
On Billiard Solutions of Nonlinear PDE’s ∗

Mark S. Alber †

Department of Mathematics
University of Notre Dame

Notre Dame, IN 46556
Mark.S.Alber.1@nd.edu

Roberto Camassa ‡

Center for Nonlinear Studies and Theoretical Division
Los Alamos National Laboratory

Los Alamos, NM 87545
and Department of Mathematics, University of North Carolina

Chapel Hill, NC 27599
camassa@math.unc.edu

Yuri N. Fedorov §
Departament de Matematica II

Universitat Politecnica de Catalunya
Barcelona, E-08027

fedorov@grec.upc.es

Darryl D. Holm ¶

Theoretical Division and Center for Nonlinear Studies
Los Alamos National Laboratory, MS B284

Los Alamos, NM 87545
dholm@lanl.gov

Jerrold E. Marsden‖
Control and Dynamical Systems

California Institute of Technology 107-81
Pasadena, CA 91125
marsden@cds.caltech.edu

Physics Letters A 264, 171–178

∗PACS numbers 05.45.Yv, 03.40.Gc, 11.10.Ef, 68.10.-m, AMS Subj. Class. 58F07, 70H99, 76B15
†Research partially supported by NSF grant DMS 9626672 and NATO grant CRG 950897.
‡Research supported in part by US DOE CHAMMP and HPCC programs and NATO grant

CRG 950897
§Research supported in part by the Center for Applied Mathematics, University of Notre Dame
¶Research supported in part by US DOE CHAMMP and HPCC programs
‖Research partially supported by Caltech and NSF grant DMS 9802106

1



Abstract

This letter presents some special features of a class of integrable PDE’s
admitting billiard-type solutions, which set them apart from equations whose
solutions are smooth, such as the KdV equation. These billiard solutions are
weak solutions that are piecewise smooth and have first derivative discontinu-
ities at peaks in their profiles. A connection is established between the peak
locations and finite dimensional billiard systems moving inside n-dimensional
quadrics under the field of Hooke potentials. Points of reflection are described
in terms of theta-functions and are shown to correspond to the location of
peak discontinuities in the PDE’s weak solutions. The dynamics of the peaks
is described in the context of the algebraic-geometric approach to integrable
systems.

1 Introduction

Camassa and Holm [1993] described classes of n-soliton weak solutions, or “peakons,”
for an integrable equation arising in the context of shallow water theory. Of particu-
lar interest is their description of peakon dynamics in terms of a system of completely
integrable Hamiltonian ode’s for the locations of the “peaks” of the solution, the
points at which its spatial derivative changes sign. In other words, each peakon
solution can be associated with a mechanical system of moving particles. Calogero
[1995] and Calogero and Francoise [1996] further extended the class of mechanical
systems of this type.

The r-matrix approach was applied to the Lax pair formulation of an n-peakon
system by Ragnisco and Bruschi [1996], who also pointed out the connection of this
system with the classical Toda lattice. A discrete version of the Adler-Kostant-
Symes factorization method was used by Suris [1996] to study a discretization of
the peakon lattice, realized as a discrete integrable system on a certain Poisson
submanifold of gl(n) equipped with r-matrix Poisson bracket. Generalized peakon
systems are obtained for any simple Lie algebra and their complete integrability is
demonstrated in Alber et al. [1999b].

Antonowicz and Fordy [1987a,b, 1988, 1989] and Antonowicz et al. [1991] inves-
tigated energy dependent Schrödinger operators having potentials with poles in the
spectral parameter in connection with certain N -component systems of integrable
evolution equations. Using this formalism, they obtained multi Hamiltonian struc-
tures for this class of systems of equations. Recently energy dependent Schrödinger
operators has been studied in Manas et al. [1999] in connection with the flows on
the strata of the Grassmanians.

Alber et al. [1994, 1995, 1999a] showed that the presence of a pole in the
potential is essential in a special limiting procedure that allows for the formation of
“billiard solutions” of N -component systems, solutions with discontinuities in first
derivative. Using algebraic-geometric methods, one finds that these billiard solutions
are related to finite dimensional integrable dynamical systems with reflections. This
provides insight into the study of quasi-periodic and solitonic billiard solutions of
nonlinear PDE’s. This method can be used for a number of equations including the
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shallow water equation, Dym-type equations, as well as N -component systems with
poles and the equations in their hierarchies.

