
Potential Shaping and the Method of Controlled

Lagrangians

Anthony M. Bloch1

Department of Mathematics
University of Michigan
Ann Arbor, MI 48109
abloch@math.lsa.umich.edu

Naomi Ehrich Leonard2

Dept. of Mechanical and Aerospace Engineering
Princeton University
Princeton, NJ 08544

naomi@princeton.edu

Jerrold E. Marsden3

Control and Dynamical Systems
California Institute of Technology 107-81

Pasadena, CA 91125
marsden@cds.caltech.edu

Proc. CDC, 38, 1999, 1653–1657

Abstract

We extend the method of controlled Lagrangians
to include potential shaping for complete state-space
stabilization of mechanical systems. The method of
controlled Lagrangians deals with mechanical systems
with symmetry and provides symmetry-preserving ki-
netic shaping and feedback-controlled dissipation for
state-space stabilization in all but the symmetry vari-
ables. Potential shaping complements the kinetic shap-
ing by breaking symmetry and stabilizing the remaining
state variables. The approach also extends the method
of controlled Lagrangians to include a class of mechani-
cal systems without symmetry such as the inverted pen-
dulum on a cart that travels along an incline.

1 Introduction

We introduce potential shaping into the method of
controlled Lagrangians, our constructive approach to
the derivation of stabilizing control laws for Lagrangian
mechanical systems. This allows us to achieve com-
plete state-space stabilization for underactuated sys-
tems. This class of mechanical systems we address
tends to be difficult to control; for example, the sys-
tems are typically not feedback linearizable.

The guiding principle behind our method of con-
trolled Lagrangians is to consider a class of control laws
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that yield closed-loop dynamics which remain in La-
grangian form. The method thus provides a natural
class of energy-based Lyapunov functions and yields
large and computable basins of stability which be-
come asymptotically stable when dissipative controls
are added.

We give in Bloch, Leonard and Marsden
[1997,1998,1998a,1999b] sufficient conditions under
which our algorithmic approach provides a control law
that yields a closed-loop system in Lagrangian form.
These sufficient conditions we refer to as matching
conditions since they ensure that the Euler-Lagrange
equations derived from the controlled Lagrangian are
consistent with available control inputs, i.e., they
match the controlled Euler-Lagrange equations for the
given mechanical system.

The systems considered in Bloch, Leonard and
Marsden [1997,1998,1999a,1999b] are mechanical sys-
tems with symmetry and the Lagrangian for the closed-
loop system (the controlled Lagrangian) is the La-
grangian for the uncontrolled system with a reshaped
kinetic energy which retains the original symmetry.
We added feedback-controlled dissipation and proved
asymptotic stabilization in all state variables except for
the symmetry group variables. For example, in the case
of the inverted pendulum on the cart, we drive the pen-
dulum to the upright position and the cart to rest but
not necessarily positioned at the origin.

In this paper we complete the strategy by aug-
menting the construction to include symmetry-breaking
modifications to the potential energy. This provides the
means to stabilize all state variables; for instance, in
the cart–pendulum example, the cart position can be
driven to the origin as well.

We also extend the class of mechanical systems con-
sidered to include those with original potential energy



that breaks symmetry. For example, the extended class
of systems includes the inverted pendulum on a cart
that travels on an incline.

The method of controlled Lagrangians has its ori-
gins in Bloch, Krishnaprasad, Marsden and Sánchez de
Alvarez [1992] and Bloch, Marsden and Sánchez de Al-
varez [1997]. Our shaping of potential energy is done in
the spirit of van der Schaft [1986] and Leonard [1997].
Auckly, Kapitanski and White [1998] and Hamberg
[1999] present related work on matching and asymptotic
stabilization. Earlier relevant work on energy methods
in control and stabilization includes Wang and Krish-
naprasad [1992], Baillieul [1993], and Åström and Fu-
ruta [1996].

In §2 we outline the controlled Lagrangian approach
to stabilization and review matching and stabilization
by kinetic shaping. In §3 we introduce potential shaping
and present sufficient conditions for matching. In §4 we
provide sufficient conditions and the construction for
complete state-space stabilization. In §5 we apply the
construction to the inverted pendulum on a cart that
travels on an incline.

