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Abstract

The purpose of this paper is to develop variational integrators for conserva-
tive mechanical systems that are symplectic, energy and momentum conserving.
To do this, a spacetime view of variational integrators is employed and time step
adaptation is used to impose the constraint of conservation of energy. Criteria
for the solvability of the time steps and some numerical examples are given.
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1 Introduction

The purpose of this paper is to develop variational integrators for conservative me-
chanical systems with adaptive time steps. The resulting algorithms are symplectic,
energy preserving and they also preserve the momentum maps (Noether quantities)
associated with symmetry groups.

An important idea for how to develop such integrators comes from the paper
of Marsden, Patrick, and Shkoller [1] in which the spacetime view is stressed. This
viewpoint is very important for two main reasons:

1. One must avoids conflicts with well know theorems (Ge and Marsden [2]),
which limit the possiblitity that constant time stepping algorithms be sym-
plectic, energy and momentum preserving.

2. To give meaning to the term symplectic in the context of adaptive time stepping
algorithms since the algorithm is not given by a single mapping associated with
a constant time step.

The basic algorithm itself consists of two parts. First, to update positions,
the variational approach of Veselov [3], [4], and Moser and Veselov [5] is adopted;
these ideas were implemented numerically in Wendlandt and Marsden [6]. Second,
to compute the time steps themselves, energy preservation is imposed. Roughly
speaking, we make use of the fact that time and energy are conjugate variables.

In this paper, our main purpose is the following:

1. To set up the basic algorithm that implements these symplectic-energy-momentum
(SEM) integrators

2. To make precise the sense in which the algorithms are symplectic

3. To investigate the solvability conditions for the time step.

4. To give some simple numerical examples.

With regard to solving for the time step, we shall indicate how the solvability
conditions are closely related to the positivity of the numerically computed kinetic
energy. In particular, when one is close to a location with zero velocity (roughly
speaking, “turning points”), our solvability criterion and examples indicate that one
should move through such points using a criterion other than energy preservation.
Numerically, this causes a slight adjustment to the energy. How one should best
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treat these points requires further investigation. It is not the purpose of this paper

to give any extensive numerical tests or implementations of these methods. This is a
nontrivial task, but clearly needs to be done, and is planned for other publications.

In future papers we will also investigate the use of these ideas in our collision
algorithms[7] and how one can incorporate dissipative effects.

2 Brief Review of Variational Integrators

In this section, we recall some of the essential features of variational integrators that
are needed in this paper. For additional details, see Wendlandt and Marsden [6] and
Marsden, Patrick, and Shkoller [1].

Limitations on Mechanical Integrators. There has been a large literature
developing on the use of energy-momentum and symplectic-momentum integrators.
We shall not attempt to survey this all here, but rather refer the reader to some of the
recent literature, such as the collection of papers in Marsden, Patrick, and Shadwick
[8] and Sanz-Serna and Calvo [9]. We do mention that for time stepping algorithms
with fixed time steps, the theorem of Ge and Marsden [2] has led to a general division
of algorithms into those that are energy-momentum preserving and those that are
symplectic-momentum preserving. One of our main points is that if one takes a
spacetime view of variational integrators, as is advocated in Marsden, Patrick and
Shkoller [1], then one can have all three of these properties. Papers typified by Simo
and Tarnow [10], Simo, Tarnow, and Wong [11] and Gonzalez [12] have focussed on
energy preserving algorithms, but they presumably fail (except, perhaps, in special
cases, such as integrable systems) to be symplectic. Other approaches based on
Hamilton’s principle are those of Shibberu[13] and Lewis[14]. See also Lee [15].

Accuracy of Solutions. We should, at the outset make another point clear. We
are not claiming anything about accuracy of individual trajectories. Indeed, it is
well known that structure preservation alone does not guarantee this. (See, e.g.,
Ortiz [16] and Simo and Gonzalez [17]. For systems with complicated, unstable,
or chaotic trajectories, it is not clear that accuracy of individual trajectories is
the correct question to ask. Rather one should probably concentrate on statistical
properties of solutions. These are deep questions that we do not attempt to address
here, but one hopes that by preserving as much of the structure as possible, one is
closer to addressing such issues. In some cases the advantage of symplectic is clear;
for instance, the condition of being symplectic guarantees that the phase space
volume is preserved and this can be an obvious limitation on many integrators; even
after relatively short times, one can see phase space volume not preserved in many
integrators.

Some Common Integrators. In structural mechanics, the β = 0, γ = 1/2
member of the widely used Newmark family is a variational integrator (see, for
example, Simo, Tarnow, and Wong [11]) and therefore is symplectic and momentum
preserving. One can, in fact, the whole Newmark family of algorithms is variational
[18] Our methods can be used to make these integrators also preserve energy by
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using time adaptive stepping. We also mention that the popular Verlet methods and
shake algorithms are variational integrators (see [6] and [18] for further discussion
and references).

Dissipation and Constraints. While dissipation and forcing are of course very
important, as we have mentioned, we leave their discussion for future publications.
One possibility is that dissipative effects can be dealt with by means of product for-
mulas, as in Armero and Simo [19], [20], [21] for example. Another is to incorporate
the dissipative effects into the variational principle, as in [22] and [18].

