchez de Alvarez [1997].

Our earlier work discussed systems that fell into two
classes depending on the nature of the controlled La-
grangian required. The simplest class includes the pen-
dulum on a cart while the second is designed for Euler–
Poincaré systems such as a satellite with momentum
wheels. The pendulum on a rotor arm is a nontrivial
unification of these two classes of systems. Full details
of the general unified approach will be presented in a
forthcoming paper.

This paper is restricted to controlled Lagrangians
that modify the system’s kinetic energy. One can also
consider modifications to the potential energy for stabi-
lization and tracking purposes. In a forthcoming paper,
we make modifications to both the potential energy and
the kinetic energy. Our shaping of potential energy is
done in the spirit of van der Schaft [1986] and Leonard
[1997]. Other relevant work involving energy methods
in control and stabilization includes Wang and Krish-
naprasad [1992], Koditschek and Rimon [1990], Bail-
lieul [1993], and Åström and Furuta [1996].

This paper is organized as follows. In §2, we outline
the controlled Lagrangian approach to stabilization. In
§3 we discuss briefly the pendulum on a cart. In §4 we
describe the general matching theorem. In §5 we apply
the theory to the pendulum on a rotor arm.



2 Controlled Lagrangian Approach

The controlled Lagrangian approach begins with
a mechanical system with an uncontrolled (free) La-
grangian equal to kinetic energy minus potential en-
ergy. We modify the kinetic energy to produce a new
controlled Lagrangian which describes the dynamics of
the controlled closed-loop system.

Suppose our system has configuration space Q and
that a Lie group G acts freely and properly on Q. It
is useful to keep in mind the case in which Q = S × G
with G acting only on the second factor by acting on
the left by group multiplication.

For example, for the inverted planar pendulum on
a cart, Q = S1 × R with G = R, the group of re-
als under addition (corresponding to translations of
the cart), while for a rigid spacecraft with a rotor,
Q = SO(3) × S1, where now the group is G = S1,
corresponding to rotations of the rotor.

Our goal is to control the variables lying in the
shape space Q/G (in the case in which Q = S × G,
then Q/G = S) using controls that act directly on the
variables lying in G. Assume that the Lagrangian is
invariant under the action of G on Q, where the action
is on the factor G alone. In many examples the in-
variance amounts to the Lagrangian being cyclic in the
G-variables. Accordingly, this produces a conservation
law for the free system. The construction preserves the
invariance of the Lagrangian, thus providing a modified
or controlled conservation law. Throughout this paper
we will assume that G is an abelian group.

The essence of the modification of the Lagrangian
involves changing the metric tensor g(·, ·) that defines
the kinetic energy 1

2
g(q̇, q̇). The tangent space to Q

can be split into a sum of horizontal and vertical parts
defined as follows: for each tangent vector vq to Q at a
point q ∈ Q, we can write a unique decomposition

vq = Hor vq + Ver vq, (2.1)

such that the vertical part is tangent to the orbits of
the G-action and where the horizontal part is the metric
orthogonal to the vertical space; that is, it is uniquely
defined by requiring the identity

g(vq, wq) = g(Hor vq, Horwq)+ g(Ver vq, Ver wq) (2.2)

where vq and wq are arbitrary tangent vectors to Q
at the point q ∈ Q. This choice of horizontal space
coincides with that given by the mechanical connection;
see, for example, Marsden [1992].

For the kinetic energy of our controlled Lagrangian,
we use a modified version of the right hand side of equa-
tion (2.2). The potential energy remains unchanged.
The modification consists of three ingredients:

1. a new choice of horizontal space, denoted Horτ ,

2. a change g → gσ of the metric on horizontal vec-
tors and

3. a change g → gρ of the metric on vertical vectors.

Let ξQ denote the infinitesimal generator corre-
sponding to a Lie algebra element ξ ∈ g, where g is
the Lie algebra of G (see Marsden [1992] or Marsden
and Ratiu [1994]). Thus, for each ξ ∈ g, ξQ is a vector
field on the configuration manifold Q and its value at a
point q ∈ Q is denoted ξQ(q).

Definition 2.1 Let τ be a Lie algebra valued horizon-

tal one form on Q; that is, a one form with values in the

Lie algebra g of G that annihilates vertical vectors. The

τ-horizontal space at q ∈ Q consists of tangent vec-

tors to Q at q of the form Horτvq = Hor vq− [τ(v)]Q(q),
which also defines vq 7→ Horτ (vq), the τ-horizontal

projection. The τ-vertical projection operator is

defined by Verτ (vq) := Ver(vq) + [τ(v)]Q(q).

