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Abstract

This work develops robust contact algorithms capable of dealing with complex contact situations involving several bodies with

corners. Amongst the mathematical tools we bring to bear on the problem is nonsmooth analysis, following Clarke (F.H. Clarke.

Optimization and nonsmooth analysis. John Wiley and Sons, New York, 1983.). We speci®cally address contact geometries for which

both the use of normals and gap functions have di�culties and therefore precludes the application of most contact algorithms pro-

posed to date. Such situations arise in applications such as fragmentation, where angular fragments undergo complex collision se-

quences before they scatter. We demonstrate the robustness and versatility of the nonsmooth contact algorithms developed in this

paper with the aid of selected two and three-dimensional applications. Ó 1999 Elsevier Science S.A. All rights reserved.

1. Introduction

The objective of the work presented in this paper is the development of robust contact algorithms ca-
pable of dealing with multibody nonsmooth contact geometries for which neither normals nor gap func-
tions can be de®ned. Such situations arise in many areas of application and are exempli®ed by granular
¯ows and by brittle solids undergoing fragmentation. Dynamic fragmentation often results in the formation
of large numbers of fragments which undergo complex collision sequences before they eventually scatter
[10,36]. During the initial stages of fragmentation, the corners of many angular fragments come together at
a point, Fig. 1, which precludes the de®nition of a proper gap function as a means of detecting ± and
constraining ± the interpenetration of the fragments. In addition, because of the nonsmooth character of
the fragments, normals cannot be uniquely de®ned in the contact region. Because fragments are tightly
packed initially, contact situations such as shown in Fig. 1 arise which involve potential collisions between a
large number of bodies. A robust and systematic procedure is therefore required in order to ascertain the
precise sequence of collisions undergone by the bodies. We refer to contact processes such as described,
involving the simultaneous interaction between many angular bodies, as nonsmooth contact.

Most contact algorithms proposed to date envision two smooth bodies in contact and use a gap function
to constrain or penalize interpenetration (see, e.g., Refs. [4,12,5,2,18,33,34,42,17,43,30,44,45,55,26±
28,31,40,22,11,53,39,52,49,32,48,59,60,65,66,62,56,61,57,64,58,63]). These approaches are not applicable to
the analysis of nonsmooth contact. We show in the sequel that, once equipped with the right mathematical
tools, it is indeed possible ± and straightforward ± to formulate powerful nonsmooth contact algorithms.
The appropriate mathematical framework is furnished by nonsmooth analysis (see Ref. [14]), which provides
a general characterization of the contact forces arising in nonsmooth contact problems; and the analytical
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tools required for formulating and effectively treating time-discretized approximations. Similar tools have
recently been applied by Schuricht [67,68] to the analysis of elastic rods in obstacle problems.

The resulting algorithms bear a noteworthy resemblance to those which are suggested by the mathe-
matical theory of plasticity (see, e.g., Ref. [35,37,41]), specially as regards the use of closest-point projections,
an analogy which has been noted by Laursen and Govindjee [69]. However, it should be noted that the
admissible sets which arise in contact problems are generally nonconvex, which precludes the direct ap-
plication of convex analysis.

The organization of the paper is as follows. In Section 2 we brie¯y review the salient aspects of non-
smooth analysis which are relevant to contact. Because in this paper we are speci®cally interested in the
®nite element analysis of nonsmooth contact, we con®ne our review to the ®nite dimensional case. A
parallel development of nonsmooth contact in a functional setting may be found elsewhere [23]. In Section
3, a theory of nonsmooth contact algorithms is developed. The theory applies to two and three dimensions
and to static and dynamic problems. Finally, in Section 4 the robustness and versatility of the algorithms is
demonstrated with the aid of selected examples.

2. Finite-dimensional nonsmooth analysis

Je me d�etourne avec effroi et horreur de cette plaie lamentable des fonctions qui n'ont pas de d�eriv�ees.
Hermite in a letter to Stieltjes (cf. Ref. [14], comments on Chapter 2).

We begin by reviewing a few basic concepts of nonsmooth analysis used in subsequent derivations. A
complete account on nonsmooth analysis may be found in the monograph [14]. In essence, nonsmooth
analysis deals with physical objects and functions for which strict di�erentiability may not be postulated. In
particular, one of the goals of nonsmooth analysis is to develop a collection of tools enabling the study of
di�erential properties of nondi�erentiable functions.

Let X � Rn equipped with the euclidean norm k � k. We identify the dual space X � with Rn itself, and
denote the duality pairing h�; �i. Physically, X is to be regarded as the space of positions and velocities,
whereas X � is the space of forces. The duality pairing hf ; vi, v 2 X , f 2 X �, is then the power developed as a
point moves with velocity v under the action of force f . Throughout this section, unless otherwise stated a
function f �x� will be understood to be de®ned over X and to take values over the real line R.

Let Y be a subset of X. A function f is said to be Lipschitz of rank K over Y if

jf �y� ÿ f �x�j6Kkyÿ xk �2:1�
for all points x, y in Y. A Lipschitz function near a point x need not be differentiable at that point.
However, in ®nite dimensions, Rademacher's Theorem states that a function which is Lipschitz in an open
subset of Rn is differentiable almost everywhere (in the sense of Lebesgue measure) on that subset.

Fig. 1. Examples of nonsmooth contact. (a) Con¯uence of several angular solids at a point; (b) two overlapping angular fragments.
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Let f be Lipschitz near a point x and let v be a vector in X. The generalized directional derivative of f at x
in the direction v is

f ��x; v� � lim sup
y!x;t!0�

f �y� tv� ÿ f �y�
t

; �2:2�

where y 2 X and t is a positive scalar. This de®nition generalizes the conventional concept of directional
derivative in that it does not presuppose the existence of any limits, as it involves the upper limit only, and
the base point y is allowed to vary.

