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Abstract

In this paper, we obtain feedback laws to asymptotically stabilize relative
equilibria of mechanical systems with symmetry. We use a notion of stability
‘modulo the group action’ developed by Patrick [1992]. We deal with both
internal instability and with instability of the rigid motion. The methodology
is that of potential shaping, but the system is allowed to be internally under-
actuated, i.e., have fewer internal actuators than the dimension of the shape
space.
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1 Introduction

In this paper, we obtain feedback laws to asymptotically stabilize relative equilibria
of mechanical systems with symmetry. We use a notion of stability ‘modulo the
group action’ developed by Patrick [1992]. The system is allowed to be internally
underactuated, i.e., have fewer internal actuators than the dimension of the shape
space.

In our previous work (Jalnapurkar and Marsden [1998]), we showed how to
stabilize an internally unstable relative equilibrium using only internal actuators.
There, we had assumed that the rigid motion of the system was stable, i.e., the
system would rotate stably if the internal joints were to be locked. An example of
such a system, which we discussed in that paper, is the double spherical pendulum.
As we used only internal actuators, the system evolves on a constant momentum
surface and we obtain asymptotic stability within level surfaces modulo a group
action, but only neutral stability in the momentum directions.

In the present work, we allow actuation in the group variables, with the result
that we can change the value of the momentum and therefore we are no longer
restricted to constant momentum surfaces. Thus, we can asymptotically stabilize the
relative equilibrium in a full phase space neighborhood, modulo a group action. The
availability of actuation in the group direction also enables us to handle instability of
the rigid motion, that is, the group directions, in addition to the internal instability
that we can deal with using the internal actuation.

To give a more precise statement of our objectives we will first discuss relative
equilibria of mechanical systems with symmetry, and then describe what exactly is
meant by stability and asymptotic stability for these relative equilibria.

Let Q be the configuration manifold of our system, and let G be a compact group
that acts freely and properly on Q. Let 〈〈·, ·〉〉 be a G-invariant kinetic energy metric
on Q. Let K be the kinetic energy, and let V : Q → R be a G-invariant potential
function. If L := K − V is the Lagrangian, the equations of motion of the system
in local coordinates q = (q1, . . . , qn) on Q, subject to a generalized force τ , are as
follows:

d

dt

∂L

∂q̇i
(q(t), q̇(t)) −

∂L

∂qi
(q(t), q̇(t)) = τi(t) i = 1, . . . , n

which we shall write for short as

d

dt

∂L

∂q̇
−
∂L

∂q
= τ (1.1)

If H : T ∗Q→ R is the G-invariant Hamiltonian corresponding to the Lagrangian
L, then the equivalent Hamiltonian equations on T ∗Q, are:

ż = XH(z) +

[

0
τ

]

(1.2)

Here,

[

0
τ

]

denotes the vertically lifted tangent vector in TτT
∗Q that corresponds

to the cotangent vector τ in T ∗
q Q.
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A point ze ∈ T ∗Q is said to be a relative equilibrium if XH(ze) is tangent to the
group orbit through ze, that is, XH(ze) ∈ g · z, where g is the Lie algebra of the
group G.

Let J : T ∗Q → g
∗ be the standard cotangent bundle momentum map corre-

sponding to the group action, and let J(ze) = µe. Let Gµe
be the coadjoint isotropy

subgroup corresponding to µe, and let gµe
be the corresponding Lie algebra. It is

a fact (see, for example, Marsden [1992]) that the integral curve ze(t) of the vector
field XH with initial condition ze is given by ze(t) = exp (tξe) · ze ∈ Gµe

· ze ⊂ G · ze,
and ξe is an element of gµe

.
Now, by the theory of Poisson reduction (see, for example, Marsden and Ratiu

[1998]), the Hamiltonian system ż = XH(z) drops to a reduced Hamiltonian system
on T ∗Q/G′, where G′ can be chosen to be any subgroup of G. In particular, we get
the reduced system ζ̇ = XH(ζ) on T ∗Q/Gµe

, and the reduced system γ̇ = Xh(γ)
on T ∗Q/G. Here H and h are the functions obtained on T ∗Q/Gµe

and T ∗Q/G
respectively by dropping the G-invariant function H.

Let πµe
: T ∗Q → T ∗Q/Gµe

and π : T ∗Q → T ∗Q/G be the natural projections,
and let πµe

(ze) = ζe, and π(ze) = γe. Then the following statements are equivalent
(Marsden [1992]):

1. ze is a relative equilibrium for the vector field XH .

2. ζe is a fixed point for the reduced vector field XH on T ∗Q/Gµe
.

3. γe is a fixed point for the reduced vector field Xh on T ∗Q/G.

Thus, in summary, a relative equilibrium is an element ze of T ∗Q such that
the integral curve of the Hamiltonian vector field XH through this element lies
in the G-orbit through this element. Furthermore, the projections of ze onto the
reduced spaces T ∗Q/Gµe

and T ∗Q/G are fixed points of the corresponding reduced
Hamiltonian vector fields.

Stability and Asymptotic Stability of Relative Equilibria Now we will turn
to what we mean by stability and asymptotic stability of the relative equilibrium
ze. The discussion here uses the work of Patrick [1992].

One possible definition of stability is as follows: Say the equilibrium ze is stable
if an integral curve zt of the vector field XH satisfies the following property: zt stays
‘close’ to ze(t) for all time, provided z0 is sufficiently close to ze.

The problem with this definition is that if the value of J at z0 is different from
µe, then zt may eventually drift away from ze(t), no matter how close z0 is to ze.
Thus we need a weaker notion of stability.

One possible approach is to use a notion of stability ‘modulo the G-action’ as
follows: Say that the relative equilibrium ze is ‘G-stable’ if, for any given G-invariant
open neighborhood V of G · ze, there is a G-invariant open neighborhood U of G · ze
such that z0 ∈ U implies zt ∈ V for all t > 0. It is easy to see that this notion
of stability is equivalent to Lyapunov stability of the equilibrium γe in the reduced
space T ∗Q/G.
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Following Patrick [1992], we note that one can analogously define a notion of ‘G′-
stability’ for any subgroup G′ of G: Say that the relative equilibrium ze is G′-stable
if, for any given G′-invariant open neighborhood V of G′ · ze, there is a G′-invariant
open neighborhood U of G · ze such that z0 ∈ U implies zt ∈ V for all t > 0.

It is straightforward to show that for any subgroup G′ of G, G′-stability implies
G-stability. ThusG′-stability is a notion of stability that is stronger than G-stability,
yet not as strong as the first proposed definition.

For the purposes of this paper, the type of stability we use will be Gµe
-stability.

The relative equilibrium ze is thus Gµe
-stable if and only if the equilibrium ζe in the

reduced space T ∗Q/Gµe
is Lyapunov stable. Further we will say that the relative

equilibrium ze is asymptotically stable if the equilibrium ζe in the reduced space
T ∗Q/Gµe

is asymptotically stable.

Methodology for Stabilization To obtain our feedback laws we will use a com-
bination of the techniques of van der Schaft [1986] on the stabilization of Hamilto-
nian systems, and the energy-momentum method for stability analysis of relative
equilibria due to Simo, Lewis and Marsden [1991].

