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Point vortices on a sphere: Stability of relative equilibria
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In this paper we analyze the dynamics ofN point vortices moving on a sphere from
the point of view of geometric mechanics. The formalism is developed for the
general case ofN vortices, and the details are worked out for the~integrable! case
of three vortices. The system under consideration is SO~3! invariant; the associated
momentum map generated by this SO~3! symmetry is equivariant and corresponds
to the moment of vorticity. Poisson reduction corresponding to this symmetry is
performed; the quotient space is constructed and its Poisson bracket structure and
symplectic leaves are found explicitly. The stability of relative equilibria is ana-
lyzed by the energy–momentum method. Explicit criteria for stability of different
configurations with generic and nongeneric momenta are obtained. In each case a
group of transformations is specified, modulo which one has stability in the original
~unreduced! phase space. Special attention is given to the distinction between the
cases when the relative equilibrium is a nongreat circle equilateral triangle and
when the vortices line up on a great circle. ©1998 American Institute of Physics.
@S0022-2488~98!01906-9#

I. INTRODUCTION

The problem of vortex motion has a long and interesting history. It was Helmholtz1 who
introduced the model that is referred to today as point vortices. Several of Helmholtz’ conte
raries immediately seized upon and developed the treasures in his paper, such as Kirchho2 and
his student Gro¨bli. An account of some of the history of this problem can be found in Aref, R
and Thomann3 and Kidambi and Newton.4

We mention a few more historical facts relevant to the present paper. The problem o
figurations of vortices that could move without change of shape, namelyrelative equilibria in the
language of Poincare´, was analyzed by Thomson,5 the later Lord Kelvin, and stability aspects o
this motion were studied in his later paper, Thomson.6 The geometric construction was redisco
ered, updated and added to by Novikov7 a century later for the case of equal strength vortic
Synge8 developed a qualitative classification of all possible motions of three planar vortice
was the first to introduce trilinear coordinates. Aref9 also treats the case of three vortices of gene
strength.

The paper by Bogomolov10 contains the first systematic and thorough derivation of the eq
tions of motion for point vortices on both rotating and nonrotating spheres. A later pap
Bogomolov11 contains an analysis of the motion of three identical point vortices on the sp
generalizing the planar result by Novikov.7 The paper by Kidambi and Newton4 treats the case o
three vortices on a sphere for general vortex strengths, thus generalizing the planar res
Synge8 and Aref.9

The topology of the problem of vortices moving on a sphere is considered by Kirw12

though this paper mainly deals with the symplectic reduction~in the sense of Marsden an
Weinstein13! of the problem and the study of the topology of the symplectically reduced p
spaces and the number of equilibria, by computing, in the spirit of Smale,14 some topological
invariants, such as Betti numbers.

The dynamics ofN vortices on a sphere is a Hamiltonian system~see, e.g., Kidambi and
Newton4 and references therein!. This Hamiltonian structure can be obtained using general re

a!Electronic mail: sergey@cds.caltech.edu
b!Electronic mail: marsden@cds.caltech.edu
58940022-2488/98/39(11)/5894/14/$15.00 © 1998 American Institute of Physics
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tion techniques starting with the geometrical description of ideal hydrodynamics in term
diffeomorphism groups; see Marsden and Weinstein13 and Arnold and Khesin.15

In this paper we explicitly carry out Poisson reduction for the 3-vortex problem on a sp
We calculate the induced Poisson structure on the Poisson reduced space and analyze th
ated symplectic stratification. Furthermore, relative equilibria are classified and their stabi
determined by the energy–momentum method~see Marsden16 and references therein!. The use of
the energy–momentum method for the stability of vortices was studied for certain planar ca
Lewis and Ratiu.17 As in the basic example of the rigid body, stability in the reduced space
also be studied by considering intersections of the energy levels with the symplectic leave

A. The phase space and its Poisson structure

The phase space of the dynamical system ofN-vortices moving on the two sphere consists
N copies of a sphere, namelyP5S23¯3S2 regarded as being embedded inN copies of three
spaceR3N as the set defined byixni5R, whereR is the radius of the sphere andn51, . . . ,N
labels the location of thenth vortex. There are nonzero vortex strengthsGn ascribed to each
vortex; i.e., to eachS2. The Poisson structure onP is given by

$•,•%5 (
n51

N
R

Gn
$•,•%n , ~1!

where $ , %n is the Poisson structure on thenth copy of S2 corresponding to the natural are
symplectic form onS2; that is, the Poisson structure in each copy ofR3 is the standard Lie–
Poisson structure onR3 considered asso(3)* , the dual of the Lie algebra of the rotation grou
SO~3!. ~See, for example, Marsden and Ratiu18 for the basic definitions used here.! The restriction
of the Lie–Poisson bracket operation onR3 to a sphere@which is a symplectic leaf inso(3)* #
defines an area form. For two functionsF,H on thenth copy ofR3, the Lie–Poisson structure i

$F,H%n~xn!52xn•~¹nF3¹nH !, ~2!

where3 denotes the vector cross product.

