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Abstract
We study Euler–Poincaré systems (i.e., the Lagrangian analogue of Lie-

Poisson Hamiltonian systems) defined on semidirect product Lie algebras. We
first give a derivation of the Euler–Poincaré equations for a parameter depen-
dent Lagrangian by using a variational principle of Lagrange d’Alembert type.
Then we derive an abstract Kelvin-Noether theorem for these equations. We
also explore their relation with the theory of Lie-Poisson Hamiltonian systems
defined on the dual of a semidirect product Lie algebra. The Legendre trans-
formation in such cases is often not invertible; thus, it does not produce a
corresponding Euler–Poincaré system on that Lie algebra. We avoid this po-
tential difficulty by developing the theory of Euler–Poincaré systems entirely
within the Lagrangian framework. We apply the general theory to a number of
known examples, including the heavy top, ideal compressible fluids and MHD.
We also use this framework to derive higher dimensional Camassa-Holm equa-
tions, which have many potentially interesting analytical properties. These
equations are Euler-Poincaré equations for geodesics on diffeomorphism groups
(in the sense of the Arnold program) but where the metric is H1 rather than L2.

∗Research partially supported by NSF grant DMS 96–33161.
†Research partially supported by NSF Grant DMS-9503273 and DOE contract DE-FG03-

95ER25245-A000.
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1 History and Background

To put our paper in context, we shall pick up the thread of the history of mechanics
in the later part of the 1800’s. By that time, through the work of many people,
including Euler, Lagrange, Hamilton, Jacobi, and Routh, it was well understood
that the equations of mechanics are expressible in either Hamiltonian or Lagrangian
form.

The Lagrangian formulation of mechanics can be based on the variational prin-
ciples behind Newton’s fundamental laws of force balance F = ma. One chooses a
configuration space Q (a manifold, assumed to be of finite dimension n to start the
discussion) with coordinates denoted qi, i = 1, . . . , n, that describe the configura-
tion of the system under study. One then forms the velocity phase space TQ (the
tangent bundle of Q). Coordinates on TQ are denoted (q1, . . . , qn, q̇1, . . . , q̇n), and
the Lagrangian is regarded as a function L : TQ → R. In coordinates, one writes
L(qi, q̇i, t), which is shorthand notation for L(q1, . . . , qn, q̇1, . . . , q̇n, t). Usually, L is
the kinetic minus the potential energy of the system and one takes q̇i = dqi/dt to be
the system velocity. The variational principle of Hamilton states that the variation
of the action is stationary at a solution:

δS = δ

∫ b

a
L(qi, q̇i, t) dt = 0. (1.1)

In this principle, one chooses curves qi(t) joining two fixed points in Q over a fixed
time interval [a, b], and calculates the action S, which is the time integral of the
Lagrangian, regarded as a function of this curve. Hamilton’s principle states that
the action S has a critical point at a solution in the space of curves. As is well
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known, Hamilton’s principle is equivalent to the Euler–Lagrange equations:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, . . . , n. (1.2)

If the system is subjected to external forces, these are to be added to the right
hand side of the Euler-Lagrange equations. For the case in which L comprises kinetic
minus potential energy, the Euler-Lagrange equations reduce to a geometric form of
Newton’s second law. For Lagrangians that are purely kinetic energy, it was already
known in Poincaré’s time that the corresponding solutions of the Euler-Lagrange
equations are geodesics. (This fact was certainly known to Jacobi by 1840, for
example.)

To pass to the Hamiltonian formalism, one introduces the conjugate momenta

pi =
∂L

∂q̇i
, i = 1, . . . , n, (1.3)

and makes the change of variables (qi, q̇i) �→ (qi, pi), by a Legendre transformation.
The Lagrangian is called regular when this change of variables is invertible. The
Legendre transformation introduces the Hamiltonian

H(qi, pi, t) =
n∑

j=1

pj q̇
j − L(qi, q̇i, t). (1.4)

One shows that the Euler–Lagrange equations are equivalent to Hamilton’s equa-
tions:

dqi

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂qi
, (1.5)

where i = 1, . . . , n. There are analogous Hamiltonian partial differential equations
for field theories such as Maxwell’s equations and the equations of fluid and solid
mechanics.

Hamilton’s equations can be recast in Poisson bracket form as

Ḟ = {F, H}, (1.6)

where the canonical Poisson brackets are given by

{F, G} =
n∑

i=1

(
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
. (1.7)

Associated to any configuration space Q is a phase space T ∗Q called the cotan-
gent bundle of Q, which has coordinates (q1, . . . , qn, p1, . . . , pn). On this space, the
canonical Poisson bracket is intrinsically defined in the sense that the value of {F, G}
is independent of the choice of coordinates. Because the Poisson bracket satisfies
{F, G} = −{G, F} and in particular {H, H} = 0, we see that Ḣ = 0; that is, energy
is conserved along solutions of Hamilton’s equations. This is the most elementary
of many deep and beautiful conservation properties of mechanical systems.
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Poincaré and the Euler equations. Poincaré played an enormous role in the
topics treated in the present paper. We mention a few of Poincaré’s contributions
that are relevant here. First is his work on the gravitating fluid problem, continuing
the line of investigation begun by MacLaurin, Jacobi and Riemann. Some solutions
of this problem still bear his name today. This work is summarized in Chandrasekhar
[1967, 1977] (see Poincaré [1885, 1890, 1892, 1901a] for the original treatments). This
background led to his famous paper, Poincaré [1901b], in which he laid out the basic
equations of Euler type, including the rigid body, heavy top and fluids as special
cases. Abstractly, these equations are determined once one is given a Lagrangian on
a Lie algebra. We shall make some additional historical comments on this situation
below, after we present a few more mechanical preliminaries. It is because of the
paper Poincaré [1901b] that the name Euler–Poincaré equations is now used for
these equations.

To state the Euler–Poincaré equations, let g be a given Lie algebra and let
l : g → R be a given function (a Lagrangian), let ξ be a point in g and let f ∈ g∗

be given forces (whose nature we shall explicate later). Then the evolution of the
variable ξ is determined by the Euler–Poincaré equations. Namely,

d

dt

δl

δξ
= ad∗

ξ

δl

δξ
+ f.

The notation is as follows: ∂l/∂ξ ∈ g∗ (the dual vector space) is the derivative of l
with respect to ξ; we use partial derivative notation because l is a function of the
vector ξ and because shortly l will be a function of other variables as well. The map
adξ : g → g is the linear map η �→ [ξ, η], where [ξ, η] denotes the Lie bracket of ξ
and η, and where ad∗

ξ : g∗ → g∗ is its dual (transpose) as a linear map. In the case
that f = 0, we will call these equations the basic Euler–Poincaré equations.

These equations are valid for either finite or infinite dimensional Lie algebras. For
fluids, Poincaré was aware that one needs to use infinite dimensional Lie algebras,
as is clear in his paper Poincaré [1910]. He was aware that one has to be careful
with the signs in the equations; for example, for rigid body dynamics one uses the
equations as they stand, but for fluids, one needs to be careful about the conventions
for the Lie algebra operation adξ; cf. Chetayev [1941].

To state the equations in the finite dimensional case in coordinates, one must
choose a basis e1, . . . , er of g (so dim g = r). Define, as usual, the structure constants
Cd

ab of the Lie algebra by

[ea, eb] =
r∑

d=1

Cd
abed, (1.8)

where a, b run from 1 to r. If ξ ∈ g, its components relative to this basis are
denoted ξa. If e1, . . . , en is the corresponding dual basis, then the components of
the differential of the Lagrangian l are the partial derivatives ∂l/∂ξa. The Euler–
Poincaré equations in this basis are

d

dt

∂l

∂ξb
=

r∑
a,d=1

Cd
ab

∂l

∂ξd
ξa + fb. (1.9)
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For example, consider the Lie algebra R
3 with the usual vector cross product. (Of

course, this is the Lie algebra of the proper rotation group in R
3.) For l : R

3 → R,
the Euler–Poincaré equations become

d

dt

∂l

∂Ω
=

∂l

∂Ω
× Ω + f ,

which generalize the Euler equations for rigid body motion.
These equations were written down for a certain class of Lagrangians l by La-

grange [1788, Volume 2, Equation A on p. 212], while it was Poincaré [1901b] who
generalized them (without reference to the ungeometric Lagrange!) to an arbitrary
Lie algebra. However, it was Lagrange who was grappeling with the derivation and
deeper understanding of the nature of these equations. While Poincaré may have
understood how to derive them from other principles, he did not reveal this.

Of course, there was a lot of mechanics going on in the decades leading up to
Poincaré’s work and we shall comment on some of it below. However, it is a curious
historical fact that the Euler–Poincaré equations were not pursued extensively until
quite recently. While many authors mentioned these equations and even tried to
understand them more deeply (see, e.g., Hamel [1904, 1949] and Chetayev [1941]), it
was not until the Arnold school that this understanding was at least partly achieved
(see Arnold [1966a,c] and Arnold [1988]) and was used for diagnosing hydrodynam-
ical stability (e.g., Arnold [1966b]).

It was already clear in the last century that certain mechanical systems resist
the usual canonical formalism, either Hamiltonian or Lagrangian, outlined in the
first paragraph. The rigid body provides an elementary example of this. In another
example, to obtain a Hamiltonian description for ideal fluids, Clebsch [1857, 1859]
found it necessary to introduce certain nonphysical potentials1.

More about the rigid body. In the absence of external forces, the rigid body
equations are usually written as follows:

I1Ω̇1 = (I2 − I3)Ω2Ω3,

I2Ω̇2 = (I3 − I1)Ω3Ω1,

I3Ω̇3 = (I1 − I2)Ω1Ω2,

(1.10)

where Ω = (Ω1,Ω2,Ω3) is the body angular velocity vector and I1, I2, I3 are the
moments of inertia of the rigid body. Are these equations as written Lagrangian or
Hamiltonian in any sense? Since there are an odd number of equations, they cannot
be put in canonical Hamiltonian form.

One answer is to reformulate the equations on TSO(3) or T ∗SO(3), as is clas-
sically done in terms of Euler angles and their velocities or conjugate momenta,
relative to which the equations are in Euler–Lagrange or canonical Hamiltonian

1For modern accounts of Clebsch potentials and further references, see Holm and Kupersh-
midt [1983], Marsden and Weinstein [1983], Marsden, Ratiu, and Weinstein [1984a,b], Cendra and
Marsden [1987], Cendra, Ibort, and Marsden [1987] and Goncharov and Pavlov [1997].
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form. However, this reformulation answers a different question for a six dimensional
system. We are interested in these structures for the equations as given above.

The Lagrangian answer is easy: these equations have Euler–Poincaré form on
the Lie algebra R

3 using the Lagrangian

l(Ω) =
1
2
(I1Ω2

1 + I2Ω2
2 + I3Ω2

3), (1.11)

which is the (rotational) kinetic energy of the rigid body.
One of our main messages is that the Euler–Poincaré equations possess a natural

variational principle. In fact, the Euler rigid body equations are equivalent to the
rigid body action principle

δSred = δ

∫ b

a
l dt = 0, (1.12)

where variations of Ω are restricted to be of the form

δΩ = Σ̇ + Ω × Σ, (1.13)

in which Σ is a curve in R
3 that vanishes at the endpoints. As before, we regard

the reduced action Sred as a function on the space of curves, but only consider
variations of the form described. The equivalence of the rigid body equations and
the rigid body action principle may be proved in the same way as one proves that
Hamilton’s principle is equivalent to the Euler–Lagrange equations: Since l(Ω) =
1
2〈IΩ,Ω〉, and I is symmetric, we obtain

δ

∫ b

a
l dt =

∫ b

a
〈IΩ, δΩ〉 dt

=
∫ b

a
〈IΩ, Σ̇ + Ω × Σ〉 dt

=
∫ b

a

[〈
− d

dt
IΩ,Σ

〉
+ 〈IΩ,Ω × Σ〉

]
=

∫ b

a

〈
− d

dt
IΩ + IΩ × Ω,Σ

〉
dt,

where we used integration by parts and the endpoint conditions Σ(b) = Σ(a) = 0.
Since Σ is otherwise arbitrary, (1.12) is equivalent to

− d

dt
(IΩ) + IΩ × Ω = 0,

which are Euler’s equations.
Let us explain in concrete terms (that will be abstracted later) how to derive

this variational principle from the standard variational principle of Hamilton.
We regard an element R ∈ SO(3) giving the configuration of the body as a map

of a reference configuration B ⊂ R
3 to the current configuration R(B); the map R

takes a reference or label point X ∈ B to a current point x = R(X) ∈ R(B). When
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the rigid body is in motion, the matrix R is time-dependent and the velocity of a
point of the body is ẋ = ṘX = ṘR−1x. Since R is an orthogonal matrix, R−1Ṙ
and ṘR−1 are skew matrices, and so we can write

ẋ = ṘR−1x = ω × x, (1.14)

which defines the spatial angular velocity vector ω. Thus, ω is essentially given
by right translation of Ṙ to the identity.