The methodology is based on potential shaping , that is, the selection of controls
that, in effect, change the potential energy of the system and add damping to make
equilibria asymptotically stable. Using the coupling of the modes as well as the
existence of a priori stable directions, one needs only partial actuation.

This methodology is to be compared with that of Bloch, Leonard and Marsden
[1997, 1998] on controlled Lagrangians, whose methodology involves the reshaping of
the kinetic energy of the system to stabilize a relative equilibrium. Kinetic shaping
is designed for the stabilization of balance systems where there might be no internal
actuation at all. Typical applications are the stabilization of inverted spherical
pendula and underwater vehicles.

Also of interest is the work of Bullo [1998], who considers systems with Abelian
symmetry with full actuation along both the group and the internal directions.
Under appropriate assumptions, it is shown that it is possible to exponentially sta-
bilize the system to a desired relative equilibrium on a desired level surface of the
momentum.

2 Patrick’s Stability Result

The set-up considered by Patrick [1992] is as follows: Let ze be a relative equilibrium
for the Hamiltonian vector field XH on a symplectic manifold (P,Ω), and a regular
point for an equivariant momentum map J : P → g

∗. If we assume that G is
compact, we know that the Lie algebra g of G admits an inner product invariant
under the adjoint action of G.

Tze
[J−1(µe)] is the tangent space to the level set of the momentum at ze. If gµe

is the Lie algebra of Gµe
, then the space gµe

· ze is contained in Tze
[J−1(µe)]. If

Jξe
: T ∗Q→ R is defined by

Jξe
(z) = 〈J(z), ξe〉
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then it can be shown (see, for example, Marsden[1992]) that ze is a critical point
of the function (H − Jξe

). Let Z be a subspace of Tze
(T ∗Q) that is a complement

of gµe
· ze in Tze

[J−1(µe)]. Then Patrick’s theorem says that if d2(H − Jξe
)(ze) is

positive definite on Z, then the relative equilibrium ze of XH is Gµe
-stable.

We will give an outline of how Patrick proved this result: Since the action of
G on Q was assumed to be proper, the action of Gµe

on T ∗Q is also proper. This
action therefore admits a relatively compact slice at ze, which means that there is
a submanifold S with compact closure containing ze such that:

1. If g ∈ Gµe
and if gS ∩ S 6= ∅, then g is the identity element of Gµe

, and

2. Gµe
· S is an open neighborhood of Gµe

· ze in T ∗Q.

Next, a map Ψ : Gµe
· S → g is constructed, with the following properties:

Ψ(gz) = AdgΨ(z) for all g ∈ Gµe
, for all z ∈ T

Ψ(z) = ξe for all z ∈ S

As a consequence, 〈µe,Ψ(z)〉 = 〈µe, ξe〉 for all z in Gµe
· S. Next, define a function

f : Gµe
· S → R by

f(z) = af1(z) + f2(z)

where a is a positive real number, and f1 and f2 are defined as follows:

f1(z) = H(z) − J(z)Ψ(z)

f2(z) = |J(z) − µe|
2

Note that f1 is a Gµe
-invariant function which equals (H − Jξe

) on S. The norm
used in defining f2 is the G-invariant norm on g

∗ induced by the G-invariant inner
product on g. Thus the function f is a Gµe

-invariant function on Gµe
· S. It can be

shown that for an appropriately chosen value of a, d2f(ze), the second derivative of
f at ze, is positive definite on Tze

S. Note that Gµe
-invariance of f means that for

all g ∈ Gµe
, d2f(gze) is positive definite on Tgze

gS
Now, let zt be an integral curve of the vector field XH . Then Gµe

-stability can
be proved by showing that for any given ε > 0, f(zt) < ε for all t > 0, provided
f(z0) is sufficiently small. For the details, refer to Patrick [1992].

3 Description of Forces

In this section we shall describe the forces on the system, and outline our strategy
for achieving asymptotic stability.

As we stated in section 1, the equations of motion for the system are

d

dt

∂L

∂q̇
−
∂L

∂q
= τ

where τ is the generalized force acting on the system. Since Q is a principle G-
bundle, locally, Q is diffeomorphic to G × S, where S := Q/G is the shape space.
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The generalized force τ is regarded as an element of T ∗
q Q, which can be identified

with T ∗
gG × T ∗

xS. Thus, we can use the local trivialization of Q to express τ in
the form (τg, τx), where τx ∈ T ∗

gG is called the internal force, and represents the
mutual interactions between the components of the system, whereas τg ∈ T ∗

xS is the
external force acting on the system.

Strictly speaking, one should proceed more intrinsically by picking a connection,
such as the mechanical connection on the bundle Q → Q/G and dividing τ into
its horizontal and vertical components. That is, we consider the restriction of τ to
the horizontal space and vertical space, respectively, of the connection. In a local
trivialization, these components differ from the naive decomposition by terms in-
volving the connection coefficients. In addition, one should use the intrinsic breakup
of the Euler-Lagrange equations into vertical and horizontal components (the reduc-
tion of these equations are the Lagrange-Poincaré equations, which is a reasonably
lengthy story—see Cendra, Marsden and Ratiu [1998]). These modification does
not affect the main techniques of the present paper in a substantive way, so for
simplicity we will work with the naive decomposition (τg, τx) associated to a given
local trivialization. We will comment on the intrinsic version of the constructions
as we proceed.

We will assume that τx is given by

τx = dF1(q)u1 + . . .+ dFm(q)um,

where F1, . . . , Fm are G-invariant functions on Q (or, equivalently, functions on
S = Q/G). The ui are our control inputs. Here m could be less than dimS, i.e.,
we could have only partial internal actuation. Note that this class of forces makes
intrinsic sense as horizontal one forms τhor on Q (that is, they annihilate vertical
vectors), independent of the local trivialization.

We will assume that we have full freedom to set the value of the external force τg,
which in general will change the value of the momentum, µ. The precise relationship
is given by the following lemma, which is readily verified.

Lemma 3.1 µ̇ = T ∗Rgτg

Here Rg denotes right translation on the group G by the group element g. If
one wanted to do this intrinsically, one would choose the mechanical connection, let
τver be a vertical one form (vanishing on horizontal vectors) and then the equation
above would read

J̇(vq) = σ∗q · τver(vq),

where σq : g → TqQ is the infinitesimal generator map; ξ 7→ ξQ(q) and where we now
use the same symbol J : TQ→ g

∗ for the momentum map on the tangent bundle.
Recall that the Euler-Lagrange equations with generalized force vector τ corre-

spond to the following equations on T ∗Q:

ż = XH(z) +

[

0
τ

]
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Here,

[

0
τ

]

denotes the vertically lifted tangent vector in TτT
∗Q that corresponds

to the cotangent vector τ in T ∗
q Q.