B. The symmetry group and momentum map

Consider the diagonal action of the group SO~3! on P defined by rotations in eachR3. This
action is canonical with respect to the Poisson structure~1!. The corresponding Lie algebra i
naturally identified withR3 ~having the vector product as its Lie bracket operation! and we write
j for the vector inR3 corresponding to the matrixjPso(3); thus,

so~3!.~R3,3!, i.e., @j,h#5j3h, for any j,hPso~3!. ~3!

The vector field of infinitesimal transformations corresponding to an elementj in the Lie algebra
is given by

jP~x!ª
d

dt
exp~jt !•xU

t50

5~j3x1 , . . . ,j3xN!. ~4!

The spaceso(3)* , which, as mentioned above, is the dual of the Lie algebraso~3!, is equipped
with the natural Lie–Poisson structure given by~2! ~after identifying the dual ofR3 with itself
using the standard dot product onR3!.

Recall that amomentum mapJ:P→so(3)* .R3 for this action is defined in terms of th
Poisson bracket of an arbitrary functionF on P by

$F,J~j!%5jP@F#,

whereJ:so(3)→C`(P) is related toJ by

J~j!~z!5^J~z!,j&,
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for all xPP, jPso(3), andwhere^•,•& is the natural paring between the Lie algebra and its d
It is readily checked that the momentum map is proportional to the moment of vorticity a

given by

J~x!52
1

R (
n51

N

Gnxn . ~5!

Denote its components byJ5(Q ,P ,S ). The momentum map isnot surjectivesince

max
n

uGnu2 (
mÞn

uGmu,iJi,(
n

uGmu. ~6!

Denote the range ofJ by R.
The momentum map isequivariant, that is,

Adg21* ~J~x!!5J~g~x!!, ~7!

for all gPSO(3).Here, the map Adk* :so(3)*→so(3)* , defined for eachkPSO(3),denotes the
coadjoint action of SO~3! on so(3)* . That one can find anequivariantmomentum map is con
sistent with general theorems for compact or semisimple groups. In our case, this can b
directly from ~5! as the coadjoint action corresponds simply to rotations in the dual s
so(3)* .R3.

It follows from equivariance ofJ or directly, thatiJi2 is invariant under the coadjoint action
Hence, smooth functions ofiJi2 are also invariant. Thus, ifb5(b1 ,b2 ,b3)PR3 are coordinates in
the dualso(3)* , then any smooth function ofibi2 is a Casimir function. Correspondingly, th
generic symplectic leaves ofso(3)* are spheres defined by the level setsiJi25constÞ0. Note
that as SO~3! is compact, the action of it on bothP andso(3)* is proper.

C. The Hamiltonian

The Hamiltonian describing the motion ofN vortices on the surface of a sphere of radiusR is
given by ~see, e.g., Kidambi and Newton4!

H5
1

4pR2 (
m,n

GmGn ln~ l mn
2 !, ~8!

wherel mn
2 52(R22xm•xn) is the square of the chord distance between two vortices with posit

xm and xn . The constraintsixni5R are assumed. Notice that the Hamiltonian is invariant w
respect to the diagonal action of SO~3! on P described above. Hence, the momentum maJ
defined by~5! is constant along the flow of this Hamiltonian.

II. POISSON AND SYMPLECTIC REDUCTION

A. Poisson quotients

In performing Poisson reduction, one normally constructs the quotient space by the sym
group and calculates its naturally induced Poisson bracket. As is well known, singularities
quotient space may arise if the group action on the phase space is not free. Strictly speak
phase space of the problem is notS23¯3S2 but rather

S23¯3S2 \ (
k

ø i nÞ i m
D i 1¯ i k

,

whereD i 1¯ i k
5$xu any two or more ofxi n

coincide%. This is because the self-interaction and c
lision of vortices~which lead to infinite energy! have been excluded from consideration. Th
restriction guarantees that the diagonal action of SO~3! on P is free providedN>3, i.e., there are
3 or more vortices. The action is also proper, as was mentioned above.



s of

emain-
reo-
e line

nerate,
r-
ee that
endent
nsion

e

on re-
at it is

phere
er
the

tors
ferent
.

s
y

t of

m.
i-

5897J. Math. Phys., Vol. 39, No. 11, November 1998 S. Pekarsky and J. E. Marsden
Thus, the quotient T5P/SO(3) is a smooth2N23 dimensional Poisson manifold. In coor-
dinatizing this quotient we shall use the quantitiesl mn

2 , which are functions onP that are invariant
with respect to the SO~3! action, with the conditionsl mn

2 Þ0. In general, there are 112(N22)
52N23 independent functionsl mn

2 , and other invariant functions can be expressed in term
them.

