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Summary. — This paper analyzes the dynamics of N point vortices moving on a
sphere from the point of view of geometric mechanics. The formalism is developed for
the general case of N vortices, and the details are provided for the (integrable) case
N = 3. Stability of relative equilibria is analyzed by the energy-momentum method.
Explicit criteria for stability of different configurations with generic and non-generic
momenta are obtained. In each case, a group of transformations is specified, such
that motion in the original (unreduced) phase space is stable modulo this group.
Finally, we outline the construction of a symplectic-momentum integrator for vortex
dynamics on a sphere.
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1. – Introduction

Helmholtz [1] introduced the model which is today referred to as the point vortex
model. Helmholtz’ contemporaries developed these models, such as Kirchhoff [2] and his
student Gröbli. An account of some of the history of this problem can be found in Aref,
Rott and Thomann [3] and Kidambi and Newton [4].

The dynamics of N -vortices on a sphere is a Hamiltonian system (see, Kidambi and
Newton [4] and references therein). The Hamiltonian structure can be obtained using
reduction techniques starting with the description of ideal hydrodynamics in terms of
diffeomorphism groups; see Marsden and Weinstein [5] and Arnold and Khesin [6].

We begin with a description of the dynamics of N point vortices on a sphere using
geometric mechanics. For N = 3 vortices, we classify relative equilibria and determine
their stability by the energy-momentum method (see Marsden [7] and references therein).
We refer the reader to Pekarsky and Marsden [8] for the detailed description of the pro-
cedure and the associated reduction of the dynamics. The use of the energy-momentum
method for the stability of vortices was studied for certain planar cases by Lewis and
Ratiu [9].

Numerical simulations of the dynamics of 3 point vortices on a sphere are presented,
which confirm the analytical stability results. Finally, the construction of a symplectic-
momentum algorithm for the numerical analysis of the vortex dynamics on a sphere is
outlined. The structure preserving properties of such an algorithm are believed to be
important for the reliability of long time simulations of such problems.

The Phase Space and its Poisson Structure. The phase space for N vortices
moving on the two sphere S2 consists of N copies of the sphere. Namely, we let P =
S2 × · · · × S2 be N copies of the standard sphere with radius R in R

3. We let the
nth vortex position (n = 1, . . . , N) on the sphere be denoted xn so that we have the
constraint ‖xn‖ = R. We also let x = (x1, . . . ,xN ) ∈ R

3N . Each vortex has a nonzero
vortex strength denoted Γn.

The Poisson structure on P is given by

{F,H}(x) =
N∑

n=1

R

Γn
{F,H}n(xn) = −

N∑
n=1

R

Γn
xn · (∇nF ×∇nH),(1)

where { , }n is the Poisson structure on the nth copy of S2, and × is the cross product.

The Symmetry Group and Momentum Map. Consider the diagonal action of the
group SO(3) on P defined by rotations in each R

3. This action is canonical with respect
to the Poisson structure (1). The corresponding Lie algebra is naturally identified with
R

3 (having the vector cross product as its Lie bracket operation) and we write ξ for the
vector in R

3 corresponding to the element ξ ∈ so(3). We regard ξ as a skew symmetric
3 × 3 matrix; it is related to ξ ∈ R

3 in the standard way, namely, ξ · u = ξ × u for each
vector u ∈ R

3.
The vector field of infinitesimal transformations corresponding to an element ξ in the

Lie algebra is given by:

ξP (x) :=
d

dt
exp(ξt) · x

∣∣∣∣
t=0

= (ξ × x1, . . . , ξ × xN ).(2)
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Recall that a momentum map J : P → so(3)∗ 
 R
3 for this action is defined by

requiring the Hamiltonian vector field corresponding to 〈J(x), ξ〉 to be equal to the vector
field of infinitesimal transformations: X〈J(x),ξ〉 = ξP , where 〈·, ·〉 is the natural paring
between the Lie algebra and its dual. It is readily checked that the momentum map is
proportional to the moment of vorticity and is given by: J(x) = − 1

R

∑N
n=1 Γnxn.

