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Abstract

We describe a class of mechanical systems for which
the “method of controlled Lagrangians” provides a fam-
ily of control laws that stabilize an unstable (rela-
tive) equilibrium. The controlled Lagrangian approach
involves making modifications to the Lagrangian for
the uncontrolled system such that the Euler-Lagrange
equations derived from the modified or “controlled”
Lagrangian describe the closed-loop system. For the
closed-loop equations to be consistent with available
control inputs, the modifications to the Lagrangian
must satisfy “matching” conditions. Our matching and
stabilizability conditions are constructive; they provide
the form of the controlled Lagrangian, the control law
and, in some cases, conditions on the control gain(s) to
ensure stability. The method is applied to stabilization
of an inverted spherical pendulum on a cart and to sta-
bilization of steady rotation of a rigid spacecraft about
its unstable intermediate axis using an internal rotor.

1 Introduction

We present new developments in our constructive
approach to the derivation of stabilizing control laws
for Lagrangian mechanical systems; we refer to the ap-
proach as the method of controlled Lagrangians. The
guiding principle behind our methodology is to con-
sider a class of control laws that yield closed-loop dy-
namics which remain in Lagrangian form. The advan-
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tage of requiring Lagrangian closed-loop dynamics is
that stabilization can be understood in terms of energy,
and energy methods provide Lyapunov functions. Be-
ing Lyapunov-based, the method yields large and com-
putable basins of stability, which become asymptoti-
cally stable when dissipative controls are added.

In this paper, we give sufficient conditions under
which our algorithmic approach provides a control law
that yields a closed-loop system in Lagrangian form.
The Lagrangian for the closed-loop system is called the
controlled Lagrangian. We refer to the conditions as
matching conditions since they ensure that the Euler-
Lagrange equations derived from the controlled La-
grangian are consistent with available control inputs,
i.e., they match the controlled Euler-Lagrange equa-
tions for the given mechanical system.

The derived matching conditions define a general
class of mechanical systems which includes balance sys-
tems, such as inverted pendula, as well as systems with
gyroscopic forces such as satellites and underwater ve-
hicles with internal rotors.

Using energy methods we give further sufficient con-
ditions under which the control gain(s) can be selected
to ensure stabilization of the unstable (relative) equi-
librium of interest.

As we have indicated, the matching and sta-
bilizability conditions are constructive, providing a
parametrized family of controlled Lagrangians and con-
trol laws. The parameter(s) are the control gain(s)
which can be selected for closed-loop stability using the
stabilizability condition or, if necessary, more general
energy methods.

The method of controlled Lagrangians is described
in Bloch, Leonard and Marsden [1997]. The approach
generalizes and makes algorithmic the result in Bloch,
Krishnaprasad, Marsden and Sánchez de Alvarez [1992]
for stabilization of unstable middle axis rotation of a



rigid spacecraft using a single internal rotor. The ba-
sic idea behind our approach was introduced in Bloch,
Marsden and Sánchez de Alvarez [1997].

In this paper we restrict to controlled Lagrangians
that only involve modifications to the system’s kinetic
energy. One can also consider modifications to the
potential energy for stabilization and tracking pur-
poses. In future work, we will incorporate into our al-
gorithm modifications to the potential energy such as
the methods of Van der Schaft [1986] and the addition
of symmetry-breaking potentials as in Leonard [1997].
Other relevant work involving energy methods in con-
trol and stabilization includes Wang and Krishnaprasad
[1992], Koditschek and Rimon [1990], Baillieul [1993],
and Åström and Furuta [1996].

This paper is organized as follows. In §2, we outline
the controlled Lagrangian approach to stabilization. In
§3, we address matching and stabilization for certain
kinds of mechanical systems which can be treated with
a two-step modification to the Lagrangian. The con-
struction is applied to the inverted spherical pendulum
on a cart. In §4, we address matching and stabilization
for mechanical systems that have dynamics described
by Euler-Poincaré equations. The construction is ap-
plied to stabilize steady rotation of a rigid spacecraft
about its unstable intermediate axis using an internal
rotor. In Bloch, Leonard and Marsden [1997] we dis-
cussed the spacecraft in a somewhat ad hoc fashion.
Here the controls are derived from the general theory.
Proofs, more detailed discussion and additional exam-
ples of these results, including stabilization of an un-
derwater vehicle with internal rotors, can be found in
Bloch, Leonard and Marsden [1998].