The generalized differential (aka gradient) of a Lipschitz function f at x is the subset of X � given by

of �x� � ff 2 X � j f ��x; v�P hf ; vi; for all v 2 Xg: �2:3�
The generalized directional derivative is recovered from the generalized gradient as

f ��x; v� � maxfhf ; vi j f 2 of �x�g: �2:4�
The generalized gradient reduces to the ordinary derivative at points where the function is continuously
di�erentiable. It also reduces to the subdi�erential in the case of convex functions.

A simple example of application of the above concepts is the absolute value function f �x� � jxj in X � R.
This function is not differentiable at the origin in the ordinary sense. However, a straightforward calcu-
lation gives f ��0; v� � jvj and of �0� � �ÿ1; 1�. Thus, both the generalized directional derivative and the
generalized gradient are de®ned at the origin.

Generalized directional derivatives and gradients provide a means of characterizing local minima of
nonsmooth functions. Let f be a Lipschitz function. The notion of a local minimum of f is de®ned in the
usual way. The following proposition provides a condition that minima must satisfy in terms of generalized
gradients; the proof proceeds in a way parallel to the proof in smooth calculus and may be found in Ref.
[14, p. 38].

Proposition 2.1. Let f be Lipschitz. If x is a local minimum of f, then

0 2 of �x�: �2:5�
There are a number of connections between nonsmooth analysis and geometry which will prove useful in

contact applications. We begin by considering a nonempty subset C � X and de®ning the distance function
as

dC�x� � inffkxÿ yk j y 2 Cg: �2:6�
This function is globally Lipschitz of rank 1 but not di�erentiable in the classical sense. The distance
function dC�x� provides a useful device for characterizing certain aspects of the geometry of C. For in-
stance, the tangent cone TC�x� to C at x is the set

TC�x� � fv 2 X j d�C�x; v� � 0g: �2:7�
The normal cone NC�x� to C at x is de®ned by polarity as

NC�x� � ff 2 X � j hf ; vi6 0; for all v 2 TC�x�g: �2:8�
Fig. 2 gives an example of a tangent and a normal cone at a convex point. For us, we will also need to
consider nonconvex points as well; examples of tangent and normal cones in this case are depicted in Fig. 3.
We refer to Ref. [14] for the techniques for computing these (the de®nition as given is not always the most
convenient way). Evidently, if x is in the interior of C then TC�x� � X and NC�x� � f0g. Furthermore, if C is
closed and x is a regular (i.e., smooth) point of oC then TC�x� is the interior tangent halfspace to C at x and
NC�x� is the outward normal ray.

Clarke [14] has shown how generalized gradients and the related concepts outlined above can be ex-
tended to functions which are not locally Lipschitz and take values in the extended real line R [ f�1g. A
detailed discussion of this extension is beyond the scope of this brief account. However, a particular class of
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such extended functions, the so called indicator functions, merits discussions as it will play a central role in
the characterization of contact forces in nonsmooth problems.

The indicator of a set C in X is the extended-valued function:

IC�x� � 0 if x 2 C;
1 otherwise:

�
�2:9�

Let x 2 C. Then it follows that

oIC�x� � NC�x�; x 2 C; �2:10�
i.e., the generalized di�erential of the indicator function at x 2 C coincides with the normal cone at x.

Fig. 3. Examples of tangent and normal cones for some smooth and nonsmooth geometries.

Fig. 2. The tangent and normal cones.
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The set identity (2.10) establishes an important connection between generalized gradients and geometry.
Another such connection may be e�ected by introducing the concept of closest point projection. In for-
mulating time-discretization algorithms for contact, the closest point projection provides the canonical
means for returning deformed con®gurations to the admissible set.

Begin by de®ning the resolvent of oIC as the set-valued mapping

RoIC � �I � oIC�ÿ1
: �2:11�

Thus, one has that x 2 RoIC �y� i� y 2 x� oIC�x�. Resolvents play an important role in the approximation
theory of nonlinear semigroups of operators (e.g., Refs. [24,25,15,9,16,8]) and, in particular, in the
mathematical theory of plasticity (see, e.g., Ref. [35]).

The resolvent of an operator is simply the mapping resulting from an application of the backward Euler
algorithm to the equation of evolution de®ned by the operator. A central result for dissipative systems,
which are characterized by operators which are maximal monotone [8], is that the resolvent mapping is
contractive and, consequently, the backward Euler algorithm is unconditionally stable. For a convex set C
the operator oIC is indeed maximal monotone [8]. For instance, a consequence of this fact is that the closest
point return mapping stress update algorithm for ideal plasticity is unconditionally stable [35,37,41].

Now let C be a set in X and y be a point in X. The closest-point projection of y onto C is the set

PC�y� � fx 2 clC j dC�y� � kxÿ ykg �2:12�

It follows from the de®nition that P 2
C � PC and, therefore, PC does indeed de®ne a nonlinear projection from

X onto the closure of C. Evidently, if C is closed then PC�y� reduces to the singleton fyg iff y 2 C. For a
convex set C, the corresponding closest-point projection PC is uniquely de®ned and maps X onto C.
However, PC is generally set-valued for arbitrary nonconvex sets.

It is a well-known fact that the resolvent of the subgradient of the indicator function of a convex set is
the closet-point projection onto that set [47,35] (see Fig. 4). For general sets, a similar connection is es-
tablished by the following proposition.

Proposition 2.2. Let C be a nonempty subset of X. Then

RoIC � PC: �2:13�

Proof. Let y 2 X . Then x 2 PC�y� i� it is a minimum of the extended function f �x� � kxÿ yk � IC�x�,
where the second term in e�ect restricts x to C. By Proposition 2.1, if x is a local minimum of f, then
0 2 of �x� � �xÿ y�=kxÿ yk � oIC�x�. Since by (2.10) oIC�x� is a cone, this holds iff yÿ x 2 oIC�x�. �

Fig. 4. The projection of a point onto a set near a convex point.
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3. Nonsmooth contact algorithms

Next, we turn to the application of the above analytical tools to the problem of nonsmooth contact. Our
main focus is the development of nonsmooth contact algorithms in a ®nite element context and, conse-
quently, we con®ne our attention to the ®nite-dimensional case. A parallel development of a theory of
nonsmooth contact in a functional setting may be found elsewhere [23].