To describe a configuration ofN vortices on a sphere~up to a global rotation!, it is sufficient
to specify the chord distance between some two vortices and the chord distances from the r
ing N22 to those two~to remove the ambiguity of reflection consider, for example, a ste
graphic projection and choose two vortices such that all the rest lie to one side of th
connecting those two!.

When 3 or more vortices are aligned on a great circle, this coordinate system is dege
i.e., there are less than 2N23 independent functionsl mn

2 , and so we shall introduce other coo
dinates in the neighborhood of such points in the quotient space. Specifically, it is easy to s
the differentials of the three square distances associated to three vortices are linearly dep
when the three vortices lie on a great circle. This analysis, obviously, agrees with the dime
of the Poisson quotient. Also, the variablesl mn

2 naturally appear in the Hamiltonian for th
N-vortex problem on the sphere, which makes the calculation of the reduced Hamiltonianh easy.

It follows from ~5! that the square of the momentum map is given by

J25:iJi25S ( GnD 2

2
1

R2 (
n,m

GnGml nm
2 , ~9!

which, as we mentioned, is invariant under the SO~3! action. Other invariants are given byl nm
2 .

DenoteG5(Gn and define a mapFm :T→R by

Fm5~m2G!~m1G!1
1

R2 (
n,m

GnGml nm
2 . ~10!

Notice that the relation~9! between the variablesl nm
2 andJ can be expressed asFJ( l nm2)50.

B. Reduction for the 3-vortex problem

Now we consider the 3-vortex problem and the structure of the corresponding Poiss
duced space in more detail. The phase space of the 3-vortex problem is trivial in a sense th
diffeomorphic to a product of SO~3! with a ‘‘shape-phase space’’U; that is, P>SO(3)3U,
where

U5$~a,a1 ,a2!u2R,a,R,0,a11a2,2p,a1,a2%,R3. ~11!

Here,a can be interpreted as the height of the triangle of the vortices with respect to the s
andan corresponds to an angle opposite thenth vortex. For the computations we will use anoth
atlas which consists of three charts, two of which are nearly identical—they differ only in
orientation and are connected by aZ2 reflection. That is, for the same chord distances vec
x1 ,x2 ,x3 can form a right-handed or left-handed coordinate system, corresponding to dif
orientations and thus defining two different configurations, one in each of these two charts

Denote the coordinates on these charts bya15 l 23
2 ,a25 l 13

2 ,a35 l 12
2 , so that thean are the

squares of the sides of the triangle inscribed in a circle of radiusr ,R. Thus, all admissible value
of an can be parameterized by any two anglesan ,am . The chart can be given parametrically b
an open setT ,R3 defined as the set of triples (a1 ,a2 ,a3) given by

a152r 2~12cosa1!, a252r 2~12cosa2!, a352r 2~12cos~a11a2!!, ~12!

where 0,a11a2,2p, 0,r ,R. The third chart contains an open neighborhood of the se
great circles and smoothly connects different orientations. Indeed, for great circlesxn become
linearly dependent, andx1 ,x2 ,x3 fail to define either the right- or left-handed coordinate syste
The chart can be coordinatized byV5x1•(x23x3), i.e., the orientable volume of the parallelep
ped formed by the vectorsx1 ,x2 ,x3 , and any two chord distancesan ,am . The sign ofV deter-
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mines the orientation~by distinguishing between right- and left-handed coordinate systems! and
thus specifies one of the above two charts, whileV50 corresponds to the great circles. Th
change of coordinates is checked to be nondegenerate in the open intersections of the ch

We summarize our results on Poisson reduction for the 3-vortex problem in the followi
Proposition II.1 (Poisson reduction for the 3-vortex problem): The quotient T5P/SO(3) is a

smooth3 dimensional manifold diffeomorphic to the shape phase space U defined by (11
natural projection of P to T is a surjective submersion with fibers being the SO(3)-orbits o.

The manifold T carries the quotient Poisson structure given as follows in the coord
charts described above. Let f and h be given functions defined on the setT ,T and let
(a1 ,a2 ,a3) lie in the setFm(a1 ,a2 ,a3)50. Then

$ f ,h%T~a1 ,a2 ,a3!5
4R3V

G1G2G3
¹Fm•~¹ f 3¹h!, ~13!

where V is regarded as a function ofa; its sign, which corresponds to different orientation
distinguishes between the two chartsT . The Poisson bracket along the set of great circles is giv
by the following expression:

$ f ,h%T~V,a2 ,a3!5B2S ] f

]a2

]h

]V
2

] f

]V

]h

]a2
D1B3S ] f

]a3

]h

]V
2

] f

]V

]h

]a3
D . ~14!