Definition 2.2 Given gσ, gρ and τ , the controlled

Lagrangian is the following Lagrangian, which equals

a modified kinetic minus the given potential energy:

Lτ,σ,ρ(v) =
1

2
[gσ(Horτvq, Horτvq)

+ gρ(Verτvq, Verτvq)] − V (q). (2.3)

The equations corresponding to this Lagrangian will
be our closed-loop equations. The new terms appearing
in those equations corresponding to the directly con-
trolled variables are interpreted as control inputs. The
modifications to the Lagrangian are chosen so that no
new terms appear in the equations corresponding to the
variables that are not directly controlled. We refer to
this process as matching.

Once the control law is derived using the controlled
Lagrangian, the closed-loop stability of an equilibrium
can be determined by energy methods, using any avail-
able freedom in the choice of τ , gσ and gρ.

Under some reasonable assumptions on the metric
gσ, Lτ,σ,ρ(v) has the following useful structure.

Theorem 2.3 Assume that g = gσ on Hor and Hor
and Ver are orthogonal for gσ. Then

Lτ,σ,ρ(v) = L(v + τ(v)Q) +
1

2
gσ(τ(v)Q, τ(v)Q) +

1

2
$(v)

where v ∈ TqQ and $(v) = (gρ − g)(Verτ (v), Verτ (v)).

3 The Inverted Pendulum on a Cart

Before giving the general matching result, we will go
briefly through the basic example of the inverted pen-
dulum on a cart (see also Bloch, Leonard and Marsden
[1997], [1998b]). This example shows the effectiveness
of the method for the stabilization of balance systems
and is useful for understanding the more complex pen-
dulum on a rotor arm.

First, we set up the Lagrangian for the cart-
pendulum system. Let s denote the position of the cart
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Figure 3.1: The pendulum on a cart.

on the s-axis and let θ denote the angle of the pendulum
with the upright vertical, as in Figure 3.1.

The configuration space for this system is Q =
S ×G = S1 ×R, with the first factor being the pendu-
lum angle θ and the second factor being the cart posi-
tion s. The velocity phase space, TQ has coordinates
(θ, s, θ̇, ṡ). The mass of the pendulum is m and that of
the cart M .

The symmetry group G of the pendulum-cart sys-
tem is that of translation in the s variable, so G = R.
We do not destroy this symmetry when doing stabiliza-
tion in θ.

For notational convenience, write the Lagrangian as

L(θ, s, θ̇, ṡ) =
1

2
(αθ̇2+2β cos θṡθ̇+γṡ2)+D cos θ , (3.1)

where α = ml2, β = ml, γ = M +m and D = −mgl are
constants. Note that αγ−β2 > 0. The momentum con-
jugate to θ is pθ = ∂L/∂θ̇ = αθ̇ + β cos θṡ and the mo-
mentum conjugate to s is ps = ∂L/∂ṡ = γṡ + β cos θθ̇.
The relative equilibrium defined by θ = 0, θ̇ = 0 and
ṡ = 0 is unstable since D < 0.

The equations of motion for the cart pendulum sys-
tem with a control force u acting on the cart are

d

dt
pθ + β sin θṡθ̇ + D sin θ = 0,

that is,

d

dt
(αθ̇ + β cos θṡ) + β sin θṡθ̇ + D sin θ = 0 (3.2)

and
d

dt
ps =

d

dt
(γṡ + β cos θθ̇) = u .

Next, we form the controlled Lagrangian by modi-
fying only the kinetic energy of the free pendulum-cart
system according to the procedure given in the pre-
ceding section. This involves a nontrivial choice of τ
and gσ. The parameter ρ in the previous section is
not needed it this example, but will be required for the
pendulum on a rotor arm.

The most general s-invariant horizontal one form τ
is given by τ = k(θ)dθ and we choose gσ to modify g
in the group direction by a constant scalar factor σ (in

general, σ need not be a constant).

Lτ,σ :=
1

2
(αθ̇2 + 2β cos θ(ṡ + kθ̇)θ̇

+ γ(ṡ + kθ̇)2) +
σ

2
γk2θ̇2 + D cos θ. (3.3)

Notice that the variable s is still cyclic. We look for
the feedback control by looking at the change in the
conservation law. Associated to the new Lagrangian
Lτ,σ, we have the conservation law

d

dt

(

∂Lτ,σ

∂ṡ

)

=
d

dt
(β cos θθ̇ + γ(ṡ + kθ̇)) = 0, (3.4)

which we can rewrite in terms of the conjugate momen-
tum ps for the uncontrolled Lagrangian as

d

dt
ps = u := −

d

dt
(γk(θ)θ̇). (3.5)

Thus, we identify the term on the right hand side with
the control force exerted on the cart.