Constraints are also very important for integrators. We also do not discuss these
in any detail in this paper. However, we do mention that variational integrators
handle constraints in a simple and efficient way.

Variational methods also generalize to pde’s using multisymplectic geometry
with the result being a class of multisymplectic momentum integrators. See Mars-
den, Patrick, and Shkoller [1] for details and numerical examples. This type of
approach should untimately be of use in elastodynamics as well as ocean dynamics,
for example.

Symmetry and Reduction. We should also mention that for mechanical systems
with symmetry, the investigation of discrete versions of reduction theory, such as
Euler–Poincaré reduction[23] are of current interest.[24], [25] We will not be making
use of this reduction theory in this paper, but it is related since our integrators are
intended to preserve symmetry. It would be of interest to develop time adapted
integrators in the sense of the present paper in the general context of discrete re-
duction.
The Discrete Variational Principle. Given a configuration space Q, a discrete
Lagrangian is a map

Ld : Q × Q → R.

In practice, Ld is obtained by approximating a given Lagrangian as we shall discuss
later, but regard Ld as given for the moment. The time step information will be
contained in Ld and we regard Ld as a function of two nearby points (qk, qk+1).

For a positive integer N , the action sum is the map Sd : QN+1 → R defined
by

Sd =
N−1
∑

k=0

Ld (qk, qk+1) ,

where qk ∈ Q and k is a nonnegative integer. The action sum is the discrete analog
of the action integral in mechanics.

The discrete variational principle states that the evolution equations ex-
tremize the action sum given fixed end points, q0 and qN . Extremizing Sd over
q1, · · · , qN−1 leads to the discrete Euler-Lagrange (DEL) equations:

D1Ld (qk, qk+1) + D2Ld (qk−1, qk) = 0

for all k = 1, · · · , N−1. We can write this equation in terms of a discrete algorithm

Φ : Q × Q → Q × Q
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defined implicitly by

D1Ld ◦ Φ + D2Ld = 0,

i.e.,

Φ (qk−1, qk) = (qk, qk+1) .

If, for each q ∈ Q,D1Ld(q, q) : TqQ → T ∗

q Q is invertible, then D1Ld : Q × Q →
T ∗Q is locally invertible and so the algorithm Φ, which flows the system forward in
discrete time, is well defined for small time steps.

Variational Algorithms are Symplectic. To explain the sense in which the
algorithm is symplectic, first define the fiber derivative (or the discrete Legendre
transform) by

FLd : Q × Q → T ∗Q; (q0, q1) 7→ (q0,D1Ld (q0, q1))

and define the 2-form ω on Q × Q by pulling back the canonical 2-form ΩCAN =
dqi ∧ dpi from T ∗Q to Q × Q:

ω = FL∗

d (ΩCAN) .

The fiber derivative is analogous to the standard Legendre transform.
The coordinate expression for ω is:

ω =
∂2Ld

∂qi
k∂qj

k+1

(qk, qk+1) dqi
k ∧ dqj

k+1
.

A fundamental fact is that

The algorithm Φ exactly preserves the symplectic form ω.

One proof of this is to simply verify it with a straightforward calculation—see
Wendlandt and Marsden [6] for the details. Another is to derive the same conclusion
directly from the variational structure, as is done in Marsden, Patrick, and Shkoller
[1].

The Algorithm Preserves Momentum. Recall that Noether’s theorem states
that a continuous symmetry of the Lagrangian leads to conserved quantities, as with
linear and angular momentum. A nice way to derive these conservation laws (the
way Noether did it) is to use the invariance of the variational principle.

Assume that the discrete Lagrangian is invariant under the action of a Lie group
G on Q, and let ξ ∈ g, the Lie algebra of G. By analogy with the continuous case,
define the discrete momentum map, Jd : Q × Q → g∗ by

〈Jd(qk, qk+1), ξ〉 := 〈D1Ld(qk, qk+1), ξQ(qk)〉 ,

A second fundamental fact is that

The algorithm Φ exactly preserves the momentum map.
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Construction of Mechanical Integrators. Assume we have a mechanical system
with a constraint manifold, Q ⊂ V , where V is a real finite dimensional vector space,
and that we have an unconstrained Lagrangian, L : TV → R which, by restriction
of L to TQ, defines a constrained Lagrangian , Lc : TQ → R. Roughly speaking,
V is a containing vector space in which the computer arithmetic will take place. In
particular, coordinate charts on Q are not chosen for this purpose. In fact, apart
from the use of the containing vector space V , the algorithms developed here are
independent of the use of coordinates on Q.

We also assume that we have a vector valued constraint function , g : V → R
k,

such that our constraint manifold is given by g−1(0) = Q ⊂ V , with 0 a regular
value of g. The dimension of V is denoted n, and therefore, the dimension of Q is
m = n − k.

Define a discrete, unconstrained Lagrangian , Ld : V × V → R in some
consistent manner, such as

Ld(x, y) = L

(

γx + (1 − γ)y,
y − x

h

)

, (2.1)

where h ∈ R+ is the time step and 0 ≤ γ ≤ 1 is an interpolation parameter.
The corresponding discrete Euler-Lagrange equations give an algorithm closely

related to (in a sense made precise in [18]) the Newmark algorithm for the stan-
dard choice of Lagrangian given by kinetic minus potential energy. We get the
central difference method for γ = 1/2 and we get the shake algorithm with γ = 1
(the Verlet algorithm is the unconstrained version of the shake algorithm). We also
note that the Moser-Veselov discrete Lagrangian for the rigid body is constructed
using either γ = 1 or γ = 0 (see Marsden, Pekarsky, and Shkoller [24] for details).