Here

B254RS 2~a11a22a3!R22a1a2

G1
2

2~a21a32a1!R22a2a3

G3
D

and

B354RS 2~a21a32a1!R22a2a3

G2
2

2~a11a32a2!R22a1a3

G1
D ,

in which a1 is regarded as a function of a2 ,a3 (since they are dependent when V50).
Casimir functions on T are generated byFm ; that is, any function ofFm is a Casimir

function. The level sets,Fm50, determine the symplectic leaves; these leaves are isomorph
the symplectic-reduced spaces Pm5J21(m)/SO(3)m . The generic leaves are those not containi
the great circle equilibria withJ50 and are open planes that foliateT . For every fixed choice o
Gn they are parallel to each other and none of them contains the central line a15a25a3 . If 0
PRangeJ, then there is a unique nongeneric zero dimensional symplectic leaf that corresp
to a great circle configuration withJ50.

Proof: DefineF5 f +p, wherep:P→T is the projection. The Poisson bracket onP is given
by ~1! and ~2!. One computes, in a straightforward way,$F,H% using the chain rule to get~13!.
Then ~14! is obtained upon change of coordinates in the chart intersections and settingV50
afterwards; we omit here the required simple but tedious calculations.

The structure of generic symplectic leaves follows from the linearity of the Casimir func
~10!. h

A HamiltonianH on P that is invariant under the diagonal action of SO~3! induces a reduced
Hamiltonianh on T5P/SO(3). Thecorresponding reduced equations on the leavesFm50 in T

are checked to be given by the following~Euler-like! equations~see Kummer19 and Kirk and
Marsden and Silber20!:

ȧ5
4R3V

G1G2G3
¹h3¹Fm , ~15!

wherea5(a1 ,a2 ,a3).
For the Hamiltonian~8! the reduced equations are
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ȧi5
V

pR
G i S 1

aj
2

1

ak
D , ~16!

where (i , j ,k) is a cyclic permutation of~1,2,3!. Along the set of great circles the equations a
represented in a different way, as is the Poisson bracket; in fact, they are given by

V̇5
1

8p S 2RS a32a1

a2
~G11G3!1

a12a2

a3
~G21G1!1

a22a3

a1
~G31G2! D

2
1

R
~a3~G12G2!1a2~G32G1!1a1~G22G3!! D , ~17!

together withȧ250 andȧ350.
These results reproduce, in the spirit of geometric mechanics, some of the results of Ki

and Newton.4 For instance, the second invariant in this reference is interpreted as a linear fu
of the square of the momentum map,iJi2. They differ only in an overall factor and an additiv
constant. As it was mentioned above,iJi2 determines the symplectic leaves inso(3)* and natu-
rally leads to conserved quantities.

III. STABILITY OF RELATIVE EQUILIBRIA

A. The energy–momentum method

We will now utilize the energy–momentum method~see Marsden16 for a summary and ref-
erences! for the analysis of the stability ofrelative equilibria, i.e., dynamical orbits with initial
conditionsxe such thatx(t)5exp(jet)xe for some Lie algebra elementje and any timet. As is
well known for relative equilibria, theaugmented energyfunction Hje

ªH2^J2me ,je& has a
critical point atxe , whereme5J(xe) is the value of the momentum at the relative equilibrium. F
notational convenience we will occasionally omit the subscripte.

The orbital stability of a relative equilibrium is equivalent to the stability of the correspon
equilibrium of the reduced system that is induced on the symplectic leavesPm of the quotient
manifold P/SO(3). Theenergy momentum method is designed to enable one to test for o
stability directly on the unreduced manifoldP by constructing a subspaceG ,Txe

P which is
isomorphic toTxe

Pme
. This is done by considering a tangent space to the level set of con

momentumJ21(me) and eliminating the neutrally stable directions associated to the isot
subgroup,

SO~3!me
ª$gPSO~3!uAdg* me5me%.

The energy–momentum method determines stability by examining definiteness of the s
variation ofHje

restricted to the subspaceG . A detailed description of this method can be fou
in Simo, Lewis and Marsden.21

If one has a definite second variation, then Patrick’s theorem~see Patrick22! guarantees sta
bility modulo the isotropy subgroup, provided its action onP is proper and the Lie algebra admi
an inner product invariant under the adjoint action of the isotropy subgroup. Note that as SO~3! is
compact, the assumptions of Patrick’s theorem are automatically satisfied for our applicati

As was mentioned above, relative equilibria are critical points of the augmented Hamilt
Hj . For variational calculations, we extend all functions onP to functions on the ambient spac
R3N, and then restrict variations to the tangent space toP by requiring

dF~x!•h50,

for all hPTxP. For the augmented Hamiltonian corresponding to~8!, this results in the following
conditions onx:

G r

R S j~x!2
1

2pR (
nÞr

Gn

xn

l nr
2 D 5k r

G r

R2 xr , ~18!
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wherek r are constants to be determined.

