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Abstract

In this paper, we apply a principal-orthogonal decomposition based method to

the model reduction of a hybrid, nonlinear model of a power network. The results

demonstrate that the sequence of fault events can be evaluated and predicted without

necessarily simulating the whole system.
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1 Introduction

Power systems are among the largest and most intricate engineered systems in operation
today. The sheer complexity of these large-scale networks makes the planning, management
and operation a di�cult task, especially in the presence of multiple decision agents. These
distributed agents perform both command and regulatory actions, and usually do so in an
independent but cooperative fashion.

Upcoming changes in the power industry will force companies to adopt even more com-
plicated software and management techniques to satisfy increasing demands and coopera-
tion requirements. Obviously, there is a strong need to guarantee that these changes will
not have undesirable consequences, such as network-wide power oscillations, instabilities or
major cascading failures. Additionally, it would be advantageous to have guidelines about
failure dynamics, and the possible mechanisms for stopping a fault cascade, or even reversing
it once it started. As is becoming increasing clear, these second-order e�ects are not easy (or
even possible) to predict. The heterogeneity of the dynamics, and the lack of a centralized
authority have been long-standing obstacles in the formulation of a uni�ed theory.

In this paper we present some initial investigations on the possibility of applying recently
developed model reduction tools to the study of cascading failures in power networks (see
Figure 1).

The focus of this paper is on the construction of low-order models which closely ap-
proximate the global behavior of the hybrid nonlinear power network. There is a growing
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recognition of the strong need for rapid and reliable computation of the system dynamics.
We will demonstrate in this paper that recent developments in model reduction techniques
can contribute to these goals.

The paper is organized as follows: in Section 2 we present the swing equation model
used throughout the paper. Section 3 demonstrates the cascading failures obtained in the
simulations of the system model. In Section 4, an overview of the model reduction procedure
introduced in [5] is presented, and the following section shows the promising results obtained
from the application of this methodology to the power network model used in Section 3.
Finally, the last section presents some conclusions and discussion of future work.

2 Modeling

2.1 Swing equations

Our starting point will be the study of so-called swing dynamics, representing the coupling
between real power ows and frequency variations across the transmission network of the
power system. This is the most natural starting point for a study of geographically extensive
dynamic phenomena on the power system. Swing dynamics, which occur on the time scale
of seconds, can span the system even in a small-signal setting, whereas voltage dynamics
tends to extend across the system only when signi�cantly mediated by nonlinear e�ects.
Swing dynamics are also potentially able to interact with particular protection and control
mechanisms in a way that could plausibly lead to cascading events.

A typical swing-equation model [1, 4, 8] involves a second-order di�erential equation (es-
sentially Newton's law in rotational form, for the dynamics of the rotor) associated with each
generator node or bus, and an algebraic equation associated with each load bus. Assuming
that all bus voltages are well regulated, we can write the following equation for the ith bus:

Mi
��i +Di

_�i = Pmi � Pgi; (i = 1; : : : ; n) (1)

where �i are the generator rotor angle deviations with respect to a synchronously rotating
reference frame, Pmi is the mechanical power input, Pgi is the electrical power output, and n

is the number of generators. The parameters Mi and Di are the ith-generator's normalized
inertia and damping coe�cient, respectively. The instantaneous frequency deviation from
synchronous frequency at bus i is given by _�i(t). The supplied mechanical power Pmi is
assumed constant in this simple model, but more generally is adjusted by a speed-dependent
governor. The damping coe�cient Di reects electromechanical damping in the generator
itself, as well as the e�ective damping introduced by other components such as power system
stabilizers, which are not directly represented in the swing model.

The remaining model equations are given by the load and network characteristics. The
expression for the electrical power output is given by:

Pgi = Re[V �
i Ii] = Re[V �

i

X
j

YijVj] = �
X
j

jVijjVjjbij sin
�
�i(t)� �j(t)

�
; (i = 1; : : : ; n)

where Vi = jVij e
|�i, and Y = G + |B is the admittance matrix representing the network

connections. We assume throughout that the voltage magnitudes do not change, and the
transmission lines are lossless, i.e. Y is purely imaginary (G = 0). In the particular case
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Figure 1: Sequence of failures in simulation of swing-equation models. The black circles
represent working generators, and gray lines represent failures.

presented in this paper, the loads are modeled as synchronous motors, with small inertia
and small damping constants.