2 Controlled Lagrangian Approach

The controlled Lagrangian approach begins with
a mechanical system with an uncontrolled (free) La-
grangian equal to kinetic energy minus potential en-
ergy. We modify the kinetic energy to produce a new
controlled Lagrangian which describes the dynamics of
the controlled closed-loop system.

Suppose our system has configuration space Q and
that a Lie group G acts freely and properly on Q. It
is useful to keep in mind the case in which Q = S × G
with G acting only on the second factor by acting on
the left by group multiplication.

For example, for the inverted planar pendulum on
a cart, Q = S1 × R with G = R, the group of re-
als under addition (corresponding to translations of
the cart), while for a rigid spacecraft with a rotor,
Q = SO(3) × S1, where now the group is G = S1,
corresponding to rotations of the rotor.

Our goal is to control the variables lying in the shape
space Q/G (in the case in which Q = S × G, then
Q/G = S) using controls that act directly on the vari-
ables lying in G. We assume that the Lagrangian is

invariant under the action of G on Q, where the action
is on the factor G alone. In many specific examples,
such as those given below, the invariance is equivalent
to the Lagrangian being cyclic in the G-variables. Ac-
cordingly, this produces a conservation law for the free
system. Our construction will preserve the invariance
of the Lagrangian, thus providing us with a modified or
controlled conservation law. Throughout this paper we
will assume that G is an abelian group.

The essence of the modification of the Lagrangian
involves changing the metric tensor g(·, ·) that defines
the kinetic energy 1

2g(q̇, q̇).
The tangent space to Q can be split into a sum of

horizontal and vertical parts defined as follows: for each
tangent vector vq to Q at a point q ∈ Q, we can write
a unique decomposition

vq = Hor vq + Ver vq, (2.1)

such that the vertical part is tangent to the orbits of
the G-action and where the horizontal part is the metric
orthogonal to the vertical space; that is, it is uniquely
defined by requiring the identity

g(vq, wq) = g(Hor vq, Horwq)+ g(Ver vq, Verwq) (2.2)

where vq and wq are arbitrary tangent vectors to Q
at the point q ∈ Q. This choice of horizontal space
coincides with that given by the mechanical connection;
see, for example, Marsden [1992].

For the kinetic energy of our controlled Lagrangian,
we use a modified version of the right hand side of equa-
tion (2.2). The potential energy remains unchanged.
The modification consists of three ingredients:

1. a new choice of horizontal space, denoted Horτ ,

2. a change g → gσ of the metric on horizontal vec-
tors and

3. a change g → gρ of the metric on vertical vectors.

Let ξQ denote the infinitesimal generator corre-
sponding to a Lie algebra element ξ ∈ g, where g is
the Lie algebra of G (see Marsden [1992] or Marsden
and Ratiu [1994]). Thus, for each ξ ∈ g, ξQ is a vector
field on the configuration manifold Q and its value at a
point q ∈ Q is denoted ξQ(q).

Definition 2.1 Let τ be a Lie algebra valued horizon-
tal one form on Q; that is, a one form with values in the
Lie algebra g of G that annihilates vertical vectors. The
τ-horizontal space at q ∈ Q consists of tangent vec-
tors to Q at q of the form Horτvq = Hor vq− [τ(v)]Q(q),
which also defines vq 7→ Horτ (vq), the τ-horizontal

projection. The τ-vertical projection operator is
defined by Verτ (vq) := Ver(vq) + [τ(v)]Q(q).

Definition 2.2 Given gσ, gρ and τ , we define the con-

trolled Lagrangian to be the following Lagrangian



which has the form of a modified kinetic energy minus
the potential energy (V ):

Lτ,σ,ρ(v) =
1

2
[gσ(Horτvq, Horτvq)

+gρ(Verτvq, Verτvq)] − V (q). (2.3)

The equations corresponding to this Lagrangian will
be our closed-loop equations. The new terms appearing
in those equations corresponding to the directly con-
trolled variables are interpreted as control inputs. The
modifications to the Lagrangian are chosen so that no
new terms appear in the equations corresponding to the
variables that are not directly controlled. We refer to
this process as matching.