The corresponding body angular velocity is defined by

Ω = R−1ω, (1.15)

so that Ω is the angular velocity relative to a body fixed frame. Notice that

R−1ṘX = R−1ṘR−1x = R−1(ω × x)

= R−1ω × R−1x = Ω × X, (1.16)

so that Ω is given by left translation of Ṙ to the identity. The kinetic energy is
obtained by summing up m|ẋ|2/2 (where |•| denotes the Euclidean norm) over the
body:

K =
1
2

∫
B

ρ(X)|ṘX|2 d3X, (1.17)

in which ρ is a given mass density in the reference configuration. Since

|ṘX| = |ω × x| = |R−1(ω × x)| = |Ω × X|,

K is a quadratic function of Ω. Writing

K =
1
2
ΩT

IΩ (1.18)

defines the moment of inertia tensor I, which, provided the body does not
degenerate to a line, is a positive-definite (3×3) matrix, or better, a quadratic form.
This quadratic form can be diagonalized by a change of basis; thereby defining the
principal axes and moments of inertia. In this basis, we write I = diag(I1, I2, I3). The
function K is taken to be the Lagrangian of the system on TSO(3) (and by means of
the Legendre transformation we obtain the corresponding Hamiltonian description
on T ∗SO(3)). Notice that K in equation (1.17) is left (not right) invariant on
TSO(3). It follows that the corresponding Hamiltonian is also left invariant.

In the Lagrangian framework, the relation between motion in R space and mo-
tion in body angular velocity (or Ω) space is as follows: The curve R(t) ∈ SO(3)
satisfies the Euler-Lagrange equations for

L(R, Ṙ) =
1
2

∫
B

ρ(X)|ṘX|2 d3X, (1.19)
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if and only if Ω(t) defined by R−1Ṙv = Ω × v for all v ∈ R
3 satisfies Euler’s

equations

IΩ̇ = IΩ × Ω. (1.20)

An instructive proof of this relation involves understanding how to reduce vari-
ational principles using their symmetry groups. By Hamilton’s principle, R(t) sat-
isfies the Euler-Lagrange equations, if and only if

δ

∫
L dt = 0.

Let l(Ω) = 1
2(IΩ) · Ω, so that l(Ω) = L(R, Ṙ) if R and Ω are related as above.

To see how we should transform Hamilton’s principle, define the skew matrix Ω̂ by
Ω̂v = Ω× v for any v ∈ R

3, and differentiate the relation R−1Ṙ = Ω̂ with respect
to R to get

−R−1(δR)R−1Ṙ + R−1(δṘ) = δ̂Ω. (1.21)

Let the skew matrix Σ̂ be defined by

Σ̂ = R−1δR, (1.22)

and define the vector Σ by

Σ̂v = Σ × v. (1.23)

Note that

˙̂Σ = −R−1ṘR−1δR + R−1δṘ,

so

R−1δṘ = ˙̂Σ + R−1ṘΣ̂ . (1.24)

Substituting (1.24) and (1.22) into (1.21) gives

−Σ̂Ω̂ + ˙̂Σ + Ω̂Σ̂ = δ̂Ω,

that is,

δ̂Ω = ˙̂Σ + [Ω̂, Σ̂]. (1.25)

The identity [Ω̂, Σ̂] = (Ω×Σ)̂ holds by Jacobi’s identity for the cross product and
so

δΩ = Σ̇ + Ω × Σ. (1.26)

These calculations prove the following:
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Theorem 1.1 Hamilton’s variational principle

δS = δ

∫ b

a
L dt = 0 (1.27)

on TSO(3) is equivalent to the reduced variational principle

δSred = δ

∫ b

a
l dt = 0 (1.28)

on R
3 where the variations δΩ are of the form (1.26) with Σ(a) = Σ(b) = 0.

Hamiltonian Form. If, instead of variational principles, we concentrate on Pois-
son brackets and drop the requirement that they be in the canonical form, then there
is also a simple and beautiful Hamiltonian structure for the rigid body equations
that is now well known2. To recall this, introduce the angular momenta

Πi = IiΩi =
∂L

∂Ωi
, i = 1, 2, 3, (1.29)

so that the Euler equations become

Π̇1 =
I2 − I3

I2I3
Π2Π3,

Π̇2 =
I3 − I1

I3I1
Π3Π1,

Π̇3 =
I1 − I2

I1I2
Π1Π2,

(1.30)

that is,

Π̇ = Π × Ω. (1.31)

Introduce the following rigid body Poisson bracket on functions of the Π’s:

{F, G}(Π) = −Π · (∇ΠF ×∇ΠG) (1.32)

and the Hamiltonian

H =
1
2

(
Π2

1

I1
+

Π2
2

I2
+

Π2
3

I3

)
. (1.33)

One checks that Euler’s equations are equivalent to Ḟ = {F, H}.
The rigid body variational principle and the rigid body Poisson bracket are

special cases of general constructions associated to any Lie algebra g. Since we have
already described the general Euler–Poincaré construction on g, we turn next to the
Hamiltonian counterpart on the dual space.

2See Marsden and Ratiu [1994] for details, references, and the history of this structure.
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The Lie-Poisson Equations. Let F, G be real valued functions on the dual space
g∗. Denoting elements of g∗ by µ, let the functional derivative of F at µ be the unique
element δF/δµ of g defined by

lim
ε→0

1
ε
[F (µ + εδµ) − F (µ)] =

〈
δµ,

δF

δµ

〉
, (1.34)

for all δµ ∈ g∗, where 〈 , 〉 denotes the pairing between g∗ and g. Define the (±)
Lie-Poisson brackets by

{F, G}±(µ) = ±
〈

µ,

[
δF

δµ
,
δG

δµ

]〉
. (1.35)

Using the coordinate notation introduced above, the (±) Lie-Poisson brackets be-
come

{F, G}±(µ) = ±
r∑

a,b,d=1

Cd
abµd

∂F

∂µa

∂G

∂µb
, (1.36)

where µ =
∑r

d=1 µde
d.

The Lie-Poisson equations, determined by Ḟ = {F, H} read

µ̇a = ±
r∑

b,d=1

Cd
abµd

∂H

∂µb
,

or intrinsically,

µ̇ = ∓ ad∗
∂H/∂µ µ. (1.37)

This setting of mechanics is a special case of the general theory of systems on
Poisson manifolds, for which there is now an extensive theoretical development.
(See Guillemin and Sternberg [1984] and Marsden and Ratiu [1994] for a start on
this literature.) There is an especially important feature of the rigid body bracket
that carries over to general Lie algebras, namely, Lie-Poisson brackets arise from
canonical brackets on the cotangent bundle (phase space) T ∗G associated with a Lie
group G which has g as its associated Lie algebra.

For a rigid body which is free to rotate about its center of mass, G is the
(proper) rotation group SO(3). The choice of T ∗G as the primitive phase space
is made according to the classical procedures of mechanics described earlier. For
the description using Lagrangian mechanics, one forms the velocity-phase space
TSO(3). The Hamiltonian description on T ∗G is then obtained by the Legendre
transformation.

The passage from T ∗G to the space of Π’s (body angular momentum space)
is determined by left translation on the group. This mapping is an example of a
momentum map; that is, a mapping whose components are the “Noether quantities”
associated with a symmetry group. The map from T ∗G to g∗ being a Poisson
(canonical) map is a general fact about momentum maps. The Hamiltonian point
of view of all this is again a well developed subject.
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Geodesic motion. As emphasized by Arnold [1966a], in many interesting cases,
the Euler–Poincaré equations on a Lie algebra g correspond to geodesic motion on
the corresponding group G. We shall explain the relationship between the equations
on g and on G shortly, in theorem 1.2. Similarly, on the Hamiltonian side, the
preceding paragraphs explained the relation between the Hamiltonian equations on
T ∗G and the Lie–Poisson equations on g∗. However, the issue of geodesic motion is
simple: if the Lagrangian or Hamiltonian on g or g∗ is purely quadratic, then the
corresponding motion on the group is geodesic motion.

More History. The Lie-Poisson bracket was discovered by Sophus Lie (Lie [1890],
Vol. II, p. 237). However, Lie’s bracket and his related work was not given much
attention until the work of Kirillov, Kostant, and Souriau (and others) revived it in
the mid-1960s. Meanwhile, it was noticed by Pauli and Martin around 1950 that
the rigid body equations are in Hamiltonian form using the rigid body bracket, but
they were apparently unaware of the underlying Lie theory. It would seem that
while Poincaré was aware of Lie theory, in his work on the Euler equations he was
unaware of Lie’s work on Lie-Poisson structures. He also seems not to have been
aware of the variational structure of the Euler equations.

The heavy top. Another system important to Poincaré and also for us in this
paper is the heavy top; that is, a rigid body with a fixed point in a gravitational field.
For the Lie-Poisson description, the underlying Lie algebra, surprisingly, consists of
the algebra of infinitesimal Euclidean motions in R

3. These do not arise as actual
Euclidean motions of the body since the body has a fixed point! As we shall see,
there is a close parallel with the Poisson structure for compressible fluids.

The basic phase space we start with is again T ∗SO(3). In this space, the equa-
tions are in canonical Hamiltonian form. Gravity breaks the symmetry and the
system is no longer SO(3) invariant, so it cannot be written entirely in terms of the
body angular momentum Π. One also needs to keep track of Γ, the “direction of
gravity” as seen from the body (Γ = R−1k where the unit vector k points upward
and R is the element of SO(3) describing the current configuration of the body).
The equations of motion are

Π̇1 =
I2 − I3

I2I3
Π2Π3 + Mg� (Γ2χ3 − Γ3χ2),

Π̇2 =
I3 − I1

I3I1
Π3Π1 + Mg� (Γ3χ1 − Γ1χ3), (1.38)

Π̇3 =
I1 − I2

I1I2
Π1Π2 + Mg� (Γ1χ2 − Γ2χ1),

or, in vector notation,

Π̇ = Π × Ω + Mg�Γ × χ , (1.39)

and

Γ̇ = Γ × Ω, (1.40)
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where M is the body’s mass, g is the acceleration of gravity, χ is the unit vector
on the line connecting the fixed point with the body’s center of mass, and � is the
length of this segment.

The Lie algebra of the Euclidean group is se(3) = R
3 × R

3 with the Lie bracket

[(ξ,u), (η,v)] = (ξ × η, ξ × v − η × u). (1.41)

We identify the dual space with pairs (Π,Γ); the corresponding (−) Lie-Poisson
bracket called the heavy top bracket is

{F, G}(Π,Γ) = −Π · (∇ΠF ×∇ΠG)
− Γ · (∇ΠF ×∇ΓG −∇ΠG ×∇ΓF ). (1.42)

The above equations for Π,Γ can be checked to be equivalent to

Ḟ = {F, H}, (1.43)

where the heavy top Hamiltonian

H(Π,Γ) =
1
2

(
Π2

1

I1
+

Π2
2

I2
+

Π2
3

I3

)
+ Mg�Γ · χ (1.44)

is the total energy of the body (see, for example, Sudarshan and Mukunda [1974]).
The Lie algebra of the Euclidean group has a structure which is a special case of

what is called a semidirect product . Here it is the product of the group of rotations
with the translation group. It turns out that semidirect products occur under rather
general circumstances when the symmetry in T ∗G is broken. In particular, there
are similarities in structure between the Poisson bracket for compressible flow and
that for the heavy top. The general theory for semidirect products will be reviewed
shortly.

A Kaluza-Klein form for the heavy top. We make a remark about the heavy
top equations that is relevant for later purposes. Namely, since the equations have a
Hamiltonian that is of the form kinetic plus potential, it is clear that the equations
are not of Lie-Poisson form on so(3)∗, the dual of the Lie algebra of SO(3) and
correspondingly, are not geodesic equations on SO(3). While the equations are Lie–
Poisson on se(3)∗, the Hamiltonian is not quadratic, so again the equations are not
geodesic equations on SE(3).

However, they can be viewed a different way so that they become Lie-Poisson
equations for a different group and with a quadratic Hamiltonian. In particular, they
are the reduction of geodesic motion. To effect this, one changes the Lie algebra from
se(3) to the product se(3)× so(3). The dual variables are now denoted Π,Γ,χ. We
regard the variable χ as a momentum conjugate to a new variable, namely a ghost
element of the rotation group in such a way that χ is a constant of the motion; in
Kaluza-Klein theory for charged particles on thinks of the charge this way, as being
the momentum conjugate to a (ghost) cyclic variable.
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We modify the Hamiltonian by replacing Γ·χ by, for example, Γ·χ+‖Γ‖2+‖χ‖2,
or any other terms of this sort that convert the potential energy into a positive
definite quadratic form in Γ and χ. The added terms, being Casimir functions,
do not affect the equations of motion. However, now the Hamiltonian is purely
quadratic and hence comes from geodesic motion on the group SE(3) × SO(3).
Notice that this construction is quite different from that of the well known Jacobi
metric method.

Later on in our study of continuum mechanics, we shall repeat this construction
to achieve geodesic form for some other interesting continuum models. Of course
one can also treat a heavy top that is charged or has a magnetic moment using these
ideas.

Incompressible Fluids. Arnold [1966a] showed that the Euler equations for an
incompressible fluid could be given a Lagrangian and Hamiltonian description simi-
lar to that for the rigid body. His approach3 has the appealing feature that one sets
things up just the way Lagrange and Hamilton would have done: one begins with
a configuration space Q, forms a Lagrangian L on the velocity phase space TQ and
then Legendre transforms to a Hamiltonian H on the momentum phase space T ∗Q.
Thus, one automatically has variational principles, etc. For ideal fluids, Q = G is
the group Diffvol(D) of volume preserving transformations of the fluid container (a
region D in R

2 or R
3, or a Riemannian manifold in general, possibly with boundary).