We remark in passing that other choices for discrete Lagrangian are also possible,
such as

Ld(x, y) = σL

(

γ1x + (1 − γ1)y,
y − x

h

)

+ (1 − σ)L

(

γ2x + (1 − γ2)y,
y − x

h

)

,

where σ, λ1 and λ2 are between 0 and 1. These other choices, which give algorithms
such as the midpoint rule, are not investigated here (see [18]). Alternative choices,
of which this is an example, as well as issues of local truncation error and accuracy
are investigated in West [26].

The unconstrained action sum is defined by

Sd =

N−1
∑

k=0

Ld (xk, xk+1) .

Extremize Sd : V N+1 → R subject to the constraint that xk ∈ Q ⊂ V for k =
1, · · · , N − 1, i.e., solve

D1Ld (xk, xk+1) + D2Ld (xk−1, xk) + λT
k Dg (xk) = 0

(no sum on k) with g (xk) = 0 for k = 1, · · · , N − 1. Here, the λk are Lagrange

multipliers, chosen to enforce the constraints.

6



Thus, the algorithm is defined by starting with xk and xk−1 in Q ⊂ V , i.e.,

g (xk) = 0 and g (xk−1) = 0, and solving

D1Ld (xk, xk+1) + D2Ld (xk−1, xk) + λT
k Dg (xk) = 0

subject to g (xk+1) = 0, for xk+1 and λk. In terms of the unconstrained Lagrangian,
the algorithm reads as follows:

1

h

[

∂L

∂ẋ

(

γxk−1 + (1 − γ)xk,
xk − xk−1

h

)

− ∂L

∂ẋ

(

γxk + (1 − γ)xk+1,
xk+1 − xk

h

)]

+ (1 − γ)
∂L

∂x

(

γxk−1 + (1 − γ)xk,
xk − xk−1

h

)

+ γ
∂L

∂x

(

γxk + (1 − γ)xk+1,
xk+1 − xk

h

)

+ DTg (xk) λk = 0

together with g (xk+1) = 0.

Example. If the continuous Lagrangian is

L(q, q̇) =
1

2
q̇TMq̇ − V (q)

with constraint g(q) = 0, where M is a constant mass matrix, and V is the potential
energy, then the DEL equations are

M

(

xk+1 − 2xk + xk−1

h2

)

+ (1 − γ)
∂V

∂q
(γxk−1 + (1 − γ)xk)

+ γ
∂V

∂q
(γxk + (1 − γ)xk+1)

− DTg (xk) λk = 0

with g (xk+1) = 0.
Wendlandt and Marsden [6] show that the algorithm defined using Lagrange

multipliers coincides with that defined intrinsically using the constrained discrete

Lagrangian on Q × Q, so it is symplectic and momentum preserving.

An Intrinsic Variational Viewpoint. Recall that given a Lagrangian function
L : TQ → R, we construct the corresponding action functional S on C2 curves
q(t) by (using coordinate notation)

S
(

q(·)
)

≡
∫ b

a

L

(

qi(t),
dqi

dt
(t)

)

dt. (2.2)

The action functional depends on a and b, but this is not explicit in the notation.
Hamilton’s principle seeks the curves q(t) for which the functional S is station-
ary under variations of qi(t) with fixed endpoints. It will be useful to recall this
calculation; namely, we seek curves q(t) which satisfy

dS
(

q(t)
)

· δq(t) ≡ d

dε

∣

∣

∣

∣

ε=0

S
(

q(t) + εδq(t)
)

= 0 (2.3)
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for all δq(t) with δq(a) = δq(b) = 0. Abbreviating qε ≡ q+εδq, and using integration
by parts, the calculation is

dS
(

q(t)
)

· δq(t) =
d

dε

∣

∣

∣

∣

ε=0

∫ b

a

L

(

qi
ε(t),

dqi
ε

dt
(t)

)

dt

=

∫ b

a

δqi

(

∂L

∂qi
− d

dt

∂L

∂q̇i

)

dt +
∂L

∂q̇i
δqi

∣

∣

∣

∣

b

a

. (2.4)

The last term in (2.4) vanishes since δq(a) = δq(b) = 0, so that the requirement
(2.3) for S to be stationary yields the Euler-Lagrange equations

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0. (2.5)

Notice that the boundary term in the first variation of the action is the canonical
one form piq̇

i. This is the starting point for the variational proof that the algorithm
is symplectic. The idea is to restrict S to the space of solutions and to use the
general identity d2S = 0 to derive the symplectic nature of flow of the Euler-
Lagrange equations. The point is that this type of derivation also is valid for the

discrete case, as is shown in Marsden, Patrick, and Shkoller [1].
We also mention that one can similarly give a derivation of the conservation of

momentum maps entirely based on the variational principle as well.
We end this section with one further important remark. Namely, one may think

that the discrete symplectic form and momentum map that are conserved by the
variational algorithm are somehow “concocted” to be conserved. This is not the
case. Indeed, one can, via the discrete Legendre transform, transfer the algorithm
to position-momentum space. Transferred to these variables, the algorithm will
preserve the standard symplectic form dqi ∧ dpi and the standard momentum map.
As M. West pointed out to us, to get a corresponding algorithm that is consistent
with the corresponding continuous Hamiltonian system on T ∗Q, and one that is also
in line with our discrete energy developed below, one should really use the map

(q0, q1) 7→ (q0,−hD1Ld (q0, q1)) .

where h is the time step, but this does not affect the results here.