We shall be concerned with the motions of a deformable solid occupying a domain B0 � Rd in its ref-
erence con®guration. The deformations of interest are described by deformation mappings
uh : B0h � �0; T � ! Rd subordinate to a ®nite element discretization of B0. Here �0; T � is the time duration of
the motion. For a ®xed t 2 �0; T �, the deformation mappings uh��; t� de®ne a ®nite-dimensional space Xh. By
a slight abuse of notation, we shall variously take uh to denote the discretized deformation ®eld or the array
of nodal coordinates in the deformed con®guration. For simplicity, we shall assume the solid to be elastic.
Extensions to inelasticity may be e�ected simply by the introduction of incremental energy densities such as
described in Ref. [46].

3.1. The unconstrained case

In the absence of contact constraints, the action functional for the solid is of the form

I �uh� �
Z T

0

1

2
_uT

h Mh _uh

�
ÿ /�uh� � f ext � uh

�
dt �3:1�

where Mh is the mass matrix of the solid, /�uh� denotes its strain energy and f ext�t� are the externally
applied forces. The equations of motion of the spatially discretized solid follow by requiring that I �uh� be
stationary, with the result

Mh �uh � f int�uh� � f ext �3:2�
where

f int � r/�uh� �3:3�
are the internal forces. Eq. (3.2), in conjunction with initial conditions of the form

uh� �t�0 � uh0; �3:4�

_uh

h i
t�0
� _uh0; �3:5�

de®nes an initial value problem to be solved for uh.

3.2. Time discretization ± unconstrained case

We shall envision an incremental solution procedure whereby uh is approximated at discrete times
tn � nDt. For de®niteness, we speci®cally consider time-discretization algorithms belonging to Newmark's
family [6,21]. Other time-discretization algorithms may be treated similarly. The time-discretized equations
of motion are, therefore, of the form

un�1 � un � Dt _un � Dt2 �1=2
h

ÿ b��un � b�un�1

i
; �3:6�

_un�1 � _un � Dt �1
h
ÿ c��un � c�un�1

i
; �3:7�

Mh �un�1 � f int�un�1� � f ext
n�1; �3:8�

which de®nes a system of nonlinear equations to be solved for un�1, _un�1 and �un�1.
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To complete the speci®cation of our contact algorithm, we shall ®rst develop some geometric and an-
alytic tools.

3.3. The admissible set

Our aim now is to extend the above solution procedure to nonsmooth contact problems. The notion of
an admissible set of deformations will play a central role to that effect. The admissible set Ch � Xh is simply
the set of all globally invertible deformation mappings in Xh. Physically, uh 2 Ch iff the deformation
mapping uh does not entail interpenetration of matter, Fig. 5.

Consider, as an elementary example, the case of two point masses undergoing rectilinear motion, Fig. 6.
Let the position of the masses be x1 and x2 and assume that the trailing particle cannot overtake the leading
particle. The con®guration space of this system is then X � R2 and consists of all pairs �x1; x2�, while the
admissible set C is simply the half-plane x2 P x1, Fig. 6.

A second elementary but particularly enlightening example is furnished by a particle in a rigid box,
Fig. 7. In this case, the con®guration space is also X � R2 and the admissible set C is the box itself. This
example illustrates an important point, namely, that the admissible set need not be convex. Indeed, for the
geometry depicted in Fig. 7, it is clear that while con®gurations xA and xB are both admissible, certain
convex combinations �1ÿ k�xA � kxB fall outside the containing box and are therefore not admissible. The
example of a particle in a box also serves to illustrate the lack of smoothness resulting from the presence of
corners. Other analytically tractable examples may be found in Ref. [23].

Next we turn to the de®nition of the admissible set Ch for spatially discretized deformation mappings.

Fig. 5. De®nition of the set C of admissible deformations. (a) Example of an admissible deformation not entailing interpenetration of

matter. (b) Example of a deformation which is not admissible due to penetration between two bodies. (c) Example of a deformation

which fails to be admissible due to interpenetration of two parts of the same body.
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The two dimensional case. We start by considering the case of two-dimensional bodies. The boundary of
a two-dimensional body of ®nite perimeter may be decomposed into a collection of closed loops [20]. Each
of these loops constitutes a one-dimensional manifold without boundary and the collection of all loops can
be oriented consistently so as to unambiguously de®ne the interior and the exterior of each body [20]. We
conventionally take the outer loop of each body to be oriented counterclockwise, and the inner loops
clockwise, so that the interior of the body is to the left of the loops. Upon spatial discretization, the loops
comprising the boundary oBh of the deformed con®guration Bh are themselves discretized into oriented
closed segments C. These segments de®ne a triangulation Sh of oBh.

Evidently, a necessary and su�cient condition for the interpenetration of matter to occur is that the
interior of two deformed boundary segments intersect, Fig. 8. This leads to the following de®nition of the
admissible set of deformations:

Ch � fuh 2 Xh j Int�C1� \ Int�C2� �£; for all C1;C2 2Sh;C1 6� C2g; �3:9�

where Int�C� is the one-dimensional interior of segment C, i. e., the open segment with the end-points
excluded. Note that so far we have succeeded at avoiding the use of normals and gap functions.

An analytical de®nition of Ch which preserves this situation is the following. For simplicity, we consider
the case of linear segments. Let the index a label pairs of distinct segments in Sh. Thus, if card�Sh� is the
number of boundary segments, then N � card�Sh��card�Sh� ÿ 1�=2 is the number of such pairs. For each

Fig. 6. The admissible set for the elementary example of two particles undergoing rectilinear motion, with the trailing particle unable

to overtake the leading particle.