The momentum map is equivariant, that is Ad∗
g−1(J(x)) = J(g(x)), for all g ∈ SO(3).

Here, the map Ad∗
k−1 : so(3)∗ → so(3)∗, defined for each k ∈ SO(3), denotes the coadjoint

action of SO(3) on so(3)∗. In our case, this can be seen directly from the form of J; the
coadjoint action corresponds simply to rotations in the dual space so(3)∗ 
 R

3.
It follows from the equivariance of J that ‖J‖2 is invariant under the coadjoint action.

Hence, smooth functions of ‖J‖2 are also invariant. Thus, if b = (b1, b2, b3) ∈ R
3 are

coordinates in the dual so(3)∗, then any smooth function of ‖b‖2 is a Casimir function.
Correspondingly, the generic symplectic leaves of so(3)∗ are spheres defined by the level
sets ‖J‖2 = const 
= 0. Note that since SO(3) is compact, its action on both P and
so(3)∗ is proper.

The Hamiltonian. The Hamiltonian describing the motion of N vortices on the sur-
face of a sphere of radius R is given by (see, e.g. Kidambi and Newton [4])

H =
1

4πR2

∑
m<n

ΓmΓn ln(l2mn),(3)

where l2mn = 2(R2 − xm · xn) is the square of the chord distance between two vortices
with positions xm and xn. Keep in mind that the constraints ‖xn‖ = R are assumed.
The volume of the parallelepiped formed by the vectors x1,x2,x3 is denoted V and of
course it is given by the triple product, namely, V = x1 · (x2 × x3). Notice that the
Hamiltonian (3) is invariant with respect to the diagonal action of SO(3) on P described
above. Hence, the momentum map J is constant along the flow of this Hamiltonian.

2. – Stability of Relative Equilibria

The Energy-Momentum Method. We shall now utilize the energy-momentum me-
thod (see Marsden [7] for a summary and references) for the analysis of the stability
of relative equilibria. Relative equilibria are dynamical orbits with initial conditions xe

such that x(t) = exp(ξet)xe for some Lie algebra element ξe and any time t. As is well
known for relative equilibria, the augmented energy function Hξe := H − 〈J−µe, ξe〉 has
a critical point at xe, where µe = J(xe) is the value of the momentum at the relative
equilibrium. For notational convenience we will occasionally omit the subscript e.

The orbital stability of a relative equilibrium is equivalent to the stability of the
corresponding equilibrium of the reduced system that is induced on the quotient ma-
nifold P/SO(3). The energy momentum method is designed to enable one to test for
orbital stability directly on the unreduced manifold P by constructing a special subspace
G ⊂ TxeP . This is done by considering a tangent space to the level set of constant
momentum J−1(µe) and eliminating the neutrally stable directions associated to the
isotropy subgroup

SO(3)µe
:= {g ∈ SO(3) | Ad∗

gµe = µe}.
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This subgroup is sometimes called the stabilizer of µe since it consists of transformations
which leave the momentum value invariant. The energy-momentum method determines
stability by examining definiteness of the second variation of Hξe

restricted to the sub-
space G. A detailed description of this method can be found in Simo, Lewis and Marsden
[10].

If one has a definite second variation, then Patrick’s theorem (see Patrick [11]) guar-
antees stability modulo the isotropy subgroup, provided its action on P is proper, the
Lie algebra admits an inner product invariant under the adjoint action of the isotropy
subgroup and the momentum map has a regular value. From the expression for the
momentum map and the fact that SO(3) is compact, we conclude that the assumptions
of Patrick’s theorem are automatically satisfied for our applications.

As was mentioned above, relative equilibria are critical points of the augmented Hamil-
tonian Hξ. For variational calculations, we extend all functions on P to functions on the
ambient space R

3N , and then restrict variations to the tangent space to P by requiring
δF (x) · η = 0 for all η ∈ TxP . For the augmented Hamiltonian corresponding to (3),
this results in the following conditions on x:

Γr

R


ξ(x) − 1

2πR

∑
n �=r

Γn
xn

l2nr


 = κr

Γr

R2
xr,(4)

where κr are constants to be determined.