3 Review of Energy and Symplecticity Conservation in

the Continuous Case

The main issue addressed in the following section is how we can achieve conservation
of energy using adaptive time steps. We shall see that apart from some exceptional
circumstances, which we can algorithmically identify, one can achieve this.

To address these issues, we first consider the continuous time case.

Conservation of Energy. We will first recall how conservation of energy is derived
directly from Hamilton’s principle in the case where L(q, q̇) is time independent.
This provides a clue about how one should proceed with the time adaptive steps.
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Assume that q(t) is a solution of the Euler-Lagrange equations. Let sε(t) be a
family of functions of t depending on the parameter ε and with s0(t) = t and with
sε(a) = a, sε(b) = b. Let

δs(t) =
d

dε
sε

∣

∣

∣

∣

ε=0

.

We consider the associated family of curves q(sε(t)) which has the variation

δq(t) = δs(t)q̇(t).

Hamilton’s principle
(

δ
∫

Ldt = 0
)

in this case gives us:

∫

∂L

∂q
δq +

∂L

∂q̇
˙(δq) =

∫
(

∂L

∂q
− d

dt

∂L

∂q̇

)

δq (3.1)

Using the special form of the variation, this becomes

∫

∂L

∂q
q̇δs −

(

d

dt

∂L

∂q̇

)

q̇δs dt = 0 (3.2)

Equation (3.2) gives:

∂L

∂q
q̇ − d

dt

∂L

∂q̇
q̇ = 0 =

dE

dt
(3.3)

where, as usual,

E =
∂L

∂q̇
q̇ − L(q, q̇) (3.4)

The point here is that we see a sense in which the Hamiltonian H arises naturally
when one considers variations of the curve q(t) that are given by time reparametriza-
tions.

Symplecticity in the Spacetime Sense. In Marsden, Patrick, and Shkoller
[1] it is shown how the variational principle naturally leads to boundary terms in
both the continuous and the discrete case that leads to a deeper understanding of
why the Euler-Lagrange and Hamilton equations themselves preserve the symplectic
structure, as well as their discrete counterparts. We shall make use of this type of
argument below in the discrete case. To help motivate the result, we make some
relevant remarks here.

Consider a (possibly time dependent) Hamiltonian H(q, p, t) in the canonically
conjugate variables qi, pi and introduce an extended Hamiltonian H̄, a function of
q, p and two new real variables q0 and p0 by

H̄(q, p, q0, p0) = H(q, p, q0) + p0.

Hamilton’s equations for this new autonomous Hamiltonian agree with the time
dependent equations for the original H if we identify q0 with the time and p0 with
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−H. In addition, this leads one to the conservation of the canonical symplectic
structure in the spacetime sense, namely

ΩH = ω + dH ∧ dt,

where ω =
∑

i dqi ∧ dpi is the canonical symplectic form. What is interesting for
us later is the following remark in case H is time independent (so H is conserved).
Consider the flow F̄s of the extended Hamiltonian H̄, which is given by advancing
the time by an amount s:

(q(t), p(t), t,H) 7→ (q(t + s), p(t + s), t + s,H),

where q and p advance by the flow Fs of the original Hamiltonian system. Imagine,
for later purposes that s is a function of the initial point and t, so that ds is a
nontrivial differential. Then the statement that the flow F̄s preserves the symplectic
form above reads: F̄ ∗

s ΩH = ΩH or, equivalently,

F ∗

s ω + dH ∧ d(t + s) = ω + dH ∧ dt

Cancelling dH ∧ dt, this reads

F ∗

s ω + dH ∧ ds = Ω0. (3.5)

If we think of s as the time advancement, or the time step, then below we will prove
a discrete analogue of this identity, which is how we will interpret symplectic in the
time dependent sense.

Following the arguments in the discrete case later, or the methods of Marsden,
Patrick, and Shkoller [1], one can also derive a Lagrangian version of this identity
from the variational principle.

4 The Variational-Energy Algorithm

We consider a discrete Lagrangian that is (possibly) time dependent and has an
associated time step h1 that may be coupled to the current choice of points (q1, q2);
we denote this discrete Lagrangian by Lh1

(q1, q2) := Ld(q1, q2, h1).
Given (q0, q1, h0), we seek to find (q1, q2, h1). In general, this will give us a way

to pass from data (qk−1, qk, hk−1) to (qk, qk+1, hk).
This set up differs from the usual discrete Lagrangian procedures in the inclu-

sion of time step information hk that is coupled to the current configuration data
(qk, qk+1).