Fig. 7. The motion of a particle in a rigid box, illustrating the lack of convexity and smoothness of contact problems in the presence of

corners.
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intersecting pair a we de®ne a constraint function ga as follows. We recall that all boundary pairs are
oriented. This enables the determination of an area Aa which is negative when interpenetration takes place,
as shown in Fig. 8.

Conversely, the constraint that Aa P 0 excludes the possibility of interpenetration of the pair of segments
a. A convenient choice of constraint function is ga / Aa. As stated, ga is a rational function of the coor-
dinates of the end points of the segments. However, as discussed in Appendix A, the constraint condition
can be manipulated algebraically and recast in a polynomial form, Eq. (A.2).

In terms of these constraint functions, the admissible set can now be de®ned as:

Ch � fuh 2 Xh j ga�uh�P 0; a � 1; . . . ;Ng �3:10�

Again we emphasize that neither normals nor gap functions are used in the de®nition of Ch. In particular,
the de®nition applies to such nonsmooth contact situations as depicted in Fig. 1, as required.

The three dimensional case. The three-dimensional case may be treated similarly. The boundary of a
three-dimensional body of ®nite surface area may be decomposed into a collection of shells [20]. Each of
these shells constitutes a two-dimensional manifold without boundary and the collection of all shells can be
oriented consistently so as to unambiguously de®ne the interior and the exterior of each body [20], as in
Fig. 9. Upon spatial discretization, the shells comprising oBh are themselves discretized into oriented closed
faces C. These faces de®ne a triangulation Sh of oBh.

Interpenetration occurs i� the interior of two deformed boundary faces intersect, as in Fig. 9. This leads
to the same de®nition (3.9) of the admissible set of deformations as in the two-dimensional case, again

Fig. 9. Constraints associated with the intersection of tetrahedra in space.

Fig. 8. Analytical formulation of nonsmooth contact constraints.
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without recourse to normals or gap functions. In this context, Int�C� is to be interpreted as the two-di-
mensional interior of face C, i.e., the open face with its boundary segments excluded.

In the simple case of planar faces, an analytical de®nition of Ch may be obtained as follows. Let the index
a now label pairs of distinct faces in Sh. For each intersecting pair a we de®ne a constraint function ga as
follows. Using the face orientation, we identify a volume Va which is negative when interpenetration takes
place, and reduces to zero when interpenetration is removed, as in Fig. 9. A convenient choice of constraint
function is, therefore, ga / Va. As in the two-dimensional case, ga can be simpli®ed and put into polynomial
form, see Section A.2.

In terms of these constraint functions, the admissible set can now be de®ned in the form (3.10). Again we
stress that neither normals nor gap functions are used in the de®nition of Ch.

We close this section by noting that Ch is invariant under the action of translations and rotations. Thus,
if the deformation mapping uh 2 Ch, i.e., if uh is globally invertible, then it is evident that the deformation
mappings uh � c and Ruh are also globally invertible for all translations c 2 Rd and all rotations R 2 SO�d�,
and, consequently, they are in Ch. These invariance properties of Ch are born out by the analytical para-
metrization (3.10). Indeed, the constraint functions ga represent interpenetration areas (volumes) between
pairs of segments (faces) in two (three) dimensions and are therefore invariant with respect to superposed
translations and rotations.

3.4. The constrained case

Next we turn to the numerical treatment of nonsmooth contact problems. As is commonly done in so-
called barrier methods, the interpenetration constraint may be accounted for by adding the term ICh�uh� to
the energy of the solid, whereupon the action functional becomes

I�uh� �
Z T

0

1

2
_uT

h Mh _uh

�
ÿ /�uh� ÿ ICh

�uh� � f ext � uh

�
dt: �3:11�

Evidently, from de®nition (2.9) of the indicator function of a set it follows that the additional term in the
energy e�ectively bars the trajectories from exiting the admissible set Ch, i.e., from violating the inter-
penetration constraint.

The problem is now to determine the absolutely continuous trajectories uh�t� which render the action
stationary (cf. Ref. [14]). From the stationarity condition (2.5) it follows that the trajectories are weak
solutions of the equation

0 2Mh �uh � f int�uh� � oICh�uh� ÿ f ext: �3:12�

Eq. (3.12), in conjunction with initial conditions (3.5) and (3.6), de®nes an initial value problem to be solved
for uh. In Eq. (3.12), the term oICh�uh� amounts to the contact forces over con®guration uh.

It follows from the invariance properties of Ch that ICh , and by extension the action I, is itself invariant
under the action of translations and rotations. It therefore follows from Noether's theorem (see, e.g., Ref.
[29]) that the solutions of (3.12) conserve linear and angular momentum. Global energy conservation
follows likewise from the time independence or autonomous character of the lagrangian. Additionally,
since any admissible solution must necessarily be such that ICh�uh�t�� � 0, which corresponds to the fact
that the contact area does not store or dissipate energy, it follows that the volume energy is also conserved.

3.5. A class of nonsmooth contact algorithms

A class of time-stepping algorithms may now be obtained by treating (3.12) within the framework of the
Newmark family of algorithms de®ned in Eqs. (3.6)±(3.8). As in the case of plasticity (see, e.g., Refs.
[38,37,41]), the robustness of the algorithm requires a fully implicit treatment of the contact force system
oICh�uh�. By contrast, the remainder of the terms in (3.12) may be treated either implicitly or explicitly. In
view of this distinction, we split the accelerations into terms due to the internal and contact forces, with the
result

10 C. Kane et al. / Comput. Methods Appl. Mech. Engrg. 180 (1999) 1±26



�uh � �uint
h � �ucon

h ; �3:13�
where

�uint
h �Mÿ1

h �f ext ÿ f int�uh��; �3:14�
�ucon

h � ÿMÿ1
h oICh�uh�: �3:15�

A general class of implicit/explicit algorithms is obtained by setting:

un�1 � un � Dt _un � Dt2��1=2ÿ b��uint
n � b�uint

n�1� � �Dt2=2��ucon
n�1; �3:16�

_un�1 � _un � Dt ��1ÿ c��uint
n � c�uint

n�1� � Dt�ucon
n�1: �3:17�

The explicit/implicit member of the algorithm, i.e., that which is explicit in the internal forces and implicit in
the contact forces, corresponds to the choice b � 0. We shall refer to the remaining members as being
implicit/implicit.