Once the control law is derived using the controlled
Lagrangian, the closed-loop stability of an equilibrium
can be determined by energy methods, using any avail-
able freedom in the choice of τ , gσ and gρ.

If we make a couple of assumptions that are not
very restrictive on the choice of metric gσ, Lτ,σ,ρ(v)
has the following structure that will be useful for the
development.

Theorem 2.3 Assume that g = gσ on Hor and Hor
and Ver are orthogonal for gσ. Then

Lτ,σ,ρ(v) = L(v + τ(v)Q) +
1

2
gσ(τ(v)Q, τ(v)Q) +

1

2
γ(v)

where v ∈ TqQ and γ(v) = (gρ − g)(Verτ (v), Verτ (v)).

3 Mechanical Systems: Lτ,σ Case

In this section we address matching, stabilizability
and stabilization of systems in a simplified setting in
which we can take gρ = g. The inverted planar pen-
dulum and spherical pendulum on a cart both fit into
this setting. In this case, γ = 0 and by Theorem 2.3
the controlled Lagrangian is

Lτ,σ(v) = L(v + τ(v)Q) +
1

2
gσ(τ(v)Q, τ(v)Q). (3.1)

3.1 Matching and Stabilization

Locally, we write coordinates for Q as xα, θa where
xα, α = 1, . . . n are coordinates on the shape space
Q/G and where θa, a = 1, . . . , r are coordinates for
the abelian group G. For the uncontrolled system, the
variables θa will be cyclic coordinates in the classical
sense. We write the given Lagrangian in these coordi-
nates (with the summation convention in force) as

L(xα, ẋβ , θ̇a) =
1

2
gαβ ẋαẋβ+gαaẋ

αθ̇a+
1

2
gabθ̇

aθ̇b−V (xα).

(3.2)
The conserved quantity, that is the momentum con-
jugate to the cyclic variable θa for the preceding La-
grangian, is given by

Ja =
∂L

∂θ̇a
= gαaẋα + gabθ̇

b. (3.3)

The equations of motion for the control system
where the controls ua act in the θa directions are the
controlled Euler-Lagrange equations:

d

dt

∂L

∂ẋα
−

∂L

∂xα
= 0

d

dt

∂L

∂θ̇a
= ua. (3.4)

We shall write the given horizontal one form τ in
coordinates as τa = τa

αdxα. Thus,

[τ(v)]Q = (0, τa
αẋα). (3.5)

Substituting into (3.1) we get

Lτ,σ = L(xα, ẋα, θ̇a + τa
αẋα) +

1

2
σabτ

a
ατb

β ẋαẋβ . (3.6)

We use the notation σab for the ab components of gσ

and, later on, shall likewise use notation ρab for the ab
components of gρ.

From (3.6) and (3.2) we find that the associated
controlled conserved quantity is given by

J̃a =
∂Lτ,σ

∂θ̇a
=

∂L

∂θ̇a
(xα, ẋα, θ̇b + τb

αẋα)

= gαaẋα + gab(θ̇
b + τb

αẋα). (3.7)

The controlled conserved quantity gives the θ Euler-
Lagrange equations and this determines the control law,
as this is the direction in which we are assuming we
have control actuation. For the construction to make
sense, however, we need to make sure that the x Euler-
Lagrange equations for L and Lτ,σ agree since there
is no control actuation in these directions. This latter
condition is the matching condition.

Consider the following three assumptions:

Assumption M-1. τb
α = −σabgαa.

Assumption M-2. σbd(σad,α + gad,α) = 2gbdgad,α.

Assumption M-3. τb
α,δ − τb

δ,α − gdbgad,ατa
δ = 0.

Theorem 3.1 Under Assumptions M-1, M-2, M-3,
the Euler-Lagrange equations for the controlled La-
grangian Lτ,σ coincide with the controlled Euler-
Lagrange equations.

For example, if 1) σab = σgab for a constant σ (this
defines σab) 2) gab is independent of xα (a condition on
the metric tensor) 3) τb

α = −(1/σ)gabgαa (this defines
τb
α) and 4) gαa,δ = gδa,α (a second condition on the

metric), then all three of M-1, M-2 and M-3 hold, so
we have matching. The σ in this example is a free
variable and can be interpreted as the control gain.