We will find q2 and h1 together, by solving an equation similar to the dis-
crete Euler-Lagrange equation for q2, while we solve for h1 using the equation
Ed(q0, q1, h0) = Ed(q1, q2, h1) where Ed is the discrete energy function, defined be-
low.
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The Discrete Action. One choice of discrete action is obtained by just using
the following approximation to the action integral for the first two sets of points,
(q0, q1, h0) and (q1, q2, h1):

[h0Ld(q0, q1, h0) + h1Ld(q1, q2, h1)] (4.1)

One could also use other, more accurate methods to approximate the action
integral. This might lead to some interesting new, more accurate algorithms, but
we shall not explore them in this paper.

The Discrete Algorithm. To derive the algorithm, we consider the same discrete
variational principle as before, but now parametrized by the time step information:

∂

∂q1

[h0Ld(q0, q1, h0) + h1Ld(q1, q2, h1)] = 0 (4.2)

We also write this as

h0D2Ld(q0, q1, h0) + h1D1Ld(q1, q2, h1) = 0.

In this relation, the time steps h0, h1 are held fixed. We will later derive the
symplectic relation by considering variations of solutions, just as in the continuous
case.

The Discrete Energy. The above variational equation (4.2) will be coupled with
an energy equation that will enable us to solve for both q2 and h2.

We define the discrete energy as follows:

Ed(q0, q1, h0) = −h0D3Ld(q0, q1, h0) − Ld(q0, q1, h0)

= − ∂

∂h0

[h0Ld(q0, q1, h0)] (4.3)

This intrinsic definition is motivated in part by the fact that for Lagrangians of the
form of kinetic minus potential energy, and with the choice of discrete Lagrangian
given by (2.1), the discrete energy is given by the expression one would naturally
think of, namely it is easily verified that in this case, we have

Ed(q0, q1, h0) =
1

2

(

q1 − q0

h0

)T

M

(

q1 − q0

h0

)

+ V (γq0 + (1 − γ)q1) (4.4)

In this case, this can also be written as

Ed(q0, q1, h0) = E

(

γq0 + (1 − γ)q1,

(

q1 − q0

h0

))

(4.5)

where E(q, q̇) is the energy associated with the original Lagrangian L(q, q̇). As
pointed out to us by Matt West, one can also motivate this definition of the energy
using the variational principle or a discrete form of the Hamilton-Jacobi equation.
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The main second equation defining the algorithm is

Ed(q0, q1, h0) = Ed(q1, q2, h1). (4.6)

or, with algorithmic notation,

Ek−1 := Ed(qk−1, qk, hk−1) = Ed(qk, qk+1, hk) := Ek. (4.7)

For example, in the case the Lagrangian equals kinetic plus potential energy, and
using the midpoint, the condition E0 = E1 is equivalent to:

h2
1 =

(q2 − q1)
T M(q2 − q1)

2 [E0 − V (γq1 + (1 − γ)q2)]
(4.8)

For this to remain meaningful as we compute, we need to make sure that the
computed kinetic energy

E0 − V (γq1 + (1 − γ)q2) (4.9)

remains positive.
To realize this condition, one can consider verifying it a posteriori; that is,

1. First compute the square of the new time step h1

2. Substitute h2
1 in the relation

h0D2Lh0
(q0, q1) + h1D1Lh1

(q1, q2) = 0 (4.10)

which gives an implicit equation for q2.

3. Compute q2 implicitly

4. Verify from the formula for h2
1 that one gets a positive answer.

5. If so, we proceed. If not, we keep the time step from the last iterate and
proceed.

This approach will of course induces an energy variation in such cases. As we
shall see below in greater detail, this will only happen near “turning points”; that

is, near points where the velocity is nearly zero.

In the specific example, the equation for q2 reads

m

[

(q1 − q0)

h2
0

− (1 − γ)V ′ (γq0 + (1 − γ)q1)

]

h0

+

[

−m

h2
1

(q2 − q1) − γV ′ (γq1 + (1 − γ)q2)

]

h1 = 0

We define B(q0, q1, h0) to be:

B(q0, q1, h0) :=

[

m
(q1 − q0)

h2
0

− (1 − γ)V ′ (γq0 + (1 − γ)q1)

]

h0

12



and we let, for notational convenience u = γq1 + (1 − γ)q2, we have

B =

[

2(1 − γ)
M(E0 − V (u))

(u − q1)T M(u − q1)
(u − q1) + γV ′(u)

]

√

2
(u − q1)T M(u − q1)

E0 − V (u)

(4.11)

In the particular case where γ = 1
2

and q1, q2 are scalars, this expression simplifies
to:

B =

[

E0 − V (u)

u − q1

+
1

2
V ′(u)

]

√

2(u − q1)2M

E0 − V (u)
(4.12)

In other words:

E0 − V (u) +
1

2
V ′(u)(u − q1) −

√

E0 − V (u)√
2M

B = 0 (4.13)

We solve the previous equation for u then q2 follows in a straightforward way.