Group multiplication in G is composition.
The reason we select G = Diffvol(D) as the configuration space is similar to that

for the rigid body; namely, each ϕ in G is a mapping of D to D which takes a
reference point X ∈ D to a current point x = ϕ(X) ∈ D; thus, knowing ϕ tells us
where each particle of fluid goes and hence gives us the current fluid configuration .
We ask that ϕ be a diffeomorphism to exclude discontinuities, cavitation, and fluid
interpenetration, and we ask that ϕ be volume preserving to correspond to the
assumption of incompressibility.

A motion of a fluid is a family of time-dependent elements of G, which we write
as x = ϕ(X, t). The material velocity field is defined by V(X, t) = ∂ϕ(X, t)/∂t,
and the spatial velocity field is defined by v(x, t) = V(X, t) where x and X are
related by x = ϕ(X, t). If we suppress “t” and write ϕ̇ for V, note that

v = ϕ̇ ◦ ϕ−1 i.e., vt = Vt ◦ ϕ−1
t , (1.45)

where ϕt(x) = ϕ(X, t). We can regard (1.45) as a map from the space of (ϕ, ϕ̇)
(material or Lagrangian description) to the space of v’s (spatial or Eulerian descrip-
tion). Like the rigid body, the material to spatial map (1.45) takes the canonical
bracket to a Lie-Poisson bracket; one of our goals is to understand this reduction.
Notice that if we replace ϕ by ϕ ◦ η for a fixed (time-independent) η ∈ Diffvol(D),
then ϕ̇ ◦ ϕ−1 is independent of η; this reflects the right invariance of the Eulerian

3Arnold’s approach is consistent with what appears in the thesis of Ehrenfest from around
1904; see Klein [1970]. However, Ehrenfest bases his principles on the more sophisticated curvature
principles of Gauss and Hertz.
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description (v is invariant under composition of ϕ by η on the right). This is also
called the particle relabeling symmetry of fluid dynamics. The spaces TG and
T ∗G represent the Lagrangian (material) description and we pass to the Eulerian
(spatial) description by right translations and use the (+) Lie-Poisson bracket. One
of the things we shall explain later is the reason for the switch between right and
left in going from the rigid body to fluids.

The Euler equations for an ideal, incompressible, homogeneous fluid moving
in the region D are

∂v
∂t

+ (v · ∇)v = −∇p (1.46)

with the constraint div v = 0 and boundary conditions: v is tangent to ∂D.
The pressure p is determined implicitly by the divergence-free (volume preserv-

ing) constraint div v = 0. The associated Lie algebra g is the space of all divergence-
free vector fields tangent to the boundary. This Lie algebra is endowed with the
negative Jacobi-Lie bracket of vector fields given by

[v,w]iL =
n∑

j=1

(
wj ∂vi

∂xj
− vj ∂wi

∂xj

)
. (1.47)

(The subscript L on [· , ·] refers to the fact that it is the left Lie algebra bracket on
g. The most common convention for the Jacobi-Lie bracket of vector fields, also the
one we adopt, has the opposite sign.) We identify g and g∗ by using the pairing

〈v,w〉 =
∫
D

v · w d3x. (1.48)

Hamiltonian structure for fluids. Introduce the (+) Lie-Poisson bracket, called
the ideal fluid bracket , on functions of v by

{F, G}(v) =
∫
D

v ·
[
δF

δv
,
δG

δv

]
L

d3x, (1.49)

where δF/δv is defined by

lim
ε→0

1
ε
[F (v + εδv) − F (v)] =

∫
D

(
δv · δF

δv

)
d3x. (1.50)

With the energy function chosen to be the kinetic energy,

H(v) =
1
2

∫
D
|v|2 d3x, (1.51)

one can verify that the Euler equations (1.46) are equivalent to the Poisson bracket
equations

Ḟ = {F, H} (1.52)
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for all functions F on g. For this, one uses the orthogonal decomposition w =
Pw+∇p of a vector field w into a divergence-free part Pw in g and a gradient. The
Euler equations can be written as

∂v
∂t

+ P(v · ∇v) = 0. (1.53)

One can also express the Hamiltonian structure in terms of the vorticity as a
basic dynamic variable and show that the preservation of coadjoint orbits amounts to
Kelvin’s circulation theorem. We shall see a Lagrangian version of this property later
in the paper. Marsden and Weinstein [1983] show that the Hamiltonian structure
in terms of Clebsch potentials fits naturally into this Lie-Poisson scheme, and that
Kirchhoff’s Hamiltonian description of point vortex dynamics, vortex filaments, and
vortex patches can be derived in a natural way from the Hamiltonian structure
described above.

Lagrangian structure for fluids. The general framework of the Euler–Poincaré
and the Lie-Poisson equations gives other insights as well. For example, this general
theory shows that the Euler equations are derivable from the “variational principle”

δ

∫ b

a

∫
D

1
2
|v|2 d3x = 0

which should hold for all variations δv of the form

δv = u̇ + [u,v]L

where u is a vector field (representing the infinitesimal particle displacement) van-
ishing at the temporal endpoints. The constraints on the allowed variations of the
fluid velocity field are commonly known as “Lin constraints” and their nature was
clarified by Newcomb [1962] and Bretherton [1970]. This itself has an interesting
history, going back to Ehrenfest, Boltzmann, and Clebsch, but again, there was little
if any contact with the heritage of Lie and Poincaré on the subject.

The Basic Euler–Poincaré Equations. We now recall the abstract derivation
of the “basic” Euler–Poincaré equations (i.e., the Euler–Poincaré equations with no
forcing or advected parameters) for left–invariant Lagrangians on Lie groups (see
Marsden and Scheurle [1993a,b], Marsden and Ratiu [1994] and Bloch et al. [1996]).

Theorem 1.2 Let G be a Lie group and L : TG → R a left (respectively, right)
invariant Lagrangian. Let l : g → R be its restriction to the tangent space at the
identity. For a curve g(t) ∈ G, let ξ(t) = g(t)−1ġ(t); i.e., ξ(t) = Tg(t)Lg(t)−1 ġ(t)
(respectively, ξ(t) = ġ(t)g(t)−1). Then the following are equivalent:

i Hamilton’s principle

δ

∫ b

a
L(g(t), ġ(t))dt = 0 (1.54)

holds, as usual, for variations δg(t) of g(t) vanishing at the endpoints.
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ii The curve g(t) satisfies the Euler-Lagrange equations for L on G.

iii The “variational” principle

δ

∫ b

a
l(ξ(t))dt = 0 (1.55)

holds on g, using variations of the form

δξ = η̇ ± [ξ, η], (1.56)

where η vanishes at the endpoints (+ corresponds to left invariance and − to
right invariance).4

iv The basic Euler–Poincaré equations hold

d

dt

δl

δξ
= ± ad∗

ξ

δl

δξ
. (1.57)

Basic Ideas of the Proof. First of all, the equivalence of i and ii holds on the
tangent bundle of any configuration manifold Q, by the general Hamilton principle.
To see that ii and iii are equivalent, one needs to compute the variations δξ induced
on ξ = g−1ġ = TLg−1 ġ by a variation of g. We will do this for matrix groups; see
Bloch, Krishnaprasad, Marsden, and Ratiu [1994] for the general case. To calculate
this, we need to differentiate g−1ġ in the direction of a variation δg. If δg = dg/dε
at ε = 0, where g is extended to a curve gε, then,

δξ =
d

dε
g−1 d

dt
g,

while if η = g−1δg, then

η̇ =
d

dt
g−1 d

dε
g.

The difference δξ − η̇ is thus the commutator [ξ, η].
To complete the proof, we show the equivalence of iii and iv in the left-invariant

case. Indeed, using the definitions and integrating by parts produces,

δ

∫
l(ξ)dt =

∫
δl

δξ
δξ dt =

∫
δl

δξ
(η̇ + adξη) dt

=
∫ [

− d

dt

(
δl

δξ

)
+ ad∗

ξ

δl

δξ

]
η dt ,

so the result follows. �
4Because there are constraints on the variations, this principle is more like a Lagrange d’Alem-

bert principle, which is why we put “variational” in quotes. As we shall explain, such problems are
not literally variational.
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There is of course a right invariant version of this theorem in which ξ = ġg−1

and the Euler–Poincaré equations acquire appropriate minus signs as in equation
(1.57). We shall go into this in detail later.

Since the Euler-Lagrange and Hamilton equations on TQ and T ∗Q are equivalent
in the regular case, it follows that the Lie-Poisson and Euler–Poincaré equations
are then also equivalent. To see this directly , we make the following Legendre
transformation from g to g∗:

µ =
δl

δξ
, h(µ) = 〈µ, ξ〉 − l(ξ).

Note that

δh

δµ
= ξ +

〈
µ,

δξ

δµ

〉
−

〈
δl

δξ
,
δξ

δµ

〉
= ξ

and so it is now clear that the Lie-Poisson equations (1.37) and the Euler–Poincaré
equations (1.57) are equivalent.

We close this paragraph by mentioning the geodesic property of the basic Euler–
Poincaré form. When l is a metric on TG, the basic Euler–Poincaré equations are the
geodesic spray equations for geodesic motion on the group G with respect to that
metric. For discussions of this property in applications, see, e.g., Arnold [1966a]
for the Euler equations of an incompressible ideal fluid, and Ovsienko and Khesin
[1987] for the KdV shallow water equation. (An account of the latter case from the
Euler–Poincaré viewpoint may also be found in Marsden and Ratiu [1994].) Zeitlin
and Pasmanter [1994] discuss the geodesic property for certain ideal geophysical
fluid flows; Zeitlin and Kambe [1993] and Ono [1995a, 1995b] discuss it for ideal
MHD; and Kouranbaeva [1997] for the integrable Camassa-Holm equation. From
one viewpoint, casting these systems into basic Euler–Poincaré form explains why
they share the geodesic property.

Lie-Poisson Systems on Semidirect Products. As we described above, the
heavy top is a basic example of a Lie-Poisson Hamiltonian system defined on the
dual of a semidirect product Lie algebra. The general study of Lie-Poisson equations
for systems on the dual of a semidirect product Lie algebra grew out of the work
of many authors including Sudarshan and Mukunda [1974], Vinogradov and Ku-
pershmidt [1977], Ratiu [1980], Guillemin and Sternberg [1980], Ratiu [1981, 1982],
Marsden [1982], Marsden, Weinstein, Ratiu, Schmidt and Spencer [1983], Holm and
Kupershmidt [1983], Kupershmidt and Ratiu [1983], Holmes and Marsden [1983],
Marsden, Ratiu and Weinstein [1984a,b], Guillemin and Sternberg [1984], Holm,
Marsden, Ratiu and Weinstein [1985], Abarbanel, Holm, Marsden, and Ratiu [1986]
and Marsden, Misiolek, Perlmutter and Ratiu [1997]. As these and related refer-
ences show, the Lie-Poisson equations apply to a wide variety of systems such as
the heavy top, compressible flow, stratified incompressible flow, and MHD (magne-
tohydrodynamics). We review this theory in §2 below.

In each of the above examples as well as in the general theory, one can view the
given Hamiltonian in the material representation as one that depends on a param-
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eter; this parameter becomes dynamic when reduction is performed; this reduction
amounts in many examples to expressing the system in the spatial representation.

Goals of this Paper. The first goal of this paper is to study a Lagrangian ana-
logue of the Hamiltonian semidirect product theory. The idea is to carry out a
reduction for a Lagrangian that depends on a parameter and to use the ideas of
reduction of variational principles from Marsden and Scheurle [1993a,b] and Bloch,
Krishnaprasad, Marsden and Ratiu [1996] to directly reduce the problem to one
that parallels Lie-Poisson systems on the duals of semidirect products. We call
the resulting equations the Euler–Poincaré equations since, as we have explained,
Poincaré [1901b] came rather close to this general picture. These equations gener-
alize the basic Euler–Poincaré equations on a Lie algebra in that they depend on a
parameter and this parameter in examples has the interpretation of being advected,
or Lie dragged, as is the density in compressible flow.

One of the reasons this process is interesting and cannot be derived directly
from its Hamiltonian counterpart by means of the Legendre transformation is that
in many examples, such as the heavy top, the Hamiltonian describing the Lie-Poisson
dynamics is degenerate; that is, the Legendre transformation is not invertible.

A second major goal is to prove a version of the Noether theorem in an action
principle formulation that leads immediately to a Kelvin circulation type theorem for
continuum mechanics. We call this general formulation the Kelvin-Noether theorem.

Finally, we provide a number of applications of the Euler–Poincaré equations in
ideal continuum dynamics which illustrate the power of this approach in unifying
various known models, as well as in formulating new models. We also discuss some
circumstances when the equations can be cast into the form of geodesics on certain
infinite dimensional groups.

Outline of the remainder of this paper. In the next section we review the
semidirect product theory for Hamiltonian systems. Then in section 3 we consider
the Lagrangian counterpart to this theory. Section 4 discusses the Kelvin-Noether
theorem for the Euler–Poincaré equations. Section 5 illustrates the general theory
in the example of the heavy top. We introduce the Euler–Poincaré equations for
continua in section 6 and consider their applications to compressible flow (including
MHD and adiabatic Maxwell-fluid plasmas) in section 7. Various approximate forms
of the shallow water equations, such as the Boussinesq equations, the Camassa-Holm
equation and its new higher-dimensional variants are developed in section 8. In other
publications, the Maxwell-Vlasov equations will be considered as well as a general
framework for the theory of reduction by stages.