Equidistant Relative Equilibria. An equidistant configuration is, by definition,
one that satisfies l2mn = l2 for all m 
= n. Whatever its dynamics, such a configuration is
possible only for N = 2, 3, 4 (this follows by geometric arguments similar to those used
for the study of regular polytopes in three space); we exclude the simple case N = 2
from our considerations.

To verify that an equidistant configuration is a relative equilibrium, one checks that
indeed the conditions (4) are satisfied. In fact, ξ(x) =

∑
n Γnxn/2πRl2 = −J(x)/2πl2

solves (4) with κr = Γr/2πl2. Notice that the vectors ξ and J have opposite directions.

Great Circle Relative Equilibria. For N = 3 vortices, we have the following clas-
sification of great circle equilibria (see Kidambi and Newton [4]); we introduce the
following notations: a1 = l223, a2 = l213, a3 = l212.

1. Generic momentum, J(xe) 
= 0.
General relative equilibria correspond to vortices lying on a great circle (and thus
satisfying V = 0, where V is the volume of the parallelepiped spanned by x), and
satisfying the condition

(5) 2R
(
a3 − a1

a2
(Γ1 + Γ3) +

a1 − a2

a3
(Γ2 + Γ1) +

a2 − a3

a1
(Γ3 + Γ2)

)

− 1
R

(a3(Γ1 − Γ2) + a2(Γ3 − Γ1) + a1(Γ2 − Γ3)) = 0 ,

obtained by setting V̇ = 0. This implicit formula determines another relation (in
addition to V = 0), between a1, a2 and a3 for each fixed set of Γ’s. This is a
nonlinear equation and thus can have multiple solutions.
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(a) Isosceles Triangular Great Circle Equilibria. A particular family of
isosceles triangular relative equilibria for arbitrary values of Γ’s is given
by the following configuration: a1 = a2 = 2R2, a3 = 4R2 or, equivalently,
α1 = α2 = π/2, α3 = π, as well as configurations obtained from it by cyclic
permutations of indices. The whole configuration rotates around the vector
ξ(x) = −J(x)/4πR2.

(b) Equilateral Triangular Great Circle Equilibria. A great circle equi-
lateral triangle relative equilibrium with l2mn = l2 = 3R2 and ξ given by
ξ(x) = −J(x)/2πl2.
Note: When the term equilateral triangle relative equilibrium is used, and
we do not append “great circle”, we will mean that it is a non-great circle
equilateral triangle relative equilibrium.

2. Degenerate momentum, J(xe) = 0.
In this case, the vortices again lie on a great circle, and the whole configuration

rotates around the vector ξ(x) = − 1
2πR

(
Γ1x1

l223
+

Γ2x2

l213
+

Γ3x3

l212

)
.

If we consider the “inverse” problem, namely, given a configuration on a great circle
find Γn satisfying (5) so that this configuration is a relative equilibrium, then condition
(5) becomes a linear equation in Γn of the form β1Γ1 + β2Γ2 + β3Γ3 = 0, where βn =
βn(a1, a2, a3) are functions of a great circle configuration. One would expect this to have
a two parameter family of solutions.

Definiteness of the Second Variation. For the calculation of the second variation
the Lagrange multiplier method is used. Define the extended Hamiltonian H̃ξ := Hξ +∑

n λn(‖xn‖2 − R2), where ‖xn‖2 − R2 = 0 constrains the motion of vortices to the
sphere S2. The Lagrange multipliers λn are determined by the condition δH̃ξ(xe) = 0
and are given by λn = −κnΓn/2R2, where κn are determined from (4). Then the second
variation at xe is well-defined as a bilinear form on TxeP . It is given by the following
expression:

∂2H̃ξ

∂xj
s∂xi

r

=




2λrδ
ij − Γr

πR2

∑
n �=r

Γn
xi

nx
j
n

l4nr

, r = s

− ΓrΓs

2πR2l2rs

(
δij + 2

xi
sx

j
r

l2rs

)
, r 
= s.