Using the controlled Lagrangian and equation (3.4),
the θ equation is computed to be

(

α −
β2

γ
cos2 θ + σγk2(θ)

)

θ̈ (3.6)

+

(

β2

γ
cos θ sin θ + σγk(θ)k′(θ)

)

θ̇2 + D sin θ = 0 .

Next we choose k and σ so that (3.6) using the con-
trolled Lagrangian agrees with the θ equation for the
controlled cart (3.2), where the control law is given by
(3.5). The θ equation for the controlled cart is

(

α −
β2

γ
cos2 θ − βk(θ) cos θ

)

θ̈ (3.7)

+

(

β2

γ
cos θ sin θ + −β cos θk′(θ)

)

θ̇2 + D sin θ = 0 .

Comparing equations (3.6) and (3.7) we see that
we require (twice) the matching condition σγ[k(θ)]2 =
−βk(θ) cos θ . Since σ was assumed to be a constant
we set k(θ) = κβ/γ cos θ where κ is a dimensionless
constant (so σ = −1/κ). Substituting for θ̈ and k in
(3.5) we obtain the desired nonlinear control law:

u =
κβ sin θ

(

αθ̇2 + cos θD
)

α − β2

γ
(1 + κ) cos2 θ

(3.8)

By examining either the energy or the linearization
of the closed-loop system, one can see that the equilib-
rium θ = θ̇ = ṡ = 0 is stable if

κ >
αγ − β2

β2
=

M

m
> 0 . (3.9)

In summary, we get a stabilizing feedback control law

for the inverted pendulum provided κ satisfies (3.9).
A simple calculation shows that the denominator

of u is nonzero for θ satisfying sin2 θ < E/F where
E = κ− (αγ − β2)/β2 (which is positive if the stability
condition holds) and F = κ + 1. This range of θ tends
to the range −π/2 < θ < π/2 for large κ.



4 The Master Matching Theorem.

This section gives a general matching theorem for
mechanical systems that generalizes the cases discussed
in Bloch, Leonard and Marsden [1998a,b]. This match-
ing theorem is constructive and exhibits explicitly how
to pick the controlled Lagrangian to achieve the desired
matching in a way that generalizes the preceding exam-
ple of the inverted pendulum.

Firstly, one proves the following coordinate formula
for Lτ,σ,ρ:

Lτ,σ,ρ(v) = L(xα, ẋβ , θ̇a + τa
αẋα) +

1

2
σabτ

a
ατb

β ẋαẋβ

+
1

2
$ab(θ̇

a + gacgαcẋ
α + τa

αẋα)(θ̇b + gbdgβdẋ
β + τb

β ẋβ),

where θa are coordinates for the abelian symmetry
group G and xα are coordinates on the shape space
Q/G; σab and $ab are the coefficients for the last two
terms, respectively, of the expression for Lτ,σ,ρ in The-
orem 2.3, and we let ρab = gab + $ab. This equa-
tion shows that the associated controlled conserved

quantity is given by

J̃a :=
∂Lτ,σ,ρ

∂θ̇a

=
∂L

∂θ̇a
(xα, ẋα, θ̇b + τb

αẋα) + $ab(θ̇
b + gbdgαdẋ

α + τb
αẋα)

= gαaẋα + gab(θ̇
b + τb

αẋα) + $ab(θ̇
b + gbdgαdẋ

α + τb
αẋα)

= ρab(θ̇
b + gbdgαdẋ

α + τb
αẋα). (4.1)

It is possible to show that matching is achieved un-
der the following assumptions:

Assumption GM-1. τb
α = −σabgαa.

Assumption GM-2. σbd(σad,α + gad,α) = 2gbdgad,α

Assumption GM-3. $ab,α = 0.

Assumption GM-4. Letting ζa
α = gacgαc,

τb
α,δ − τb

δ,α + $adρ
bd
(

ζa
α,δ − ζa

δ,α

)

− $adρ
dcgce,δρ

ebζa
α − ρdbgad,ατa

δ = 0,

Theorem 4.1 Under Assumptions GM-1–4 the Euler-

Lagrange equations for the controlled Lagrangian Lτ,σ,ρ

coincide with the controlled Euler-Lagrange equations.