In the remainder of this paper we assume that the reader is familiar with Lie-
Poisson Hamiltonian systems defined on duals of Lie algebras and the Lie-Poisson
reduction theorem, reviewed above. We refer to Marsden and Ratiu [1994] for a
detailed exposition of these matters.

Acknowledgements. We thank Hernan Cendra, Shiyi Chen, Ciprian Foias, Mark
Hoyle, David Levermore, Len Margolin, Gerard Misiolek, Balu Nadiga, Matthew
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Perlmutter, Steve Shkoller and Edriss Titi for valuable discussions and remarks.

2 Hamiltonian Semidirect Product Theory

We first recall how the Hamiltonian theory proceeds for systems defined on semidi-
rect products. We present the abstract theory, but of course historically this grew
out of the examples, especially the heavy top and compressible flow.

Generalities on Semidirect Products. We begin by recalling some definitions
and properties of semidirect products. Let V be a vector space and assume that
the Lie group G acts on the left by linear maps on V (and hence G also acts on on
the left on its dual space V ∗). As sets, the semidirect product S = G � V is the
Cartesian product S = G × V whose group multiplication is given by

(g1, v1)(g2, v2) = (g1g2, v1 + g1v2), (2.1)

where the action of g ∈ G on v ∈ V is denoted simply as gv. The identity element
is (e, 0) where e is the identity in G. We record for convenience the inverse of an
element:

(g, v)−1 = (g−1,−g−1v). (2.2)

The Lie algebra of S is the semidirect product Lie algebra, s = g� V , whose
bracket has the expression

[(ξ1, v1), (ξ2, v2)] = ([ξ1, ξ2], ξ1v2 − ξ2v1) , (2.3)

where we denote the induced action of g on V by concatenation, as in ξ1v2.
Below we will need the formulae for the adjoint and the coadjoint actions for

semidirect products. We denote these and other actions by simple concatenation;
so they are expressed as (see, e.g., Marsden, Ratiu and Weinstein [1984a,b])

(g, v)(ξ, u) = (gξ, gu − (gξ)v), (2.4)

and

(g, v)(µ, a) = (gµ + ρ∗v(ga), ga), (2.5)

where (g, v) ∈ S = G × V , (ξ, u) ∈ s = g × V , (µ, a) ∈ s∗ = g∗ × V ∗, gξ = Adgξ,
gµ = Ad∗

g−1µ, ga denotes the induced left action of g on a (the left action of G on
V induces a left action of G on V ∗ — the inverse of the transpose of the action on
V ), ρv : g → V is the linear map given by ρv(ξ) = ξv, and ρ∗v : V ∗ → g∗ is its dual.
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Important Notation. For a ∈ V ∗, we shall write, for notational convenience,

ρ∗va = v � a ∈ g
∗ ,

which is a bilinear operation in v and a. Using this notation, the above formula for
the coadjoint action reads

(g, v)(µ, a) = (gµ + v � (ga), ga).

We shall also denote actions of groups and Lie algebras by simple concatenation.
For example, the g–action on g∗ and V ∗, which is defined as minus the dual map
of the g–action on g and V respectively, is denoted by ξµ and ξa for ξ ∈ g, µ ∈ g∗,
and a ∈ V ∗.

Using this concatenation notation for Lie algebra actions provides the following
alternative expression of the definition of v � a ∈ g∗: For all v ∈ V , a ∈ V ∗ and
η ∈ g, we define

〈ηa, v〉 = −〈v � a , η〉 .

Left Versus Right. When working with various models of continuum mechanics
and plasmas it is convenient to work with right representations of G on the vector
space V (as in, for example, Holm, Marsden and Ratiu [1986]). We shall denote
the semidirect product by the same symbol S = G � V , the action of G on V being
denoted by vg. The formulae change under these conventions as follows. Group
multiplication (the analog of (2.1)) is given by

(g1, v1)(g2, v2) = (g1g2, v2 + v1g2), (2.6)

and the Lie algebra bracket on s = g� V (the analog of (2.3)) has the expression

[(ξ1, v1), (ξ2, v2)] = ([ξ1, ξ2], v1ξ2 − v2ξ1), (2.7)

where we denote the induced action of g on V by concatenation, as in v1ξ2. The
adjoint and coadjoint actions have the formulae (analogs of (2.4) and (2.5))

(g, v)(ξ, u) = (gξ, (u + vξ)g−1), (2.8)

(g, v)(µ, a) = (gµ + (vg−1) � (ag−1), ag−1), (2.9)

where, as usual, gξ = Adgξ, gµ = Ad∗
g−1µ, ag denotes the inverse of the dual

isomorphism defined by g ∈ G (so that g �→ ag is a right action). Note that the
adjoint and coadjoint actions are left actions. In this case, the g–actions on g∗ and
V ∗ are defined as before to be minus the dual map given by the g–actions on g and
V and are denoted by ξµ (because it is a left action) and aξ (because it is a right
action) respectively.
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Lie-Poisson Brackets and Hamiltonian Vector Fields. For a left represen-
tation of G on V the ± Lie-Poisson bracket of two functions f, k : s∗ → R is given
by

{f, k}±(µ, a) = ±
〈

µ,

[
δf

δµ
,
δk

δµ

]〉
±

〈
a,

δf

δµ

δk

δa
− δk

δµ

δf

δa

〉
(2.10)

where δf/δµ ∈ g, and δf/δa ∈ V are the functional derivatives of f . The Hamilto-
nian vector field of h : s∗ → R has the expression

Xh(µ, a) = ∓
(

ad∗
δh/δµ µ − δh

δa
� a, − δh

δµ
a

)
. (2.11)

Thus, Hamilton’s equations on the dual of a semidirect product are given by

µ̇ = ∓ ad∗
δh/δµ µ ± δh

δa
� a , (2.12)

ȧ = ± δh

δµ
a , (2.13)

where overdot denotes time derivative. For right representations of G on V the
above formulae change to:

{f, k}±(µ, a) = ±
〈

µ,

[
δf

δµ
,
δk

δµ

]〉
∓

〈
a,

δk

δa

δf

δµ
− δf

δa

δk

δµ

〉
, (2.14)

Xh(µ, a) = ∓
(

ad∗
δh/δµ µ +

δh

δa
� a, a

δh

δµ

)
, (2.15)

µ̇ = ∓ ad∗
δh/δµ µ ∓ δh

δa
� a , (2.16)

ȧ = ∓ a
δh

δµ
. (2.17)

Symplectic Actions by Semidirect Products. To avoid a proliferation of
signs, in this section we consider all semidirect products to come from a left rep-
resentation. Of course if the representation is from the right, there are similar
formulae.

We consider a symplectic action of S on a symplectic manifold P and assume
that this action has an equivariant momentum map JS : P → s∗. Since V is a
(normal) subgroup of S, it also acts on P and has a momentum map JV : P → V ∗

given by

JV = i∗V ◦ JS ,

where iV : V → s is the inclusion v �→ (0, v) and i∗V : s∗ → V ∗ is its dual. We think
of this merely as saying that JV is the second component of JS .
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We can regard G as a subgroup of S by g �→ (g, 0). Thus, G also has a momentum
map that is the first component of JS but this will play a secondary role in what
follows. On the other hand, equivariance of JS under G implies the following relation
for JV :

JV (gz) = gJV (z) (2.18)

where we denote the appropriate action of g ∈ G on an element by concatenation,
as before. To prove (2.18), one uses the fact that for the coadjoint action of S on
s∗ the second component is just the dual of the given action of G on V .

The Classical Semidirect Product Reduction Theorem. In a number of
interesting applications such as compressible fluids, the heavy top, MHD, etc., one
has two symmetry groups that do not commute and thus the commuting reduction
by stages theorem of Marsden and Weinstein [1974] does not apply. In this more
general situation, it matters in what order one performs the reduction, which occurs,
in particular for semidirect products. The main result covering the case of semidirect
products has a complicated history, with important early contributions by many
authors, as we have listed in the introduction. The final version of the theorem as
we shall use it, is due to Marsden, Ratiu and Weinstein [1984a,b].

The semidirect product reduction theorem states, roughly speaking, that for the
semidirect product S = G � V where G is a group acting on a vector space V and S
is the semidirect product, one can first reduce T ∗S by V and then by G and thereby
obtain the same result as when reducing by S. As above, we let s = g� V denote
the Lie algebra of S. The precise statement is as follows.

Theorem 2.1 (Semidirect Product Reduction Theorem.) Let S = G � V ,
choose σ = (µ, a) ∈ g∗×V ∗, and reduce T ∗S by the action of S at σ giving the coad-
joint orbit Oσ through σ ∈ s∗. There is a symplectic diffeomorphism between Oσ

and the reduced space obtained by reducing T ∗G by the subgroup Ga (the isotropy of
G for its action on V ∗ at the point a ∈ V ∗) at the point µ|ga where ga is the Lie
algebra of Ga.

Reduction by Stages. This result is a special case of a theorem on reduction
by stages for semidirect products acting on a symplectic manifold (see Marsden,
Misiolek, Perlmutter and Ratiu [1997] for this and more general results and see
Leonard and Marsden [1997] for an application to underwater vehicle dynamics).

As above, consider a symplectic action of S on a symplectic manifold P and
assume that this action has an equivariant momentum map JS : P → s∗. As we
have explained, the momentum map for the action of V is the map JV : P → V ∗

given by JV = i∗V ◦ JS

We carry out the reduction of P by S at a regular value σ = (µ, a) of the
momentum map JS for S in two stages using the following procedure. First, reduce
P by V at the value a (assume it to be a regular value) to get the reduced space
Pa = J−1

V (a)/V . Second, form the group Ga consisting of elements of G that leave
the point a fixed using the action of G on V ∗. One shows (and this step is not
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trivial) that the group Ga acts on Pa and has an induced equivariant momentum
map Ja : Pa → g∗a, where ga is the Lie algebra of Ga, so one can reduce Pa at the
point µa := µ|ga to get the reduced space (Pa)µa = J−1

a (µa)/(Ga)µa .

Theorem 2.2 (Reduction by Stages for Semidirect Products.) The reduced
space (Pa)µa is symplectically diffeomorphic to the reduced space Pσ obtained by re-
ducing P by S at the point σ = (µ, a).

Combined with the cotangent bundle reduction theorem (see Abraham and Mars-
den [1978] and Marsden [1992] for an exposition and references), the semidirect
product reduction theorem is a useful tool. For example, using these tools, one
sees readily that the generic coadjoint orbits for the Euclidean group are cotangent
bundles of spheres with the associated coadjoint orbit symplectic structure given by
the canonical structure plus a magnetic term.

Semidirect Product Reduction of Dynamics. There is a technique for re-
ducing dynamics that is associated with the geometry of the semidirect product
reduction theorem. One proceeds as follows:

• We start with a Hamiltonian Ha0 on T ∗G that depends parametrically on a
variable a0 ∈ V ∗.

• The Hamiltonian, regarded as a map H : T ∗G × V ∗ → R is assumed to be
invariant on T ∗G under the action of G on T ∗G × V ∗.

• One shows that this condition is equivalent to the invariance of the function
H defined on T ∗S = T ∗G×V ×V ∗ extended to be constant in the variable V
under the action of the semidirect product.

• By the semidirect product reduction theorem, the dynamics of Ha0 reduced
by Ga0 , the isotropy group of a0, is symplectically equivalent to Lie-Poisson
dynamics on s∗ = g∗ × V ∗.

• This Lie-Poisson dynamics is given by the equations (2.12) and (2.13) for the
function h(µ, a) = H(αg, g

−1a) where µ = g−1αg.

3 Lagrangian Semidirect Product Theory

Despite all the activity in the Hamiltonian theory of semidirect products, little
attention has been paid to the corresponding Lagrangian side. Now that Lagrangian
reduction is maturing (see Marsden and Scheurle [1993a,b]), it is appropriate to
consider the corresponding Lagrangian question. We shall formulate four versions,
depending on the nature of the actions and invariance properties of the Lagrangian.
(Two of them are relegated to the appendix.)

It should be noted that none of the theorems below require that the Lagrangian
be nondegenerate. The subsequent theory is entirely based on variational principles
with symmetry and is not dependent on any previous Hamiltonian formulation. We
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shall, however, show that this purely Lagrangian formulation is equivalent to the
Hamiltonian formulation on duals of semidirect products, provided an appropriately
defined Legendre transformation happens to be a diffeomorphism.

The theorems that follow are modelled after the reduction theorem for the basic
Euler–Poincaré equations given earlier. However, as we shall explain, they are not
literally special cases of it. To distinguish the two types of results, we shall use
phrases like basic Euler–Poincaré equations for the equations (1.57) and simply the
Euler–Poincaré equations or the Euler–Poincaré equations with advection or the
Euler–Poincaré equations with advected parameters, for the equations that follow.

The main difference between the left (right) invariant Lagrangians considered in
the theorem above and the ones we shall work with below is that L and l depend
in addition on another parameter a ∈ V ∗, where V is a representation space for
the Lie group G and L has an invariance property relative to both arguments. As
we shall see below, the resulting Euler–Poincaré equations are not the Euler–
Poincaré equations for the semidirect product Lie algebra g� V ∗ or on g� V , for
that matter.