The purpose of this letter is to exhibit some of the special features of inte-
grable PDE’s admitting billiard-type solutions that differentiates these equations
from those whose solutions are smooth, such as the KdV equation. In particular,
quasi-periodic solutions of these equations are integrated on nonlinear subvarieties
of Jacobi varieties. This, amongst other things, provides examples of integrable
systems of a new type. We make a link between nonsmooth solutions of these equa-
tions and billiard dynamical systems. Finally, we establish a connection between
Hamiltonian systems describing peakons obtained in Camassa and Holm [1993] and
the corresponding systems obtained by tracking the location of discontinuities in
the time flows of “µ” variables on Riemann surfaces in the context of the algebraic-
geometric approach.

The basic technique of the present letter uses a connection between profiles
of wave solutions and geodesic flows with reflections in domains bounded by n-
dimensional quadrics. Namely, the time dynamics of peaks in the wave solutions is
linked to the points of reflection of the billiard systems. Solutions of the Hamiltonian
systems describing the motion of the peaks are obtained by studying certain limits
of action-angle representations for quasi-periodic and soliton solutions. The limiting
systems of action-angle variables determine Jacobi inversion problems that are solved
on nonlinear subvarieties of generalized Jacobians.

While the techniques are rather general and can be applied to a large class of N -
component integrable evolution equations, we shall illustrate them in detail for two
specific integrable PDE’s. The dependent variable in these two equations may be
interpreted as a horizontal fluid velocity U(x, t). One of these equations is a member
of the Dym hierarchy that has been studied by, amongst others, Kruskal [1975],
Cewen [1990], Hunter and Zheng [1994] and Alber et al. [1995]. Using subscript
notation for partial derivatives, this equation is

Uxxt + 2UxUxx + UUxxx − 2κUx = 0 . (HD)

The other equation, derived from the Euler equations of hydrodynamics in Camassa
and Holm [1993], is

Ut + 3UUx = Uxxt + 2UxUxx + UUxxx − 2κUx . (SW)

In both equations, κ is a real parameter.

Geodesics on Quadrics. We begin by giving an algebraic-geometric descrip-
tion of geodesic motion and motion in the field of a Hooke-type potential on n-
dimensional quadrics. As shown by many authors (see, e.g., Rauch-Wojciechowski
[1995]), there exists an infinite hierarchy of integrable generalizations of the problem
describing a motion on an n-dimensional quadric Q̃:

Q̃ := {(x1, x2 . . . , xn+1) ∈ Rn+1 | x2
1/a1 + · · ·+ x2

n/an+1 = 1},
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in the force field of certain polynomial homogeneous potentials Vp(x1, . . . , xn+1),
p ∈ N. The simplest integrable potential is the Hooke potential, that is, the potential
of an elastic string joining the center of the ellipsoid Q̃ to the point mass on it:

V1 =
1
2
σ(x2

1 + · · ·+ x2
n+1), σ = const.

In this case, in terms of elliptic coordinates µ′js on Q̃, the Lagrangian takes the
Stäckel form,

L =
1
8

n∑
i=1

∏
j 6=i(µi − µj)µi

Φ(µi)

(
dµi
d τ

)2

− σ

2

n∑
i=1

µi, (1.1)

where Φ(µ) = (µ− a1) · · · (µ− an+1) and the variable τ (called time) parametrizes
motion along the trajectory. The equations of motion can be written in Hamilto-
nian form and constitute a completely integrable system solvable by quadratures,
determined in this case by the following Abel–Jacobi equations

n∑
k=1

µik dµk

2
√
R(µk)

= δin dτ, i = 1, . . . , n, (1.2)

where R(µ) = −L0µΦ(µ)[(µ−c1) · · · (µ−cn−1)−σµn] and c1, . . . , cn−1 are constants
of motion and δij is a Kronecker delta. Notice that for σ = 0 the order of the
polynomial R(µ) is odd, whereas for σ 6= 0 the order is even. The case when σ = 0
corresponds to free (geodesic) motion on Q̃.

Equations (1.2) contain (n− 1) holomorphic differentials and one meromorphic
differential defined on the genus n hyperelliptic Riemann surface C̃ = {w2 = R(µ)}.
Thus the corresponding Abel–Jacobi mapping is inverted on a nonlinear subvariety
of the generalized Jacobian of C̃. On the other hand, under passage to a new variable
s defined as

τ =
∫ s

0

µ1 · · ·µn
L0

ds , (1.3)

these equations are transformed to standard form, containing only holomorphic
differentials. In this case solution to the inversion problem is well known and fol-
lows from the classical results of Jacobi [1884] (see Weierstrass [1878] and Knörrer
[1982]). Notice also that the sign of the leading coefficient L0 should be taken into
consideration.