B. Equidistant relative equilibria

An equidistant configurationis, by definition, one that satisfiesl mn
2 5 l 2 for all mÞn. What-

ever its dynamics, such a configuration is possible only forN52,3,4 ~this follows by geometric
arguments similar to those used for the study of regular polytopes in three space!; we exclude the
simple caseN52 from our considerations.

To verify that an equidistant configuration is a relative equilibrium, one need only check
conditions~18! are satisfied. It is easy to see that

j~x!5
1

2pRl2 (
n

Gnxn52
1

2p l 2 J~x! ~19!

solves~18! with k r5G r /2p l 2. Notice, that in~19! the vectorsj andJ have opposite directions
These observations prove the following.

Proposition III.1: Equidistant configurations of relative equilibria satisfyingJ(xe)Þ0 are
possible only for N53 and 4 and are given by equilateral triangles and a tetrahedron, resp
tively; the associated values of the momentum and the Lie algebra element for these r
equilibria satisfy (19).

Condition~18! together withj50 definesstatic equilibria. It follows from ~19! that equidis-
tant static equilibria are possible only in the degenerate case of zero momentum. This nece
implies forN53 that the vortices lie on a great circle, and for bothN53 andN54 that allGn are
equal, i.e.,Gn5G. Moreover, a tetrahedral configuration with zero momentumJ50 is necessarily
a static equilibrium.

C. Great circle relative equilibria

For N53 vortices, we have the following classification ofgreat circle equilibria ~see
Kidambi and Newton4!; recall the notationsa15 l 23

2 ,a25 l 13
2 ,a35 l 12

2 .

1. Generic momentum, J„xe…Þ0

General relative equilibria correspond to vortices lying on a great circle~and thus satisfying
V50! and also satisfying the following condition:

2RS a32a1

a2
~G11G3!1

a12a2

a3
~G21G1!1

a22a3

a1
~G31G2! D

2
1

R
~a3~G12G2!1a2~G32G1!1a1~G22G3!!50, ~20!

obtained by settingV̇50 in ~17!. This implicit formula determines another relation~in addition to
V50!, betweena1 , a2 anda3 for each fixed set ofG’s. This is a nonlinear equation and thus c
have multiple solutions.

(a) Isosceles triangular great circle equilibria. A particular family ofisosceles triangular
relative equilibria for arbitrary values ofG’s is given by the following configuration:

a15a252R2, a354R2, ~21!

or, equivalently,a15a25p/2, a35p, as well as configurations obtained from it by cyclic pe
mutations of indices. The whole configuration rotates around the vector

j~x!52
1

4pR2 J~x! ~22!

and the constantskn in ~18! are given by
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k15
G1

4pR2 2
G2

8pR2 , k25
G2

4pR2 2
G1

8pR2 , k35
G3

4pR2 .

(b) Equilateral triangular great circle equilibria. A great circle equilateral triangle relative
equilibrium with l mn

2 5 l 253R2 andj given by ~19!.
Note: When the termequilateral triangle relative equilibriumis used, and we do not appen

‘‘great circle,’’ we will mean that it is anongreat circle equilateral triangle relative equilibrium.

2. Degenerate momentum, J„xe…50

In this case, the vortices again lie on a great circle, and the whole configuration rotates a
the vector

j~x!52
1

2pR S G1x1

l 23
2 1

G2x2

l 13
2 1

G3x3

l 12
2 D . ~23!

Remarks.

~1! Another specific family of great circle solutions can be found in case two of theG’s are equal;
for instance,G15G2 . In fact, any isosceles triangle with the corresponding sides of
triangle being also equal, that is,a15a2 for G15G2 , solves to~20! and hence is a relative
equilibrium for any value ofG3 .

~2! If we consider the ‘‘inverse’’ problem, namely, given a configuration on a great circle findGn

satisfying~20! so that this configuration is a relative equilibrium, then condition~20! becomes
a linear equation inGn of the form

b1G11b2G21b3G350,
wherebn5bn(a1 ,a2 ,a3) are functions of a great circle configuration. One would expect
to have a two parameter family of solutions.