Upcoming Examples. As we shall see in the examples, the parameter a ∈ V ∗

acquires dynamical meaning under Lagrangian reduction. For the heavy top, the
parameter is the unit vector in the direction of gravity, which becomes a dynami-
cal variable in the body representation. For compressible fluids, the parameter is
the density of the fluid in the reference configuration, which becomes a dynamical
variable (satisfying the continuity equation) in the spatial representation.

Left Representation and Left Invariant Lagrangian. We begin with the
following ingredients:

• There is a left representation of Lie group G on the vector space V and G acts
in the natural way on the left on TG × V ∗: h(vg, a) = (hvg, ha).

• Assume that the function L : TG × V ∗ → R is left G–invariant.

• In particular, if a0 ∈ V ∗, define the Lagrangian La0 : TG → R by La0(vg) =
L(vg, a0). Then La0 is left invariant under the lift to TG of the left action of
Ga0 on G, where Ga0 is the isotropy group of a0.

• Left G–invariance of L permits us to define l : g × V ∗ → R by

l(g−1vg, g
−1a0) = L(vg, a0).

Conversely, this relation defines for any l : g × V ∗ → R a left G–invariant
function L : TG × V ∗ → R.

• For a curve g(t) ∈ G, let

ξ(t) := g(t)−1ġ(t)
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and define the curve a(t) as the unique solution of the following linear differ-
ential equation with time dependent coefficients

ȧ(t) = −ξ(t)a(t),

with initial condition a(0) = a0. The solution can be written as a(t) =
g(t)−1a0.

Theorem 3.1 With the preceding notation, the following are equivalent:

i With a0 held fixed, Hamilton’s variational principle

δ

∫ t2

t1

La0(g(t), ġ(t))dt = 0 (3.1)

holds, for variations δg(t) of g(t) vanishing at the endpoints.

ii g(t) satisfies the Euler–Lagrange equations for La0 on G.

iii The constrained variational principle5

δ

∫ t2

t1

l(ξ(t), a(t))dt = 0 (3.2)

holds on g × V ∗, using variations of ξ and a of the form

δξ = η̇ + [ξ, η], δa = −ηa, (3.3)

where η(t) ∈ g vanishes at the endpoints.

iv The Euler–Poincaré equations6hold on g × V ∗

d

dt

δl

δξ
= ad∗

ξ

δl

δξ
+

δl

δa
� a. (3.4)

Proof. The equivalence of i and ii holds for any configuration manifold and so,
in particular, it holds in this case.

Next we show the equivalence of iii and iv. Indeed, using the definitions, inte-
grating by parts, and taking into account that η(t1) = η(t2) = 0, we compute the

5As with the basic Euler–Poincaré equations, this is not strictly a variational principle in the
same sense as the standard Hamilton’s principle. It is more of a Lagrange d’Alembert principle,
because we impose the stated constraints on the variations allowed.

6Note that these equations are not the basic Euler–Poincaré equations because we are not
regarding g× V ∗ as a Lie algebra. Rather these equations are thought of as a generalization of the
classical Euler-Poisson equations for a heavy top, written in body angular velocity variables, as we
shall see in the examples. Some authors may prefer the term Euler-Poisson-Poincaré equations for
these equations.
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variation of the integral to be

δ

∫ t2

t1

l(ξ(t), a(t))dt =
∫ t2

t1

(〈
δl

δξ
, δξ

〉
+

〈
δa,

δl

δa

〉)
dt

=
∫ t2

t1

(〈
δl

δξ
, η̇ + adξ η

〉
−

〈
ηa,

δl

δa

〉)
dt

=
∫ t2

t1

(〈
− d

dt

(
δl

δξ

)
+ ad∗

ξ

δl

δξ
, η

〉
+

〈
δl

δa
� a , η

〉)
dt

=
∫ t2

t1

〈
− d

dt

(
δl

δξ

)
+ ad∗

ξ

δl

δξ
+

δl

δa
� a , η

〉
dt

and so the result follows.
Finally we show that i and iii are equivalent. First note that the G–invariance

of L : TG×V ∗ → R and the definition of a(t) = g(t)−1a0 imply that the integrands
in (3.1) and (3.2) are equal. However, all variations δg(t) ∈ TG of g(t) with fixed
endpoints induce and are induced by variations δξ(t) ∈ g of ξ(t) of the form δξ =
η̇ + [ξ, η] with η(t) ∈ g vanishing at the endpoints; the relation between δg(t) and
η(t) is given by η(t) = g(t)−1δg(t). This is the content of the following lemma
proved in Bloch et al. [1996]. 7

Lemma 3.2 Let g : U ⊂ R
2 → G be a smooth map and denote its partial derivatives

by

ξ(t, ε) = TLg(t,ε)−1(∂g(t, ε)/∂t)

and

η(t, ε) = TLg(t,ε)−1(∂g(t, ε)/∂ε).

Then

∂ξ

∂ε
− ∂η

∂t
= [ξ, η] . (3.5)

Conversely, if U is simply connected and ξ, η : U → g are smooth functions sat-
isfying (3.5) then there exists a smooth function g : U → G such that ξ(t, ε) =
TLg(t,ε)−1(∂g(t, ε)/∂t) and η(t, ε) = TLg(t,ε)−1(∂g(t, ε)/∂ε).

Thus, if i holds, we define η(t) = g(t)−1δg(t) for a variation δg(t) with fixed
endpoints. Then if we let δξ = g(t)−1ġ(t), we have by the above proposition δξ = η̇+
[ξ, η]. In addition, the variation of a(t) = g(t)−1a0 is δa(t) = −η(t)a(t). Conversely,
if δξ = η̇ + [ξ, η] with η(t) vanishing at the endpoints, we define δg(t) = g(t)η(t)
and the above proposition guarantees then that this δg(t) is the general variation of
g(t) vanishing at the endpoints. From δa(t) = −η(t)a(t) it follows that the variation
of g(t)a(t) = a0 vanishes, which is consistent with the dependence of La0 only on
g(t), ġ(t). �

7This lemma is simple for matrix groups, as in Marsden and Ratiu [1994], but it is less elementary
for general Lie groups.
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Cautionary Remarks. Let us explicitly show that these Euler–Poincaré equa-
tions (3.4) are not the Euler–Poincaré equations for the semidirect product Lie al-
gebra g� V ∗. Indeed, by (1.57) the basic Euler–Poincaré equations

d

dt

δl

δ(ξ, a)
= ad∗

(ξ,a)

δl

δ(ξ, a)
, (ξ, a) ∈ g� V ∗

for l : g� V ∗ → R become

d

dt

δl

δξ
= ad∗

ξ

δl

δξ
+

δl

δa
� a,

d

dt

δl

δa
= −ξ

δl

δa
,

which is a different system from that given by the Euler–Poincaré equation (3.4)
and ȧ = −ξa, even though the first equations of both systems are identical.

The Legendre Transformation. As we explained earlier, one normally thinks of
passing from Euler–Poincaré equations on a Lie algebra g to Lie–Poisson equations
on the dual g∗ by means of the Legendre transformation. In our case, we start
with a Lagrangian on g× V ∗ and perform a partial Legendre transformation in the
variable ξ only, by writing

µ =
δl

δξ
, h(µ, a) = 〈µ, ξ〉 − l(ξ, a). (3.6)

Since

δh

δµ
= ξ +

〈
µ,

δξ

δµ

〉
−

〈
δl

δξ
,

δξ

δµ

〉
= ξ ,

and δh/δa = −δl/δa, we see that (3.4) and ȧ(t) = −ξ(t)a(t) imply (2.11) for
the minus Lie–Poisson bracket (that is, the sign + in (2.11)). If this Legendre
transformation is invertible, then we can also pass from the the minus Lie–Poisson
equations (2.11) to the Euler–Poincaré equations (3.4) together with the equations
ȧ(t) = −ξ(t)a(t).

Right Representation and Right Invariant Lagrangian. There are four ver-
sions of the preceding theorem, the given left-left version, a left-right, a right-left
and a right-right version. For us, the most important ones are the left-left and the
right-right versions. We state the remaining two in the appendix.

Here we make the following assumptions:

• There is a right representation of Lie group G on the vector space V and G
acts in the natural way on the right on TG × V ∗: (vg, a)h = (vgh, ah).

• Assume that the function L : TG × V ∗ → R is right G–invariant.

• In particular, if a0 ∈ V ∗, define the Lagrangian La0 : TG → R by La0(vg) =
L(vg, a0). Then La0 is right invariant under the lift to TG of the right action
of Ga0 on G, where Ga0 is the isotropy group of a0.
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• Right G–invariance of L permits us to define l : g × V ∗ → R by

l(vgg
−1, a0g

−1) = L(vg, a0).

Conversely, this relation defines for any l : g × V ∗ → R a right G–invariant
function L : TG × V ∗ → R.

• For a curve g(t) ∈ G, let ξ(t) := ġ(t)g(t)−1 and define the curve a(t) as
the unique solution of the linear differential equation with time dependent
coefficients ȧ(t) = −a(t)ξ(t) with initial condition a(0) = a0. The solution can
be written as a(t) = a0g(t)−1.

Theorem 3.3 The following are equivalent:

i Hamilton’s variational principle

δ

∫ t2

t1

La0(g(t), ġ(t))dt = 0 (3.7)

holds, for variations δg(t) of g(t) vanishing at the endpoints.

ii g(t) satisfies the Euler–Lagrange equations for La0 on G.

iii The constrained variational principle

δ

∫ t2

t1

l(ξ(t), a(t))dt = 0 (3.8)

holds on g × V ∗, using variations of the form

δξ = η̇ − [ξ, η], δa = −aη, (3.9)

where η(t) ∈ g vanishes at the endpoints.

iv The Euler–Poincaré equations hold on g × V ∗

d

dt

δl

δξ
= − ad∗

ξ

δl

δξ
+

δl

δa
� a. (3.10)

The same partial Legendre transformation (3.6) as before maps the Euler–
Poincaré equations (3.10), together with the equations ȧ = −aξ for a to the plus
Lie–Poisson equations (2.16) and (2.17) (that is, one chooses the overall minus sign
in these equations).

Generalizations. The Euler–Poincaré equations are a special case of the reduced
Euler-Lagrange equations (see Marsden and Scheurle [1993b] and Cendra, Marsden
and Ratiu [1998]). This is shown explicitly in Cendra, Holm, Marsden and Ratiu
[1998]. There is, however, an easy generalization that is needed in some of the
examples we will consider. Namely, if L : TG × V ∗ × TQ and if the group G acts
in a trivial way on TQ, then one can carry out the reduction in the same way as
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above, carrying along the Euler-Lagrange equations for the factor Q at each step.
The resulting reduced equations then are the Euler–Poincaré equations above for the
g factor, together the Euler-Lagrange equations for the q ∈ Q factor. The system
is coupled through the dependence of L on all variables. (For a full statement,
see Cendra, Holm, Hoyle and Marsden [1998], who use this extension to treat the
Euler–Poincaré formulation of the Maxwell-Vlasov equations for plasma physics.)

4 The Kelvin-Noether Theorem

In this section, we explain a version of the Noether theorem that holds for solutions
of the Euler–Poincaré equations. Our formulation is motivated and designed for
ideal continuum theories (and hence the name Kelvin-Noether), but it may also of
interest for finite dimensional mechanical systems. Of course it is well known (going
back at least to the pioneering work of Arnold [1966a]) that the Kelvin circulation
theorem for ideal flow is closely related to the Noether theorem applied to continua
using the particle relabelling symmetry group.

There is a version of the theorem that holds for each of the choices of conventions,
but we shall pick the left-left conventions to illustrate the result.

The Kelvin-Noether Quantity. We start with a Lagrangian La0 depending on a
parameter a0 ∈ V ∗ as above. We introduce a manifold C on which G acts (we assume
this is also a left action) and suppose we have an equivariant map K : C×V ∗ → g∗∗.

As we shall see, in the case of continuum theories, the space C will be a loop
space and 〈K(c, a), µ〉 for c ∈ C and µ ∈ g∗ will be a circulation. This class of
examples also shows why we do not want to identify the double dual g∗∗ with g.

Define the Kelvin-Noether quantity I : C × g × V ∗ → R by

I(c, ξ, a) =
〈
K(c, a),

δl

δξ
(ξ, a)

〉
. (4.1)

We are now ready to state the main theorem of this section.

Theorem 4.1 (Kelvin-Noether.) Fixing c0 ∈ C, let ξ(t), a(t) satisfy the Euler–
Poincaré equations and define g(t) to be the solution of ġ(t) = g(t)ξ(t) and, say,
g(0) = e. Let c(t) = g(t)−1c0 and I(t) = I(c(t), ξ(t), a(t)). Then

d

dt
I(t) =

〈
K(c(t), a(t)),

δl

δa
� a

〉
. (4.2)

Proof. First of all, write a(t) = g(t)−1a0 as we did previously and use equivariance
to write I(t) as follows:〈

K(c(t), a(t)),
δl

δξ
(ξ(t), a(t))

〉
=

〈
K(c0, a0), g(t)

[
δl

δξ
(ξ(t), a(t))

]〉
.

The g−1 pulls over to the right side as g (and not g−1) because of our conventions
of always using left representations. We now differentiate the right hand side of this
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equation. To do so, we use the following well known formula for differentiating the
coadjoint action (see Marsden and Ratiu [1994], page 276):

d

dt
[g(t)µ(t)] = g(t)

[
− ad∗

ξ(t) µ(t) +
d

dt
µ(t)

]
,

where, as usual,

ξ(t) = g(t)−1ġ(t).