The proof of this result will be given in a forthcom-
ing publication – for a slightly simpler case see Bloch,
Leonard and Marsden [1998b]. Below we shall illustrate
how these conditions are satisfied for the pendulum on
a rotor arm. They are, of course, also satisfied for the
nonlinear pendulum on a cart.

5 The Pendulum on a Rotor Arm

Consider the pendulum shown in Figure 5.1. It is a
planar pendulum whose suspension point is attached to
another mass M by means of a vertical shaft, as shown.
The plane of the pendulum is orthogonal to the radial
arm of length R. The shaft is subject to a torque u.
We ignore frictional effects here.

θ

m

l

g
l = pendulum length

m = pendulum bob mass

g = gravitational acceleration 

R = radius of arm

R
 u = shaft torque 

u

shaft

θ = angle of pendulum from 

       the upward vertical M

M = whirling mass

torque
ϕ = angle of mass M from 

       a fixed vertical plane

Figure 5.1: A whirling pendulum.

Equations of motion. Erect an xyz-coordinate
system, with the z axis vertical along the shaft and the
xy-plane in the plane of the horizontal rod. Denote the
angle of the horizontal rod with respect to the positive
x-axis by φ. Refer to Figure 5.2.

y

x

R

ϕ

l sin θ

ϕ

m

M

Figure 5.2: Looking down on on the whirling pendulum.

The coordinates of the mass M are x = R cosφ,
y = R sinφ, and z = 0 and so the velocity is

ẋ = −Rφ̇ sin φ; ẏ = Rφ̇ cosφ; ż = 0.

The kinetic energy of the mass M is therefore

KM =
M

2
[ẋ2 + ẏ2 + ż2] =

1

2
MR2φ̇2

The coordinates of the pendulum bob with mass m are
x = R cosφ − l sin θ sin φ, y = R sin φ + l sin θ cosφ and
z = −l cos θ. The velocity of the bob is the vector with



components

ẋ = −Rφ̇ sin φ − lφ̇ sin θ cosφ − lθ̇ cos θ sinφ

ẏ = Rφ̇ cosφ − lφ̇ sin θ sinφ + lθ̇ cos θ cosφ

ż = lθ̇ sin θ.

The kinetic energy of the bob is thus given by

Km =
1

2
m[ẋ2 + ẏ2 + ż2]

=
1

2
m[R2φ̇2 + l2φ̇2 sin2 θ + l2θ̇2 + 2Rlφ̇θ̇ cos θ].

The potential energy is V = mgl cos θ and defining α,
β, γ and D precisely as for the pendulum on a cart, the
Lagrangian is thus given by

L =
γ

2
R2φ̇2

+
1

2
[αφ̇2 sin2 θ + αθ̇2 + 2Rβφ̇θ̇ cos θ] + D cos θ.

This Lagrangian is defined on T (S1 × S1), with the
variables being φ, θ and φ̇, θ̇. The controlled Euler-
Lagrange equations are given by

d

dt

∂L

∂θ̇
−

∂L

∂θ
= 0

d

dt

∂L

∂φ̇
−

∂L

∂φ
= u. (5.1)

In our case, the conjugate momenta are

pθ =
∂L

∂θ̇
= αθ̇ + βRφ̇ cos θ,

pφ =
∂L

∂φ̇
= γR2φ̇ + αφ̇ sin2 θ + βRθ̇ cos θ,

while the derivatives of L with respect to θ and φ
are: ∂L/∂θ = αφ̇2 sin θ cos θ − βRφ̇θ̇ sin θ − D sin θ and
∂L/∂φ = 0.

Thus, the controlled Euler-Lagrange equations are

d

dt
[αθ̇ + βRφ̇ cos θ] (5.2)

= αφ̇2 sin θ cos θ − βRφ̇θ̇ sin θ − D sin θ;

d

dt
[γR2φ̇ + αφ̇ sin2 θ + βRθ̇ cos θ] = u. (5.3)

We leave the second equation (5.3) as it is and simplify
the first equation (5.2):

θ̈ +
R

l
φ̈ cos θ − φ̇2 sin θ cos θ −

g

l
sin θ = 0. (5.4)

Relative equilibria. For the unforced (u = 0)
case, the relative equilibria (relative to the group of
rotations about the z-axis) are obtained by putting θ̇ =
0 and φ̇ = ω, a constant. In this case, equation (5.4)
becomes

−ω2 sin θ cos θ −
g

l
sin θ = 0.

while equation (5.3) is automatically satisfied.
The relative equilibria are given by states of the

form θe, φ = ωt, θ̇ = 0, φ̇ = ω where ω is a constant and
where θe is a root of

ω2 sin θ cos θ +
g

l
sin θ = 0

The roots are given by θ = 0, π (the straight down and
the straight up states) and by the roots of

ω2 cos θ +
g

l
= 0

i.e., we have no additional roots if ω2 ≤ g/l, and
two additional roots if ω2 ≥ g/l, namely at θe =
± cos−1{−g/(ω2l)}. Notice that we have a supercrit-
ical pitchfork bifurcation of relative equilibria as the
value of ω is increased. These new equilibria appear
near the straight down state (i.e., near θ = π as it loses
stability). The straight up state is always unstable.