The quantity bij is the susceptance of the line between buses i and j, and is therefore 0
if these two buses are not connected (and is also 0 for j = i); the summation on the right
side of the above equation is thus e�ectively over all buses that are connected to bus i. The
term jVijjVjjbij sin

�
�i(t)� �j(t)

�
is the (real) power transmitted through the line from bus i

to bus j. Thus the maximum power that can be transfered through the line, in the absence
of other limits, is given by jVijjVjjbij. However, thermal dissipation constraints on the line
(to limit thermal expansion of the line, and associated line sag) may limit the transferred
power to values lower than this theoretical limit.

A key point to note is that the susceptance matrix B = [bij] = Im(Y ) provides a direct
representation of the network structure; apart from its diagonal, it is essentially a weighted
incidence matrix for the network graph. If the network topology evolves, as transmission
lines are taken out in response to failures, for example, then the pattern of zero and nonzero
entries in B (or Y ) evolves in a corresponding manner.

In the limit when the motor constants are zero, we obtain a di�erential-algebraic equation
(DAE) system, which can be interpreted as the singular perturbation limit of the model
presented. In this case, we can write equations (1) in the form:

(1� i)PLi + i[Mi
��i(t) +Di

_�i(t)� Pmi] = �
X
j

jVijjVjjbij sin
�
�i(t)� �j(t)

�
(2)

where i is 1 if i is a generator bus and 0 if i is a load bus, PLi is the power consumed at
this bus by the load if i is a load bus, Mi is the normalized inertia of the generator if i is a
generator bus. The DAE model is very useful from a conceptual viewpoint, since the loads
are represented as constant power sinks. However, it also has some analytical di�culties,
such as the nonexistence of solutions for some parameter values. For these practical reasons,
we only use equations (1) in the present work.

2.2 A mechanical analogue

The above swing equations can also be interpreted as a model for a nonlinear spring-mass
system, with a planar network of nonlinear springs interconnected at a set of nodes. The
nonlinear characteristics of the springs are given by the sinusoidal terms in equation (2).
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At node i, we have either a mass Mi oscillating normally to the planar network (rising
above it by an amount �i), driven up by an external normal force Pmi, or we have simply
an external normal force PLi acting down normally to the plane. This mental picture is
useful in developing some intuition for the motion of the power system, and also makes clear
that what is known about the dynamics of spring-mass systems is directly applicable to the
model. There is a very rich body of theoretical results about the analysis and control of
nonlinear mechanical systems (in the precise sense de�ned in [7]).

2.3 Failure mechanisms

The network model employed in the simulations has multiple safety mechanisms, to rep-
resent real-world operation limits and security safeguards. As we will see, the interaction
between the swing dynamics and the discrete topological changes induced by these overload
protections gives rise to a succession of fault events, known as cascading failures.

The �rst protection mechanism is related to line overloading. If the sine of di�erence
of the angles between two connected nodes j�i � �jj exceeds a given threshold value, then
the corresponding line is removed. In other words, we set the corresponding elements in
the matrix Y (or B) to zero. As seen previously, the rationale behind this kind of action is
basically a power ow limit protection.

The generators in our model are also susceptible to fault events. If the frequency de-
viation _�i with respect to the synchronous reference exceeds some preassigned limit, the
corresponding generator is tripped. This simulates the protective relay action present in
most generators. In the model, the consequences of this are approximately captured by
representing the tripped generator as a load bus with PLi = 0. The topology of the network
is not directly a�ected by generator failures, but only through line failures.

An important fact that needs to be taken into account is that of the loss of generating
power in the event of a generator failure. In this case, the necessary conditions for existence
of an equilibrium are no longer satis�ed, since the system is consuming more power than the
available supply. In our simulation, this is addressed by increasing in equal amounts the me-
chanical power input of the remaining generators. This is a somewhat crude representation
of the actual mechanisms, which include governors that sense a drop in the local frequency,
and correspondingly increase the mechanical power input to the generators. Future work
will incorporate governor models for this adjustment. It should be noted, however, that in
the cases where after the failure the network has many connected components, an explicit
mechanism is needed to ensure that the power balance condition is satis�ed for every con-
nected subnetwork. Additional necessary conditions for the existence of an equilibrium can
be obtained by exploiting the max-ow/min-cut theorem [2].

