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1. Introduction

One of the difficulties in designing controllers for com-
plex physical systems is in the problem of model-

ing. Very often, we have mathematical models which
are highly nonlinear partial differential equations, for
which control design techniques are little understood.

An example is given by formation flight; accurate
models are known for the fluid dynamics, and for the
aircraft motion, which together can be accurately sim-
ulated. However, on paper, the equations of motion
consist of partial and ordinary differential equations
coupled via their boundary conditions, a formulation
which offers little to the control designer. It is there-
fore a problem of considerable interest to construct
explicit low-order models.

The key difference between modeling for control,
and modeling for analysis of dynamical system be-
havior is that in the latter case the system behavior
is autonomous, with no external inputs driving the
system. However, in the former case of controlled
systems, we are concerned with preserving the rela-
tionship between the system behavior and the system
inputs and outputs, or actuators and sensors. Lin-

ear input-output systems enjoy several model reduc-
tion techniques, including modal truncation, balanced
truncation, and optimal Hankel, H∞ and H2 norm
methods.

One method which has been used extensively for
dynamical systems analysis is the Karhunen-Loève de-
composition, in particular in the construction of mod-
els for complex fluid flows [6]. In this paper, we extend
this procedure to show how it may be used for con-

struction of explicit, low order nonlinear models for
complex controlled nonlinear systems. The low order
model is constructed in such a way as to preserve im-
portant features of the input-output behavior, so that
it may be used for control design.

The central idea of applying the Karhunen-Loève
decomposition for model reduction is to search for a
low dimensional affine subspace of the state space, in
which the attractor is contained. In general a subspace
of low (or finite) dimension may not exist, and the de-
composition provides a way of finding the subspace
of given dimension which best approximates that con-
taining the attractor. Once such a subspace is found,
a Galerkin projection can be applied to project the dy-
namics onto it, so that the high-dimensional system is
approximated by a small number of nonlinear ordinary
differential equations.

Once an appropriate measure is assigned to the
space of trajectories of the system, the problem of
finding the subspace can be formulated as a 2-norm
optimization problem. This has the advantage of re-
quiring only linear matrix computations, despite its
usefulness in application to nonlinear systems. The
optimization need not be performed analytically; in-
stead data from experiment or simulation can be used
directly.

The model reduction method we describe in this
paper combines the features of the Karhunen-Loève
decomposition and balanced-truncation. This pro-
vides an immediate computable procedure for model
reduction of nonlinear input-output systems, requir-
ing only linear matrix computations. For autonomous
systems, it corresponds to finding the subspace which



best approximates the attractor of the dynamical sys-
tem. When applied to linear input-output systems, it
results in the usual balanced truncation of the system,
with the accompanying a-priori error bounds in the
H∞ and Hankel norms.

We conclude the paper with an example to illus-
trate the application of the method to a nonlinear me-
chanical system.

2. Model reduction for autonomous systems

In this section we give an outline of existing techniques
using the Karhunen-Loève decomposition for model re-
duction of nonlinear autonomous uncontrolled systems
of the form

ẋ(t) = f(x(t)) (1)

where x(t) ∈ R
n. This procedure was introduced for

the analysis of turbulence by Lumley [8].
The method makes essential use of empirical

data, taken either from experiments or from numer-
ical simulation, consisting of sampled measurements
{x(1), . . . , x(N)} of x(t). The next step is to perform
a principal component analysis of this data, to find
how well it may be approximated by projection onto a
k-dimensional subspace of the original n-dimensional
state space.

The Karhunen-Loève decomposition. The Karhunen-
Loève decomposition provides a method for finding
this best approximating subspace. We give here a brief
outline of the method, which goes back to Karl Pear-
son [10]; for details see [6].

We can characterize the subspace S ⊂ R
n by the

projection operator Q mapping R
n onto S. We would

like to find Q to minimize

H(Q) =
N

X

i=1

‖x(i) − Qx
(i)‖2

2

the total squared perpendicular distance of the points
from the k-plane. The following result is standard.