2 Method of Controlled Lagrangians

In this section we review the controlled Lagrangian
approach to (partial state-space) stabilization by ki-
netic shaping as presented in Bloch, Leonard and Mars-
den [1998,1999a,1999b]. The approach begins with
a mechanical system with an uncontrolled (free) La-
grangian equal to kinetic energy minus potential en-
ergy. We modify the kinetic energy to produce a new
controlled Lagrangian which describes the dynamics of
the controlled closed-loop system.

Suppose our system has configuration space Q and
that a Lie group G acts freely and properly on Q. It is
useful to keep in mind the case in which Q = S×G with
G acting only on the second factor by acting on the left
by group multiplication. For example, for the inverted
planar pendulum on a cart, Q = S1 × R with G =
R, the group of reals under addition (corresponding to
translations of the cart).

The goal of kinetic shaping is to control the variables
lying in the shape space Q/G using controls that act di-
rectly on the variables lying in G. Assume that the La-
grangian is invariant under the action of G on Q, where
the action is on the factor G alone. In many examples
the invariance amounts to the Lagrangian being cyclic
in the G-variables. Accordingly, this produces a conser-
vation law for the free system. The construction pre-
serves the invariance of the Lagrangian, thus providing
a modified or controlled conservation law. Throughout
this paper we will assume that G is an abelian group.

The essence of the modification of the Lagrangian
involves changing the metric tensor g(·, ·) that defines
the kinetic energy 1

2g(q̇, q̇). The tangent space to Q
can be split into a sum of horizontal and vertical parts

defined as follows: for each tangent vector vq to Q at a
point q ∈ Q, we can write a unique decomposition vq =
Hor vq + Ver vq, such that the vertical part is tangent
to the orbits of the G-action and where the horizontal
part is the metric orthogonal to the vertical space; that
is, it is uniquely defined by requiring the identity

g(vq, wq) = g(Hor vq,Horwq) + g(Ver vq,Verwq)
(2.1)

where vq and wq are arbitrary tangent vectors to Q at
the point q ∈ Q.

For the kinetic energy of our controlled Lagrangian,
we use a modified version of the right hand side of equa-
tion (2.1). The potential energy remains unchanged.
The modification consists of three ingredients:

1. a new choice of horizontal space, denoted Horτ ,

2. a change g → gσ of the metric on horizontal vec-
tors and

3. a change g → gρ of the metric on vertical vectors.

Let ξQ denote the infinitesimal generator corre-
sponding to a Lie algebra element ξ ∈ g, where g is
the Lie algebra of G (see Marsden [1992] or Marsden
and Ratiu [1994]). Thus, for each ξ ∈ g, ξQ is a vector
field on the configuration manifold Q and its value at a
point q ∈ Q is denoted ξQ(q).

Definition 2.1 Let τ be a Lie algebra valued horizon-
tal one form on Q; that is, a one form with values in
the Lie algebra g of G that annihilates vertical vectors.
The τ-horizontal space at q ∈ Q consists of tan-
gent vectors to Q at q of the form Horτvq = Hor vq −
[τ(v)]Q(q), which also defines vq �→ Horτ (vq), called the
τ-horizontal projection. The τ-vertical projection
operator is defined by Verτ (vq) := Ver(vq)+[τ(v)]Q(q).

Definition 2.2 Given gσ, gρ and τ , the controlled
Lagrangian is the following:

Lτ,σ,ρ(v) =
1
2
[gσ(Horτvq,Horτvq)

+ gρ(Verτvq,Verτvq)] − V (q). (2.2)

The equations corresponding to this Lagrangian will
be our closed-loop equations. The new terms appearing
in those equations corresponding to the directly con-
trolled variables are interpreted as control inputs. The
modifications to the Lagrangian are chosen so that no
new terms appear in the equations corresponding to the
variables that are not directly controlled. We refer to
this process as matching.

Once the control law is derived using the controlled
Lagrangian, the closed-loop stability of an equilibrium
can be determined by energy methods, using any avail-
able freedom in the choice of τ , gσ and gρ.

Under some reasonable assumptions on the metric
gσ, Lτ,σ,ρ(v) has the following useful structure.



Theorem 2.3 Assume that g = gσ on Hor and Hor
and Ver are orthogonal for gσ. Then

Lτ,σ,ρ(v) = L(v + τ(v)Q) +
1
2
gσ(τ(v)Q, τ(v)Q) +

1
2
�(v)

where v ∈ TqQ and �(v) = (gρ − g)(Verτ (v),Verτ (v)).