The complete model is a hybrid nonlinear system of coupled di�erential equations. The
hybrid nature is given by the discrete topology changes induced by the relay actions. As we
will see in the next section, this model has the potential for generating complex fault events,
as a consequence of the complicated interaction between the dynamics and the overloading
protection mechanisms.
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3 Observed cascading failures

The speci�c network model used in the simulation is a 10 � 10 square grid, with four gen-
erators distributed in a regular pattern (see Figure 1). The resulting model is a nonlinear
dynamical system, with 200 state variables, interconnected with the discrete relay compo-
nents to form a hybrid system. The choice of network size was made mainly based on the
prospect of reduced computation time for the full order model. Future implementations will
include larger networks, as well as more complicated topologies.

The simulation is started from an equilibrium state near the origin, computed using a
Gauss-Newton method. A line failure is simulated by setting two elements of the admittance
matrix Y to zero (Yij = Yji = 0) , since this implies no direct connection between the
nodes i and j. The initial event is given by the opening of one branch of the network,
chosen at random. This initial condition modi�es the power ow equilibrium in the network.
Depending on the initial event, and the network load, the system might converge to a new
equilibrium, without violating the power ow constraints, or go through a succession of fault
events, taking down additional lines and/or generators in the process. The simulation is run
until the system reaches a new equilibrium, or all the generators trip.

4 Model reduction

The models we have used so far in this paper are hybrid, nonlinear interconnected systems,
with 200 states used to describe the interaction of four generators with an idealized load
distribution. At this scale, the model is readily amenable to simulation. However, we would
like to be able to simulate signi�cantly larger systems, both for the purpose of obtaining
reliable statistics and for simulating a section of the physical power grid. Larger models
quickly become unwieldy for simulation, and so we would like a method of constructing
reduced-order models.

Critical di�culties in model reduction of this class of systems are presented by both their
hybrid nature and their nonlinearity. Well-known methods, such as balanced-truncation,
are not applicable other than to the linearization of the system, and do not take account of
either of these crucial global system properties. In particular, the presence of the relays is
responsible for the discrete chain of cascading failures, and we would like the reduced-order
system to accurately predict these events.

An alternative model reduction procedure makes use of the Karhunen-Lo�eve decompo-
sition of the state space. This procedure was introduced for the analysis of turbulence by
Lumley [6], and is described in detail in [3].

For high-dimensional systems whose state space is Rn, a directly computable problem is
to �nd the smallest dimensional subspace which contains observed points on the trajectories
of the system; the Karhunen-Lo�eve decomposition provides a method for doing this [5, 3].
A further re�nement of this method is to relax the constraint that the subspace contain this
set, but instead require that the subspace approximately contain it. Once such a subspace
is found, a Galerkin projection can be applied to project the dynamics onto it, so that the
high-dimensional system is approximated by a small number of nonlinear ordinary di�erential
equations.

Suppose the state of the system is described by x(t) 2 Rn. In practical application,
the method makes essential use of empirical data, taken either from experiments or from
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numerical simulation, consisting of sampled measurements fx(1); : : : ; x(N)g of x(t). The next
step is to perform a principal component analysis of this data, to �nd how well it may be
approximated by projection onto a k-dimensional subspace of the original n-dimensional
state space.

The Karhunen-Lo�eve decomposition. The Karhunen-Lo�eve decomposition provides a
method for �nding this best approximating subspace. The method is known in the literature
by several names, including principal component analysis, factor analysis, and total-least-
squares estimation. The method has been extensively analyzed in the literature, although
the original concept goes back to Karl Pearson [9]. We give here a brief outline of the method;
for details see [3].

We can characterize the subspace S � Rn by the projection operator Q mapping Rn onto
S. We would like to �nd Q to minimize

H(Q) =
NX
i=1

kx(i) �Qx(i)k22

the total squared perpendicular distance of the points from the k-plane. The following result
is standard.

Theorem 1. (Total Least Squares) Let R be the correlation matrix of the data, de�ned by

R :=
NX
i=1

x(i)x(i)�

and let �1 � �2 � � � ��n be the ordered eigenvalues of R. Then

min
Q

H(Q) =
nX

i=n�k+1

�i

where the minimum is over all rank k projections Q.