Matching. We now apply our general results to
this pendulum on a rotor arm problem: here, gab, σab

and ρab = gab+$ab are scalars and gab = γR2+α sin2 θ.
Assumption GM-2 holds with the choice σab =

cg2

ab + gab, where c is a constant. Assumption GM-1
defines τb

α and Assumption GM-3 requires that $ab be
a constant or equivalently that ρab = gab + d, where d
is a constant. Then, we can satisfy Assumption GM-4
by choosing d = 1/c. i.e., we take ρab = gab + 1/c.

In this problem we have τ = −βR cos θ/σab and

Lτ,σ,ρ :=
1

2
αθ̇2 + βR cos θ

(

φ̇ −
βR

σab

cos θθ̇

)

θ̇

+
1

2
gab

(

φ̇ −
βR

σab

cos θθ̇

)2

+
β2R2

2σab

cos2 θθ̇2

+
1

2c

(

φ̇ + βR cos θ
c

1 + cgab

θ̇

)2

+ D cos θ. (5.5)

The controlled conserved quantity J̃ is given by

J̃ =

(

gab +
1

c

)

φ̇ + βR cos θθ̇. (5.6)

Comparing this with the free conservation law as in the
pendulum on a cart we see the control is given by

u = −
1

c
φ̈. (5.7)

We use the θ equation (5.4) and the conservation law
dJ̃/dt = 0 to write u as an explicit control law in terms
of positions and velocities (as was done for the pendu-
lum on a cart). Defining

κ = −
1

1 + cγR2

to be the dimensionless scalar control gain, we compute
the explicit control law as

u =
κβR sin θ

(

αθ̇2 − 2α l
R

cos θθ̇φ̇ − α cos2 θφ̇2 + D cos θ
)

α − β2

γ
(1 + κ) cos2 θ + α(1 + κ) α

γR2 sin2 θ
.



Stabilization. One can compute that the second
variation of the controlled energy evaluated at θ = θ̇ =
0 and J̃ = µ is

(

D − 2αµ2

γ2R4 (1 + κ)2 0

0 α − β2

γ
(1 + κ)

)

.

Note that for µ = 0 this is precisely the same as in the
case of the planar inverted pendulum on a cart. For
stability, therefore, we should choose

κ >
αγ − β2

β2
=

M

m
,

i.e., this makes the second variation negative definite
for any value of µ.

The denominator of the control law u is the sum of
the denominator of the control u for the planar pendu-
lum plus a term proportional to α sin2 θ, i.e., the term

α(1 + κ)
α

γR2
sin2 θ

Note that this term disappears in the limit R/l → ∞.
However, for finite R/l this additional term affects the
possible region of stability as compared to the planar
pendulum case. In particular, the denominator of the
u above is nonzero (strictly negative) for θ satisfying

sin2 θ <

β2

γ
(1 + κ) − α

β2

γ
+ α2

γR2 (1 + κ)

Note that the numerator is positive when the stability
condition holds. For large κ the range of θ tends to the
range

sin2 θ <
R2

R2 + l2
.

This is no longer the whole range of non-downward
point states, except in the limit when R/l goes to in-
finity.

A more general approach to stabilization and
asymptotic stabilization in this setting will be given in
the sequel to Bloch, Leonard and Marsden [1998b].

6 Final Remarks

The stabilization scheme in this paper is system-
atic, algorithmic, and makes use of the Euler-Lagrange
structure of mechanical systems. The resulting energy
expressions provide Lyapunov functions that are used
to prove stability and also provide a means to design
additional dissipation control terms that will achieve
asymptotic stability. Results on asymptotic stability
in the context of the method of controlled Lagrangians
can be found in Bloch, Leonard and Marsden [1998b].
Results suitable for Euler–Poincaré systems, such as
spacecraft and underwater vehicles may be found in

Bloch, Leonard and Marsden [1997]. Results on com-
bined kinetic and potential shaping for complete sta-
bilization are the subject of a forthcoming publication.
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