Using this coadjoint action formula and the Euler–Poincaré equations, we obtain

d

dt
I =

d

dt

〈
K(c0, a0), g(t)

[
δl

δξ
(ξ(t), a(t))

]〉
=

〈
K(c0, a0),

d

dt

{
g(t)

[
δl

δξ
(ξ(t), a(t))

]}〉
=

〈
K(c0, a0), g(t)

[
− ad∗

ξ

δl

δξ
+ ad∗

ξ

δl

δξ
+

δl

δa
� a

]〉
=

〈
K(c0, a0), g(t)

[
δl

δa
� a

]〉
=

〈
g(t)−1K(c0, a0),

[
δl

δa
� a

]〉
=

〈
K(c(t), a(t)),

[
δl

δa
� a

]〉
,

where, in the last steps, we used the definitions of the coadjoint action, as well as
the Euler–Poincaré equation (3.4) and the equivariance of the map K. �

Corollary 4.2 For the basic Euler–Poincaré equations, the Kelvin quantity I(t),
defined the same way as above but with I : C × g → R, is conserved.

For a review of the standard Noether theorem results for energy and momentum
conservation in the context of the general theory, see, e.g., Marsden and Ratiu [1994].

5 The Heavy Top

In this section we shall use Theorem 3.1 to derive the classical Euler–Poisson equa-
tions for the heavy top. Our purpose is merely to illustrate the theorem with a
concrete example.

The Heavy Top Lagrangian. The heavy top kinetic energy is given by the
left invariant metric on SO(3) whose value at the identity is 〈Ω1,Ω2〉 = IΩ1 · Ω2,
where Ω1,Ω2 ∈ R

3 are thought of as elements of so(3), the Lie algebra of SO(3),
via the isomorphism Ω ∈ R

3 �→ Ω̂ ∈ so(3), Ω̂v := Ω × v, and where I is the
(time independent) moment of inertia tensor in body coordinates, usually taken as
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a diagonal matrix by choosing the body coordinate system to be a principal axes
body frame. This kinetic energy is thus left invariant under the full group SO(3).
The potential energy is given by the work done in lifting the weight of the body to the
height of its center of mass, with the direction of gravity pointing downwards. If M
denotes the total mass of the top, g the magnitude of the gravitational acceleration,
χ the unit vector of the oriented line segment pointing from the fixed point about
which the top rotates (the origin of a spatial coordinate system) to the center of mass
of the body, and � its length, then the potential energy is given by Mg�R−1e3 · χ,
where e3 is the axis of the spatial coordinate system parallel to the direction of
gravity but pointing upwards. This potential energy breaks the full SO(3) symmetry
and is invariant only under the rotations S1 about the e3–axis.

However, for the application of Theorem 3.1 we are supposed to think of the
Lagrangian of the heavy top as a function on TSO(3) × R

3 → R. That is, we need
to think of the potential energy as a function of (uR,v) ∈ TSO(3)×R

3. This means
that we need to replace the vector giving the direction of gravity e3 by an arbitrary
vector v ∈ R

3, so that the potential equals

U(uR,v) = Mg�R−1v · χ.

Thought of this way, the potential is SO(3)–invariant. Indeed, if R′ ∈ SO(3) is
arbitrary, then

U(R′uR,R′v) = Mg� (R′R)−1R′v · χ
= Mg�R−1v · χ
= U(uR,v)

and the hypotheses of Theorem 3.1 are satisfied. Thus, the heavy top equations of
motion in the body representation are given by the Euler–Poincaré equations (3.4)
for the Lagrangian l : so(3) × R

3 → R.

The Reduced Lagrangian. To compute the explicit expression of l, denote by
Ω the angular velocity and by Π = IΩ the angular momentum in the body rep-
resentation. Let Γ = R−1v; if v = e3, the unit vector pointing upwards on the
vertical spatial axis, then Γ is this unit vector viewed by an observer moving with
the body. The Lagrangian l : so(3) × R

3 → R is thus given by

l(Ω,Γ) = L(R−1uR,R−1v)

=
1
2
Π · Ω − U(R−1uR,R−1v)

=
1
2
Π · Ω − Mg�Γ · χ .

The Euler–Poincaré Equations. It is now straightforward to compute the
Euler–Poincaré equations. First note that

δl

δΩ
= Π,

δl

δΓ
= −Mg�χ .
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Since

ad∗
Ω Π = Π × Ω , v � Γ = −Γ × v ,

and

Ω̂Γ = −Γ × Ω ,

the Euler–Poincaré equations are

Π̇ = Π × Ω + Mg�Γ × χ ,

which are coupled to the Γ evolution

Γ̇ = Γ × Ω .

This system of two vector equations comprises the classical Euler–Poisson equations,
which describe the motion of the heavy top in the body representation.

The Kelvin-Noether theorem Let C = g and let K : C × V ∗ → g∗∗ ∼= g be the
map (W,Γ) �→ W. Then the Kelvin-Noether theorem gives the statement

d

dt
〈W,Π〉 = Mg� 〈W,Γ × χ〉

where W(t) = R(t)−1w; in other words, W(t) is the body representation of a
space fixed vector. This statement is easily verified directly. Also, note that
〈W,Π〉 = 〈w,π〉, with π = R(t)Π, so the Kelvin-Noether theorem may be viewed
as a statement about the rate of change of the momentum map of the system (the
spatial angular momentum) relative to the full group of rotations, not just those
about the vertical axis.

6 The Euler–Poincaré Equations
in Continuum Mechanics

In this section we will apply the Euler–Poincaré equations in the case of continuum
mechanical systems. We let D be a bounded domain in R

n with smooth boundary
∂D (or, more generally, a smooth compact manifold with boundary and given vol-
ume form or density). We let Diff(D) denote the diffeomorphism group of D of some
given Sobolev class. If the domain D is not compact, then various decay hypotheses
at infinity need to be imposed. Under such conditions, Diff(D) is a smooth infi-
nite dimensional manifold and a topological group relative to the induced manifold
topology. Right translation is smooth but left translation and inversion are only
continuous. Thus, Diff(D) is not actually a Lie group and the previous theory does
not apply, strictly speaking. Nevertheless, if one uses right translations and right
representations, the Euler–Poincaré equations of Theorem 3.3 do make sense, as a
simple verification shows. We shall illustrate below such computations, by verifying
several key facts in the proof.
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Let X(D) denote the space of vector fields on D of some fixed differentiability
class. Formally, this is the right Lie algebra of Diff(D), that is, its standard left
Lie algebra bracket is minus the usual Lie bracket for vector fields. To distinguish
between these brackets, we shall reserve in what follows the notation [u, v] for the
standard Jacobi-Lie bracket of the vector fields u, v ∈ X(D) whereas the notation
adu v := −[u, v] denotes the adjoint action of the left Lie algebra on itself.

We also let X(D)∗ denote the geometric dual space of X(D), that is, X(D)∗ :=
Ω1(D)⊗Den(D), the space of one–form densities on D. If α⊗m ∈ Ω1(D)⊗Den(D),
the pairing of α ⊗ m with u ∈ X(D) is given by

〈α ⊗ m,u〉 =
∫
D

α · um (6.1)

where α · u is the standard contraction of a one–form with a vector field. For
u ∈ X(D) and α ⊗ m ∈ X(D)∗, the dual of the adjoint representation is defined by

〈ad∗
u(α ⊗ m),v〉 = −

∫
D

α · [u,v] m

and its expression is

ad∗
u(α ⊗ m) = (£uα + (divm u)α) ⊗ m = £u(α ⊗ m) , (6.2)

where divmu is the divergence of u relative to the measure m, that is, £um =
(divmu)m. Hence if u = ui∂/∂xi, α = αidxi, the one–form factor in the preceding
formula for ad∗

u(α ⊗ m) has the coordinate expression(
uj ∂αi

∂xj
+ αj

∂uj

∂xi
+ (divm u)αi

)
dxi =

(
∂

∂xj
(ujαi) + αj

∂uj

∂xi

)
dxi , (6.3)

the last equality assuming that the divergence is taken relative to the standard
measure m = dnx in R

n. (On a Riemannian manifold the metric divergence needs
to be used.)

Throughout the rest of the paper we shall use the following conventions and
terminology for the standard quantities in continuum mechanics. Elements of D
representing the material particles of the system are denoted by X; their coordinates
XA, A = 1, ..., n may thus be regarded as the particle labels. A configuration,
which we typically denote by η, is an element of Diff(D). A motion ηt is a path in
Diff(D). The Lagrangian or material velocity V(X, t) of the continuum along
the motion ηt is defined by taking the time derivative of the motion keeping the
particle labels (the reference particles) X fixed:

V(X, t) :=
dηt(X)

dt
:=

∂

∂t

∣∣∣∣
X

ηt(X),

the second equality being a convenient shorthand notation of the time derivative for
fixed X.
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Consistent with this definition of velocity, the tangent space to Diff(D) at η ∈
Diff(D) is given by

Tη Diff(D) = {Vη : D → TD | Vη(X) ∈ Tη(X)D}.

Elements of Tη Diff(D) are usually thought of as vector fields on D covering η. The
tangent lift of right and left translations on T Diff(D) by ϕ ∈ Diff(D) have the
expressions

Vηϕ := TηRϕ(Vη) = Vη ◦ ϕ and ϕVη := TηLϕ(Vη) = Tϕ ◦ Vη .

During a motion ηt, the particle labeled by X describes a path in D whose
points x(X, t) := ηt(X) are called the Eulerian or spatial points of this path.
The derivative v(x, t) of this path, keeping the Eulerian point x fixed, is called the
Eulerian or spatial velocity of the system:

v(x, t) := V(X, t) :=
∂

∂t

∣∣∣∣
x

ηt(X).

Thus the Eulerian velocity v is a time dependent vector field on D: vt ∈ X(D),
where vt(x) := v(x, t). We also have the fundamental relationship

Vt = vt ◦ ηt ,

where Vt(X) := V(X, t).

The representation space V ∗ of Diff(D) in continuum mechanics is often some
subspace of T(D) ⊗ Den(D), the tensor field densities on D and the representation
is given by pull back. It is thus a right representation of Diff(D) on T(D)⊗Den(D).
The right action of the Lie algebra X(D) on V ∗ is given by av := £va, the Lie
derivative of the tensor field density a along the vector field v.

The Lagrangian of a continuum mechanical system is a function L : T Diff(D)×
V ∗ → R which is right invariant relative to the tangent lift of right translation of
Diff(D) on itself and pull back on the tensor field densities.

Thus, the Lagrangian L induces a function l : X(D) × V ∗ → R given by

l(v, a) = L(v ◦ η, η∗a),

where v ∈ X(D) and a ∈ V ∗ ⊂ T(D) ⊗ Den(D), and where η∗a denotes the pull
back of a by the diffeomorphism η and v is the Eulerian velocity. The evolution of
a is given by the equation

ȧ = −£v a.

The solution of this equation, given the initial condition a0, is a(t) = ϕt∗a0, where
the lower star denotes the push forward operation and ϕt is the flow of v.

Advected Eulerian quantities are defined in continuum mechanics to be those
variables which are Lie transported by the flow of the Eulerian velocity field. Using
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this standard terminology, the above equation states that the tensor field density a
(which may include mass density and other Eulerian quantities) is advected.

As remarked, V ∗ ⊂ T(D) ⊗ Den(D). On a general manifold, tensors of a given
type have natural duals. For example, symmetric covariant tensors are dual to
symmetric contravariant tensor densities, the pairing being given by the integration
of the natural contraction of these tensors. Likewise, k–forms are naturally dual to
(n−k)–forms, the pairing being given by taking the integral of their wedge product.

The operation � between elements of V and V ∗ producing an element of X(D)∗

introduced in section 2 becomes

〈v � a,u〉 = −
∫
D

v · £u a , (6.4)

where v · £u a denotes the contraction, as described above, of elements of V and
elements of V ∗. (These operations do not depend on a Riemannian structure.)

For a path ηt ∈ Diff(D) let v(x, t) be its Eulerian velocity and consider as in
the hypotheses of Theorem 3.3 the curve a(t) with initial condition a0 given by the
equation

ȧ + £va = 0. (6.5)

Let La0(V) := L(V, a0). We can now state Theorem 3.3 in this particular, but very
useful, setting.

Theorem 6.1 (Euler–Poincaré Theorem for Continua.) Consider a path ηt

in Diff(D) with Lagrangian velocity V and Eulerian velocity v. The following are
equivalent:

i Hamilton’s variational principle

δ

∫ t2

t1

L (X,Vt(X), a0(X)) dt = 0 (6.6)

holds, for variations δηt vanishing at the endpoints.

ii ηt satisfies the Euler–Lagrange equations for La0 on Diff(D).8

iii The constrained variational principle in Eulerian coordinates

δ

∫ t2

t1

l(v, a) dt = 0 (6.7)

holds on X(D) × V ∗, using variations of the form

δv =
∂u
∂t

+ [v,u], δa = −£u a, (6.8)

where ut = δηt ◦ η−1
t vanishes at the endpoints.

8We do not write these equations explicitly since to do so would require either a coordinatization
of the diffeomorphism group, which is not easy to give explictly, or requires more structure, such
as an affine connection on this group. Certainly writing the equations formally, imagining that η
and η̇ form valid coordinates in which the Euler–Lagrange equations hold is not correct.
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iv The Euler–Poincaré equations for continua

∂

∂t

δl

δv
= − ad∗

v

δl

δv
+

δl

δa
� a = −£v

δl

δv
+

δl

δa
� a , (6.9)

hold, where the � operation given by (6.2) needs to be determined on a case by
case basis, depending on the nature of the tensor a. (Remember that δl/δv is
a one–form density.)