The control law is determined from the difference
between the conservation laws for the controlled and



the uncontrolled Lagrangians. In fact, since J̃a = Ja +
gabτ

b
αẋα, and since J̃a is conserved, we may write

ua =
d

dt
Ja =

d

dt
J̃a −

d

dt
gabτ

b
αẋα = −

d

dt

(

gabτ
b
αẋα

)

.

(3.8)
We can eliminate the accelerations ẍα by making use of
the fact that the Euler-Lagrange equations for x hold
(for both L and Lτ,σ).

If the matching conditions are satisfied, we obtain
a parametrized family of closed-loop Lagrangian sys-
tems. From this we can use energy methods to derive
the following sufficient condition for stabilizability. The
condition defines the choice of control gain(s) σab that
ensures stability.

Theorem 3.2 Suppose the conditions for Theorem 3.1
hold (i.e., matching holds with the controlled La-
grangian Lτ,σ). Then the system is stabilized about a
given equilibrium if the second variation of

1

2
(gαβ + gaα(σab − gab)gbβ)ẋαẋβ + V (3.9)

evaluated at the equilibrium is definite.

For the proof see Bloch, Leonard and Marsden
[1998] which makes use of a controlled Routhian.

3.2 Inverted Spherical Pendulum

We apply the above results to the controlled spher-
ical pendulum on a cart in the xy-plane. This general-
izes the planar pendulum example (see Bloch, Leonard
and Marsden [1997]) and provides a nontrivial example
of matching and stabilization in the case where we only
need a controlled Lagrangian of the form Lτ,σ. In this
case we have independent controls that can move the
cart in the x and y directions.

Consider then a spherical pendulum with bob of
mass m on a movable base of mass M , as in figure
??. The base is idealized to be a point (or a symmetric
planar body) as this simplifies the calculations without
affecting the essential dynamics.

m
g

ϕ

(x, y)
x

z

y

θ

M

ux

uy

Figure 3.1: The inverted spherical pendulum on a 2d cart.

The free Lagrangian for the spherical pendulum on
a cart is

L =
1

2
M(ẋ2 + ẏ2) +

1

2
m

(

ẋ2 + ẏ2 + r2φ̇2

+ r2 sin2 φθ̇2 + 2r cosφφ̇(ẋ cos θ + ẏ sin θ)

+ 2r sin φθ̇(−ẋ sin θ + ẏ cos θ)
)

+ mgr(1 − cosφ), (3.10)

where φ and θ are spherical coordinates measured in a
frame with origin fixed on the (point) cart, but with
orientation that remains fixed with respect to inertial
space. The angle φ represents the deflection from the
vertical while θ represents the angle between the pen-
dulum and the x-axis. The controlled equations are the
Lagrangian equations with control forces ux and uy in
the x and y equations respectively. Note that the La-
grangian is cyclic in x and y. However, the system is in
fact SE(2) invariant, as one would expect physically.

For the purposes of applying the theory discussed
above we choose the symmetry directions to be the x
and y directions ignoring for the moment the additional
S1 symmetry. We shall return to this later.

Note that gab is constant and ∂
∂θ

(cosφ cos θ) =
∂

∂φ
(− sinφ sin θ), ∂

∂θ
(cos φ sin θ) = ∂

∂φ
(sin φ cos θ), i.e.,

gaα,δ = gδa,α holds. We choose σab = σgab, where σ
is a constant, and τb

α = −(1/σ)gabgαa. Then, Assump-
tions M-1, M-2 and M-3 all hold and we get matching
by Theorem 3.1. In this case, we have

τx
φ = −λ cosφ cos θ, τx

θ = −λ(− sinφ sin θ)

τy
φ = −λ cosφ sin θ, τy

θ = −λ sin φ cos θ

where λ = mr/(σ(M + m)).
Using Theorem 2.3, the controlled Lagrangian is

given by the free Lagrangian with velocity shifts

ẋ → ẋ −
mr

σ(M + m)
(cosφ cos θφ̇ − sin φ sin θθ̇)

ẏ → ẏ −
mr

σ(M + m)
(cos φ sin θφ̇ + sin φ cos θθ̇)

and with the addition of the term

1

2

m2r2

σ(M + m)
(cos2 φφ̇2 + sin2 φθ̇2) . (3.11)

The control laws are given by

ux =
d

dt

mr

σ
(cos φ cos θφ̇ − sin φ sin θθ̇),

uy =
d

dt

mr

σ
(cos φ sin θφ̇ + sin φ cos θθ̇).