Alternatively, assuming that the Legendre transformation is invertible and let-
ting H be the corresponding Hamiltonian on T ∗Q, in cotangent bundle coordinates
(q, p) on T ∗Q, the equations can be written as:

q̇ = ∂H/∂p

ṗ = −∂H/∂q + τ

We have the following equation for the time derivative of the Hamiltonian:

dH

dt
= 〈τ, q̇〉 = 〈τg, ġ〉 + 〈τx, ẋ〉 (3.1)

Now consider the feedback:

ui = −kiḞi, where ki, i = 1, . . . ,m are positive constants, and

τg = T ∗Rg−1 [−k(µ− µe)] where k is a positive constant.

With this feedback, τx = −
∑

i kidFi Ḟi. Thus,

〈τx, ẋ〉 = −
∑

i

kiḞi dFi ẋ

= −
∑

i

ki(Ḟi)
2 6 0 (3.2)

Also,

〈τg, ġ〉 = 〈T ∗Rg−1 [−k(µ− µe)], ġ〉

= 〈−k(µ− µe), ġg
−1〉

= −k〈(µ− µe), ν〉, where ν = ġg−1 . (3.3)

Since µ̇ = T ∗Rgτg, the feedback for τg implies

µ̇ = −k(µ− µe) . (3.4)

Intrisically, the feedback τg = T ∗Rg−1 [−k(µ− µe)] can be expressed as:

τver(vq) = A∗
q · [−k(J(vq) − µe)]

Here Aq : TqQ→ g is the connection one form.

Strategy for showing Asymptotic Stability At first we will proceed under
the assumption that d2(H − Jξe

)(ze) is positive definite on the subspace Z. Thus,
by Patrick’s result, the relative equilibrium ze of the vector field XH is Gµe

-stable.
We want to show that the feedback ui = −kiḞi, τg = T ∗Rg−1 [−k(µ − µe)] makes
this relative equilibrium asymptotically stable. In the following sections, we will be
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using equations (3.1) through (3.4) to investigate the behaviour of the trajectory
zt ∈ T ∗Q of the feedback system.

The first step is to show that the relative equilibrium remains Gµe
-stable with

this feedback. Since the feedback τg = T ∗Rg−1 [−k(µ − µe)] could result in energy
being pumped into the system, we will need to proceed with some care. This will
be done in section 4.

Once Gµe
-stability has been shown, we will be able to restrict our attention to

the open neighborhood Gµe
· S of Gµe

· ze. The compactness of G implies that Gµe

is compact, which implies that the set Gµe
· S has compact closure. In section 5 we

will use an argument that is similar in spirit to the proof of LaSalle’s theorem to
show that the system converges to a certain invariant set M ⊂ Gµe

· S.
Then, in section 6, we will study the properties of this set M . We will show

that, subject to a certain rank condition on the derivatives of the functions Fi and
their repeated Poisson brackets with the Hamiltonian H, the projection of this set
M onto T ∗Q/Gµe

is simply ζe. This will enable us to show asymptotic stability
of the relative equilibrium, which we have defined as asymptotic stability of ζe in
T ∗Q/Gµe

.
Finally, in section 7 we will show that we can sometimes relax the assumption

that d2(H−Jξe
)(ze) is positive definite on the subspace Z. We will show how, under

certain conditions, we can use the inputs to modify the potential in a such way that
the modified Hamiltonian satisfies the required positivity condition.

4 Gµe
-Stability of the Feedback System

Assume, as in section 2, that d2(H − Jξe
)(ze) is positive definite on Z. Then we

know that there exists a Gµe
-invariant function f on Gµe

· S such that d2f(gze) is
positive definite on Tgze

(gS) for all g ∈ Gµe
.

Let zt be a trajectory of the feedback system with initial condition z0. Note that

f(zt) = f(z0) + (f(zt) − f(z0))

If we can find an upper bound for f(zt) − f(z0), we will have an upper bound for
f(zt). Having an upper bound on f(zt) will ensure that zt lies in a Gµe

-invariant
open neighborhood of Gµe

· ze.
Note that

f(zt) − f(z0) = (af1(zt) − af1(z0)) + (f2(zt) − f2(z0))

= a[H(zt) −H(z0)]

− a[J(zt)Ψ(zt) − J(z0)Ψ(z0)]

+ (|J(zt) − µe|
2 − |J(z0) − µe|

2)

Let is consider the three terms in this expression. Define

T1 = a[H(zt) −H(z0)]

T2 = −a[J(zt)Ψ(zt) − J(z0)Ψ(z0)]

T3 = |J(zt) − µe|
2 − |J(z0) − µe|

2
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Let us examine the term T3. With the feedback τg = T ∗Rg−1[−k(µ − µe)], the
momentum µ satisfies the differential equation

µ̇ = −k(µ− µe).

Thus |J(zt) − µe| 6 |J(z0) − µe| and therefore T3 6 0.
Next, we look at T2:

T2 = a[J(z0)Ψ(z0) − J(zt)Ψ(zt)]

= a[〈J(z0) − µe,Ψ(z0)〉 − 〈J(zt) − µe,Ψ(zt)〉]

6 a[|J(z0) − µe||Ψ(z0)| + |J(zt) − µe||Ψ(zt)|]

6 a[|J(z0) − µe||Ψ(z0)| + |J(z0) − µe||Ψ(zt)|].

If z ∈ Gµe
· S, z = gz′, where z′ ∈ S and g is some element of Gµe

. Thus |Ψ(z)| =
|Ψ(gz′)| = |AdgΨ(z′)| = |Ψ(z′)|, since the norm is Adg-invariant. But Ψ(z′) =
Ψ(ze) = ξe for all z′ ∈ S. Thus |Ψ(z)| = |ξe| for all z ∈ Gµe

· S. Thus

T2 6 2a|J(z0) − µe||ξe|.

Now we shall obtain an upper bound for the T1. We know that

Ḣ = 〈τ, q̇〉 = 〈τg, ġ〉 + 〈τx, ẋ〉.

Thus,

H(zt) −H(z0) =

∫ t

0

〈τg, ġ〉 ds +

∫ t

0

〈τx, ẋ〉 ds .

We have already seen that 〈τx, ẋ〉 6 0. Thus

H(zt) −H(z0) 6

∫ t

0

〈τg, ġ〉 ds .

We have seen that for the feedback system, 〈τg, ġ〉 = −k〈µ−µe, ν〉 where ν = ġg−1.
At this point we will assume that the trajectory zt stays inside the set Gµe

· S. We
will later justify this assumption. Since Gµe

· S has compact closure, |ν| remains
bounded on this set. Let m be an upper bound for |ν|. Thus,

|〈µ− µe, ν〉| 6 |µ− µe||ν| 6 m|µ− µe|.

Also, since µ̇ = −k(µ− µe),

|µ(zt) − µe| |t=s = e−ks|µ0 − µe|.

Thus,
|〈µ− µe, ν〉| 6 m|µ0 − µe|e

−ks.
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Thus,

H(zt) −H(z0) 6 −k

∫ t

0

〈µ− µe, ν〉 ds

6 k

∫ t

0

|〈µ− µe, ν〉| ds

6 km|µ0 − µe|

∫ t

0

e−ks ds

= m|µ0 − µe|.

Thus,
T1 6 am|µ0 − µe|.

Using the above inequalities on T1, T2, T3, we get

f(zt) − f(z0) 6 a|µ0 − µe|(2|ξe| +m),

and thus
f(zt) 6 f(z0) + a|µ0 − µe|(2|ξe| +m).