Theorem 1. (Total Least Squares) Let R be the cor-

relation matrix of the data, defined by

R :=

N
X

i=1

x
(i)

x
(i)∗

and let λ1 ≥ λ2 ≥ · · ·λn be the ordered eigenvalues of

R. Then

min
Q

H(Q) =
n

X

i=n−k+1

λi

where the minimum is over all rank k projections Q.

In general, R may not have rank n, if the given data
lies within a strict subspace of R

n. Let s = rankR,
and let φ1, φ2, . . . , φs be orthonormal eigenvectors of
R, corresponding to the nonzero λi. Each x(i) can be
written as

x
(i) =

s
X

j=1

aijφj

where aij =
D

x(i), φj

E

, and 〈φi, φj〉 = δij . The opti-

mal k-dimensional subspace approximant is given by

x̂
(i) =

k
X

j=1

aijφj

Denote by P the k × n matrix whose rows are
φ1, . . . , φk, so that PP ∗ = I . The projected approx-
imant to x is given by P ∗Px ∈ S, and y = Px is a
representation in terms of the new coordinates φi on
S. This subspace approximant is then optimal, in the
sense that the total energy (2-norm) in the subspace
is given by

N
X

i=1

‖Px
(i)‖2

2 =

k
X

j=1

λj

and this is the maximum achievable by any k-plane.

Model reduction. The above procedure finds the op-
timal subspace; in order to allow affine variation we
make use of the fact that the optimal affine subspace
passes through the mean of the data. Hence, we con-
struct the correlation matrix as

Rij =
N

X

p=1

(x
(p)
i − x̄i)(x

(p)
j − x̄j)

where x̄ = 1
N

PN

i=1 x(i) is the mean of the data. The
eigenvalues of R now provide us with information as to
how close an approximation of the data is provided by
a k-dimensional subspace; the goal is to choose k such
that the fraction of the total energy in the subspace

k
X

i=1

λi

ffi n
X

i=1

λi

is close to one, yet k is sufficiently small. Clearly this
will not always be possible, with models which are bet-
ter approximated by low-dimensional systems having
relatively few large eigenvalues.

We now subtract the mean x̄ from the dynamic
equation, defining e = x−x̄ to arrive at ė(t) = f(e(t)+
x̄). We would like to approximate e(t) in this equation
by P ∗Pe(t) ∈ S.

Galerkin projection. The Galerkin projection has been
used extensively to construct numerical solutions to
partial differential equations. It can also be used to
construct lower order mathematical models of a given
dynamical system. The idea is to replace the given dy-
namics by an associated dynamics on a k-dimensional
subspace S ⊂ R

n of the original state space, by pro-
jecting the vector field onto the tangent space of S.
Using the coordinates defined previously, the result-
ing reduced order approximation is given by

ẏ(t) = Pf(P ∗

y(t) + x̄)

Clearly the subspace obtained by the Karhunen-
Loève method depends upon the inner product on the
Euclidean space in which the state space is embedded;
physical meaning is an important indicator of the ap-
propriate choice of inner product.

Computational application of this method requires
only standard matrix computations, despite its appli-
cation to nonlinear systems. Also the method has the
feature that it separates the model reduction into two
parts; that of finding a suitable subspace and that of
performing the projection. This lends physical intu-
ition to the procedure, and allows alternative projec-
tion schemes to be used.



We can expect such a procedure to work well for
model reduction of the system within some given re-
gion of state space, and it is within such a specific
region that data should be collected. In doing this,
one must pay careful attention to symmetry, as in
Glavaški [4] and references therein.

For control, a severe limitation is that the input-
output behavior of the system is not taken into ac-
count. It is the generalization of the Karhunen-Loève
reduction procedure to controlled systems that is the
main focus of this paper, and we now proceed with
this.

3. Model reduction of controlled systems

We now turn to the main problem addressed in this
paper; that of model reducing nonlinear input-output
systems of the form

ẋ(t) = f(x(t), w(t))

z(t) = h(x(t))
(2)

Here x(t) ∈ R
n is the state of the system, w(t) ∈ R

p,
and z(t) ∈ R

q. The function w is regarded as an input
signal to the system, and the function z as an output
signal. The goal of model reduction is to construct
another nonlinear system of differential equations

q̇(t) = f̂(q(t), w(t))

z(t) = ĥ(q(t))

where q(t) ∈ R
k, and k < n, such that the input-output

behavior of the two systems is similar, for states in
some specific region of the the state space. That is, for
a class of inputs w, we would like the outputs z of the
two systems to be similar. Before proceeding further,
we need some preliminary definitions from the theory
of linear systems.