Billiards in Domains Bounded by Quadrics. Applying the limiting procedure
in which the quadrics is “flattened” in a certain direction, one obtains descriptions
for geodesic billiards and for billiards in the field of a Hooke potential inside lower
dimensional quadrics. The sequence of points of reflection gives a solution to com-
pletely integrable discrete systems. This result adds to the list of interesting discrete
integrable systems considered by Moser and Veselov [1991]. Namely, suppose that
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one of the semi-axes of the ellipsoid Q̃ tends to zero, say, an+1 → 0. In the limit, Q̃
passes into the interior of the (N − 1)-dimensional ellipsoid

Q := {(x1, x2 . . . , xn) ∈ Rn | x2
1/a1 + · · ·+ x2

n/an = 1}.
The geodesic motion on Q̃ transforms to billiard motion inside the ellipsoid Q with
Birkhoff reflection conditions. Also, the motion on Q̃ under the Hooke force passes
to the motion inside Q under the action of the Hooke force with the potential
V = σ(x2

1 +· · ·+x2
n)/2 with elastic reflections along Q. Thus, we have “a generalized

ellipsoidal billiard with potential”. This system, as well as the billiard limits of the
systems with the higher order potentials Vp(x1, . . . , xn, xn+1 = 0), are completely
integrable (see e.g., Kozlov and Treschev [1991]).

Under the limit an+1 → 0 and the change (1.3), the Abel–Jacobi equations can
be written in the following integral form

n∑
k=1

∫ µk

µ0

µi−1 dµ

2
√
R(µ)

= φi = const, i = 1, . . . , n− 1, (1.4)

n∑
k=1

∫ µk

µ0

dµ

2µ
√
R(µ)

= s (1.5)

where R(µ) = −(µ−a1) · · · (µ−an)[(µ− c1) · · · (µ− cn−1)−σµn] and which contain
(n − 1) holomorphic differentials on the hyperelliptic Riemann surface C = {w2 =
R(µ)} of genus g = (n − 1) and one differential of third kind Ω having a pair of
simple poles Q−, Q+ on C with µ(Q±) = 0.

The solution of the problem of inversion for (1.4) leads to expressions for the
Cartesian coordinates xi(s) of the point moving inside the ellipsoid Q in terms of
quotients of generalized theta-functions. (For details see Fedorov [1999] and Alber
et al. [1999a].)

Discrete Dynamical Systems. Using these expressions and induction, the co-
ordinates of the whole sequence of impact points are found in the form

xi(N) = κi
θ[∆ + η(i)](z0 +Nq)

θ[∆](z0 +Nq)
, (1.6)

in case σ = 0 and

xi(N) = κ′i
θ[∆ + η(i)](z0 +Nq)√

θ[∆](z0 − q̂/2 +Nq)θ[∆](z0 + q̂/2 +Nq)
, (1.7)

for σ 6= 0, where i = 1, . . . , n, κi, κ′i = const and N is the number of impacts
encountered so far. Also q ∈ Cg is the vector of b-periods of the normalized mero-
morphic differential Ω and q̂ ∈ Cg indicates the difference between Abel–Jacobi
mappings associated with the two infinite points on C. The vector of constant
phases z0 = (z10, . . . , zg0)T is the same for all the segments of the billiard trajectory.
Notice that θ[∆ + η(i)](z) and θ[∆](z) are the standard theta-functions related to
the Riemann surface C with appropriately chosen half-integer theta-characteristics
∆ and η(i). The sequence of points (1.6), (1.7) provide solutions of the above discrete
dynamical system.
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Billiard Solutions of PDE’s. Wave solution profiles of the shallow water equa-
tion (SW) and the equation of the Dym hierarchy (HD) are, as mentioned before,
associated with geodesic motions or motion under the influence of forces determined
by a polynomial potential. This results in profiles of billiard weak solutions of these
equations being associated with billiard motions inside quadrics and billiards inside
quadrics in the presence of a Hooke potential, respectively. This is achieved by using
the trace formula at time t = t0; for σ = 0 we get

U(x, t0) =
n∑
j=1

µj =
n∑
i=1

ai − x2 − 2x∂Uθ[∆](z0)− ∂2
Uθ[∆](z0)

θ[∆](z0)
, (1.8)

while for σ 6= 0 we get

U(x, t0) =
n∑
j=1

µj =
n∑
i=1

ai −
exθ[∆](z0 + q̂/2) + e−xθ[∆](z0 − q̂/2)

θ[∆](z0)
, (1.9)

where U ∈ Cg is the vector of b-periods of the normalized differential of the second
kind on C with a double pole at the infinite point and the theta-functions are the
same as in (1.7).