5 Time Step Solvability and an Optimization Method

We have seen previously that the condition E0 − V (u) > 0 should be verified in
order to compute the next time step h1, given h0. To clarify the exposition, we
write E0 = K0 + V0 and we take : V1 = V (u). It follows that

E0 − V (u) = K0 + V0 − V1

Our condition for solvability is therefore

K0 + V0 − V1 > 0 (5.1)

If K0 is large and the time step small, then in this case (5.1) is automatically
verified. Indeed, K0 large and V0 ' V1 implies that the computed kinetic energy is
positive. If q1 ' q2 and h0 is not so small, this is a rather delicate situation but can
be explored by writing

1

2

(q1 − q0)
T m(q1 − q0)

h2
0

+ V (γq0 + (1 − γ)q1) − V (γq1 + (1 − γ)q2) . (5.2)

Taylor expanding the potential terms when γ = 1

2
gives:

V

(

q0 + q1

2

)

− V

(

q1 + q2

2

)

= −1

2
V ′

(

q0 + q1

2

)

q2 − q0

2
. (5.3)

When the kinetic term is small, the condition should reduces to the condition that
q2 − q0 has the same sign as −V ′((q0 + q1)/2). This tells one in which direction q2

should move.

13



An Optimization Method. An alternative strategy to deal with this issue of
how to compute the time steps near turning points, which is the one we adapt in
this paper, is to adopt the following optimization technique. Given h0, q0, q1 we have
to find h1, q2 such that q2 is determined by the DEL equations

g(q0, q1, q2, h0, h1) := h0D2L(q0, q1, h0) + h1D1L(q1, q2, h1) = 0 (5.4)

and the energy condition

f(q0, q1, q2, h0, h1) := E(q1, q2, h1) − E(q0, q1, h0) = 0 (5.5)

The basic equations we want to solve are thus

f(q0, q1, q2, h0, h1) = 0 (5.6)

g(q0, q1, q2, h0, h1) = 0, (5.7)

to be solved for the variables q2 and h1 as a function of q0, q1, and h0. The technique
we use is to minimize the quantity

B = [f(q0, q1, q2, h0, h1)]
2 + [g(q0, q1, q2, h0, h1)]

2 (5.8)

over the variables h1, q2, with the other variables given, and subject to the constraint

h1 > 0. As above, this constraint means, in practice, that the computed kinetic
energy is positive. Of course this is then iterated and defines our algorithm as a
map

(qk−1, qk, hk−1) 7→ (qk, qk+1, hk).

This method may be implemented in a standard way using a quasi-Newton
algorithm, as in Byrd, Lu, Nocedal, and Zhu [27] (see also Zhu, Byrd, Lu, and
Nocedal [28]). Of course other methods for efficiently solving the system of equations
(8.9) can be considered as well, but as we have mentioned, we do not carry out any
extensive comparitive or implementation tests in this paper. In the simple examples
we do give in the section below, we use this optimization method.

6 Symplectic Nature of the Algorithm

We now show the sense in which the algorithm above is symplectic. This will be in
the form of an identity that the mapping

Φ̄ : Q × Q × R → Q × Q × R

defined by
(q0, q1, h0) 7→ (q1, q2, h1)

where, as we have seen, q2 and h1 are defined by

h0D2Ld(q0, q1, h0) + h1D1Ld(q1, q2, h1) = 0

14



and
Ed(q0, q1, h0) = Ed(q1, q2, h1),

where we recall that the discrete energy is defined by

Ed(q0, q1, h0) = −Dh0
[h0Ld(q0, q1, h0)].

To determine the symplectic nature of the mapping Φ̄, we follow the general line
of reasoning in Marsden, Patrick, and Shkoller [1]. Namely, we consider the action
sum

S = [h0Ld(q0, q1, h0) + h1Ld(q1, q2, h1)]

and take its full differential as a function of all the variables, keeping in mind that
h1 and q2 are functions of (q0, q1, h0). Using the definition of the discrete energy, we
get

dS = h0D1Ld(q0, q1, h0)dq0 + h0D2Ld(q0, q1, h0)dq1

+ h1D1Ld(q1, q2, h1)dq1 + h1D2Ld(q1, q2, h1)dq2

− Ed(q0, q1, h0)dh0 − Ed(q1, q2, h1)dh1

Because of the discrete Euler-Lagrange equations, this simplifies to

dS = h0D1Ld(q0, q1, h0)dq0 + h1D2Ld(q1, q2, h1)dq2

− Ed(q0, q1, h0)dh0 − Ed(q1, q2, h1)dh1.

In view of the equations defining the algorithm, we can write this as

dS = Θ−

L + Φ̄∗Θ+
L (6.1)

where the one forms Θ−

L and Θ+
L are defined by

Θ−

L (q0, q1, h0) = h0D1Ld(q0, q1, h0)dq0 − Eddh0

and
Θ+

L (q0, q1, h0) = h0D2Ld(q0, q1, h0)dq1 − Eddh0

Now notice that because of the definition of Ed, we have

Θ−

L (q0, q1, h0) + Θ+
L (q0, q1, h0) = d[h0Ld] − Eddh0 (6.2)

Substituting (6.2) into (6.1) gives

dS = d[h0Ld] − θ+
d + Φ̄∗Θ+

L (6.3)

where θ+

d is the discrete analogue of the canonical one form, pidqi, namely

θ+

d = Θ+

d + Eddh0

= h0D2Ld(q0, q1, h0)dq1
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Taking the differential of (6.3), using d2 = 0 and the fact that pull back commutes
with the differential gives our final identity, namely

Φ̄∗Ωd = ωd, (6.4)

where
Ωd = −dΘ+

d

is the discrete analogue of the spacetime symplectic form and where

ωd = −dθ+
d

is the discrete analogue of the phase space symplectic form. Notice that the identity
(6.4) is the discrete analogue of the identity (3.5) in the continuous case. Thus, we
may interpret the identity (6.4) as the symplectic nature of the algorithm.