3.1. Linear systems

The system (2) is called linear if it has a representation

ẋ(t) = Ax(t) + Bw(t)

z(t) = Cx(t)
(3)

where x(t) ∈ R
n, and A, B, and C are matrices of

appropriate dimension. This representation is known
as the state-space realization, and the system is de-
scribed by the triple (A, B, C). The linear system is
called stable if the eigenvalues of A all have real part
strictly negative.

Suppose the system in equation (3) is stable. Then,
for u ∈ L2(−∞, 0] and denoting u−(t) = u(−t), the
state at time zero x(0) = x0 is given by

x0 =

Z

∞

0

e
As

Bu−(s) ds.

This defines the controllability operator, C :
L2[0,∞) → R

n by x0 = Cu−.

Lemma 2. Write Y := CC∗. Then Y is the smallest

semipositive solution to the Lyapunov equation

AY + Y A
∗ + BB

∗ = 0. (4)

The system is called controllable if Im C = R
n, in

which case Y > 0 and equation (4) has a unique so-

lution. The matrix Y is known as the controllability

gramian.

We can define a similar notion for the output. De-
note the future output by y+(t) ∈ L2[0,∞). Then,
define the observability operator, O : R

n → L2[0,∞)
by y+(t) = Ox0, and hence Ox0 = CeAtx0.

Lemma 3. Write X := O∗O. Then X is the smallest

semipositive solution to the Lyapunov equation

A
∗

X + XA + C
∗

C = 0. (5)

The system is said to be observable if kerO = {0},
in which case X > 0 and equation (5) has a unique

solution. The matrix X is known as the observability

gramian.

Both X and Y are n× n matrices, and they are given
by the following integral formulae.

Y =

Z

∞

0

e
At

BB
∗

e
A∗t

dt

X =

Z

∞

0

e
A∗t

C
∗

Ce
At

dt

3.2. Gramians and principal component analysis

The method of principal component analysis relies on
the use of data to construct the correlation matrix,
with the underlying assumption that this data is col-
lected from ‘typical’ system trajectories. We make the
assumption that the initial state of the system is zero,
and parametrize the trajectories with respect to the
system input u.

For theoretical purposes, we are not restricted to
samples, and can simply construct the correlation ma-
trix using the integral

R =

Z

∞

0

(x(t) − x̄)(x(t) − x̄)∗ dt (6)

where x(t) is the state of the system at time t, and x̄ is
the mean state. We now apply a Karhunen-Loève de-
composition to the states of a nonlinear input-output
system of the form given by equation (2), parametrized
by the inputs.

Define the following sets:

T n = {T1, . . . , Tr; Ti ∈ R
n×n

, T
∗

i Ti = I, i = 1, . . . r}

M = {c1, . . . , cs; ci ∈ R, ci > 0, i = 1, . . . s}

En = {e1, . . . , en; standard unit vectors in R
n}

Here T is an arbitrary set of r orthogonal matrices,
and M is a set of s positive constants. Given a func-
tion u ∈ `∞, define the mean ū by

ū := lim
T→∞

1

T

Z T

0

u(t) dt

We make the standing assumptions that x, z ∈ `∞ and
z ∈ `2. For given initial conditions, these assumptions
are satisfied for stable linear systems, and exponen-
tially stable nonlinear systems, subject to a suitable
definition of exponential stability.

Definition 4. Let T p, Ep and M be given sets as de-

scribed above. For the system (2), define the empiri-

cal controllability gramian Ŷ by

Ŷ =
r

X

l=1

s
X

m=1

p
X

i=1

1

rsc2
m

Z

∞

0

Φilm(t) dt



where Φilm(t) ∈ R is given by

Φilm(t) := (xilm(t) − x̄
ilm)(xilm(t) − x̄

ilm)∗

and xilm(t) is the state of the system (2) corresponding

to the impulsive input w(t) = cmTleiδ(t).