Thus if f(z0) < ε/2 and if |µ0 − µe| < ε/(2a(2|ξe| +m)), then f(zt) < ε.
Let ε > 0 be chosen such that the closure of the Gµe

-invariant open neighborhood
Tε := {z | f(z) < ε} is contained inside Gµe

· S. Now choose an initial condition
z0 such that f(z0) < ε/2 and |µ0 − µe| < ε/(2a(2|ξe| + m)). Then, if we assume
that zt remains inside the set Gµe

· S for all t > 0, we can conclude that zt remains
inside the set Tε. But since we have assumed that Tε is contained inside Gµe

·S, the
conclusion is that zt must remain inside {z | f(z) < ε} for all t > 0.

Given any Gµe
-invariant open neighborhood V of Gµe

· ze we can always find an
ε > 0 such that Tε ⊂ V , Tε ⊂ Gµe

· S. Then, if we set U to be the Gµe
-invariant

neighborhood Tε/2 ∩ {z | |µ0 −µe| < ε/(2a(2|ξe|+m))}, then z0 ∈ U implies zt ∈ V
for all t > 0. Thus we conclude that the relative equilibrium ze remains Gµe

-stable
even with the feedback.

5 Showing convergence of zt to an invariant set M

Since the trajectory zt stays inside the set Gµe
· S, which has compact closure, we

conclude that the limit set L of zt must be compact and non-empty. Also, zt → L
(using an appropriately chosen metric d on T ∗Q) as t → ∞, and L is an invariant
set. See, for example, Vidyasagar [1993] for the proofs of these statements.

We have seen that 〈τx, ẋ〉 = −
∑

i ki(Ḟi)
2 6 0. Let us assume for now that

〈τx, ẋ〉 → 0 as t→ ∞. Then we have Ḟi → 0 as t→ ∞ for i = 1, . . . ,m, or, in short,
Ḟ → 0 as t → ∞, where F = (F1, . . . , Fm) : Q → Rm. Thus if we define the set
S1 := {z ∈ Gµe

· S | Ḟ (z) = 0}, then , by continuity of the function Ḟ , it must be
that L ⊂ S1.

We know that µ → µe exponentially as t → ∞. Thus if we define the set
S2 := {z ∈ Gµe

· S | J(z) = µe}, we also have L ⊂ S2.
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Thus we know that L is an invariant set contained in S1 ∩ S2, and that zt → L
as t → ∞. Let us define the set M as the largest invariant subset contained in
S1 ∩ S2. Then L ⊂ M , and therefore zt → M as t → ∞. In the next section, we
will show that the projection of this set M onto T ∗Q/Gµe

is the point ζe, which will
enable us to show asymptotic stability.

Now let us go back and prove that 〈τx, ẋ〉 → 0 as t→ ∞. We have seen that

〈τg, ġ〉 = −k〈(µ− µe), ν〉 .

We know that (µ− µe) → 0 exponentially as t→ ∞. Further, |ν| remains bounded
on Gµe

· S. Thus the integral
∫ t

0

〈τg, ġ〉 ds

converges to some real number K as t→ ∞. Define ϕ(t) by

ϕ(t) :=

∫ t

0

〈τx, ẋ〉(zs) ds .

and note that

H(zt) = H(z0) +

∫ t

0

Ḣ(zs) ds.

Since Ḣ = 〈τg, ġ〉 + 〈τx, ẋ〉,

H(zt) − ϕ(t) = H(z0) +

∫ t

0

〈τg, ġ〉 ds → H(z0) +K as t→ ∞ . (5.1)

Since 〈τx, ẋ〉 6 0, we know that ϕ(t) is a non-increasing function of t. The set
Gµe

· S has compact closure and thus H(zt) remains bounded. Since H(zt) − ϕ(t)
converges to a constant, we conclude that ϕ(t) must also remain bounded. Thus we
can conclude that there exists a constant C such that ϕ(t) → C as t → ∞. Thus,
from equation (5.1), we conclude that H(zt) → H(z0) + C +K as t→ ∞.

If y is in the limit set L, by continuity of H, we can conclude that H(y) =
H(z0) +C +K. Since L is an invariant set and H is constant on L, it must be that
Ḣ(y) = 0 for all y ∈ L.

Lemma 5.1 Ḣ(zt) → 0 as t→ ∞.

Proof: Choose any ε > 0. By continuity of Ḣ, for each y ∈ L, there exists an open
ball By such that z ∈ By implies |Ḣ(z)| < ε. Since L is compact, we can cover L
with a finite number of such balls. The complement of these balls is a closed set
which we shall call S. Let δ = d(S,L) be the distance between L and S. Thus, if
d(z,L) < δ, then |Ḣ(z)| < ε. But, we know that zt → L as t → ∞. Thus for any
ε > 0, |Ḣ(zt)| < ε for t large enough. Thus Ḣ(zt) → 0 as t→ ∞. �

Now,
Ḣ(zt) = 〈τg, ġ〉 + 〈τx, ẋ〉 .

Since 〈τg, ġ〉 = −k〈µ − µe, ν〉, and (µ − µe) → 0 exponentially and |ν| remains
bounded, we know that 〈τg, ġ〉 → 0. Since we have shown that Ḣ(zt) → 0, we
conclude that 〈τx, ẋ〉 → 0 as t→ ∞.
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6 Characterization of the invariant set M

Let y(t) be a trajectory in M . Since M ⊂ S1 ∩ S2, we know that Ḟ (y(t)) = 0,
and J(y(t)) = µe. Since the feedback inputs, which are given by ui = −kiḞi, and
τg = T ∗Rg−1[−k(µ − µe)] must be zero along such a trajectory, the trajectory y(t)
is also a trajectory of the Hamiltonian system, ż = XH(z).

The equation Ḟ (y(t)) = 0 implies that the functions F1, . . . , Fm are constant
along the trajectory y(t). Thus the functions Ḟi, F̈i,

...
F i, . . . i = 1, . . . ,m are all

constant along the trajectory. Since this trajectory is an integral curve of the system
ż = XH(z),

Ḟi = {Fi,H},

F̈i = {{Fi,H},H},
...
F i = {{{Fi,H},H},H}, and so on.

Thus, if we define a set of functions

C = span{Fi, {Fi,H}, {{Fi,H},H}, {{{Fi ,H},H},H}, . . .}, i = 1, . . . ,m , (6.1)

and if we define the codistribution dC

dC(z) := span{dg(z) | g ∈ C} ,

then it is easy to see that the tangent vector ẏ(t) must be annihilated by this
codistribution, i.e., ẏ ∈ ker dC(y). All the functions in C are G-invariant. Thus we
know that kerdC(y) must include the vertical space at y, namely, g · y. We shall
make the assumption

kerdC(z) = g · z for all z in Gµe
· S (6.2)

This assumption implies that the dimension of the codistribution dC is as large as it
possibly can be. We will refer to this assumption as the ‘rank assumption’. We will
make some comments about this assumption in section 8. With this assumption we
conclude that ẏ ∈ g · y. We also know that M ⊂ J−1(µe). Thus, ẏ ∈ Ty[J

−1(µe)]. It
is a fact (see Marsden [1992]) that

g · y ∩ Ty[J
−1(µe)] = gµe

· y .