Momentum Conservation. We note that one proves conservation of momentum
for algorithms invariant under a symmetry group in the same way as usual, following,
Marsden, Patrick, and Shkoller [1]; we need not repeat the argument.

7 Summary of the features of the Algorithm

In this section we summarize the three main features of the algorithm.

1. The algorithm conserves energy

2. The algorithm is symplectic in the sense spelled out in the previous section

3. The algorithm conserves momentum.

We have designed it to preserve energy. The discrete version of the arguments
given in the continuous case shows the “spacetime” sense in which the algorithm is
symplectic, as we have explained.

8 Numerical Examples

The first example is one dimensional and integrable and the second example consists
of the first one coupled to an oscillator.

In each case, we will compare the constant time step method, which will show
the orbits in phase space and variations in the energy as a function of time, with
the corresponding results for the adaptive time step algorithm.

8.1 One Degree of Freedom Example

We will use a Lagrangian that is of the standard form kinetic minus potential,
namely

L(q, q̇) =
m

2
q̇2 − V (q)
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where q and q̇ are real numbers, with the corresponding discrete Lagrangian (with
γ = 1/2) given by

Ld(q0, q1, h) =
1

2
m

(

q1 − q0

h

)2

− V

(

q0 + q1

2

)

,

where q0, q1 and h > 0 are also real numbers. The corresponding energy, according
to formula (4.4) is given by

Eh(q0, q1) =
1

2
m

(

q1 − q0

h

)2

+ V

(

q0 + q1

2

)

Constant time step algorithm. We find q2 using the DEL equations:

h [D2L(q0, q1) + D1L(q1, q2)] = 0 (8.1)

As h 6= 0, equation (8.1) leads to:

m

h2
(q1 − q0) −

1

2
V ′

(

q0 + q1

2

)

− m

h2
(q2 − q1) − V ′

(

q1 + q2

2

)

= 0 (8.2)

to be solved for q2. Keeping h fixed, this is the variational integrator that we use
for the constant time step algorithm.

Adaptive time step algorithm. Given h0, q0, q1 we have to find h1, q2 such that
q2 is determined by the DEL equations

h0D2L(q0, q1, h0) + h1D1L(q1, q2, h1) = 0 (8.3)

and the energy condition:

E(q0, q1, h0) = E(q1, q2, h1) (8.4)

We write the energy condition as follows. Define

f(q0, q1, q2, h0, h1) = E(q1, q2, h1) − E(q0, q1, h0)

=
1

2
m

(q2 − q1)
2

h2
1

+ V

(

q1 + q2

2

)

− E(q0, q1, h0). (8.5)

The energy equation is written this way because E0 := E(q0, q1, h0) will have been
computed and stored at the previous step.

The DEL equation (8.3) is written as follows:

g(q0, q1, q2, h0, h1) = h0B0 + h1

[

−m
q2 − q1

h2
1

− 1

2
V ′

(

q1 + q2

2

)]

, (8.6)

where

B0 =

[

m
q1 − q0

h2
0

− 1

2
V ′

(

q0 + q1

2

)]

, (8.7)

again, a quantity that will have been computed at the previous step.
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The numerical technique. The basic equations we want to solve are the follow-
ing:

f(q0, q1, q2, h0, h1) = 0 (8.8)

g(q0, q1, q2, h0, h1) = 0, (8.9)

to be solved for the variables q2 and h1 as a function of q0, q1, and h0. The technique
we use is to minimize the quantity

B = [f(q0, q1, q2, h0, h1)]
2 + [g(q0, q1, q2, h0, h1)]

2 (8.10)

over the variables h1, q2, with the other variables given, and subject to the constraint
h1 > 0. As mentioned in the general theory, this method is implemented using
descent methods, following Byrd, Lu, Nocedal, and Zhu [27] and Zhu, Byrd, Lu,
and Nocedal [28].

The Double Well Potential. To illustrate the procedures, we choose m = 1 and
take

V (q) =
1

2
(q4 − q2). (8.11)

We study three regions of phase space as shown in Figure 8.1. The axes show the
computed position q = (qk + qk+1)/2 and the computed velocity q̇ = (qk+1 − qk)/hk

as functions of time. The orbit in figure (a) is a periodic orbit that oscillates around
the stable equilibrium position q = 1/

√
2, q̇ = 0. That in (b) is a periodic orbit with

high period just inside the homoclinic orbit in the positive q half space, while that
in (c) is a periodic orbit just outside the homoclinic orbit.

The energy errors for both the constant time step and the adaptive time step
algorithms are shown in Figure 8.2. The amplitude in the variation of the energy
depends on the time step. The smaller the time step, the smaller the amplitude, but
we note that there is not a big difference in the periods. The same sort of behavior
can also be seen in the corresponding plots in Wendlandt and Marsden [6].