(6)

We summarize below the stability results in the form of theorems and omit the cor-
responding calculations of the restriction of the second variation.

Theorem 2.1 (Stability of Non-great Circle Equilateral Triangles).
An equilateral triangle configuration of non-great circle relative equilibria xe is stable

modulo SO(2) rotations around the vector J(xe) if
∑

n<m ΓnΓm > 0 and is unstable if∑
n<m ΓnΓm < 0.

This theorem generalizes the known results of Synge [12] for the stability of equi-
lateral relative equilibria of 3 vortices on a plane. Indeed, the stability conditions are
independent of the radius R. Thus, in the limit R → ∞ the spherical stability conditions
agree with those for the planar case.
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Conjecture. The condition
∑

n<m ΓnΓm = 0 corresponds to a (degenerate) Hamilto-
nian bifurcation.

Theorem 2.2 (Stability of Isosceles Triangle Great Circle Equilibria).
A great circle configuration of relative equilibrium xe given by a1 = a2 = 2R2, a3 = 4R2

is stable if Γ2
1 +Γ2

2 >
∑

n �=m ΓnΓm and unstable if Γ2
1 +Γ2

2 <
∑

n �=m ΓnΓm. The stability
is modulo SO(2) rotations around J(xe).

Stability of Great Circle Equilateral Triangle Relative Equilibria (GCET).
The stability analysis of a GCET differs from the non-great circle equilateral triangle case
for the following reason. The two-dimensional subspace to which the second variation
of the augmented Hamiltonian is restricted in the general case fails to be a transversal
subspace to the Gµ orbit (rotations around J) within KerDJ but rather degenerates to
a one-dimensional subspace. A complimentary direction transversal to the plane of the
triangle has to be taken into account. A straightforward computation gives the following
expression for the restriction of the second variation:

δ2H̃ξ|G =
1

12π


 0 0

0 9 − (Γ1 + Γ2 + Γ3)
(

1
Γ1

+
1
Γ2

+
1
Γ3

) 
 .

One concludes from this that these GCET equilibria are at best, neutrally stable. The
reasons for the degeneracy are discussed in [8].

The Degenerate Case J(xe) = 0. Stability in this case is a simple task and can be
done by a dimension count. This results in the following theorem.

Theorem 2.3 (Stability of Great Circle Equilibria with J = 0). A relative equi-
librium with zero vorticity momentum J(xe) = 0, which necessarily lies on a great circle,
is stable modulo SO(3).

Proof. The isotropy subgroup SO(3)µ=0 is, in this case, the whole group SO(3) and hence
the dimension of J−1(0)/SO(3)µ=0 is zero. This implies that

KerDJ(x) = Tx(SO(3)µ=0 · x).

The assumptions of Patrick’s theorem are satisfied as SO(3) is compact, and so this
proves the theorem.

3. – Numerical simulations

In this section we outline results of some numerical simulations of the dynamics of
three point vortices on a sphere. The numerical integration of the differential equa-
tions was performed using the Matlab ODE45 package with the tolerance set to 10−10.
Numerical simulations using various values of vorticities Γ have confirmed the stability
results of Theorems 2.1 and 2.2. Changes in the stability types of equilateral triangle
relative equilibria and isosceles triangle great circle relative equilibria have been ob-
served when the following conditions are approximately satisfied:

∑
n<m ΓnΓm = 0 and

Γ2
1 + Γ2

2 =
∑

n �=m ΓnΓm, respectively. The figures demonstrate typical behavior of the
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Fig. 1. – Chord distances as functions of time. Great circle relative equilibrium. (a) Unstable,
Γ1 = 3, Γ2 = 2, Γ3 = 0.2, det δ2Hξ = −1; (b) Stable, Γ1 = 3, Γ2 = 2, Γ3 = 0.02, det δ2Hξ = 0.8.

chord distances of an equilibrium as a function of time for stable and unstable types of
motion depending on the value of the second variation δ2Hξ.