The above relations may be simpli®ed by introducing the notation

u
pre
n�1 � un � Dt _un � �1=2ÿ b�Dt2 �uint

n ; �3:18�
whereupon (3.16) becomes

un�1 � u
pre
n�1 � bDt2 �uint

n�1 � �Dt2=2��ucon
n�1: �3:19�

Making use of the equation of motion (3.12), (3.19) may be recast in the form

0 2Mh�un�1 ÿ u
pre
n�1� � bDt2�f int�un�1� ÿ f ext

n�1� � �Dt2=2�oICh�un�1� �3:20�
which de®nes a system of nonlinear algebraic equations to be solved for un�1. Once this solution is e�ected,
the internal accelerations �uint

n�1 follow from (3.14) and the contact accelerations from (3.20), with the result

�ucon
n�1 �

2

Dt2
�un�1 ÿ u

pre
n�1� ÿ 2b�uint

n�1: �3:21�

Finally, the velocities are computed from (3.17), which completes an application of the algorithm.

3.6. Variational structure

The crux of the algorithm just described consists of the determination of un�1 from (3.20). The varia-
tional structure of this problem may be ascertained as follows. Begin by noting that (3.20) may be written in
the form

0 2 of �un�1� � oICh�un�1�; �3:22�
where

f �un�1� �
1

Dt2
�un�1 ÿ u

pre
n�1�Mh�un�1 ÿ u

pre
n�1� � 2b�/�un�1� ÿ f ext

n�1 � un�1�: �3:23�

In the explicit case, b � 0, and

f �un�1� �
1

Dt2
�un�1 ÿ u

pre
n�1�Mh�un�1 ÿ u

pre
n�1� � kun�1 ÿ u

pre
n�1k2

K ; �3:24�

where

kvkK �
1

Dt

��������������
vT Mhv

p
�3:25�

may be interpreted as a kinetic-energy norm.
In view of the generalized stationarity condition (2.5), it follows that the stable solutions of (3.24) satisfy

the minimization problem:
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min
un�12Xh

ff �un�1� � ICh�un�1�g �3:26�

which is equivalent to the constraint minimization problem:

min
un�12Ch

f �un�1� �3:27�

Adopting the algebraic representation (3.10) of Ch, problem (3.27) may be more explicitly formulated in the
form:

min
un�12Xh

f �un�1� �3:28�
subject to ga�un�1�P 0; a � 1; . . . ;N �3:29�

This is a standard nonlinear optimization problem, which may be solved by a variety of methods. One of
the most successful methods, which we shall follow, for solving nonlinearly constrained optimization
problems is the sequential quadratic programming (SQP) method. References for these methods are
[51,19,7]. The main idea is to model the nonlinear problem at a given approximate solution xk by a qua-
dratic programming subproblem, then to use the solution of this subproblem to construct a better ap-
proximation xk�1. Thus, by iterating, one obtains a sequence of approximations which converge to a
solution x�. The success of SQP depends on the existence of fast and accurate algorithms for solving
quadratic programs [19].

The objective function f is quadratic in the explicit case, Eq. (3.24), and the problem reduces to one of
quadratic programming. An essential part of the solution of Eqs. (3.28), (3.29) is the determination of the
active constraints. This determination in turn has the effect of resolving the precise sequence of collisions in
complex cases involving many fragments such as depicted in Fig. 1.

It should also be noted that, in the explicit case and provided that the mass matrix is diagonal, the global
optimization problem decomposes into uncoupled local problems, each involving a small number of degrees
of freedom Fig. 10. The local problems are set up by ®rst detecting all intersections between segments
(faces), an operation which can be carried out ef®ciently by recourse to quadtree (octree) searches. The
intersecting segments (faces) are then grouped in accordance to their respective adjancencies, with every
disjoint group de®ning a local problem. These local problems are then solved independently.

3.7. Geometrical structure

The algorithms just described can be given a revealing geometrical interpretation. In the particular case
of explicit integration, (3.20) reduces to

Fig. 10. Decomposition into local problems in the explicit case.
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0 2Mh�un�1 ÿ u
pre
n�1� � �Dt2=2�oICh�un�1�; �3:30�

which can be further simpli®ed by introducing the normalized variables

x � 2

Dt2
Mh

� �1=2

un�1; �3:31�

y � 2

Dt2
Mh

� �1=2

u
pre
n�1: �3:32�

Using this normalization and solving for x in (3.30) gives

x � �I � oICh�ÿ1y; �3:33�
which, in view of the relation between the resolvent of oICh and a closest point projection PCh established in
Proposition 2.2, may be recast in the revealing form

x 2 PCh y: �3:34�
Alternatively, undoing the normalization (3.31) and (3.32) gives the relation

un�1 2 PCh�upre
n�1�; �3:35�

where the closest point projection now is to be interpreted in the sense of the kinetic-energy norm (3.34).
Evidently, if u

pre
n�1 2 Ch, the closest point projection PCh returns un�1 � u

pre
n�1, as required. In view of de®-

nition (12), un�1 may also be characterized as the solution of the problem

min
un�12Ch

kun�1 ÿ u
pre
n�1k2

K �3:36�

which is in accordance with (3.27). See Fig. 11.

Remarks.

1. As we shall elaborate in Ref. [23], this algorithm can be written as a product (time splitting ) formula. As
we mentioned earlier, this procedure has been used in a number of algorithms in plasticity. Additional
references are [13,1]. In addition, these algorithms may be viewed in a variational manner, as in Ref. [54].