The coordinate formula for L is

L =
1
2
gαβẋ

αẋβ + gαaẋ
αθ̇a +

1
2
gabθ̇

aθ̇b − V (xα). (2.3)

and coordinate formula for Lτ,σ,ρ is

Lτ,σ,ρ(v) = L(xα, ẋβ , θ̇a + τa
αẋα) +

1
2
σabτ

a
ατ b

βẋ
αẋβ

+
1
2
�ab(θ̇a + gacgαcẋ

α + τa
αẋα)(θ̇b + gbdgβdẋ

β + τ b
β ẋ

β).

Here, θa are coordinates for the abelian symmetry
group G and xα are coordinates on the shape space
Q/G; σab and �ab are the coefficients for the last two
terms, respectively, of the expression for Lτ,σ,ρ in The-
orem 2.3, and we let ρab = gab + �ab. The associated
controlled conserved quantity is given by

J̃a :=
∂Lτ,σ,ρ

∂θ̇a
= ρab(θ̇b + gbdgαdẋ

α + τ b
αẋα). (2.4)

General sufficient conditions for matching can be
found in Bloch, Leonard and Marsden [1999b]. We de-
fine simplified sufficient conditions for matching that
are satisfied for a class of systems that includes the in-
verted (planar or spherical) pendulum on a cart. We
take gρ = g and the simplified matching conditions are

SM-1 σab = σgab for a constant σ (this defines σab),

SM-2 gab is independent of xα (a condition on the met-
ric tensor),

SM-3 τ b
α = −(1/σ)gabgαa (this defines τ b

α),

SM-4 gαa,δ = gδa,α (a second condition on the metric).

We use commas to denote partial differentiation with
respect to xα. The conditions SM-2 and SM-4 imply
that the mechanical connection gabgaα for the given
system is flat, i.e., systems that satisfy the simplified
matching conditions lack gyroscopic forces.

Define κ = −1/σ. Under the simplified matching
assumptions SM-1 – SM-4, the control law is computed
to be ua = −d/dt(κgαaẋ

α). Acceleration terms can be
eliminated such that the control law becomes

ua = − κ

{
gβa,γ − gδaA

δα

[
gαβ,γ − 1

2
gβγ,α (2.5)

− (1 + κ) gαdg
dagβa,γ

]}
ẋβẋγ

+ κgδaA
δα ∂V

∂xα
(2.6)

where Aαβ = gαβ − gαd (1 + κ) gdagβa.

An equilibrium for the controlled system corre-
sponds to xα

e , ẋα
e = 0 and J̃a = µa. Let

Vµ(xα) = V (xα) +
1
2
gabµaµb (2.7)

Theorem 2.4 Assume SM-1 – SM-4 hold. Then, the
given equilibrium is stabilized by the control law (2.6) if
the second variation of

Eµ :=
1
2
Aαβẋ

αẋβ + Vµ (2.8)

(as a function of the variables xα) evaluated at the equi-
librium is definite.

Suppose xα
e is a maximum of Vµ. Then we would need

to make the equilibrium a maximum of Eµ. If, for ex-
ample, gaα(xα

e ) is one-to-one, then Aαβ will be negative
definite for a choice of κ such that

1 + κ > max {λ | det
(
gαβ(xe) − λgαa(xe)gabgbβ(xe)

)
= 0 }.

(2.9)

See Bloch, Chang, Leonard and Marsden [1999] for de-
tails.

3 Matching with Symmetry-Breaking
Potentials

In this section we extend the method of controlled
Lagrangians to the class of Lagrangian mechanical sys-
tems with potential energy that may break symmetry,
i.e., we still have a symmetry group G for the kinetic
energy of the system but we now have a potential en-
ergy of the form V = V (xα, θa) that need not be G
invariant. Further, we consider a modification to the
potential energy that also breaks symmetry in the G
variables. Let the potential energy for the controlled
Lagrangian V ′ be defined as

V ′(xα, θa) = V (xα, θa) + Vε(xα, θa)

where Vε is the modification to be determined.
We specialize to the case of mechanical systems for

which the simplified matching assumptions SM-1 – SM-
4 hold. However, we retain the flexibility afforded by
gρ. We consider ρab = ρgab where ρ is a scalar constant.
The controlled Lagrangian takes the form