Thus we have ẏ ∈ gµe
· y. If πµe

: T ∗Q→ T ∗Q/Gµe
is the projection, then we have

Tπµe
· ẏ = 0. Thus if y(t) is a trajectory in M , then πµe

(y(t)) = constant. Thus
πµe

(M) must consist of a collection of equilibrium points of the vector field XH in
T ∗Q/Gµe

.
We know that zt → L as t → ∞. Choose any ε > 0. By the continuity

of the map πµe
, for each y ∈ L, there exists an open ball By such that z ∈ By

implies d(πµe
(z), πµe

(y)) < ε, which in turn implies d(πµe
(z), πµe

(L)) < ε. Now L
is compact, and so it can be covered by a finite number of such open balls. Just
as in the proof of Lemma 5.1, we can find a δ > 0 such that d(z,L) < δ implies
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d(πµe
(z), πµe

(L)) < ε. Thus πµe
(zt) → πµe

(L) ⊂ πµe
(M) as t → ∞. Thus πµe

(zt)
must converge to an equilibrium point of the vector field XH in T ∗Q/Gµe

.
The next step is to prove that πµe

(zt) converges to the equilibrium πµe
(ze) = ζe.

We will show this by proving that the set πµe
(M) consists of just one element, which

is the equilibrium ζe. Recall that M ⊂ J−1(µe). Thus πµe
(M) can be thought of as

a subset of J−1(µe)/Gµe
. Note that ζe is also an equilibrium of the vector field XHµe

on J−1(µe)/Gµe
. Here Hµe

is the function on J−1(µe)/Gµe
obtained by restricting

H to J−1(µe) and then using the G-invariance of H to drop this restriction to the
quotient J−1(µe)/Gµe

.
We have assumed (in section 4) that d2(H − Jξe

)(ze) is positive definite on the
space Z. It is easy to check (using the fact that Jξe

is constant in the set J−1(µe))
that this is equivalent to the condition that d2Hµe

(ζe) is a positive definite 2-form
on Tζe

[J−1(µe)/Gµe
].

The positive definiteness of d2Hµe
(ζe) implies that there is a neighborhood W

of ζe in J−1(µe)/Gµe
that does not contain any other equilibria of XHµe

besides ζe.
By choosing the set S to be sufficiently small, we can arrange that

πµe
[J−1(µe) ∩ Gµe

· S] ⊂W

Thus πµe
(M) ⊂ W . Now since πµe

(M) consists only of equilibria, πµe
(M) = {ζe}

and therefore πµe
(zt) converges to ζe.

We shall summarize this discussion in the following theorem.

Theorem 6.1 Let Q be a configuration manifold, and let G be a compact group
that acts freely and properly on Q. Let 〈〈·, ·〉〉 be a G-invariant kinetic energy metric
on Q. Let K(vq) := 1

2
〈〈vq, vq〉〉 be the kinetic energy, and let V : Q → R be a G-

invariant potential function. Let L := K − V be the G-invariant the Lagrangian,
and let H : T ∗Q→ R be the corresponding G-invariant Hamiltonian. Let ze ∈ T ∗Q
be a relative equilibrium for the vector field XH . Let τ = (τg, τx) be the vector of
generalized forces acting on the system. We assume that

τx = dF1(q)u1 + . . .+ dFm(q)um,

where F1, . . . , Fm are G-invariant functions on Q (or, equivalently, functions on S =
Q/G). We choose τg and u1, . . . , um to be our control inputs. Let the codistribution
dC, defined in equation (6.1), satisfy the property that for all z in a neighborhood
of ze, kerdC(z) is equal to the tangent space to the G orbit through z. Let Z be
a subspace of Tze

(T ∗Q) that is a complement of gµe
· ze in Tze

[J−1(µe)], and let
d2(H − Jξe

)(ze) be positive definite on Z. Then the feedback

ui = −kiḞi, τg = T ∗Rg−1 [−k(µ− µe)]

asymptotically stabilizes the relative equilibrium ze.

7 Relaxing the positivity condition on d2(H − Jξe)(ze).

The previous theorem required that d2(H−Jξe
)(ze) be positive definite on Z, where

Z is a complement of gµe
· ze in Tze

J−1(µe), which is equivalent to the positive
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definiteness of d2Hµe
(ζe) on Tζe

[J−1(µe)/Gµe
]. If this condition fails to hold then

we can still achieve asymptotic stability, but we have to do it in a two step process:

1. We first use the inputs to modify the potential in such a way that the modified
Hamiltonian, H̃, satisfies d2(H̃ − Jξe

)(ze) > 0 on Z.

2. We then apply the previously developed techniques to get asymptotic stability.

7.1 Stability Analysis at a Relative Equilibrium

We will now briefly describe some of the basics of the Energy-Momentum method
for analyzing the stability of relative equilibria. For a complete description, see
Marsden [1992]. A relative equilibrium ze ∈ T ∗

qe
Q has the form αµe

(qe), where
αµe

(qe) is defined by:
〈αµe

(qe), vqe
〉 = 〈µe, A(vqe

)〉 .

Here A : TQ → g is the mechanical connection, and qe has to be a critical point of
the amended potential Vµe

, which is defined by:

Vµe
(q) = V (q) +

1

2
〈µe, I

−1(q)µe〉,

where I is the locked inertia tensor. By the Energy-Momentum method, it is pos-
sible to choose a basis of Tζe

[J−1(µe)/Gµe
] such that d2Hµe

(ζe) has a convenient
block-diagonal form. To describe this form we will need some more definitions and
constructions.

Let gµe
be the Lie algebra of the isotropy subgroup Gµe

. The subspace V ⊂
Tqe

Q is defined as the orthogonal complement of the tangent space to the Gµe
-orbit

through qe. The metric on Q is used for defining the orthogonal complement. Thus
V = (gµe

· qe)
⊥. Let VRIG := (gµe

)⊥ · qe ⊂ V, where the orthogonal complement of
gµe

is computed using the inner product on g defined by the locked inertia tensor
at qe, Iqe

. Since qe is a critical point of Vµe
, the second derivative d2Vµe

(qe) is a
symmetric 2-form on Tqe

Q. Now let VINT be a complement of VRIG in V, chosen in
such a way that the restriction of d2Vµe

(qe) to V block-diagonalizes with respect to
the splitting V = VRIG ⊕ VINT.

Thus, with respect to a basis of V that is the union of a basis of VRIG and a
basis of VINT, the matrix representation of d2Vµe

(qe)|V has the form:

[

Aµe
0

0 Bµe

]

, (7.1)

where Aµe
= d2Vµ(qe)|VRIG and Bµe

= d2Vµ(qe)|VINT. The Energy-Momentum
method tells us that with respect to an appropriately chosen basis, the matrix of
d2Hµe

(ζe) is:

d2Hµe
(ζe) =





Aµe
0 0

0 Bµe
0

0 0 Kµe



 (7.2)
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The matrices Aµe
, Bµe

, have been defined earlier; and the matrix Kµe
is a matrix

of size dim S × dim S that depends on the kinetic energy metric only and is known
to be positive definite.