The small changes in the energy are, we believe, due to the effect of the turning
points as we explained earlier. Of course one can contemplate methods whereby
these can be compensated or reduced further, but it we do not explore these issues
in this paper.

8.2 A Two Degree of Freedom Example

Now we consider an oscillator coupled with our previous double well potential ex-
ample. The system now has chaotic orbits, so is somewhat more interesting.

The continuous Lagrangian we choose is given by:

L(x, y, ẋ, ẏ) =
1

2
ẋ2 − V (x) +

1

2
ẏ2 − 1

2
y2 + εxy (8.12)

Where ε introduces a small perturbation. This is a very simple example of a chaotic
system arising as a perturbation of an integrable one. Shortly we will choose V to
be the potential used in the preceding subsection.
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Figure 8.1: Three initial conditions are studied for the particle in the double well
potential. The orbits for both the fixed time step and the adaptive time step algo-
rithms are plotted. The initial time step used in all cases is h0 = 0.1. The initial
data is (a) q0 = q1 = 0.74. (b) q0 = q1 = 0.995. (c) q0 = 1.0, q1 = 1.0. The two
orbits in each figure are nearly indistinguishable to the eye, but the adaptive time
step computation is somewhat more accurate.

Using the notation
q0 = (x0, y0), q1 = (x1, y1),

the corresponding discrete Lagrangian is

Ld(x0, y0, x1, y1, h0) =
1

2

(x1 − x0)
2

h2
0

− V

(

x0 + x1

2

)

+
1

2

(y1 − y0)
2

h2
0

− 1

2

(

y0 + y1

2

)

+ ε

(

x0 + x1

2

)(

y0 + y1

2

)

. (8.13)

Given h0, x0, y0, x1, y1 we have to find h1, x2, y2 such that the DEL equations

h0D2L(x0, y0, x1, y1, h0) + h1D1L(x1, y1, x2, y2, h1) = 0 (8.14)
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Figure 8.2: The relatively large amplitude curve shows the (small) energy error for
the constant time step algorithm as a function of time, while the lower curve shows
the energy error for the adaptive time step algorithm. The initial data correspond
to the three regions shown in the preceding figure.

and the energy condition:

E(x0, y0, x1, y1, h0) = E(x1, y1, x2, y2, h1) (8.15)

We write the energy condition in the form f = 0 as follows. Define

f(x0, y0, x1, y1, x2, y2, h0, h1)

= E(x1, y1, x2, y2, h1) − E(x0, y0, x1, y1, h0)

=
1

2

(x2 − x1)
2

h2
1

+ V

(

x1 + x2

2

)

+
1

2

(y2 − y1)
2

h2
1

+
1

2

(

y1 + y2

2

)2

− ε

(

x1 + x2

2

)(

y1 + y2

2

)

− E(x0, y0, x1, y1, h0). (8.16)

The DEL equation (8.14) is written in the form of a system g = 0, k = 0 as
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follows. Define g by

g(x0, y0, x1, y1, x2, y2, h0, h1)

= h0B0 + h1

[

−x2 − x1

h2
1

− 1

2
V ′

(

x1 + x2

2

)

+
ε

2

(

y1 + y2

2

)]

, (8.17)

where

B0 =

[

x1 − x0

h2
0

− 1

2
V ′

(

x0 + x1

2

)

+
ε

2

(

y0 + y1

2

)]

. (8.18)

Define k by

k(x0, y0, x1, y1, x2, y2, h0, h1)

= h0C0 + h1

[

−y2 − y1

h2
1

− 1

2

(

y1 + y2

2

)

+
ε

2

(

x1 + x2

2

)]

, (8.19)

where

C0 =

[

y1 − y0

h2
0

− 1

2

(

y0 + y1

2

)

+
ε

2

(

x0 + x1

2

)]

. (8.20)

The numerical technique. The basic equations we want to solve are the follow-
ing:

f(x0, y0, x1, y1, x2, y2, h0, h1) = 0 (8.21)

g(x0, y0, x1, y1, x2, y2, h0, h1) = 0,

k(x0, y0, x1, y1, x2, y2, h0, h1) = 0 (8.22)

to be solved for the variables x2, y2 and h1 as a function of x0, y0, x1, y1 and h0.
The technique used is to minimize the quantity

B = [f(x0, y0, x1, y1, x2, y2, h0, h1)]
2 + [g(x0, y0, x1, y1, x2, y2, h0, h1)]

2 (8.23)

over the variables h1, x2, y2, with the other variables given, and subject to the con-
straint h1 > 0. This method is then implemented by the same method as in the
preceding example.

The Double Well Potential Coupled with an Oscillator. To illustrate the
procedures, we choose, as before,

V (x) =
1

2
(x4 − x2). (8.24)

We study a single chaotic orbit shown in Figure 8.3. The different projections of
the orbit, to the x, ẋ, the y, ẏ spaces and to the configuration space, x, y are shown.

In this plot, the initial conditions used were x0 = y0 = x1 = y1 = 1.00, h0 = 0.1
and ε = 0.01.

Figure 8.4 shows the energy behavior, as before, for the standard variational
integrator verses our symplectic-energy algorithm.
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Figure 8.3: An orbit in the coupled double well – oscillator system.

Finally, figure 8.5 shows how the time step varies with the iteration.
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