Lτ,σ,ρ,ε(v) = L(xα, ẋβ , θ̇a + τa
αẋα) +

1
2
σgabτ

a
ατ b

βẋ
αẋβ

+
1
2
(ρ− 1)gab(θ̇a + gacgαcẋ

α + τa
αẋα)

(θ̇b + gbdgβdẋ
β + τ b

βẋ
β) − Vε(xα, θa),

The conjugate momenta J̃a to θa then becomes

J̃a =
∂Lτ,σ,ρ,ε

∂θ̇a
= ρgab(θ̇b + gbdgαdẋ

α + τ b
αẋα). (3.1)



The new Euler-Lagrange equations in the θa vari-
ables become

d

dt

(
∂Lτ,σ,ρ,ε

∂θ̇a

)
+

∂V

∂θa
+

∂Vε

∂θa
= 0.

Comparing this equation to our controlled θa equation

d

dt

(
∂L

∂θ̇a

)
+

∂V

∂θa
= ua,

the control law can be read off as

ua =
d

dt

(
∂L

∂θ̇a
− 1

ρ

∂Lτ,σ,ρ,ε

∂θ̇a

)
+

ρ− 1
ρ

∂V

∂θa
− 1

ρ

∂Vε

∂θa

= − d

dt
(gabτ

b
αẋα) +

ρ− 1
ρ

∂V

∂θa
− 1

ρ

∂Vε

∂θa
. (3.2)

The next step is to determine conditions so that
the Euler-Lagrange equations in the xα variables still
match. Our job is to find conditions such that

Ex(Lτ,σ,ρ,ε) :=
d

dt

∂Lτ,σ,ρ,ε

∂ẋα
− ∂Lτ,σ,ρ,ε

∂xα
= 0.

Define Lτ,σ as the controlled Lagrangian Lτ,σ,ρ in the
case that gρ = g. Then, using the simplified matching
assumptions

Ex(Lτ,σ,ρ,ε) = Ex(Lτ,σ) +
ρ− 1

ρ
(gbdgαd + τ b

α) ˙̃Jb. (3.3)

Using the calculation of Ex(Lτ,σ) from Bloch, Leonard
and Marsden [1999a], we compute

Ex(Lτ,σ,ρ,ε) =
1
ρ

˙̃Jaτ
a
α +

∂Vε

∂xα
+

ρ− 1
ρ

(gadgαd + τa
α) ˙̃Ja

= −∂V ′

∂θa

(
− 1

σ
+

ρ− 1
ρ

)
gadgαd +

∂Vε

∂xα
.

(3.4)

We define a new matching condition:
Assumption SM-5:

−
(

∂V

∂θa
+

∂Vε

∂θa

) (
− 1

σ
+

ρ− 1
ρ

)
gadgαd +

∂Vε

∂xα
= 0.

A necessary and sufficient condition on V and
gabgaα for the existence of Vε satisfying SM-5 is given
and proved in Bloch, Chang, Leonard and Marsden
[1999]. The following theorem gives sufficient condi-
tions for matching with symmetry-breaking potentials.

Theorem 3.1 (Matching with Potential Shaping)
Under Assumptions SM-1, SM-2, SM-3, SM-4, SM-
5 the Euler-Lagrange equations for the controlled
Lagrangian Lτ,σ,ρ,ε coincide with the controlled
Euler-Lagrange equations.

4 Stabilization with Symmetry Breaking
Potentials

In the case that the conditions for Theorem 3.1 are
satisfied, the energy Eτ,σ,ρ,ε associated to the closed-
loop system can be used as a Lyapunov function. In
particular, we use it to assign the remaining freedom
in σ, ρ and ε to guarantee stability of an equilib-
rium of interest. Any equilibrium will have the form,
(xα, θa, ẋα, θ̇a) = (xα

e , θa
e , 0, 0).

We compute Eτ,σ,ρ,ε to be

Eτ,σ,ρ,ε =
∂Lτ,σ,ρ,ε

∂ẋα
ẋα +

∂Lτ,σ,ρ,ε

∂θ̇a
θ̇a − Lτ,σ,ρ,ε

=
1
2
Aαβẋ

αẋβ +
1
2
ρgabζ

aζb + V ′(xα, θa),

(4.1)

where ζa = θ̇a + (1 − 1/σ) gabgαbẋ
α.

The Lagrange-Dirichlet Theorem then gives the fol-
lowing sufficient conditions for Lyapunov stability.