2. In the course of the algorithm, one may reach, accidentally, points outside the admissible set for which
there is no unique projection, but rather the projection is set valued. In these circumstances, the algo-
rithm makes a choice of projection. This is consistent with the sensitive nature of the dynamics with re-
spect to initial conditions.

Fig. 11. Predictor±corrector structure of contact algorithm: unconstrained predictor step followed by a projection onto the admissible

deformation set.
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3. In the course of the algorithm, one may encounter, in exceptional circumstances, a nonsmooth point
near which the admissible set is nonconvex. Some examples of this are shown in the ®gures in the ap-
pendix. In such situations, the next step of the algorithm is modi®ed slightly, as is discussed in Ref. [23].
The explicit algorithm is thus found to have a structure similar to that of the closest-point return

mapping algorithms of plasticity [37,41]. The predictor u
pre
n�1, which is computed without regard to contact,

will generally wander o� the admissible set Ch. This violation of the interpenetration constraint is remedied
by returning u

pre
n�1 to the closest point un�1 on Ch. It bears emphasis, however, that the closest-point pro-

jection onto a nonconvex set is set-valued in general and that, consequently, the solution deformation
mapping un�1 may be nonunique. This is in sharp contrast to closest-point return mapping algorithms of
plasticity, in which the closest-point projection is uniquely determined by virtue of the convexity of the
elastic domain.

The lack of uniqueness of the closest-point projection onto Ch may be illustrated by considering a sit-
uation in which u

pre
n�1 lies outside Ch and is equidistant from two possible admissible con®gurations, as in

Fig. 12. Evidently, either of the equidistant admissible con®gurations lies in the set PC�upre
n�1� and constitutes

a valid solution. One possible selection criterion is to choose one element of the set PC�upre
n�1� at random,

which confers a certain stochastic character to the solution. This stochasticity may not be entirely un-
physical, as it is well-known that reentrant corners tend to make the particle-in-a-box system ergodic, as in
[50]. In practical calculations, round-o� errors are likely to arbitrarily favor one of the possible solutions,
thus furnishing an ad hoc selection criterion, but one that is consistent with the inherent sharp divergence of
nearby trajectories.

The implicit algorithm is also amenable to an analogous geometrical interpretation. To this end, write
the stationarity condition (3.22) in the form:

ÿof �un�1� 2 oICh�un�1�: �3:37�
Geometrically, this condition implies that the energy surface

eh � fuh j f �uh� � f �un�1�g �3:38�
is tangent to Ch at un�1. This condition is illustrated in Fig. 13. It is also possible, though not essential, to
give the above construct a predictor/return-mapping intepretation. Let uunc

n�1 be the solution of the un-
constrained problem

min
un�12Xh

f �un�1� �3:39�

whose Euler±Lagrange equations are

0 2 of �un�1�: �3:40�

Fig. 12. Schematic of a nonuniqueness situation: the predictor con®guration is equidistant from two admissible con®gurations.
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In the explicit case one simply has uunc
n�1 � u

pre
n�1. Evidently, if uunc

n�1 2 Ch it follows that 0 2 oICh�uunc
n�1� and

(3.36) is trivially satis®ed. The return mapping in this case is simply un�1 � uunc
n�1. Assume, to the contrary,

that uunc
n�1 62 Ch. In this case, the return mapping uunc

n�1 ! un�1 follows from the tangency construction de-
scribed above, Fig. 13.

4. Numerical examples

In this section we collect the results of selected numerical tests which demonstrate the robustness and
versatility of the algorithms previously described. In all calculations, the bodies are modeled as ®nitely
deforming elastic materials obeying a Neo±Hookean constitutive law extended to the compressible range.
The assumed strain energy density has the form

W �F� � k0

2
�log J�2 ÿ l0 log J � l0

2
tr�C� �4:1�

where F � r0u is the deformation gradient; C � FT F is the right Cauchy±Green deformation tensor;
J � det�F � is the jacobian of the deformation; and k0 and l0 are material constants. The ®nite-element
implementation of this model accounts for full ®nite-deformation kinematics, which allows the bodies to
deform, translate and rotate freely. The particular choice of material constants used in calculations is:
k0 � 1:75� 1011, l0 � 0:801� 1011 and a referential mass density q0 � 103. All calculations are carried out
using the explicit algorithm, b � 0.

4.1. A four-square body system

Our ®rst example concerns the interaction of four elastic squares, as shown in Fig. 14. The undeformed
size of the squares is L0 � 1. The uppermost square is imparted an initial downward velocity V0 � 3� 103,
while the remaining three squares are initially at rest, Fig. 14(a). The squares are disposed such that the ®rst
few collisions involve grazing contacts at pairs of corners. This tests the ability of the formulation to ef-
fectively arbitrate nonsmooth contact situations. The ®rst such collision occurs at t � 6� 10ÿ5, Fig. 14(b),
and involves the two uppermost squares, which meet near a corner. As may be seen in the ®gure, which
shows the velocity ®eld, the incoming square imparts linear and angular momenta on the target square, and
itself takes on angular momenta. The angular momenta of the two squares are of opposing signs and cancel

Fig. 13. A possible de®nition of a return mapping in the implicit case: the unconstrained con®guration is returned to the point of

tangency between the admissible set and an isoenergy surface.
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each other. It is noteworthy that both linear and angular momenta were exactly preserved throughout the
calculation. The subsequent collisions are shown in Fig. 14(b) and (c).

A slow-motion detail of the last collision is shown in Fig. 15. The squares involved in the collision are
the two leftmost squares. The upper one is initially at rest. The second square strikes the target square near
one of its the corners, Fig. 15(b). Subsequently, that corner slides over the the side of the incoming square
until two corners meet. The sliding proceeds beyond this point with the roles of the squares reversed, Fig.
15(c), i.e., with one corner of the incoming square pressing on one side of the target. The ability of the
algorithm to resolve sequences of highly nonsmooth contact interactions such as described is particularly
noteworthy.