As described above, we can use Lagrange’s equations
to eliminate the accelerations.

We now use Theorem 3.2 to analyze stability of the
pendulum about its upright state, modulo motion in
the plane. (Note: stabilization of the cart as well is a
goal of ours and will be handled later with the addition
of symmetry-breaking potentials). We have

1

2
(gαβ + gaα(σab − gab)gbβ)ẋαẋβ + V



=
1

2
mr2

{(

1 +
m

M + m

(

1 − σ

σ

)

cos2 φ

)

φ̇2

+

(

1 +
m

M + m

(

1 − σ

σ

)

sin2 φ

)

θ̇2

}

−mgr(1 − cosφ) . (3.12)

Note that this is independent of θ, reflecting an addi-
tional rotational symmetry in this case. Consider the
relative equilibrium φ = φ̇ = 0. Then, modulo the θ
directions, the second variation of (3.12) with θ̇ = µ is
given by the diagonal matrix with diagonal elements

d1 = mr2

(

1 +
m

M + m

(

1 − σ

σ

))

d2 = mr2

(

1 +
m

M + m

(

1 − σ

σ

))

µ2 − mgr.

Setting σ = −1/κ, we have the stability criteria:

• If µ = 0, we require d1 < 0, i.e., κ > M/m,

• If µ > 0, we need d1 and d2 to have the same sign.

4 Mechanical Systems: Euler-Poincaré Case

We address the matching problem for the case where
the configuration space Q is a nonabelian group H
crossed with an abelian group G (a product of tori and
lines) and where the Lagrangian is left invariant on H ,
cyclic in the abelian variables and the controls act only
on the cyclic variables. The rigid satellite and under-
water vehicle with internal rotors fit into this setting.

4.1 Matching

Let L denote the left invariant Lagrangian on T (H×

G). Let l : h × G → R be the restriction of L to
the identity of H and for a curve h(t) ∈ H let η(t) =
Th(t)Lh(t)−1 ḣ. Then the (reduced) Lagrangian becomes

l(ηα, θa, θ̇b) =
1

2
gαβηαηβ + gαaηαθ̇a +

1

2
gabθ̇

aθ̇b. (4.1)

The conserved quantity, that is the momentum conju-
gate to the cyclic variable θa, is given by

Ja =
∂l

∂θ̇a
= gaαηα + gabθ̇

b. (4.2)

The equations of motion for the control system
where the controls ua act in the θa directions are the
controlled Euler-Poincaré equations:

d

dt

∂l

∂ηα
= cβ

αδη
δ ∂l

∂ηβ
(4.3)

d

dt

∂l

∂θ̇a
= ua. (4.4)

The formula from Theorem 2.3 gives the controlled
Lagrangian in this setting as

lτ,σ,ρ = l(ηα, θ̇a + τa
αηα) +

1

2
σabτ

a
ατb

βηαηβ (4.5)

+
1

2
γab(θ̇

a + gacgcαηα + τa
αηα)(θ̇b + gbcgcβηβ + τb

βηβ)

From (4.5) we find that the associated controlled con-
served quantity is given by

J̃a =
∂lτ,σ,ρ

∂θ̇a
= ρab(θ̇

b + gbcgcαηα + τb
αηα). (4.6)

Analogous to the three assumptions made in Sec-
tion 3 for matching, we make two assumptions:

Assumption EP-1. Assume that τa
α = −σabgbα.

Assumption EP-2. Assume that σab + ρab = gab.

Theorem 4.1 Under the assumptions EP-1 and EP-
2 the Euler-Poincaré equations for the controlled La-
grangian coincide with the controlled Euler-Poincaré
equations.

The control law can be computed by comparing
(4.4) to the controlled conservation law. This gives

ua = −
d

dt
(gabρ

bdJ̃d − Ja) = gabσ
bcgcαη̇α. (4.7)

4.2 Satellite with Rotor

Following Krishnaprasad [1985] and Bloch, Krish-
naprasad, Marsden and Sánchez de Alvarez [1992], we
consider a rigid body with a rotor aligned along the
third principal axis of the body. The rotor spins under
the influence of a torque u acting on the rotor. The
configuration space is Q = SO(3) × S1, with the first
factor H = SO(3) being the spacecraft attitude and
the second factor G = S1 being the rotor angle. The
Lagrangian is total kinetic energy of the system, (rigid
carrier plus rotor), with no potential energy.