Theorem 4.1 (Lyapunov Stability) Assume SM-1
– SM-5 hold. The equilibrium defined by (xα

e , θa
e , 0, 0) is

Lyapunov stable if it is a critical point of V ′ and if the
second derivative of Eτ,σ,ρ,ε evaluated at the equilibrium
is definite.

Note that if Vε is chosen to make (xα
e , θa

e ) a maximum
of V ′(xα, θa), then choosing κ to satisfy (2.9) and ρ < 0
is sufficient for stability.

For asymptotic stability, we will want to add in a
dissipative control term, i.e.,

ua = ucons
a +

1
ρ
udiss

a

where from (3.2)

ucons
a = − d

dt
(gabτ

b
αẋα) +

ρ− 1
ρ

∂V

∂θa
− 1

ρ

∂Vε

∂θa
.

The Euler-Lagrange equations in terms of the con-
trolled Lagrangian then become

d

dt

∂Lτ,σ,ρ,ε

∂ẋα
− ∂Lτ,σ,ρ,ε

∂xα
=

(
− 1

σ
+

ρ− 1
ρ

)
gadgαdu

diss
a

d

dt

∂Lτ,σ,ρ,ε

∂θ̇a
− ∂Lτ,σ,ρ,ε

∂θa
= udiss

a . (4.2)

Thus, one can compute that

d

dt
Eτ,σ,ρ,ε = ξaudiss

a , (4.3)

ξa = θ̇a +
(
− 1

σ
+

ρ− 1
ρ

)
gadgαdẋ

α.

Therefore, we can choose

udiss
a = cd

agbdξ
b (4.4)



where cd
a is a positive (negative) definite control gain

matrix if the equilibrium is a maximum (minimum) of
Eτ,σ,ρ,ε). This gives d

dtEτ,σ,ρ,ε = cd
agbdξ

aξb.
In order to get asymptotic stability of the equi-

librium, we use LaSalle’s invariance principle. From
above, we see that d/dt(Eτ,σ,ρ,ε) vanishes on the set M
defined by udiss

a = cd
a1/ρ(J̃d − gαdẋ

α) = 0.

Theorem 4.2 (Asymptotic Stabilization)
Assume that the hypotheses of the Stabilization
Theorem 4.1 as well as the assumptions SM-1 –
SM-5 hold. In addition, assume that M consists only
of equilibria and that the dissipative control law is
chosen as in (4.4). Then the given equilibrium is
asymptotically stable.

Specific conditions under which these hypotheses can
be verified are investigated in Bloch, Chang, Leonard
and Marsden [1999].

We again define κ = −1/σ. The total control ua is

ua = ucons
a +

1
ρ
udiss

a = − d

dt
(κgαaẋ

α) + wa (4.5)

where

wa =
ρ− 1

ρ

∂V

∂θa
− 1

ρ

∂Vε

∂θa
+

1
ρ
udiss

a .

This control law is the sum of our original stabilizing
control law without symmetry breaking plus the poten-
tial modification and the dissipation term.

Following the same procedure as in Bloch, Leonard
and Marsden [1999a], we can eliminate accelerations in
the control law expression. We compute

ua = (rhs of (2.7)) + κgδaA
δα 1

ρ
gαdg

db

(
−∂V ′

∂θb
+ udiss

b

)
+ wa.

(4.6)

5 Inverted Pendulum on an Inclined Cart

s

θ
m

l

g

M

l = pendulum length

m = pendulum bob mass

M = cart mass

g = acceleration due to gravity

u

ψ

Figure 5.1: The pendulum on an inclined cart.

We apply the above result to stabilize the inverted
planar pendulum on a cart that travels on an incline of
angle ψ. Let s denote the position of the cart along the
incline and let θ denote the angle of the pendulum with
the upright vertical as shown in Figure 5.1.

The configuration space for this system is Q =
S × G = S1 × R, with the first factor being the pen-
dulum angle θ and the second factor being the cart
position s. The velocity phase space TQ has coordi-
nates z = (θ, s, θ̇, ṡ). We are interested in the problem
of asymptotically stabilizing the origin, i.e., z = 0.