The issue of lack of uniqueness may also be illustrated by arranging the four-square system in
the symmetrical initial con®guration shown in Fig. 16(a). The ®gure also shows the initial velocity
®eld, which is designed so that upper-right and lower-left squares come into contact at a corner.
Additionally, the upper-right square strikes the remaining two squares. Interestingly, the upper-right and
lower-left squares push each other at the corner for a interval of time, Fig. 16(b) and (c). Eventually,
symmetry is broken and the upper-right square begins to slide on the right side of the lower-left square, Fig.
16(d).

A detail of the con®guration which follows the symmetry breaking is shown in Fig. 17. It bears emphasis
that the incoming square could have just as well slid on the upper side of the lower-left square, and the
choice of con®guration shown in Fig. 17 is arbitrary and probably determined by round-o�.

4.2. Scattering of densely packed circular disks and squares

The ability of the algorithm to resolve complex collision sequences is illustrated with the aid of two
examples: the scattering of densely packed disks initially at rest in a pool con®guration under the action of

Fig. 14. Dynamics of a four elastic-body system. (a) t � 0; (b) t � 6� 10ÿ5; (c) t � 62� 10ÿ5; (d) t � 1:48� 10ÿ3.
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an incoming disk; and the scattering of densely packed squares. The early stages of the dynamics of these
systems are shown in Figs. 18 and 19.

In the pool con®guration, shown in Fig. 18, the undeformed diameter of the disks is D0 � 1. The
incoming disk strikes at a speed V0 � ÿ1000i in the horizontal direction and is slightly o�set downward by
a distance of 0:1. The sides of the pool table are themselves ¯exible and, as may be seen, contain numer-
ous corners, some of which are struck by the disks during their motion. Conditions similar to those
encountered in this example are commonly encountered in two-dimensional simulations of granular
¯ows. It should be noted however that, even in extremely dense ¯ows, a simultaneous collision
between sixteen particles is indeed and exceedingly rare event. Despite the extreme character of the colli-
sion event simulated in the pool example, the contact algorithm successfully resolves the scattering of the
disks.

The simulation of the scattering of densely packed squares is even more challenging as it involves a
denser arrangements of bodies containing corners. In this calculation, the size of the squares is L0 � 1
and the upper-right square is imparted an initial velocity V0 � ÿ3000iÿ 3000j in the diagonal direction.
Conditions similar to those encountered in this example are encountered in explicit simulations of
fracture and fragmentation [10,36]. A particularly challenging aspect of these calculations concerns the
resolution of the complex collision sequence undergone by multiple fragments, initially meeting at a
point, as they scatter. The ability of the present algorithm to resolve these complex sequences is quite
remarkable.

It should be carefully noted that, due to the explicit character of the calculations and the use of a di-
agonal mass matrix, the contact events just described decouple into independent local contact problems
each involving but a few degrees of freedom, which considerably speeds-up the calculations.

Fig. 15. Four-square problem. Detail of a near corner-corner contact.
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4.3. Scattering of packed cubes

The contact interactions that are possible in three dimensions are considerably more complex than in
two dimensions. Indeed, two nonsmooth three-dimensional bodies may come in contact in several ways:
face on face; edge on edge; vertex on vertex; edge on face; vertex on face; vertex on edge; and so on. When

Fig. 17. Four-square problem. Instant at which the symmetry of the corner-corner contact is broken, demonstrating lack of

uniqueness of the solution.

Fig. 16. Four-square problem. Velocity ®elds.
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more than two bodies come into contact simultaneously, e.g., in the vicinity of a vertex, the number of
possible paths which may be followed by the system growths combinatorially. Under these conditions, the
staggering complexity of the dynamics de®es naive treatment, and the ability to systematically resolve the
precise sequence of contact interactions becomes critical. In the present approach, this task is facilitated by
the formulation of the contact problem as a nonlinear optimization problem, which reduces the resolution
of the collision sequence to the determination of active constraints.

A ®rst test which illustrates the ability of the present approach to deal with nonsmooth situations in three
dimensions concerns the collision of two cubes which come together symmetrically at one edge, Fig. 20. In
this calculation, the cubes have a size L0 � 5, their elastic moduli are E � 0:778� 105; m � 0:25, and the
mass density is q � 3690. The time step used in the calculations is Dt � 10ÿ4. The right incoming cube is
given an initial velocity v1 � ÿ0:3; v2 � ÿ0:3; v3 � 0. As may be seen from Fig. 20, which shows several
snapshots of the collision, the cubes deform elastically under the impact and interact closely for some time
before eventually separating. The example shown in Fig. 21 concerns a similar case in which a pair of cubes
come in contact at two vertices. The upper right incoming cube in the ®gure has a initial velocity of
v1 � ÿ0:3; v2 � ÿ0:3; v3 � ÿ0:3; and the target cube is supported so as to restrain its motion. In this ex-
ample, the incoming cube slides over the target vertex. The target cube undergoes large deformations
during the impact. The incoming cube is imparted an angular velocity and eventually separates from the
target cube along a much de¯ected trajectory, Fig. 21. It bears emphasis that the contact con®gurations in
these two examples are nonsmooth and that normals are unde®ned in both cases.

Fig. 18. Pool problem. Trajectories showing multiple collisions and scattering.
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A test problem which illustrates the ability of the nonsmooth contact algorithm to resolve complex
collision sequences between multiple bodies in three dimensions concerns the scattering of eight packed
cubes, Fig. 22(a). The cubes are of unit size and are initially disposed at a relative distance of 7� 10ÿ3. The
elastic constants employed in the analysis are: E � 0:778� 1011, m � 0:25, and the mass density is q � 3690.
The time step used in the calculations is Mt � 10ÿ7. The cube arrangement is disturbed by imparting an
initial velocity v1 � 30, v2 � 20, v3 � ÿ50, to one of the cubes. The incoming cube comes in contact with the

Fig. 19. Scattering of initially packed square bodies. Trajectories showing multiple collisions and scattering.
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other cubes and the ensemble undergoes a complex sequence of collisions before eventually scattering,
Fig. 22(a).