Remarks.

1. Of course, this theorem can be proven directly by imitating the proof of The-
orem 3.1 with appropriate modifications for right representations and right
actions. For those used to the more concrete language of continuum mechan-
ics as opposed to that of Lie algebras, the following string of equalities shows
that iii is equivalent to iv:

0 = δ

∫ t2

t1

l(v, a)dt =
∫ t2

t1

(
δl

δv
· δv +

δl

δa
· δa

)
dt

=
∫ t2

t1

[
δl

δv
·
(

∂u
∂t

− adv u
)
− δl

δa
· £u a

]
dt

=
∫ t2

t1

u ·
[
− ∂

∂t

δl

δv
− ad∗

v

δl

δv
+

δl

δa
� a

]
dt . (6.10)

2. Similarly, one can deduce by hand the form (6.8) of the variations in the
constrained variational principle (6.7) by a direct calculation. This proceeds
as follows. One writes the basic relation between the spatial and material
velocities, namely v(x, t) = η̇(η−1

t (x), t). One then takes the variation of
this equation with respect to η and uses the definition u(x, t) = δη(η−1

t (x), t)
together with a calculation of its time derivative. Of course, one can also do
this calculation using the inverse map η−1

t instead of η as the basic variable,
see Holm, Marsden, and Ratiu [1986], Holm [1996a,b].

3. As we mentioned in the context of perfect fluids, the preceding sort of calcu-
lation for δv in fluid mechanics and the interpretation of this restriction on
the form of the variations as the so-called Lin constraints is due to Bretherton
[1970].

4. The coordinate expressions for (δl/δa) � a required to complete the equations
of motion are given in the next section for several choices of a0(X) in three
dimensions. Namely, we shall discuss the choices corresponding to scalars,
one-forms, two-forms, densities in three dimensions, and symmetric tensors.
In the equations of motion, all of these quantities will be advected.

5. As with the general theory, variations of the action in the advected tensor
quantities contribute to the equations of motion which follow from Hamilton’s
principle. At the level of the action l for the Euler–Poincaré equations, the
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Legendre transform in the variable v alone is often nonsingular, and when it
is, it produces the Hamiltonian formulation of Eulerian fluid motions with a
Lie-Poisson bracket defined on the dual of the semidirect product algebra of
vector fields acting amongst themselves by Lie bracket and on tensor fields
and differential forms by the Lie derivative. This is a special instance of the
more general facts for Lie algebras that were discussed earlier.

6. As mentioned earlier, in the absence of the tensor fields a and when l is the
kinetic energy metric, the basic Euler–Poincaré equations are the geodesic
spray equations for geodesic motion on the diffeomorphism group with respect
to that metric. See, e.g., Arnold [1966a], Ovsienko and Khesin [1987], Zeitlin
and Kambe [1993], Zeitlin and Pasmanter [1994], Ono [1995a, 1995b] and
Kouranbaeva [1997] for details in particular applications of ideal continuum
mechanics.

Remarks on the inverse map and the tensor fields a for fluids. In the
case of fluids in the Lagrangian picture, the flow of the fluid is a diffeomorphism
which takes a fluid parcel along a path from its initial position X, in a “reference
configuration” to its current position x in the “container”, i.e., in the Eulerian
domain of flow. As we have described, this forward map is denoted by η : X �→ x.
The inverse map η−1 : x �→ X provides the map assigning the Lagrangian labels
to a given spatial point. Interpreted as passive scalars, these Lagrangian labels
are simply advected with the fluid flow, Ẋ = 0. In the Lagrangian picture, a
tensor density in the reference configuration a0(X) (satisfying ȧ0(X) = 0) consists
of invariant tensor functions of the initial reference positions and their differentials.
These tensor functions are parameters of the initial fluid reference configuration
(e.g., the initial density distribution, which is an invariant n-form).

When viewed in the Eulerian picture as

at(x) := (ηt∗a0)(x) = (η−1∗
t a0)(x),

i.e.,

a0(X) := (η∗t at)(X) = (η−1
t∗ a0)(X),

the time invariant tensor density a0(X) in the reference configuration acquires ad-
vective dynamics in the Eulerian picture, namely

ȧ0(X) =
(

∂

∂t
+ £v

)
a(x, t) = 0,

where £v denotes Lie derivative with respect to the Eulerian velocity field v(x, t).
This relation results directly from the well known Lie derivative formula for tensor
fields. (See, for example, Abraham, Marsden and Ratiu [1988].)

Mapping the time invariant quantity a0 (a tensor density function of X) to the
time varying quantity at (a tensor density function of x) as explained above is a
special case of the general way we advect quantities in V ∗ in the general theory.
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Specifically, we can view this advection of at as being the fluid analogue of the
advection of the unit vector along the direction of gravity (a spatially fixed quantity)
by means of the body rotation vector in the heavy top example.

Consistent with the fact that the heavy top is a left invariant system while
continuum theories are right invariant, the advected tensor density at is a spatial
quantity, while the advected direction of gravity is a body quantity. If we were to
take the inverse map η−1 as the basic group variable, rather than the map η, then
continuum theories would also become left invariant.

The continuity equation for the mass density. We will need to impose an
additional assumption on our continuum theory. Namely, we assume that amongst
the tensor densities being advected, there is a special one, namely the mass density.
This of course is a tensor density that occurs in all continuum theories. We denote
this density by ρdnx and it is advected according to the standard principles discussed
above. Thus, ρ satisfies the usual continuity equation:

∂

∂t
ρ + div(ρv) = 0.

In the Lagrangian picture we have ρdnx = ρ0(X)dnX, where ρ0(X) is the mass
density in the reference configuration. It will also be convenient in the continuum
examples below to define Lagrangian mass coordinates �(X) satisfying ρdnx = dn�
with �̇ = 0. (When using Lagrangian mass coordinates, we shall denote the density
ρ as D.) We assume that ρ (or D) is strictly positive.

The Kelvin-Noether Circulation Theorem. Let C be the space of continuous
loops γ : S1 → D in D and let the group Diff(D) act on C on the left by (η, γ) ∈
Diff(D) × C �→ ηγ ∈ C, where ηγ = η ◦ γ.

Next we shall define the circulation map K : C × V ∗ → X(D)∗∗. Given a one
form density α ∈ X∗ we can form a one form (no longer a density) by dividing it by
the mass density ρ; we denote the result just by α/ρ. We let K then be defined by

〈K(γ, a), α〉 =
∮

γ

α

ρ
. (6.11)

The expression in this definition is called the circulation of the one–form α/ρ
around the loop γ.

This map is equivariant in the sense that

〈K(η ◦ γ, η∗a), η∗α〉 = 〈K(γ, a), α〉

for any η ∈ Diff(D). This is proved using the definitions and the change of variables
formula.

Given the Lagrangian l : X(D)× V ∗ → R, the Kelvin–Noether quantity is given
by (4.1) which in this case becomes

I(γ,v, a) =
∮

γ

1
ρ

δl

δv
.
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With these definitions of K and I, the statement of Theorem 4.1 becomes the clas-
sical Kelvin circulation theorem.

Theorem 6.2 (Kelvin Circulation Theorem.) Assume that v(x, t) satisfies the
Euler–Poincaré equations for continua:

∂

∂t

(
δl

δv

)
= −£v

(
δl

δv

)
+

δl

δa
� a

and a satisfies the advection relation

∂a

∂t
+ £va = 0.

Let ηt be the flow of the Eulerian velocity field v, that is, vt = (dηt/dt)◦η−1
t . Define

γt := ηt ◦ γ0 and I(t) := I(γt,vt, at). Then

d

dt
I(t) =

∮
γt

1
ρ

δl

δa
� a .

In this statement, we use a subscript t to emphasise that the operations are done at
a particular t and to avoid having to write the other arguments, as in at(x) = a(x, t);
we omit the arguments from the notation when convenient. Due to the importance
of this theorem we shall give here a separate proof tailored for the case of continuum
mechanical systems.

Proof. First we change variables in the expression for I(t):

I(t) =
∮

γt

1
ρt

δl

δv
=

∮
γ0

η∗t

[
1
ρt

δl

δv

]
=

∮
γ0

1
ρ0

η∗t

[
δl

δv

]
.

Next, we use the Lie derivative formula

d

dt
(η∗t αt) = η∗t

(
∂

∂t
αt + £vαt

)
,

for an arbitrary one–form density αt. This formula gives

d

dt
I(t) =

d

dt

∮
γ0

1
ρ0

η∗t

[
δl

δv

]
=

∮
γ0

1
ρ0

d

dt

(
η∗t

[
δl

δv

])
=

∮
γ0

1
ρ0

η∗t

[
∂

∂t

(
δl

δv

)
+ £v

(
δl

δv

)]
.

By the Euler–Poincaré equations, this becomes

d

dt
I(t) =

∮
γ0

1
ρ0

η∗t

[
δl

δa
� a

]
=

∮
γt

1
ρt

[
δl

δa
� a

]
,

again by the change of variables formula. �
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Corollary 6.3 (Kelvin-Noether form.) Since the last expression holds for every
loop γt, we may write it as(

∂

∂t
+ £v

)
1
ρ

δl

δv
=

1
ρ

δl

δa
� a . (6.12)

This is the Kelvin-Noether form of the Euler–Poincaré equations for ideal con-
tinuum dynamics.

7 Applications of the Euler–Poincaré Theorem to Con-
tinua

Variational formulae in three dimensional Euclidean coordinates. We
compute explicit formulae for the variations δa in the cases that the set of tensor
fields a consists of elements with the following coordinate functions in a Euclidean
basis on R

3,

a ∈ {b,A · dx,B · dS, D d3x, Sab dxa ⊗ dxb} . (7.1)

These are the tensor fields that typically occur in ideal continuum dynamics. Here,
in three dimensional vector notation, we choose B = curlA and d(A · dx) = B · dS.
In Euclidean coordinates on R

3, this is d(Akdxk) = Ak,jdxj ∧ dxk = 1
2εijkB

idxj ∧
dxk, where εijk is the completely antisymmetric tensor density on R

3 with ε123 =
+1. (The two form B·dS = d(A · dx) is the physically interesting special case of
Bkjdxj∧dxk, in which Bkj = Ak,j , so that ∇ · B = 0.)

We have seen that invariance of the set a in the Lagrangian picture under the
dynamics of v implies in the Eulerian picture that ( ∂

∂t +£v) a = 0, where £v denotes
Lie derivative with respect to the velocity vector field v. According to Theorem 6.1,
equation (6.9), the variations of the tensor functions a at fixed x and t are also given
by Lie derivatives, namely δa = −£u a, or

δb = −£u b = −u · ∇ b ,

δA · dx = −£u (A · dx) = −
(
(u · ∇)A + Aj∇uj

)
· dx

= (u × curlA −∇(u · A)) · dx ,

δB · dS = −£u (B · dS) = (curl (u × B)) · dS = d(δA · dx) ,

δD d3x = −£u (D d3x) = −∇ · (Du) d3x ,

δSab dxa ⊗ dxb = −£u (Sab dxa ⊗ dxb)
= −(ukSab,k + Skbu

k
,a + Skau

k
,b) dxa ⊗ dxb . (7.2)
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Hence, Hamilton’s principle with this dependence yields

0 = δ

∫
dt l(v; b,A,B, D, Sab)

=
∫

dt

[
δl

δv
· δv +

δl

δb
δb +

δl

δD
δD +

δl

δA
· δA +

δl

δB
· δB +

δl

δSab
δSab

]
=

∫
dt

[
δl

δv
·
(

∂u
∂t

− adv u
)
− δl

δb
u · ∇ b − δl

δD
(∇ · (Du))

+
δl

δA
· (u × curlA −∇(u · A)) +

δl

δB
· (curl (u × B))

− δl

δSab

(
ukSab,k + Skbu

k
,a + Skau

k
,b

)]
=

∫
dt

[
u ·

(
− ∂

∂t

δl

δv
− ad∗

v

δl

δv
− δl

δb
∇ b + D ∇ δl

δD

− δl

δA
× curlA + A div

δl

δA
+ B × curl

δl

δB

)
(7.3)

+ uk

(
− δl

δSab
Sab,k + (

δl

δSab
Skb),a + (

δl

δSab
Ska),b

)]
=

∫
dt u ·

[
− ∂

∂t

δl

δv
− ad∗

v

δl

δv
+

δl

δa
� a

]
=

∫
dt u ·

[
−

(
∂

∂t
+ £v

)
δl

δv
+

δl

δa
� a

]
,

where we have consistently dropped boundary terms arising from integrations by
parts, by invoking natural boundary conditions. Thus, for the set of tensor fields a
in equation (7.1) we have the following Euclidean components of δl

δa � a,(
δl

δa
� a

)
k

= − δl

δb
b,k + D

(
δl

δD

)
,k

+
(
− δl

δA
× curlA + A div

δl

δA
+ B × curl

δl

δB

)
k

− δl

δSab
Sab,k +

(
δl

δSab
Skb

)
,a

+
(

δl

δSab
Ska

)
,b

. (7.4)

Stress tensor formulation. For example, if we assume a Lagrangian in the form

l(v; b,A,B, D, Sab) =
∫

d 3x L(v,∇v, b,A,B, D, Sab), (7.5)

where L is a given function, then we may use equation (7.4) to express the Euler–
Poincaré equations for continua (6.9) in this case in the momentum conservation
form,

∂

∂t

δl

δv
= − ad∗

v

δl

δv
+

δl

δa
� a ⇒ ∂mi

∂t
= − ∂

∂xj
T j

i , (7.6)
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with momentum density components mi, i = 1, 2, 3 defined by

mi ≡
δl

δvi
=

∂L
∂vi

− ∂

∂xk

(
∂L
∂vi

,k

)
, (7.7)

and stress tensor T j
i given by

T j
i = miv

j − ∂L
∂vk

,j

vk
,i −

∂L
∂Aj

Ai +
∂L
∂Bi

Bj − ∂L
∂Sjb

Sib −
∂L

∂Saj
Sia

+ δj
i

(
L − D

∂L
∂D

− Bk ∂L
∂Bk

)
. (7.8)

Here, in the calculation of T j
i , we have used the coordinate expression (6.3) for

ad∗
u(α ⊗ m).