In general, R may not have rank n, if the given data lies within a strict subspace of Rn.
Let s = rankR, and let �1; �2; : : : ; �s be orthonormal eigenvectors of R, corresponding to
the nonzero �i. Each x(i) can be written as

x(i) =
sX

j=1

aij�j

where aij = hx(i); �ji, and h�i; �ji = �ij. The optimal k-dimensional subspace approximant
is given by

x̂(i) =
kX

j=1

aij�j

Denote by P the k � n matrix whose rows are �1; : : : ; �k, so that PP � = I. The projected
approximant to x is given by P �Px 2 S, and y = Px is a representation in terms of the new
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coordinates �i on S. This subspace approximant is then optimal, in the sense that the total
energy (2-norm) in the subspace is given by

NX
i=1

kPx(i)k22 =
kX

j=1

�j

and this is the maximum achievable by any k-plane.

Model reduction. Since in general the data collected may not have zero mean, approx-
imation by an a�ne subspace would give better results. In statistical terms, we are more
interested in the covariance of the data than in its correlation. Hence, we construct the
correlation matrix as

Rij =
NX
p=1

(x
(p)
i � �xi)(x

(p)
j � �xj)

where �x = 1
N

PN

i=1 x
(i) is the mean of the data. The eigenvalues of R now provide us with

information as to how close an approximation of the data is provided by a k-dimensional
subspace; the goal is to choose k such that the fraction of the total energy in the subspace

kX
i=1

�i

� nX
i=1

�i

is close to one, yet k is su�ciently small. Clearly this will not always be possible, with
models which are better approximated by low-dimensional systems having relatively few
large eigenvalues.

We now subtract the mean �x from the dynamic equation, de�ning e = x� �x to arrive at
_e(t) = f(e(t) + �x). We would like to approximate e(t) in this equation by P �Pe(t) 2 S.

Galerkin projection. The Galerkin projection has been used extensively to construct
numerical solutions to partial di�erential equations. It can also be used to construct lower
order mathematical models of a given dynamical system. The idea is to replace the given
dynamics by an associated dynamics on a k-dimensional subspace S � Rn of the original
state space.

Given the ordinary di�erential equation

_x(t) = f(x(t))

we would like to approximate this equation with a lower order description, of the form

_y(t) = g(y(t))

for y(t) 2 Rk. The Galerkin projection method is to write x(t) in the form

x(t) = P �y(t) + r(t)

for y(t) 2 Rk. Substituting this expression into the original ODE, we have

P � _y(t) + _r(t) = f(P �y(t) + r(t))
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Here _r(t) is known as the residual. The method is then to force the residual to be orthogonal
to the k-dimensional subspace onto which the dynamics are projected, so that Pr(t) = 0.
This results in

_y(t) = Pf(P �y(t) + r(t))

So far this equation is exact; the approximation is then to assume that we have chosen the
projection P so that r(t) is minimized in some sense, so that the reduced-order system is
given by

_y(t) = Pf(P �y(t))

The initial conditions of this reduced-order system are given by y(0) = Px(0).
Up until now we have neglected the mean in this projection; applying this method to the

mean-adjusted equation _e(t) = f(e(t) + �x) leads to the reduced order approximation

_y(t) = Pf(P �y(t) + �x)

The Karhunen-Lo�eve method therefore projects the dynamics onto the subspace contain-
ing most of the energy of the system. If we keep all of the eigenvectors corresponding to
non-zero eigenvalues, then this subspace will contain the attractor (a set to which most of
the trajectories converge to), and hence will have dimension greater than or equal to the
Hausdor� dimension of the attractor. In general, we would expect that the more eigenvectors
we keep, the better approximation we will obtain.

So far, we have discussed application of the Karhunen-Lo�eve method to systems which
can be described by autonomous di�erential equations. For systems which have a hybrid
component, essentially the same approach applies, with the di�erential equation replaced
by a mixed discrete/continuous system. Numerically, such a system is integrated in discrete
timesteps, which can be represented as

x(tk+1) = h(x(tk)):

The Galerkin projection then leads to the discrete iteration

y(tk+1) = Ph(P �y(tk) + �x)

which can be directly implemented for nonlinear hybrid systems, such as the power system
considered in this paper.