For positivity of d2Hµe
(ζe) we thus need both Aµe

and Bµe
to be positive definite.

If Aµe
is positive definite, it means that the rigid motion is stable. In other words,

if we were to lock up the internal joints of the system, then the system will rotate
stably if Aµe

is positive definite.
We will now proceed to describe the modifications that we need to make to our

feedback if d2Hµe
(ζe) fails to be positive definite. We will first consider the case in

which Aµe
is positive definite.

7.2 The Case Aµe
> 0

Recall that the inputs available to us are τg ∈ T ∗
gG and u1, . . . , um. Thus the

equations of motion of the system are:

d

dt

∂L

∂q̇
−
∂L

∂q
= τg +

m
∑

i=1

dFi ui

This form of the equations (i.e. Euler-Lagrange equations with force terms) is conve-
nient for showing how we can modify the potential (and therefore the Hamiltonian)
using the inputs. Once we have the modified potential, we will use it to calculate the
block-diagonal form for the second derivative of the modified reduced Hamiltonian,
as in equation (7.2). The positive definiteness of this second derivative is one of the
conditions we need to apply Theorem 6.1. Recall that the setting for the proof of
Theorem 6.1 is T ∗Q. Our use of the Euler-Lagrange equations here (which give first
order dynamics on TQ) is only for calculating the modified potential.

We will now proceed to show how we can (under appropriate conditions) use the
internal or shape space inputs u1, . . . , um to make the required modifications in the
Hamiltonian.

Consider the feedback ui = −ciFi(q) + vi. With this feedback, we have

d

dt

∂L

∂q̇
−
∂L

∂q
= −

m
∑

i=1

cidFi Fi + τg +
m
∑

i=1

dFi vi

= −
∂

∂q

(

1

2

m
∑

i=1

ciF
2
i (q)

)

+ τg +

m
∑

i=1

dFi vi

Now define a modified potential Ṽ (q) := V (q) + 1
2

∑m
i=1

ciF
2
i (q). We have a cor-

responding modified amended potential Ṽµe
(q) := Vµe

(q) + 1
2

∑m
i=1

ciF
2
i (q). Note

that since the functions Fi are zero at qe, qe is a critical point of Ṽµe
as well, and

thus ze = αµe
(qe) remains a relative equilibrium of the modified system. If we let

L̃ := K − Ṽ be the corresponding modified Lagrangian, then the new equations of
motion are:

∂L̃

∂q̇
−
∂L̃

∂q
= τg +

m
∑

i=1

dFi vi
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We shall now compute d2Ṽµe
(qe)|V:

d2Ṽµe
(qe)|V = d2Vµe

(qe)|V + d2

(

1

2

m
∑

i=1

ciF
2
i (q)

)

(qe)|V

=

[

Aµe
0

0 Bµe

]

+ d2

(

1

2

m
∑

i=1

ciF
2
i (q)

)

(qe)|V

Since the functions Fi are G-invariant, it is easy to verify that

d2

(

1

2

m
∑

i=1

ciF
2
i

)

(qe)|V =

[

0 0
0 (dF (qe))

TC(dF (qe))

]

Here dF (qe) is the matrix of the restriction of the derivative of F = (F1, . . . , Fm) to
VINT, and C := diag{c1, . . . , cm}.

Let H̃ be the modified Hamiltonian corresponding to L̃. Since we have changed
only the potential energy, the (3, 3) block in the block diagonal form for d2H̃µe

(ζe),
which depend only on the kinetic energy, remains unchanged. Thus we have

d2H̃µe
(ζe) =





Aµe
0 0

0 Bµe
+ dF (qe)

TCdF (qe) 0
0 0 Kµe



 . (7.3)

We would like d2H̃µe
(ζe) to be positive definite. We have assumed that Aµe

is
positive definite, and Kµe

is known to be positive definite. Thus we need Bµe
+

dF (qe)
TCdF (qe) to be positive definite. It is a fact from linear algebra that we can

choose the coefficients c1, . . . , cm so as to make this matrix positive definite if and
only if Bµe

is positive definite on kerdF (qe).
Thus we conclude that if d2Vµe

(qe) is positive definite on kerdF (qe), then we
can choose coefficients c1, . . . , cm so that the feedback

ui = −ciFi(q) + vi

yields a modified system with Hamiltonian H̃ such that d2H̃µe
(ζe) is positive defi-

nite. For the modified system, we define a collection of functions C̃, which is analo-
gous to the set C defined earlier.

C̃ := span{Fi, {Fi, H̃}, {{Fi, H̃}, H̃}, {{{Fi, H̃}, H̃}, H̃}, . . .}, i = 1, . . . ,m .

As in section 6, we require that this modified system satisfy the rank condition:

ker dC̃(z) = g · z for all z in Gµe
· S . (7.4)

Thus the modified system satisfies the conditions of Theorem 6.1. If we were to apply
the asymptotically stabilizing feedback of Theorem 6.1 to the modified system, then
the overall feedback applied to the system is:

ui = −ciFi(q) − kiḞi(q), i = 1, . . . ,m

τg = T ∗Rg−1 [−k(µ− µe)]
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7.3 The Case Aµe
≯ 0.

We have defined Aµe
to be equal to d2V (qe)|VRIG, where VRIG is a subspace of the

tangent space to the group orbit at qe ∈ Q. We have also seen above that if we
try to modify the potential using the internal inputs alone, Aµe

does not change.
Thus we cannot use the stabilization technique in the previous section if Aµe

is not
positive definite. In this section we will give an alternate sufficient condition that
may hold even when Aµe

is not positive definite.
In order to get around the fact thatAµe

is not positive definite, we will need to use
the inputs in the group directions also to modify the potential. But if we do this, our
modified system will no longer be invariant under the action of the symmetry group
G, and thus the momentum J will no longer be conserved. However, the arguments
we have used in the earlier sections of this paper do require that momentum be
conserved by the system to which we are applying the feedback described in section
3.

To overcome this difficulty we will proceed using the Gµe
action on Q rather than

the G action. Note that Q is locally diffeomorphic to G × S, and that G is locally
diffeomorphic to Gµe

× O, where O is the coadjoint orbit through µe. Thus Q is
locally diffeomorphic to Gµe

×O×S. We will now regard Q/Gµe
≈ O×S as the new

shape space, and we will use inputs along this shape space to modify the potential.
We will modify the potential in such a way that ze remains a relative equilibrium.
Since we will not use any actuation along the Gµe

direction to modify the potential,

the momentum map Ĵ corresponding to the Gµe
action will be conserved. Let

µ̂e = Ĵ(ze). The amended potential is now called Vµ̂e
, and is defined by:

Vµ̂e
(q) := V (q) +

1

2
〈µ̂e, Î

−1(q)µ̂e〉

Î is the locked inertia tensor associated with the Gµe
action. Let Ẑ be a complement

of gµe
in Ĵ−1(µ̂e). If we can show that d2(H̃ − Ĵξe) is positive definite on Ẑ, where

H̃ is the modified Hamiltonian, or equivalently, d2H̃µ̂e
(ζe) is a positive definite two-

form on Tζe
[Ĵ−1(µ̂e)/Gµe

], then we will be able to use the previously developed
theory to show asymptotic stability.