The reduced Lagrangian on so(3) × S1 for this sys-
tem is

l(Ω, φ̇) =
1

2
(λ1Ω

2
1 + λ2Ω

2
2 + I3Ω

2
3 + J3(Ω3 + φ̇)2)

=
1

2









Ω1

Ω2

Ω3

φ̇









T 







λ1 0 0 0
0 λ2 0 0
0 0 λ3 J3

0 0 J3 J3

















Ω1

Ω2

Ω3

φ̇









(4.8)

where Ω = (Ω1, Ω2, Ω3) is the body angular velocity
vector of the carrier, φ is the relative angle of the rotor,
I1 > I2 > I3 are the rigid body moments of inertia,
J1 = J2 and J3 are the rotor moments of inertia and
λi = Ii + Ji. The momentum conjugate to φ is

∂l

∂φ̇
= l3 = J3(Ω3 + φ̇). (4.9)

The equations of motion with a control torque u
acting on the rotor are

λ1Ω̇1 = λ2Ω2Ω3 − (λ3Ω3 + J3φ̇)Ω2

λ2Ω̇2 = −λ1Ω1Ω3 + (λ3Ω3 + J3φ̇)Ω1

λ3Ω̇3 + J3φ̈ = (λ1 − λ2)Ω1Ω2

l̇3 = u . (4.10)



Next, we form the controlled Lagrangian and ap-
ply the Euler-Poincaré matching theorem. Since the
abelian group G = S1 is one-dimensional, gab, σab and
ρab are all scalars. From (4.8), gab = J3. We let
σab = σJ3 and ρab = ρJ3 where σ and ρ are dimension-
less scalars. For matching we should choose τ according
to Assumption EP-1, i.e.,

( τφ
Ω1

τφ
Ω2

τφ
Ω3

) = −
1

σJ3
( 0 0 J3 ). (4.11)

Further, to meet Assumption EP-2, ρ should satisfy

1

σJ3
+

1

ρJ3
=

1

J3
or ρ =

σ

σ − 1
.

Substituting into equation (4.5) with these choices, the
controlled Lagrangian is given by

lτ,σ,ρ =
1

2

(

λ1Ω
2
1 + λ2Ω

2
2 + I3Ω

2
3 +

1

σ
J3Ω

2
3

+
σ

σ − 1
J3

(

Ω3 + φ̇ −
1

σ
Ω3

)2
)

(4.12)

where σ is a free variable and matching is ensured by
Theorem 4.1. Using (4.7), the control law is

u =
1

σ
J3Ω̇3. (4.13)

Defining k by 1/σ = kI3/(1−k)J3 , and using the equa-
tions (4.10) to eliminate accelerations, one finds that
the feedback control law (4.13) is

u = k(λ1 − λ2)Ω1Ω2.

Once one has the problem in Lagrangian and hence
Hamiltonian form, one can proceed to use the energy-
Casimir or energy-momentum method to determine sta-
bility.

As in Bloch, Krishnaprasad, Marsden and Sánchez
de Alvarez [1992], we consider the case in which our
conserved quantity is equal to zero and the equilibrium
is (0, M̄ , 0) corresponding to steady rotation about the
intermediate axis (unstable for the uncontrolled space-
craft). The energy-Casimir method then shows that

Proposition 4.2 For k > 1 − J3/λ2, the equilibrium
(0, M̄ , 0) is nonlinearly stable for the controlled system.

5 Final Remarks

One of the advantages of the stabilization scheme
in this paper is that it is systematic. Further, the re-
sulting Lyapunov functions used to prove stability pro-
vide a means to design additional dissipation terms that
will achieve asymptotic stability. Promising prelimi-
nary results on asymptotic stability in the context of
the method of controlled Lagrangians can be found in

Bloch, Leonard and Marsden [1998]. For example, sim-
ulations of the planar nonlinear inverted pendulum on
a cart with control derived using our methodology plus
dissipation and an additional symmetry-breaking term
demonstrate asymptotic stability of both the pendulum
and the cart to the origin.
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