Formulae (1.6), (1.7) yield an explicit map for location of the impact points at
time t0,

UN =
n∑
i=1

x2
i (N) +

n∑
i=1

ai ,

where N is an integer. This, in turn, describes the peaks in the profiles of a weak
billiard solution for the nonlinear PDE’s under consideration.

The time evolution of the PDE may be viewed as a sequence of snapshots
parametrized by t0. At every fixed time the location of the impact points is re-
computed from the initial condition x1(N). Geometrically, the peaks are moving
along the boundary, an ellipsoid of lower dimension. The peak moves in time ac-
cording to equations similar to those obtained from the Lagrangian (1.1).

The PDE solutions obtained in this way include new quasi-periodic and solitonic
billiard solutions, as well as peaked solitons with compact support. (For details see
Alber et al [1999a].) An example is provided in what follows.

Dynamics of Peaks. For the case of the shallow water equation (SW) we now
show how the Hamiltonian structure for the motion of the peaks is obtained by
using the algebraic-geometric method. We then show how this can be linked to the
Hamiltonian structure found in Camassa and Holm [1993].

The soliton case is obtained from the quasi-periodic case after a transforma-
tion of the level sets (first integrals) that shrinks the finite segments of continuous
spectrum, therebu creating new points of the discrete spectrum of the associated
spectral problem. (For details concerning the inverse scattering transform method,
see Ablowitz and Segur [1981] and concerning soliton transition, see Ablowitz and
Ma [1981] and Alber and Alber et al. [1985].)
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Namely, in the case of a 2-peakon solution of the shallow water equation we have
the following system:

∂µ1

∂x
= Sign(µ1)

(µ1 − a1)(µ1 − a2)
(µ1 − µ2)

∂µ2

∂x
= Sign(µ2)

(µ2 − a1)(µ2 − a2)
(µ2 − µ1)

 (1.10)

where µ1 and µ2 are evaluated between a1 and 0 and a2 and 0, respectively. The
corresponding time-flow is

∂µ1

∂t
= Sign(µ1)B1(µ1)

(µ1 − a1)(µ1 − a2)
(µ1 − µ2)

∂µ2

∂t
= Sign(µ2)B1(µ2)

(µ2 − a1)(µ2 − a2)
(µ2 − µ1)

 (1.11)

and the first order polynomial B1 for equation (SW) is given by

B1(µ1) = −µ2 + a1 + a2, B1(µ2) = −µ1 + a1 + a2 .

Soliton solutions of the nonlinear evolution equations can be constructed using the
trace formula (1.9).

The positions of the peaks can be identified in terms of µ-variables as follows:
µ1 = 0 for the first peak and µ2 = 0 for the second peak. The dynamics of the peaks
is defined by introducing functions q1(t) and q2(t) such that

µ1(q1(t), t) = 0, µ2(q2(t), t) = 0 (1.12)

and functions y1(t) and y2(t) defined as follows:

y1 = µ2(q1(t), t), y2 = µ1(q2(t), t). (1.13)

Differentiating µ1(q1(t), t) and µ2(q2(t), t) in (1.12) results in

dµ1

dt
= 0 =

∂µ1

∂x

(
dq1

dt
+B1(µ1)

)
=
∂µ1

∂x

(
dq1

dt
− y1 + a1 + a2

)
dµ2

dt
= 0 =

∂µ2

∂x

(
dq2

dt
+B1(µ2)

)
=
∂µ2

∂x

(
dq2

dt
− y2 + a1 + a2

)
.