Recall that the open loop equations of motion for the (unmodified) system are:

d

dt

∂L

∂q̇
−
∂L

∂q
= τg +

m
∑

i=1

dFi ui

Now we let τg = τ1 + τ2, where τ1 is the force along the Gµe
direction, and τ2 is the

force along the O direction.
Let ω1, . . . , ωr be local coordinates on O. Define the functions ψ1, . . . , ψr+m as

follows:

ψi =

{

(ωi − ωi(ze)), i = 1, . . . , r

Fi−r, i = r + 1, . . . , r +m
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Let τ2 =
∑r

i=1 dψi vi. Thus the force can be written as

τ = τ1 +

r+m
∑

i=1

dψi vi .

where we let (vr+1, . . . , vr+m) = (u1, . . . , um). We will now regard τ1 and v1, . . . , vr+m

as the inputs to the system. If we set vi = −ci ψi + wi, we get

τ = −

m+r
∑

i=1

cidψi ψi + τ1 +

m+r
∑

i=1

dψi wi

= −
∂

∂q

(

1

2

m+r
∑

i=1

ciψ
2
i (q)

)

+ τ1 +

m+r
∑

i=1

dψi wi .

Now, as in section 7.2, we define a modified potential Ṽ (q) := V (q)+ 1
2

∑m+r
i=1 ciψ

2
i (q).

We get a corresponding modified amended potential, Ṽµ̂e
(q) := Vµ̂e

(q)+1
2

∑m+r
i=1

ciψ
2
i (q).

Note that since the functions ψi are zero at qe, qe is a critical point of Ṽµ̂e
as well,

and thus ze = αµe
(qe) remains a relative equilibrium of the modified system. If we

let L̃ := K − Ṽ be the corresponding modified Lagrangian, then the new equations
of motion are:

∂L̃

∂q̇
−
∂L̃

∂q
= τ1 +

m+r
∑

i=1

dψiwi

Now, if H̃ is the modified Hamiltonian, let us see what d2H̃µ̂e
will look like. Recall

that now we are considering the Gµe
action. Let V̂RIG and V̂INT be the subspaces

that correspond to the subspaces VRIG and VINT in section 7.1.
Since (Gµe

)µ̂e
= Gµe

, we conclude that V̂RIG = {0}, and thus V̂INT = V =
(gµe

· qe)
⊥. Thus, as in equation (7.3), we can express d2H̃µ̂e

(ζe) in block diagonal
form as follows:

d2H̃µ̂e
(ζe) =

[

Bµ̂e
+ (dψ(qe))

TCdψ(qe) 0
0 Kµ̂e

]

Note that since V̂RIG = {0}, there is no (1, 1) block. In the above equation, ψ =
(ψ1, . . . , ψm), and dψ(qe) : V = VRIG ⊕ VINT → Rr+m is a (r + m) × (r + dimS)
matrix of the form:

dψ(qe) =

[

I 0
0 dF (qe)

]

Bµ̂e
is the second derivative of Vµ̂e

restricted to the space V. We know that Kµ̂e
is

always positive definite. Thus d2H̃µ̂e
(ζe) is positive definite if and only if

Bµ̂e
+ (dψ(qe))

TCdψ(qe)

is positive definite. We can find a diagonal matrix C such that

Bµ̂e
+ (dψ(qe))

TCdψ(qe)
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is positive definite if and only ifBµ̂e
is positive definite on kerdψ(qe). But ker dψ(qe) =

ker dF (qe) ∩ VINT. Thus we need Bµ̂e
to be positive definite on kerdF (qe) ∩ VINT.

Assume that this condition is satisfied and that C is chosen such that

Bµ̂e
+ (dψ(qe))

TCdψ(qe)

is positive definite. In addition assume that the modified system satisfies the rank
condition. In this case the rank condition can be expressed as:

ker dC̃(z) = gµe
· z for all z in Gµe

· S (7.5)

where C̃ is defined as

C̃ := span{ψi, {ψi, H̃}, {{ψi, H̃}, H̃}, {{{ψi, H̃}, H̃}, H̃}, . . .}, i = 1, . . . , r +m
(7.6)

To the modified system we can apply the asymptotically stabilizing feedback of
Theorem 6.1. The overall feedback applied to the system will then be:

τ1 = T ∗Rg−1[−k(µ̂− µ̂e)]

vi = −ciψi − kiψ̇i, i = 1, . . . , r +m

Alternatively, in terms of τg = (τ1, τ2) and ui, we can write the feedback as

τ1 = T ∗Rg−1[−k(µ̂− µ̂e)]

τ2 =
r
∑

i=1

dψi(−ciψi − kiψ̇i)

ui = −cr+iFi − kr+iḞi, i = 1, . . . ,m

We will now summarize the results we have obtained in this section in the following
theorem:

Theorem 7.1 Let Q be a configuration manifold, and let G be a compact group
that acts freely and properly on Q. Let 〈〈·, ·〉〉 be a G-invariant kinetic energy metric
on Q. Let K(vq) := 1

2
〈〈vq, vq〉〉 be the kinetic energy, and let V : Q → R be a G-

invariant potential function. Let L := K − V be the G-invariant the Lagrangian,
and let H : T ∗Q→ R be the corresponding G-invariant Hamiltonian. Let ze ∈ T ∗Q
be a relative equilibrium for the vector field XH . Let τ = (τg, τx) be the vector of
generalized forces acting on the system. We assume that

τx = dF1(q)u1 + . . .+ dFm(q)um,

where F1, . . . , Fm are G-invariant functions on Q (or, equivalently, functions on
S = Q/G). Let τg and u1, . . . , um be our control inputs. We then have the following
sufficient conditions under which we can find an asymptotically stabilizing feedback:

1. Assume that d2Vµe
(qe)|VRIG is positive definite and let d2Vµ(qe)|VINT be pos-

itive definite on kerdF (qe). Further, assume that the rank condition (7.4) is
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satisfied. Then we can find constants ci, ki, and a positive constant k such that
the feedback

ui = −ciFi(q) − kiḞi(q), i = 1, . . . ,m and τg = T ∗Rg−1[−k(µ− µe)]

asymptotically stabilizes the relative equilibrium.

2. Assume that d2Vµ̂e
is positive definite on kerdF (qe) ∩ VINT. Assume that

the rank condition (7.5) is satisfied. Then we can find constants ci, ki, i =
1, . . . , r + m and a positive constant k such that the relative equilibrium is
asymptotically stabilized by the following feedback:

ui = −cr+iFi − kr+iḞi, i = 1, . . . ,m

and where τg = (τ1, τ2) is given by

τ1 = T ∗Rg−1 [−k(µ̂− µ̂e)]

τ2 =
r
∑

i=1

dψi(−ciψi − kiψ̇i)

8 On the rank assumption on the codistribution dC̃.

In sections 7.2 and 7.3 we had assumed that the codistribution dC̃ had maximum
possible dimension. This assumption is needed to apply Theorem 6.1, where we had
used a rank condition on the codistribution dC, defined in equation 6.2. This rank
condition is not a stringent one, as we will show by the following discussion. Our
discussion here is in the context of section 7.2, but it can be applied with appropriate
modifications to section 7.3 also.