Lemma 5. For any nonempty sets T p and M, the

empirical controllability gramian Ŷ of the stable lin-

ear system ẋ(t) = Ax(t) + Bw(t) is equal to the usual

controllability gramian Y .

Proof. For the linear system,

Φilm(t) = c
2
m(eAt

BTlei)(e
At

BTlei)
∗

= c
2
me

At
BTleie

∗

i T
∗

l B
∗

e
A∗t

hence

Ŷ =

Z

∞

0

r
X

l=1

s
X

m=1

p
X

i=1

1

rs
e

At
BTleie

∗

i T
∗

l B
∗

e
A∗t

dt

=

Z

∞

0

s
X

m=1

1

s
e

At
BB

∗

e
A∗t

dt = Y

which is the desired result.

A variant of this result was first shown by
Moore [9]; for impulsive inputs distributed in the
above sense on the unit ball in R

p, the Karhunen-Loève
decomposition of the states leads to a construction of
the controllability gramian for linear systems.

The empirical controllability gramian is a com-
putable generalization of this to nonlinear systems;
it has the property that the eigenvectors of Ŷ cor-
responding to non-zero eigenvalues span a subspace
O ⊂ R

n which contains the set of states reachable us-
ing the chosen initial impulsive inputs.

However, for controlled systems, simply studying
the input-state behavior is not enough. The next def-
inition is the analogue of the previous one for the out-
put behavior.

Definition 6. Let T n, En, and M be given sets as

described above. For the system (2), define the em-

pirical observability gramian X̂ by

X̂ =
r

X

l=1

s
X

m=1

1

rsc2
m

Z

∞

0

TlΨ
lm(t)T ∗

l dt

where Ψlm(t) ∈ R
n×n is given by

Ψlm
ij (t) := (zilm(t) − z̄

ilm)∗(zjlm(t) − z̄
jlm)

and zilm(t) is the output of the system (2) correspond-

ing to the initial condition x0 = cmTlei.

Lemma 7. For any nonempty sets T n and M, the

empirical observability gramian X̂ of the stable linear

system ẋ(t) = Ax(t) + Bw(t), z(t) = Cx(t) is equal to

the usual observability gramian X.

Proof. For the linear system,

Ψlm
ij (t) = c

2
m(Ce

At
Tlei)

∗(Ce
At

Tlej)

= c
2
me

∗

i T
∗

l e
A∗t

C
∗

Ce
At

Tlej

hence

Ψlm(t) = c
2
mT

∗

l e
A∗t

C
∗

Ce
At

Tl

and

X̂ =

s
X

m=1

1

s

Z

∞

0

e
A∗t

C
∗

Ce
At

dt = X

which is the desired result.

We now have the tools we need for empirical anal-
ysis of the input-output behavior of the nonlinear sys-
tem. Rather than searching for exact controllability
and observability submanifolds within the state space,
our approach is to search for subspaces which approxi-
mate these manifolds. The advantage of this approach
lies in the computation; all that is required is the so-
lution of standard linear matrix eigenvalue problems.

Unlike in the autonomous case, we now have two

important subspaces of the state space, and their cor-
responding eigenvalues. We can proceed in the same
manner as for linear systems, and make use of the ideas
of balanced realization theory to decide on which sub-
space to project. We therefore return to a description
of linear systems theory.

3.3. Model reduction via balanced truncation

In this section we give a brief overview of the method
of balanced truncation.

The Hankel operator of a linear system is the op-
erator which maps (the reflection of) past inputs to
future outputs, assuming the future input is zero. De-
noting as before u−(t) = u(−t), the Hankel operator,
Γ, is given by the map Γ := OC so that y+ = Γu−.

Since x0 = Cu− and y+ = Ox0, it is immediate
that the Hankel operator has at most rank n, equal to
the state space dimension of the system. A singular
value decomposition of this linear operator leads to n

singular values, known as the Hankel singular values,
which are independent of the particular state space
realization of the system, and are a property of the
system as an input-output map.