The structure of the symplectic leaves sheds light on the stability of relative equilibria o
system. In particular, generically, great circle configurations satisfying~20! form a family of one
dimensional curves in the Poisson manifoldT that intersect symplectic leaves in a point. Similar
equilateral configurations are isolated points within the symplectic leaves, and stability anal
done by restricting a proper second variation to the tangent space to these leaves.

D. Geometry of the tangent space of phase space

Following the outline in the beginning of this section, consider a genericregular relative
equilibriumxe , that is, its symmetry subgroup is finite, i.e., for each nonzero elementj of the Lie
algebra, the corresponding infinitesimal generator evaluated atxe , denotedjP(xe), is nonzero.
Then, the isotropy subgroup of the corresponding nonzero momentum valueme5J(xe) is the
group SO~2! of rotations around the vectorJ. Forme50 the isotropy subgroup is SO~3! itself; ~the
stability in this is case is simple and will be considered in the end of the section!. The isotropy Lie
subalgebra is defined by

so~3!me
5H jPR3Uj5%J~xe!52

%

R (
n

Gnxe,n , % a constantJ . ~24!

Hence, the tangent space to the SO(3)m orbit at xe , which corresponds to the neutrally stab
direction, is given by

Txe
~SO~3!me

•xe!5$j3xeuj5%J~xe!%, ~25!

where again% is a constant. For regular relative equilibria, KerDJ(xe)5Txe
J21(me). The deriva-

tive of the momentum mapDJ as a mapping fromTP to TR3 can be easily computed from~5! to
produce
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DJ~x!•y52
1

R (
n

Gnyn ,

whereyª(y1 , . . . ,yN)PTxP andynPTxn
S2 is a tangent vector to the sphereS2 at the pointxn .

Thus, the kernel is determined by the following condition:

KerDJ~x!5H yPTxPU(
n

Gnyn50J , ~26!

and is 2N23 dimensional.
Using Eqs.~25! and ~26! it is easy to see that

Txe
~SO~3!m•xe!,KerDJ~xe!.

Indeed,

(
n

Gnyn5(
n

Gn%J3xn5%J3J50.

We proceed to find a subspaceG ,KerDJ(xe) that is transversal to the tangent space to
SO(3)m orbit at xe . It is done in the following way. Chose two arbitrary vectorsD(1) and D(2)

such that the plane through them contains no vortices. Then, tangent vectors at each
vortices,

yn
~1!
ªgn

~1!D~1!3xn , yn
~2!
ªgn

~2!D~2!3xn ~27!

spanTxP. Notice that~27! guarantees that allyn
( i ) lie in a plane perpendicular toD( i ). Thus, for

eachD( i ) there areN22 independent zero linear combinations ofyn’s. Also, it follows from ~26!
that if the coefficientsgn

( i ) are chosen to satisfy

(
n

Gngn
~ i !xn5D~ i ! or (

n
Gngn

~ i !xn50, i 51,2, ~28!

then the corresponding tangent vectors belong to the KerDJ.
Any of the equalities in~28! has N23115N22 linearly independent solutions for eac

D( i ), and, hence, a transversal subspaceG is defined by

G 5span$y~1!
ª~gn

~1!D~1!3xn!, y~2!
ª~gn

~2!D~2!3xn!%, ~29!

and dimG 52N24. The isotropy subgroup transformations, i.e., rotations around the axisJ, is
determined by tangent vectors

ynª2
1

R
J3xn

and corresponds to an additional one-dimensional neutrally stable subspace in KerDJ.
We note that special choice ofD( i ) would result in a diagonal structure of the second variat

of Hj . We shall see an instance of this below.

E. Definiteness of the second variation

For the calculation of the second variation the Lagrange multiplier method is used. Defin
extended Hamiltonian H˜

j ,

H̃jªHj1(
n

ln~xn
22R2!,
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where (xn
22R2)50 constrains the motion of vortices to the sphereS2. The Lagrange multipliers

ln are determined by the conditiondH̃j(xe)50 and are given by

ln52
knGn

2R2 ,

wherekn are determined from~18!. Then the second variation atxe is well-defined as a bilinea
form on Txe

P. It is given by the following expression:

]2H̃j

]xs
j ]xr

i 55 2l rd
i j 2

G r

pR2 (
nÞr

Gn

xn
i xn

j

l nr
4 , r 5s,

2
G rGs

2pR2l rs
2 S d i j 12

xs
i xr

j

l rs
2 D , rÞs.

~30!

In the case of an equilateral triangle configuration, whenl rs
2 5 l 2, one can choose

D~1!5x11x2 and D~2!5x21x3 ,

as a set of vectors defining a basis of the transversal subspaceG according to~27! with the
constantsgn

( i ) that satisfy conditions~28! being given byg1
(1)51/G1 ,g2

(1)51/G2 ,g3
(1)50 and

g1
(2)50, g2

(2)51/G2 ,g3
(2)51/G3 . Then, the restriction of the second variation to it is given by

following expression:

d2H̃juG 5
V2

pR2l 4 S 2
G3

G1
2

G3

G2
1

1 2
G1

G2
2

G1

G3

D . ~31!