5 Initial test of the model reduction approach

In this section we describe an application of the above procedure to the 200 state swing-
model. We consider the four-generator example described above, and initiate a failure close
to the generator in the top-left corner.

In order to try to capture this behavior with a reduced order model, a reasonable strategy
might be to model reduce only part of the system. In this case, the initial failure spreads in
the top left corner of the network, and so we might expect that the dynamics of the bottom
half of the network do not play a signi�cant role.
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Figure 2: First mode of the Karhunen-Lo�eve decomposition

The Karhunen-Lo�eve method can be directly applied to only part of the system; the
states of the system are partitioned into (x1; x2), where x1 are the states to be kept and
x2 are to be replaced by a lower-order approximation. A projection P is constructed from
measurements of x2(t) collected from simulation. This is extended to a projection P̂ on the
whole state space, de�ned by P̂ T =

�
I P T

�
, which is then used to perform the Galerkin

projection.
Data was collected from the simulation of the full-order system, and the correlation and

projection operators were constructed from the 100 states corresponding to the bottom half
of the network. Figure 4 shows the eigenvalues of the correlation matrix, scaled so that they
sum to one. As can be seen from the plot, most of the energy is concentrated in the �rst
few modes. Figure 2 shows the mode shape corresponding to the �rst singular value.

The energy distribution of the �rst modes suggests that a low order model might explain
adequately the dynamics of this part of the system. A ten state model was chosen since
these ten singular values sum to 0.998, and hence account for more than 99% of the `energy'
in the system.

After realizing the corresponding reduction, the reduced order model is interconnected
with the unreduced remaining subnetwork, and a new simulation is performed. See Figure 3
for a comparison of the response of the two di�erent models to the same failure.

Visually, the agreement between the simulations of the two models is extremely good,
despite the fact that the reduced order part has only 10 states compared with the original
100 states. More importantly, the sequence of failures obtained is exactly the same as that
of the full-order system. The sequence of failures obtained is detailed in Table 1. The initial
failure occurs at time t = 0:25, and it causes the tripping of all the generators. Both the fault
progression and the �nal equilibrium of the system are exactly the same for both models

This is a promising result; the Karhunen-Lo�eve decomposition is motivated by the desire
to reproduce the large scale behavior of the system, and in this case we have obtained reliable
predictions of the sequence of failures. Naturally, it would not be reasonable to expect the
methodology to work in every case, and for arbitrarily long intervals. One reason for this is
that the system might present chaotic behavior, and therefore arbitrarily small perturbations
in the dynamics or the initial conditions will cause an exponentially growing divergence in
the state.

This initial test of this methodology indicates that amulti-resolutional approach might be
successful for larger scale power networks, using models which are more detailed at parts of
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Figure 3: Original and reduced order model simulations.

Fault type Time (Full) Time (Reduced)
Initial line 0.25 0.25

Line 1.764 1.773
Line and Generator 1 1.845 1.848
Generators 3 & 4 2.570 2.574

Generator 2 2.582 2.594

Table 1: Failure times for the full and reduced order models.

the network which are dynamically more active. It should also allow for successive re�nement,
so that the system can be modeled in increasing detail in those areas which are susceptible
to failures. This type of modeling process has been described as hierarchical modeling ; a
tree-structure of models is used to describe the behavior of the system, and high resolution
(in this case, a large number of states) is only used where needed.

6 Conclusions

The complexity of modern-day power networks makes necessary the careful evaluation and
analysis of global events, such as cascading failures. Additional demands such as decentral-
ization and the need for obtaining solutions in reasonable computation times make necessary
a reevaluation of the suitability of current techniques in dealing with these new challenges.

A possible solution is the use of reduced order models for analysis. The methodology
presented in this paper, based on the Karhunen-Lo�eve decomposition, deals directly with the
problem of �nding a subspace where \most" of the dynamics occur, and uses this information
in the construction of a reduced order model. The results shown in Section 3 demonstrate
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Figure 4: Normalized singular values associated with the reduction procedure.

that the sequence of fault events can be evaluated and predicted (at least, in a reasonable
horizon length) without necessarily simulating the full-order model.

The initial investigations presented here are very promising, and give a hint of the po-
tential value of the methodology. Future work will explore important related issues, such as
a possible tradeo� between approximation error and prediction horizon.
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