It should be noted that initially eight di�erent nonmooth bodies are disposed at close range of each other
in the vicinity of the common vertex. Evidently, methods based on the use of normals and gap functions are
not applicable to such a case. By contrast, the ability of the present method to resolve the complex tra-
jectory of the cubes is remarkable.

5. Summary and conclusions

We have applied nonsmooth analysis (see Ref. [14]) to the development of robust contact algorithms
capable of dealing with complex contact situations involving several bodies with corners. We have spe-
ci®cally addressed contact geometries for which neither normals nor gap functions may be defined, which
precludes the application of most contact algorithms proposed to date. Such situations arise in applications
such as: fragmentation, where angular fragments undergo complex collision sequences before they scatter;
granular ¯ows, and others.

The resulting algorithms bear a noteworthy resemblance to those which are suggested by the mathe-
matical theory of plasticity (see, e.g., Refs. [35,37,41]), specially as regards the use of closest-point projec-
tions. However, it should be noted that the admissible sets which arise in contact problems are generally
nonconvex, which precludes the direct application of convex analysis.

The theory accords all bodies an equal role without di�erentiating between master and slave bodies. This
is particularly advantageous in situations such that several angular bodies meet near a point, as for these
con®gurations it is not generally possible to classify the bodies as master or slave.

Fig. 20. Two cubes colliding at two edges.
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In order to reap the full bene®t of nonsmooth analysis, including the robustness of closest-point pro-
jections, it is necessary to treat the contact interactions in a fully implicit manner. The remaining force
terms may be treated either implicitly or explicitly, leading to implicit/implicit and explicit/implicit algo-
rithms. In the case of the explicit/implicit algorithm, the use of a diagonal mass matrix results in the de-
coupling of the global contact problem into independent local contact problems each typically involving a
few degrees of freedom. These local problems can ef®ciently be set up using quadtree/octree searches. The

Fig. 21. Two cubes colliding at two vertices.

Fig. 22. Three-dimensional simulation of colliding cubes. Tetrahedral elements are used in the calculations. The mesh lines shown in

the ®gure are for visualisation purposes only.
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local character of the contact algorithm in the context of explicit dynamics considerably speeds-up the
calculations.

We have demonstrated the robustness and versatility of the nonsmooth contact algorithms developed in
this paper with the aid of selected two and three-dimensional applications, including the scattering of
densely packed disks, squares and cubes.
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Appendix A. Formulation of the contact constraints

In this appendix we collect implementation details pertaining to the evaluation of the contact con-
straints. The boundaries of the solids are assumed to be triangulated and oriented so as to de®ne their
interior and exterior domains unambiguously. Each pair of simplices in the boundary triangulation de®nes
a ± possibly inactive ± constant constraint. Given a pair of boundary simplices, we wish to de®ne a simple
function g of the boundary node positions such that g P 0 when the simplices do not interpenetrate and
g < 0 otherwise. To this end, we differentiate explicitly between the two and three-dimensional cases.

A.1. The two-dimensional case

The geometry of an intersecting pair of boundary segments is shown in Fig. 23. By convention, all
boundaries are oriented counterclockwise so that the interior of a body is on the left of its boundary. The
ends of the segments and their point of intersection x0 de®ne two triangles: one, fx1; x0; x4g, is oriented
counterclockwise and encloses a positive area A of interpenetration; the remaining triangle, fx3; x0; x2g, is
oriented clockwise and encloses an admissible negative area.

A ®rst choice of constraint function is, therefore,

A � �x31 � x34� � �x21 � x24�
�x34 � x21� � k ; �A:1�

where we write xij � xj ÿ xi, and k is the unit vector normal to the plane. It is evident from Eq. (A.1) that A
is a rational function of fx1; x2; x3; x4g. However, it is possible to reduce the constraint function to a

Fig. 23. Analytical formulation of nonsmooth contact constraints.
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polynomial form by noting that the denominator of (A.1) is necessarily positive. It therefore follows that
the numerator of Eq. (A.1) may alternatively be taken as constraint function, with the result:

g � �x31 � x34� � �x21 � x24� �A:2�
which is polynomial, as advertised. This algebraic simpli®cation reduces the two-dimensional contact
problem to a nonlinear optimization problem with polynomial constraints.

A.2. The three-dimensional case

The three-dimensional case amenable to a similar treatment. The geometry of an intersecting pair of
boundary facets is shown in Fig. 24. By convention, all boundary facets are oriented counterclockwise when
seen from the outside of the body, so that the interior of a body is below its boundary.

We consider a pair of triangles in space de®ned by vertices fx1; x2; x3g and fx4; x5; x6g, respectively. Let
A and B denote the two points of intersection between the triangles, which follow as;

A � x5 ÿ x15 � �x12 � x23�
x45 � �x12 � x23� x45; �A:3�

B � x6 ÿ x16 � �x12 � x23�
x46 � �x12 � x23� x46: �A:4�

Let v1 � x1 ÿ A and v2 � B ÿ x1, Fig. 24. De®ne the volume:

V � �v2 � v1� � x41: �A:5�
As in the two-dimensional case, the condition V > 0 precludes interpenetration and, therefore, V may be
taken as the constraint function g. In view of Eqs. (A.3) and (A.4), it is evident that V is a rational function
of fx1; x2; x3; x4; x5; x6g. However, the denominator of V is always positive, and the numerator of V, which
is polynomial, can alternatively be taken as constraint function. This reduces the three-dimensional contact
problem to a nonlinear optimization problem with polynomial constraints.
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