The second variation is definite provided det(d2H̃j) is positive. Hence, the following.
Theorem III.2 „stability of nongreat circle equilateral triangles…: An equilateral triangle

configuration of nongreat circle relative equilibriaxe is stable moduloSO~2! rotations around the
vectorJ(xe) if

(
n,m

GnGm.0, ~32!

and unstable if

(
n,m

GnGm,0. ~33!

This theorem generalizes the known results of Synge8 for the stability of equilateral relative
equilibria of 3 vortices on a plane. Indeed, conditions~32! and~33! are independent of the radiu
R. Thus, in the limitR→` the spherical stability conditions agree with those for the planar c

Conjecture: The condition(n,mGnGm50 corresponds to a (degenerate) Hamiltonian bifu
cation.

Next we analyze stability for the family of great circle relative equilibria given by~21!.
Choose

D~1!5x11x3 and D~2!:~D~2!,xn!50, iD~2!i5R,

as a set of vectors defining a basis of the transversal subspaceG according to~27! with the
constantsgn

( i ) satisfying conditions~28! being given byg1
(1)51/G1 ,g2

(1)50, g3
(1)51/G3 and

g1
(2)51/G1 ,g2

(2)51/G2 ,g3
(2)50. Then we obtain the following expression for the restriction of

second variation:
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d2H̃juG 5
1

8p S G2

G1
0

0 S G2

G1
1

G1

G2
D22S 11

G3

G1
1

G3

G2
D D .

Stability then follows from a direct analysis of its definiteness; that is, whether or not the
diagonal entries have the same sign or not. In other words, one has stability if the determi
positive and instability if it is negative. Carrying out this simple calculation gives the follow
result.

Theorem III.3 „stability of isosceles triangle great circle equilibria…: A great circle con-
figuration of relative equilibriumxe given by (21) isstableif

G1
21G2

2. (
nÞm

GnGm ~34!

and unstableif

G1
21G2

2, (
nÞm

GnGm . ~35!

The stability is moduloSO~2! rotations aroundJ(xe).

F. Stability of great circle equilateral triangle relative equilibria

The stability analysis of a GCET, a great circle equilateral triangle relative equilibriu
different from the nongreat circle equilateral triangle case. The reason is that the two-dimen
subspace to which the second variation of the augmented Hamiltonian is restricted in the g
case fails to be a transversal subspace to theGm orbit ~rotations aroundJ! within KerDJ but rather
degenerates to a one-dimensional subspace. A complimentary direction transversal to the p
the triangle has to be taken into account similar to the case of other great circle relative equ
Using the notations developed in the section on the geometry of the tangent space, we
D(1)5nx11mx2 and D(2):(D(2),xn)50, iD(2)i5R as a set of vectors defining a basis of t
transversal subspaceG according to~27! with the constantsgn

( i ) satisfying conditions~28! being
given byg1

(1)5n/G1 ,g2
(1)5m/G2 ,g3

(1)50 andg1
(2)51/G1 ,g2

(2)51/G2 ,g3
(2)51/G3 .

Using this basis, a straightforward computation gives the following expression for the re
tion of the second variation:

d2H̃juG 5
1

12p S 0 0

0 92~G11G21G3!S 1

G1
1

1

G2
1

1

G3
D D .

One concludes from this thatthese GCET equilibria are at best, neutrally stable.
In the paragraphs below, we explore this in a little more detail and identify the source o

zero eigenvector. Compute the gradient of the Casimir functionFm , given by equation~10!,
which gives the normal direction to the symplectic leaf:

¹Fm5S ]Fm

]xn
D52

2

R2 S G1G2x21G1G3x3

G1G2x11G2G3x3

G1G3x11G2G3x2

D .

Evaluate this gradient at the point corresponding to the GCET, and take the gradient
direction corresponding to the family of equilateral triangles. To determine such a direction,
that in the coordinates of the trivialization this family is defined by the following curvea
5a,a15a252p/3, wherea is the curve parameter. The tangent vector to this curve is~1,0,0!
and so in coordinates of the ambient space, the variation of the GCET configuration alo
family of equilateral triangles is given by the following expression:
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wgcetªS x13x2

x13x2

x13x2

D PTxP,

i.e., the same tangent vectorx13x2 is attached at each vortex position.
Intuitively, one can understand this in the following way. Fix a horizontal plane going thro