Notice that while for a stable great circle relative equilibrium the chord distances
exhibit small oscillations (Figure 1(b)), one observes a slight drift in the case of a stable
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Fig. 2. – Chord distances as functions of time. Equilateral triangle relative equilibrium.
(a) Unstable, Γ1 = 2, Γ2 = 1, Γ3 = −2, det δ2Hξ = −4; (b) Stable, Γ1 = 2, Γ2 = 1, Γ3 =
4, det δ2Hξ = 14.
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equilateral triangle relative equilibrium (Figure 2(b)). One possible explanation for this
numerical drift is that ODE45 is not a structure preserving algorithm and so this could
be a numerical difficulty.

Furthermore, numerical (stability) bifurcation analysis, as δ2Hξ passes through zero,
requires long time simulations, and standard algorithms, such as ODE45, cannot be
reliably used. Hence, there is a great need for structure preserving numerical algorithms
for the vortex dynamics problem on a sphere, and we shall address this issue in the next
section.

4. – Structure preserving algorithms for vortex dynamics on a sphere

Historically, there have been many approaches devised for constructing symplectic
integrators, beginning with the original derivations based on generating functions (see de
Vogelaere [13]) and proceeding to symplectic Runge-Kutta algorithms, the shake algo-
rithm, etc. A fundamentally new approach to symplectic integrators was that of Veselov
[14, 15] who developed a discrete mechanics based on a discretization of Hamilton’s prin-
ciple. For standard mechanical systems defined on TQ of some configuration manifold Q,
this method leads in a natural way to symplectic-momentum integrators (see Marsden,
Patrick, and Shkoller [16] and references therein). In this section we shall outline the
construction of a structure preserving integrator for the vortex dynamics problem on a
sphere which does not literally fall into this framework.

As we described, the Hamiltonian description of our problem has phase space P =
S2 × · · · × S2 which is not a cotangent bundle, and the symplectic form Ω on P is
not canonical. Consequently, the Hamiltonian of the system is not of the form kinetic
plus potential energy, but rather has a logarithmic dependence on conjugate variables.
Thus, direct application of the theory in [16] is not appropriate for our setting, and an
alternative approach is presented which is founded on Lie-Poisson theory.

We consider vortex dynamics on a sphere as a Hamiltonian Lie-Poisson system for a
Lie group G. This setting is described in detail in [17] (for Lie-Poisson systems on Lie
groups G see, for example, [18]). The idea is to construct a discrete algorithm which
preserves the Lie-Poisson structure, and all of the symmetries associated with it, and
this is accomplished by duality with the the Lagrangian side. Namely, the Hamiltonian
we consider is reduced from a G-invariant Hamiltonian which can be associated with a
G-invariant Lagrangian by the fiber derivative of L, the Legendre transform. Now, on the
Lagrangian side, we develop a discrete Euler-Poincaré algorithm whose solution naturally
provides an algorithm for time-stepping in g∗ in such a way that the coadjoint orbits, as
well as the orbit structure is manifestly preserved. Details of this general construction
may be found in [19, 17]; herein, we shall only give a brief overview.

Consider a Lie group that is a direct product of N copies of SO(3), i.e. G = SO(3)×
· · · × SO(3). As our phase space, we consider the symplectic manifold (T ∗G,Ω), where
Ω is the γn-weighted canonical symplectic form defined as

Ω(v, w) =
∑

n

γnΩcan
n (vn, wn),

and where γn are as yet unspecified constants. Let G act by cotangent lift of left multipli-
cation. The coadjoint orbit reduction theorem (see, e.g. [18]) states that the symplectic
reduced space J−1

G (µ)/Gµ is identified via left translation with Oµ, the coadjoint orbit
through µ. Moreover, the reduced symplectic form coincides, in our case, with the minus
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γn-weighted coadjoint symplectic form ω−, which is induced on each symplectic leaf of
g∗ by the minus (appropriately weighted) Lie-Poisson structure.