The Hankel singular values are the eigenvalues of
ΓΓ∗. These are the eigenvalues of OCC∗O∗, which are
the same as those of the n×n matrix O∗OCC∗ = XY .
The balanced realization gives a way to find which
particular states correspond to which Hankel singular
value.

Definition 8. Suppose A is stable. The realiza-

tion (A, B, C) is called balanced if the controllability

gramian Y and the observability gramian X are equal

and diagonal.

We assume throughout the following that the sys-
tem (A,B, C) is stable, controllable, and observable.
In this case, there will always exist a nonsingular
state transformation T such that the new realization
(TAT−1, TB,CT−1) is balanced.

This leads to a method of model reduction known
as balanced truncation, introduced by Moore [9] in
the context of realization theory. The procedure is
to truncate those states from the balanced realization
corresponding to small Hankel singular values σi. If
the states are ordered according to decreasing singular



value, this is equivalent to applying a Galerkin projec-
tion to the balanced realization, where P =

ˆ

I 0
˜

.

If (A,B, C) is balanced, the truncated system is
given by

ẏ(t) = PAP
∗

y(t) + PBu(t)

z(t) = CP
∗

y(t)

The reduced-order model constructed via balanced
truncation is independent of the original state space
realization, and has several useful properties. In par-
ticular the truncated system is stable if the trunca-
tion does not ‘split’ states corresponding to a σi with
a multiplicity greater than one. A-priori error bounds
in the induced 2-norm are known for the error between
the original and the reduced system; these were first
shown independently by Enns [3] and Glover [5].

3.4. Empirical balanced truncation

The empirical gramians give a precise method for de-
ciding upon the importance of particular subspaces of
the state space, with respect to the inputs and outputs
of the system.

We propose to use these for model reduction in the
same way as for linear systems; find a linear change
of coordinates such that the empirical gramians are
balanced, and perform a Galerkin projection onto the
states corresponding to the largest eigenvalues of X̂Ŷ .

Since for linear systems, the empirical gramians are
exactly the usual gramians, this method is exactly bal-
anced truncation when it is applied to a linear system.
When applied to a nonlinear system, it requires only
matrix computations, and results in a new nonlinear
model.

Let T be the change of coordinates such that the
system is balanced; that is TY T ∗ = T−1∗XT−1 = Σ,
and let P =

ˆ

I 0
˜

be the k × n projection matrix.
Applying the previous analysis leads to a reduced or-
der model given by

ẏ(t) = PTf(T−1
P

∗

y(t), w(t))

z(t) = h(T−1
P

∗

y(t))

This is the final reduced order model. This empirical

balanced truncation gives a reduced order model which
takes into account the input-output behavior, and is
directly computable from data.

4. Computation

We can directly apply Definitions 4 and 6 for construc-
tion of the empirical gramians from data, for nonlinear
systems. The data may be taken either from simula-
tion or from experiment. All that is needed is nu-
merical approximation of the above integrals, using
sampled-data from both x(t) and z(t). We can take
advantage of knowledge of f to calculate ẋ(t) in this
computation to achieve higher order accuracy, and in-
crease the allowable sample time.

To perform the required experiments, it is neces-
sary to be able to set the initial state of the system, to
measure the state at all times, and to apply approx-
imately impulsive inputs. These conditions may be
satisfied for certain mechanical systems, although in
the case of fluid dynamics, for example, we are forced
to rely on data from simulation.

We also need to choose the sets T and M. A rea-
sonable simple choice is T = {I,−I}, since this corre-
sponds to using both positive and negative inputs (or
initial states) on each input separately. For distributed
actuators, larger sets may be justified.

The sets M specify the size of inputs and states
we are interested in. The choice is motivated by the
magnitudes of the inputs and states actually seen in
experiments.

As for autonomous systems, a crucial feature of
the Karhunen-Loève procedure is that in general we
should expect it to work well only in limited regions of

state space. We do not expect to be able to approxi-
mate global behavior of the system well using a linear
projection; however, it is perhaps more reasonable to
expect to be able to construct low order models for
systems within some given operating region.