We have defined dC̃ by:

dC̃ = span {dFi,d{Fi, H̃},d{{Fi, H̃}, H̃}, . . .}

The rank condition says that the kerdC̃(z) = g · z, or equivalently, dimdC̃ =
2dimQ − dimG. All the functions in C̃ are G-invariant functions on T ∗Q. Let
fi be the function on T ∗Q/G defined by Fi = fi ◦π, where π : T ∗Q→ T ∗Q/G is the
projection. Similarly, let h̃ be the function on T ∗Q/G induced by H̃. It is a fact (see
Marsden and Ratiu [1998]) that Poisson bracket of two G-invariant functions A,B
on T ∗Q is G-invariant and the function it induces on T ∗Q/G is the Poisson bracket
of the functions a, b induced on T ∗Q/G by A,B respectively. Thus the collection of
functions C̃ induces a collection of functions C̃1 on T ∗Q/G, defined as:

C̃1 := span{fi, {fi, h̃}, {{fi, h̃}, h̃}, {{{fi, h̃}, h̃}, h̃}, . . .}, i = 1, . . . ,m

We can define a codistribution dC̃1 as follows:

dC̃1 := span {df | f ∈ C̃1}
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It is fairly easy to check that kerdC̃(z) = g · z if and only if kerdC̃1(γ) = {0}, where
γ is the projection of z.

Now using the fact that B(df, ·) = idfB = Xf , where f is any function on
T ∗Q/G, and B is the Poisson tensor on T ∗Q/G, it is easy to conclude that the
condition kerdC̃1(γ) = {0} is satisfied iff

span {Xfi
(γ),X{h̃,fi}

(γ),X{h̃,{h̃,fi}}
(γ), . . .} = Tγ(T ∗Q/G) (8.1)

which is equivalent to:

span {Xfi
(γ), [Xf̃ ,Xfi

](γ), [Xh̃, [Xh̃,Xfi
]](γ), . . .} = Tγ(T ∗Q/G) (8.2)

This condition is reminiscent of the condition for local accessibility of a control
system (see Nijmeijer and van der Schaft [1990]). Comparing the above condition
with the condition for local accessibility we see that the above condition is more
stringent than local accessibility.

Now we know that γe is an equilibrium of Xh̃. Let A be the linearization of Xh̃
at γe, and let bi := Xfi

(γe), and let B = [b1 . . . bm]. An easy calculation shows that

[Xh̃, . . . [Xh̃,Xfi
] . . .](γe)

(k times repeated bracket) is equal to (−1)kAkbi. Thus we can conclude that the
condition (8.2) is satisfied iff

rank [B AB A2B . . . An−1B] = n,

where n is the dimension of T ∗Q/G, i.e., iff the linearization of the reduced system
on T ∗Q/G is controllable.

Amongst the space of pairs of matrices A,B of appropriate dimension the pairs
which are controllable forms an open dense subset. This suggests that the condition
that we need for asymptotic stabilizability is not a very stringent one. Indeed, van
der Schaft [1986] notes that in general just one dissipation term −kiḞi is enough to
assure asymptotic stability. (See also Jonckheere [1981].)

9 Concluding Remarks

In this paper, we have derived feedback laws that asymptotically stabilize relative
equilibria of a mechanical system with symmetry. The inputs corresponding to
forces in the internal or shape directions are of the proportional-derivative (P-D)
form: ui = −ciFi−kiḞi. The functions Fi depend only on the internal configuration
of the system. (This statement refers to the case in which Aµe

is positive definite.
The situation for the case Aµe

≯ 0 is analogous, the only difference being that Gµe

is regarded as the group and Q/Gµe
as the shape space.) The proportional terms

(−ciFi) modify the potential and convert the equilibrium to a minimum of the
(modified) reduced Hamiltonian, thereby stabilizing the equilibrium in the sense of
Lyapunov. The derivative terms (−kiḞi), which are linear functions of the velocities
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q̇, and the forces in the group directions are used to introduce an effective dissipation
in the system.

Note that in order to achieve asymptotic stability, we need two conditions:
The first involves checking the positive definiteness of the second derivative of the
amended potential on an appropriately defined space, and the second is a rank con-
dition on the codistribution dC̃. The positive definiteness condition ensures that we
can modify the potential using the proportional terms in the feedback law so as to
get Lyapunov stability. The rank condition on dC̃ ensures that despite the fact that
we have only partial actuation, the dissipation introduced by the derivative terms
spreads throughout the system, and makes the system asymptotically stable. It is
easy to see that if these conditions are satisfied, then they continue to be satisfied
even if the system parameters are perturbed. Thus, our asymptotic stabilization
scheme is robust with respect to perturbation of system parameters.

Lastly, we recall that the rank condition on dC̃ is not stringent, and is likely to
be true in most examples, as explained in section 8.

References

Bloch, A.M., N. Leonard and J.E. Marsden [1997] Stabilization of Mechanical
Systems Using Controlled Lagrangians, Proc CDC 36, 2356–2361.

Bloch, A.M., N. Leonard and J.E. Marsden [1998] Controlled Lagrangians and the
Stabilization of Mechanical Systems, in preparation.

Bullo, F. [1998] Exponential Stabilization of Relative Equilibria for Mechanical
Systems with Symmetries, to appear, Symposium on Mathematical Theory of
Networks and Systems, July 1998.

Cendra, H., J. E. Marsden and T.S. Ratiu [1998] Lagrangian reduction by stages.
preprint.

Jalnapurkar, S.M. and J.E. Marsden [1998] Stabilization of Relative Equilibria,
CDS Technical Memorandum 1998-007 , California Institute of Technology.
Available at www.cds.caltech.edu.

Jonckheere, E.A. [1981] Lagrangian theory of large scale systems, manuscript, Uni-
versity of Southern California, Department of Electrical Engineering Systems.

Marsden, J.E. [1992], Lectures on Mechanics London Mathematical Society Lecture
note series, 174, Cambridge University Press.

Marsden, J.E. and T.S. Ratiu [1998] Introduction to Mechanics and Symmetry.
Texts in Applied Mathematics, 17, Second Edition, Springer-Verlag.

Nijmeijer, H. and A.J. van der Schaft [1990] Nonlinear Dynamical Control Systems.
Springer-Verlag.

22



Patrick, G.W. [1992] Relative equilibria in Hamiltonian systems: The dynamic
interpretation of nonlinear stability on a reduced phase space. J. Geom. Phys.
9, 111–119.

Simo, J.C., D.R. Lewis, and J.E. Marsden [1991] Stability of relative equilibria I:
The reduced energy momentum method, Arch. Rat. Mech. Anal. 115, 15-59.

van der Schaft, A.J. [1986] Stabilization of Hamiltonian Systems, Nonlinear Anal-
ysis, Theory, Methods & Applications. 10 1021–1035

Vidyasagar, M. [1993] Nonlinear Systems Analysis. Second Edition, Prentice-Hall.

23