the center of the sphere, intersecting it along a great circle. Inscribe an equilateral triangle
us precisely the GCET configuration. Constrain each vortex to move along a great circle
through its original position and the North Pole. Then, shifting the plane vertically up and d
and keeping track on its cross-section with the sphere, defines a family of equilateral tria
Obviously, the vector of infinitesimal translation at the GCET configuration is given bywGCET

above, i.e., at each vortex the vector points strictly vertically.
The gradient¹Fm evaluated onwGCET at GCET is zero; the volume functionV, being the

mixed vector product, vanishes at the great circle. This means that such a direction, i.
equilateral triangle family of equilibria, is tangential to the leaf at this point. In this sense
GCET is a nonisolated equilibrium within its symplectic leaf. Thus, further analysis of the sta
of the GCET equilibrium requires applications of some other, nonstandard techniques.

The preceding considerations are not applicable to a nongreat circle equilateral triangl
figuration, for which one shows that in the coordinates given by chord distancesl nm , the family of
equilateral triangles given byl nm5 l for all n,m intersects symplectic leaves, which are planes@see
equation~10!, Fm is linear#, transversally.

G. The degenerate case J „xe…50

Stability in this case is a simple task and can be done by a dimension count. This results
following theorem.

Theorem III.4 „stability of great circle equilibria with J 50…: A relative equilibrium with
zero vorticity momentumJ(xe)50, which necessarily lies on a great circle, isstable modulo
SO~3!.

Proof: The isotropy subgroup SO(3)m50 is, in this case, the whole group SO~3! and hence the
dimension ofJ21(0)/SO(3)m50 is zero. This implies that

KerDJ~x!5Tx~SO~3!m50•x!.

The assumptions of Patrick’s theorem are satisfied as SO~3! is compact, and so this proves th
theorem. h

H. Stability in the reduced space

One can also study the stability of equidistant configurations of fixed equilibria in the red
space by analyzing level sets of the integrals of motion. In general, each such integral de
codimension 1 surface, and trajectories are confined to lie in the intersection of these surfa
our case, the flow lines are given by intersecting the 2d energy levelsh5const with the coadjoint
orbits which are planes. This is analogous to the rigid body flow on the angular mome
spheres, where the orbits are given by the intersection of the energy ellipsoidsh5const with the
coadjoint orbits that are two-spheres~see, e.g., Marsden and Ratiu18!. Similar to the Energy–
Casimir method, this approach, while defining stability conditions, does not specify the tra
mations in the unreduced space modulo which the stability is understood.

The equidistant fixed equilibria inT are determined by the central linea15a25a35a. In the
neighborhood of such an equilibriumai5a(11e i), wheree i are small, and the energy levels a
given by

h5
1

4pR2 S ln a (
n,m

GnGm1G1G2e31G1G3e21G2G3e1D
2

1

4pR2

1

2
~G1G2e3

21G1G3e2
21G2G3e1

2!1 . . . . ~36!
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The symplectic leaves are planes; up to a constant they are given by a linear part in~36!. Thus,
in a small enough neighborhood of an equilibrium, trajectories are determined by the interse
of these planes with the surfaces defined by the quadratic part in~36!. Depending on the mutua
signs ofG’s these surfaces are either ellipsoids or hyperboloids of one sheet or hyperbolo
two sheets. For instance, if allGn have the same sign, then the quadratic surface is an ellips
and its intersection with any plane is an ellipse. Hence, the fixed point is surrounded by c
planar orbits and is therefore stable. Note that the condition~32! is satisfied. On the contrary, if th
signs ofGn are different, the quadratic surface is an hyperboloid, and its intersections with a
are either ellipses or hyperbolas, depending on the position of the plane. This results in
stable or unstable fixed point, respectively, and is determined precisely by the conditions~32! and
~33!.

IV. CONCLUSIONS

A simple physical system of 3 point vortices on a sphere reveals a surprisingly rich geo
cal structure. In this paper we have explicitly constructed the quotient manifoldT5P/SO(3) of
the problem and calculated its inherited Poisson bracket.

An analysis of the symplectic structure of the symplectic leaves in this quotient man
sheds light on the classification of relative equilibria and their stability. By applying the ene
momentum method, we have found explicit criteria for the stability of different configuration
relative equilibria with generic and nongeneric momenta. In each case we have specified a
of transformations modulo which stability in the unreduced space is understood.

In work in progress, we shall explore the link with dual pairs~see Marsden and Weinstein13

and Weinstein23! more thoroughly. Indeed,P/SO(3)←
p

P→
J

R is a full dual pair. This duality is
also one way of viewing noncommutative complete integrability of the 3-vortex problem
sphere.

We also will be exploring the geometric phase~in the sense of Marsden, Montgomery an
Ratiu24! for the three-vortex problem on a sphere.
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