A simple technique for balancing the empirical
gramians X̂ and Ŷ is as follows. First, construct a
Cholesky factorization of Ŷ so that Ŷ = ZZ∗. Let
UΣ2U∗ be a singular value decomposition of Z∗X̂Z,

and let T = Σ
1

2 U∗Z−1. Then T Ŷ T ∗ = Σ, and
T−1∗X̂T−1 = Σ, as desired.

We can now change state coordinates of the non-
linear system, and truncate using the Galerkin projec-
tion. The rows of T give the modes of the system.

5. Mechanical links example

Not only are high-order systems hard to control, but
it is difficult to develop intuition as to their behav-
ior. One of the advantages of the procedure developed
here is that it can be viewed as a selection of appro-
priate nonlinear mode shapes on which to project the
dynamics. These mode shapes often are physically
meaningful, and in this section we give examples for a
simple, mildly nonlinear mechanical system.

The system considered here consists of five rigid
rods, connected via torsional springs and dampers in
the plane. The lowest rod is pinned to ground with a
torsional spring, so that the system has a stable equi-
librium in the upright vertical position.

The system has a single input, a torque about the
lowest pin joint, and a single output, the horizontal
displacement of the end of the last rod from the verti-
cal symmetry axis.

5.1. Linearized model

We first analyze the linearization of the system about
its stable equilibrium; Figure 1 shows the first four of
the ten mode shapes and the corresponding singular
values of the balanced realization. The singular values
have been normalized so that they sum to one.

5.2. Nonlinear Lagrangian model

Application of the above empirical model reduction
procedure to the nonlinear Lagrangian model of this
system leads to a set of corresponding modes. For a
particular choices of the magnitude constants ci, Fig-
ure 2 shows these modes; we can see that the first two
mode shapes have split into three.

Figure 3 shows the mode shapes at an increased
value for the magnitude constants; the mode shapes
become significantly different from those of the lin-
earization.



0.493 0.485 0.010 0.009

Figure 1: The balanced modes of the linearization, with

the corresponding fraction of energy in each mode.

0.521 0.387 0.0710 0.0108

Figure 2: The empirical balanced modes of the nonlinear

model, for small inputs.

6. Conclusions

In this paper we have presented new methods for
model reduction of nonlinear systems. These meth-
ods combine the physical intuition of Karhunen-Loève
techniques, as they have been applied to analysis of
complex flows, with the control engineering methodol-
ogy of balanced truncation.

The resulting method of model reduction is based
on data. It requires only simple matrix computa-
tions, and may be applied directly to nonlinear sys-
tems. When applied to linear systems, the reduced
order model constructed is exactly the usual balanced
truncation of the system.

The choice of impulsive inputs, and initial states
distributed uniformly on the unit sphere, are perhaps
somewhat arbitrary methods of parametrizing trajec-
tories for nonlinear systems. Many other methods
might be suggested, and for control a very reasonable
strategy would be to apply a Karhunen-Loève decom-
position of the states seen during simulation of closed-

loop behavior. There are several other possibilities

0.535 0.264 0.146 0.023

Figure 3: The empirical balanced modes of the nonlinear

model, for large inputs.

that might be suggested; our focus here has been the
construction of a computable extension of balanced
truncation for nonlinear systems.

For mechanical systems, a better approach is to
perform the Karhunen-Loève expansion on the config-
uration space rather than the phase space, preserving
the mechanical structure of the system in the reduc-
tion [7]. Similarly, taking account of symmetry [4] and
other special structure present in the original system
can be of great use, leading to reduced computational
requirements and producing more accurate reduced-
order models.

One advantage of the empirical procedure de-
scribed in this paper is that often the simulation it-
self has been implemented using known heuristics; an
example is in fluid dynamics, where often vortex meth-
ods are used to implement simulations of incompress-
ible flow. Even though the simulation is providing a
numerical solution to a different set of equations, the
reconstructed flow field from the simulation may be
used to produced a reduced-order approximation to
the equations of potential flow. This gives a method
for taking advantage of known heuristics about the
behavior of such systems, which are often used in sim-
ulation but difficult to incorporate into control design.
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[4] S. Glavaški, J. E. Marsden, and R. M. Murray.

Model reduction, centering, and the Karhunen-
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