The velocity of the cart relative to the lab frame is
ṡ, while the velocity of the pendulum relative to the lab
frame is the vector

vpend = (ṡ cosψ + l cos θ θ̇,−ṡ sinψ − l sin θ θ̇). (5.1)

The system kinetic energy K(θ, s, θ̇, ṡ) is the sum of the
kinetic energies of the cart and the pendulum:

1
2

[θ̇, ṡ]
[

ml2 ml cos(θ − ψ)
ml cos(θ − ψ) M + m

] [
θ̇
ṡ

]
.

(5.2)

The potential energy is

V (θ, s) = mgl cos θ − (m + M)gs sinψ. (5.3)

The Lagrangian is the kinetic minus potential energy:

L(θ, s, θ̇, ṡ) =
1
2
(αθ̇2 + 2β cos(θ − ψ)ṡθ̇ + γṡ2)

+ D cos θ + γgs sinψ , (5.4)

where α = ml2, β = ml, γ = M + m and D = −mgl
are constants. Notice that the potential energy breaks
symmetry in the cart translation s (although this sys-
tem is still translation invariant).

The equations of motion for the cart pendulum sys-
tem with a control force u acting on the cart (and no
direct forces acting on the pendulum) are

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0

d

dt

∂L

∂ṡ
− ∂L

∂s
= u .

By inspection we see that SM-2 and SM-4 hold. To
satisfy SM-1 and SM-3, we take σab = σgab = σγ and
τ b
α = −(1/σ)gabgαa = (κ/γ)β cos(θ − ψ), where σ is a

scalar constant and κ = −1/σ.
We choose Vε to be Vε = Ṽε + γgs sinψ ,
where

Ṽε =
1
2
εD

γ2

β2

(
s +

(
κ +

ρ− 1
ρ

)
β

γ
(sin(θ − ψ) + sinψ)

)2

.

(5.5)

It is easy to check that with this definition, SM-5 holds.
Thus, by Theorem 3.1 we have matching with potential
shaping.

This means that if we apply the control law defined
by (3.2), the closed-loop system is Lagrangian and the
associated energy as given by (4.1) is

Eτ,σ,ρ,ε =
1
2
Aθ̇2 +

1
2
ρ

γ

(
ṡ + (1 + κ)

β

γ
cos(θ − ψ)θ̇2

)2

+ V ′ ,

(5.6)



where V ′ = −D cos θ + Ṽε and

A = α− (1 + κ)β2/γ cos2(θ − ψ).

The point z = 0 is an equilibrium of the controlled
Lagrangian system since it is a critical point of V ′. It
remains to find conditions on κ, ρ, ε such that the second
derivative of Eτ,σ,ρ,ε evaluated at the origin is definite.
First note that if we take ε > 0, then (θ, s) = (0, 0) is a
maximum of the potential energy V ′. Further, by (2.9)
A is negative definite if

κ >
αγ

β2 cos2 ψ
− 1 =

m sin2 ψ + M

m cos2 ψ
. (5.7)

Finally, we take ρ < 0 so that the second derivative
of Eτ,σ,ρ,ε evaluated at the origin is negative definite.
Thus, by Theorem 4.1, the origin is made Lyapunov
stable by the control law given by (3.2) (and (4.6) with
udiss = 0).

We can further get asymptotic stability using the
full control law given by (4.6) where we choose cd

a =
c > 0 since the equilibrium is a maximum of Eτ,σ,ρ,ε.
The dissipation term is

udiss = cγ

(
ṡ +

(
κ +

ρ− 1
ρ

)
β

γ
cos(θ − ψ)θ̇

)
. (5.8)

The complete control law (4.6) becomes

u =
1
A

(
κβ

(
α sin(θ − ψ)θ̇2 + cos(θ − ψ)D sin θ)

))

+
1
A

(
B

∂V ′

∂s
+ Cudiss

)
− γg sinψ,

where B = −1/ρ
(
α− β2/γ cos2(θ − ψ)

)
and C = α −

(κ + 1 − κ/ρ)β2/γ cos2(θ − ψ).
This control law is finite if the denominator is

strictly negative, i.e., if

sin2(θ − ψ) <
β2(κ + 1) − αγ

β2(κ + 1)
.

This range of θ tends to the range −(π/2 + ψ) < θ <
π/2 + ψ for large κ. Asymptotic stability follows by
showing that the set M, which is equivalent to the
set on which ∂Ṽε

∂s is constant, contains only equilibria.
See Bloch, Chang, Leonard and Marsden [1999] for the
proof, for an investigation of the region of attraction,
and for simulation results.
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