 (1.14)

This leads to the following system

dq1

dt
= U(q1) = (µ1 + µ2 − a1 − a2)

∣∣
q1

= µ2(q1)− a1 − a2 = y1 − a1 − a2

dq2

dt
= U(q2) = (µ1 + µ2 − a1 − a2)

∣∣
q2

= µ1(q2)− a1 − a2 = y2 − a1 − a2 ,


(1.15)
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which coincides with the jump conditions for weak solutions (see Alber et al. [1999]).
Finally, differentiate y1 and y2 to find

dy1

dt
=
∂µ2

∂x

dq1

dt
+
∂µ2

∂t
=
∂µ2

∂x

(
dq1

dt
+B1(µ2)

)
dy2

dt
=
∂µ1

∂x

dq2

dt
+
∂µ1

∂t
=
∂µ1

∂x

(
dq2

dt
+B1(µ1)

)


which yields

dy1

dt
= Sign(y1)(y1 − a1)(y1 − a2)

dy2

dt
= Sign(y2)(y2 − a1)(y2 − a2) .

 (1.16)

Thus, the equations of evolution for y1 and y2 decouple from those for q1 and q2.
The decoupled equations (1.16) can be solved first and q1 and q2 can be subsequently
determined from (1.15) by quadratures. The final result, for a1 > a2, is

y1(t) =
a1 + a2c1e

−(a1−a2)t

1 + c1e−(a1−a2)t , y2(t) =
a1 + a2c2e

(a1−a2)t

1 + c1e(a1−a2)t

and

q1(t) = −a1t+d1 +log
(
c1 +e(a1−a2)t

)
, q2(t) = −a2t+d2− log

(
1+c2e

(a1−a2)t
)
,

where the constants (c1, d1) and (c2, d2) are related to the initial values of (y1, q1)
and (y2, q2), respectively, and these parameters are in turn related through the x-
system for the µ-functions (1.10) (for details see Alber and Miller [1999]) . Figure 1.1
shows the contour plot of a two-peakon solution U(x, t) for a slower peakon being
overtaken by a faster one. The spectrum a1, a2 is chosen so that a2 = 2a1, in
which case the slower soliton does not experience a phase shift (see Camassa and
Holm [1993]). This is different from the KdV situation, in which interacting solitons
always exhibit phase shifts. It is interesting to examine the connection of the set of
variables qi and yi, i = 1, 2, with the qi and pi, i = 1, 2, introduced by Camassa and
Holm [1993]. By definition, the q’s are the same in both sets. Notice that the (q, y)
system does not have a canonical Hamiltonian form. As to the y’s, notice that

U(q1) = y1 − a1 − a2 = p1 + p2e
−|q1−q2|

U(q2) = y2 − a1 − a2 = p2 + p1e
−|q1−q2|

 , (1.17)

which provides an expression for the variables y’s in terms of p’s and q’s, and together
with (1.15), yields the first set of equations for the Hamiltonian system derived by
Camassa and Holm [1993],

dq1

dt
= p1 + p2e

−|q1−q2|

dq2

dt
= p2 + p1e

−|q1−q2| .


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Figure 1.1: Contour plot of a fast peakon catching up with a slower one. Here a1 = −0.4,
a2 = −0.8, and the peaks have the same height at time t = 0. The thin solid lines represent the
peak trajectories obtained by solving systems (1.16) and (1.12) for q1(t) and q2(t). For this ratio
(a2/a1 = 2) of terminal speeds, the slower soliton does not experience any phase shift.

The evolution equation for the p’s follows from (1.16), (1.15), and the transformation
(1.17):

dp1

dt
= sgn(q2 − q1)p1p2e

−|q1−q2|

dp2

dt
= sgn(q1 − q2)p2p1e

−|q1−q2| .


Notice that the constants of motion a1 and a2 can be incorporated into first integrals
involving p’s and q’s as follows: P12 = p1 + p2 = −(a1 + a2) and

H12 =
1
2

(p2
1 + p2

2) + p1p2e
−|q1−q2| =

1
2

(a2
1 + a2

2) .

These first integrals are the total momentum and Hamiltonian for the (q, p)-flow,
respectively.

The case of three or more derivative-shock singularities xi, yi, i = 1, 2, . . . , n ≥ 3
proceeds in complete analogy with the case n = 2 above. Once again, the q-flows
decouple from those of the y’s. At variance with the n = 2 case, the equations form-
ing the system that governs the y-flow are now coupled, and it is not immediately
obvious that this system is integrable. A closer inspection however reveals that the
y-flow shares the same structure as that of the µ-variables flow and is therefore
integrable by a similar argument.
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