Thus, we can conclude that for µ = (µ1, . . . , µN ) ∈ R
3N , ω− is determined (as a

product form) by ω−
n = −γndS/‖µn‖ in each copy of R

3, where dS is the standard area
form on a sphere of radius ‖µn‖ (we abuse notations here as the form dS is obviously
not exact). We can fix a particular coadjoint orbit by choosing ‖µn‖ = R for any n for
a fixed R. This orbit corresponds to a tensor product of N spheres of radius R with the
following symplectic structure ω− =

∑
n γnω

−
n = −

∑
n γn dS/R, where dS is the area

form on a sphere of radius R.
Notice that this is exactly the phase space corresponding to the dynamics of N point

vortices on a sphere , where we set γn = Γn, the vortex strengths. Thinking of the
phase space as a coadjoint orbit, we can extend the Hamiltonian (3) arbitrarily to all
of g∗. Then, the point vortex system may be thought of as a Lie-Poisson system, ob-
tained by reduction from a system on T ∗G. This point of view enables us to construct
the corresponding Euler-Poincaré system on the Lie algebra g by performing Legendre
transformations.

Once we obtain the Euler-Poincaré description of the vortex dynamics, its discretiza-
tion can be performed in the following way [19]. Following Moser and Veselov [20], we
start with a Lagrangian L system on TG and discretize TG by G × G. We define the
discrete Lagrangian, L : G × G → R, by L(g1, g2) = L ((g1 + g2)/2, (g2 − g1)/h). The
action sum S =

∑N−1
k=0 L(gk, gk+1) is formed and the discrete Euler-Lagrange (DEL)

equations D2L(gk−1, gk) + D1L(gk, gk+1) = 0 as well as the discrete symplectic form ωL

given in coordinates on G×G by ωL = (∂2
L/∂gi

1∂g
j
2)dg

i
1 ∧ dgj

2 are obtained by extrem-
izing S : GN+1 → R with arbitrary variations. One checks that the discrete Lagrangian
L : G×G → R is left (right) invariant under the diagonal action of G on G×G, whenever
L : TG → R is left (right) invariant.

The reduction of this system proceeds as follows. Recall that the induced group
action is simply the left multiplication in each component: k : (g1, g2) �→ (kg1, kg2)
for all k, g1, g2 ∈ G. Then the quotient map is given by π : G × G → (G × G)/G ∼=
G, (g1, g2) �→ g−1

2 g1. We note that one may alternatively use g−1
1 g2 instead of g−1

2 g1;
our choice is consistent with other literature (see, for example, [16]). The projection map
π defines the reduced discrete Lagrangian 0 : G → R for any G-invariant L by 0 ◦ π = L,
so that 0(g−1

2 g1) = L(g1, g2), and the reduced action sum is given by s =
∑N−1

k=0 0(fk+1k),
where fk+1k ≡ g−1

k+1gk denote points in the quotient space. A reduction of the DEL
equations results in the discrete Euler-Poincaré (DEP) equations and the corresponding
constrained variation principle for the reduced action sum. The resulting algorithm is
then formulated in terms of reduced variables only, and it can be readily reconstructed
to an integrator on the original unreduced space.

5. – Conclusions

The simple physical system of 3 point vortices on a sphere reveals a surprisingly rich
geometrical structure. By applying the energy-momentum method, we have found ex-
plicit criteria for the stability of different configurations of relative equilibria with generic
and non-generic momenta. In each case we have specified a group of transformations mod-
ulo which stability in the unreduced space is understood. Numerical simulations of the
vortex dynamics have been performed which confirmed the results of stability Theorems
2.2 and 2.1.
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We presented an outline of a construction of a symplectic-momentum algorithm for
the vortex dynamics on a sphere. We refer the reader to [19, 17] for a detailed descrip-
tion of the vortex dynamics on a sphere as a Lie-Poisson system as well as a discrete
counterpart of the Euler-Poincaré reduction and the resulting discrete Euler-Poincaré
(DEP) equations. We also note that Patrick has constructed some efficient symplectic
integrators for the N vortex problem using splitting methods.

Finally, we mention that it would be of interest to extend the results here to the case
of rotating spheres.

∗ ∗ ∗
The authors would like to gratefully acknowledge and thank Paul Newton, Anthony

Blaom, George Patrick and Tudor Ratiu for their helpful comments and advice on this
and related work.
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