Kelvin-Noether form. The Euclidean components of the Euler–Poincaré equa-
tions for ideal continua may also be summarized in Kelvin-Noether form (6.12) for
advected tensor fields a in the set (7.1). We adopt the notational convention of the
circulation map K in equation (6.11) that a one form density can be made into a one
form (no longer a density) by dividing it by the mass density D to produce, e.g., the
one form in Euclidean components 1

D
δl
δvi dxi from the one form density δl

δv . With a
slight abuse of notation (but in accord with the usual physics conventions) we write
the former coordinate expression as 1

D
δl
δv · dx. We also denote the Lie-derivative

relation for the continuity equation as (∂/∂t + £v)Dd3x = 0. Then, the Euclidean
components of the Euler–Poincaré equations for continua in (7.3) are expressed in
Kelvin-Noether form (6.12) as(

∂

∂t
+ £v

) (
1
D

δl

δv
· dx

)
+

1
D

δl

δb
∇b · dx − ∇

(
δl

δD

)
· dx

+
1
D

(
δl

δA
× curl A − A div

δl

δA

)
· dx − 1

D

(
B × curl

δl

δB

)
· dx

+
1
D

(
δl

δSab
Sab,k − (

δl

δSab
Skb),a − (

δl

δSab
Ska),b

)
dxk = 0 , (7.9)

where the components of the variational derivatives of the Lagrangian l are to be
computed according to the usual physics conventions, i.e., as components of Fréchet
derivatives as in equation (1.50). In physical applications, the advected Eulerian ten-
sor fields a in (7.1) represent the buoyancy b (or specific entropy, for the compressible
case), magnetic vector potential A, magnetic field intensity B, mass density D, and
Cauchy-Green strain tensor Sab, respectively. Formula (7.9) is the Kelvin-Noether
form of the equation of motion for ideal continua in Euclidean coordinates. This
Euclidean component formula is especially convenient for direct calculations in fluid
dynamics, to which we turn our attention next.
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Eulerian motion equation for an ideal incompressible fluid. In the Eulerian
velocity representation we consider fluid motion in an n-dimensional domain and
define the reduced action Sred and reduced Lagrangian l(v, D) by

Sred =
∫

dt l =
∫

dt

∫
dnx

[1
2
D|v|2 − p(D − 1)

]
. (7.10)

This action produces the following variations at fixed x and t

1
D

δl

δv
= v ,

δl

δD
=

1
2
|v|2 − p ,

δl

δp
= − (D − 1) . (7.11)

Hence, from equation (7.9) for Hamilton principles of this type we find the Eulerian
motion equation,(

∂

∂t
+ £v

) (
1
D

δl

δv
· dx

)
− ∇

(
δl

δD

)
· dx = 0 , or

∂v
∂t

+ (v · ∇)v + ∇p = 0 ,

(7.12)

for “natural” boundary conditions, n̂ · v = 0 on the boundary, where n̂ is the
boundary’s outward unit normal vector. This is the Eulerian motion equation for
an incompressible fluid in n dimensions. The constraint D = 1 (volume or mass
preservation) is imposed by varying the Lagrange multiplier p, the pressure. Incom-
pressibility then follows from substituting D = 1 into the Lie-derivative relation for
D, which closes the ideal incompressible fluid system,(

∂

∂t
+ £v

)
Dd3x = 0, i.e.,

∂D

∂t
= − ∇ · (Dv) . (7.13)

This relation, together with the constraint D = 1 gives incompressibility of the flow,
∇ · v = 0.

Remark on Lagrangian mass coordinates. An alternative way to treat Hamil-
ton’s principle for the action (7.10) is to perform variations at fixed x and t of the
inverse maps x �→ �, described by the Lagrangian mass coordinate functions �A(x, t),
A = 1, 2, . . . , n, which determine v and D by the formulae (in which one sums on
repeated indices)

∂�A

∂t
= −viDA

i , DA
i =

∂�A

∂xi
, D = det(DA

i ) . (7.14)

As discussed above, the relation of mass coordinates � to the usual Lagrangian
coordinates X is given by a change of variables in the fluid reference configuration
to make ρ0(X)dnX = dn�. Variation of an action of the form Sred(v, D) with
respect to �A with p imposing volume preservation then yields (Holm, Marsden, and
Ratiu [1986], Holm [1996a]),

δSred =
∫

dt

∫
dnx

{
D(D−1)i

AδlA
[ d

dt

1
D

δl

δvi
+

1
D

δl

δvj
vj
,i −

(
δl

δD

)
,i

]
− δp(D − 1)

}
, (7.15)
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where d/dt = ∂/∂t + (v · ∇) is the material derivative of Eulerian quantities and we
again invoke natural boundary conditions when integrating by parts.

Hence, the vanishing of the coefficient of δ�A in the variational formula (7.15)
recovers the Euler–Poincaré equation (7.12) for the Eulerian fluid velocity, v, by
stationarity of the action (7.10) with respect to variations of the Lagrangian mass
coordinates �A(x, t). Similar arguments based on stationary variations of the action
with respect to the Lagrangian mass coordinates �A at fixed x, t will also recover
the more general Euler–Poincaré equations (7.9) from actions which depend on the
velocity v and the advected quantities in equation (7.1) through their dependence
on the �A(x, t).

Adiabatic compressible MHD. In the case of adiabatic compressible magne-
tohydrodynamics (MHD), the action in Hamilton’s principle is given by

Sred =
∫

dt l =
∫

dt d3x

(
D

2
|v|2 − De(D, b) − 1

2
|B|2

)
, (7.16)

where e(D, b) is the fluid’s specific internal energy, whose dependence on the density
D and specific entropy b is given as the “equation of state” and which for an isotropic
medium satisfies the thermodynamic first law in the form de = −pd(1/D) + Tdb
with pressure p(D, b) and temperature T (D, b). The variation of l in (7.16) is

δSred =
∫

dt d3x Dv · δv − DTδb +
(

1
2
|v|2 − h

)
δD − B · δB. (7.17)

The quantity h = e + p/D denotes the specific enthalpy, which thus satisfies dh =
(1/D)dp+Tdb. The Euler–Poincaré formula in the Kelvin-Noether form (7.9) yields
the MHD motion equation as(

∂

∂t
+ £v

)
(v · dx) − Tdb +

1
D

B × curl B · dx − d

(
1
2
|v|2 − h

)
= 0, (7.18)

or, in three dimensional vector form,

∂v
∂t

+ (v · ∇)v +
1
D
∇p +

1
D

B × curl B = 0. (7.19)

By definition, the advected variables {b,B, D} satisfy the the following Lie-derivative
relations which close the ideal MHD system,(

∂

∂t
+ £v

)
b = 0, or

∂b

∂t
= − v · ∇ b ,(

∂

∂t
+ £v

)
B · dS = 0, or

∂B
∂t

= curl (v × B),(
∂

∂t
+ £v

)
Dd3x = 0, or

∂D

∂t
= − ∇ · (Dv), (7.20)

and the function p(D, b) = D2∂e/∂D is specified by giving the equation of state of
the fluid, e = e(D, b). If the condition ∇ ·B = 0 holds initially, then it holds for all
time; since this constraint is preserved by the dynamical equation for B.
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Adiabatic magneto-elastodynamics. When nonlinear elasticity is also a factor
in the MHD evolution, there is an additional Lie-derivative relation,(

∂

∂t
+ £v

)
(Sab dxa ⊗ dxb) = 0 , (7.21)

leading to the dynamical equation for the advected Cauchy-Green strain tensor Sab

(which measures nonlinear strain in spatial coordinates),

∂

∂t
Sab = −

(
vkSab,k + Skbv

k
,a + Skav

k
,b

)
. (7.22)

In this case, additional stress terms appear in the motion equation for v that arise
from the dependence of the specific internal energy e(D, b, Sab) on the Cauchy-
Green strain tensor Sab in the MHD action (7.16) when the elasticity of the medium
is involved. The stress tensor per unit mass σab is determined from the equation
of state of such an magneto-elastic medium by the Doyle-Erickson formula σab ≡
∂e/∂Sab. The Euler–Poincaré equation (7.9) for ideal magneto-elasticity is then seen
to be

∂vi

∂t
+ vjvi,j +

1
D

p,i +
1
D

Bj(Bj,i − Bi,j) − (σabSib),a − (σabSia),b = 0 , (7.23)

where we have used the specific enthalpy relation for an elastic medium, dh−Tdb =
D−1dp + σabdSab. Thus, adiabatic magneto-elastodynamics summons all of the
advected quantities in equation (7.1) and makes use of the entire Euler–Poincaré
equation (7.9).

Adiabatic compressible Maxwell fluid dynamics via the Kaluza-Klein con-
struction. An adiabatic Maxwell fluid (MF) with (nonrelativistic) Eulerian fluid
velocity v, density D, specific entropy b and pressure p(D, b) satisfies the following
system of equations,

∂v
∂t

+ (v · ∇)v +
1
D
∇p(D, b) =

q

m
(E + v × B),

∂D

∂t
= − ∇ · (Dv),

∂b

∂t
= − (v · ∇)b,

∇ · E =
q

m
D,

∂E
∂t

= − q

m
Dv + ∇× B,

∇ · B = 0,
∂B
∂t

= − ∇× E. (7.24)

This system consists of the motion equation for a charged fluid moving under the
combined effects of pressure gradient and Lorentz forces; the continuity equation for
the mass density D; advection of the specific entropy, b; and Maxwell’s equations for
the electromagnetic fields E and B in the moving fluid medium, whose polarizability
and magnetization are neglected for simplicity. (For the physically more realistic
treatment of moving media with electromagnetic induction in a similar framework,
including relativistic effects, see Holm [1987].) The equations for D and b are the

45



familiar advection laws. The coupling constant q/m is the charge-to-mass ratio of
the fluid particles, and the electric and magnetic fields E and B are defined in terms
of the scalar and vector potentials Φ and A by

E ≡ − ∂A
∂t

−∇Φ, B ≡ ∇× A . (7.25)

In the MF equations (7.24), charged fluid motion is the source for the electromag-
netic fields which act self-consistently upon the fluid through the Lorentz force. We
shall show that equations (7.24) are Euler–Poincaré equations for the gauge invariant
action of “Kaluza-Klein” form given by

Sred =
∫

dt l =
∫

dt d3x

(
1
2
D|v|2 +

1
2
D(A · v − Φ + ω̃)2 − De(D, b)

+
1
2

∣∣∣∂A
∂t

+ ∇Φ
∣∣∣2 − 1

2
|∇ × A|2

)
, (7.26)

where ω̃ = ∂θ/∂t + v · ∇θ for a gauge field θ and e(D, b) is the fluid’s specific
internal energy, which satisfies the first law of thermodynamics in the form de =
−pd(1/D) + Tdb with pressure p(D, b) and temperature T (D, b).

This action principle fits into the general theory with the electromagnetic field
variables playing the role of additional configuration variables which are not acted
on by the particle relabelling group. They obey the usual Euler-Lagrange equa-
tions, coupled to the Euler–Poincaré variables through the Lagrangian. In other
words, the primitive unreduced Lagrangian in this case is of the abstract form
L : TG × V ∗ × TQ × TC → R in which G, the fluid particle relabelling group,
acts trivially on the Maxwell field variables Q and the gauge field θ ∈ C. Note that
the Lagrangian in equation (7.26) is invariant under translations of θ, as well as
under the electromagnetic gauge transformations,

A → A + ∇ζ, Φ → Φ − ∂ζ/∂t, θ → θ − ζ, (7.27)

for an arbitary function ζ of x and t.
We now take variations of the action. The variation of Sred in equation (7.26)

may be written using the definitions of E and B, and the abbreviated notation
c ≡ A · v − Φ + ω̃, as

δSred =
∫

dt d3x
[
D (v + cA + c∇θ) · δv +

(
1
2
|v|2 +

1
2
c2 − e − p

D

)
δD

− DT δb +
(

cDv +
∂E
∂t

−∇× B
)
· δA + (−cD + ∇ · E) δΦ

−
(

∂cD

∂t
+ ∇ · cDv

)
δθ

]
, (7.28)

where terms arising from integration by parts vanish for the natural boundary con-
ditions given by

v · n̂ = 0, E · n̂ = 0, and n̂ × B = 0 on the boundary, (7.29)
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and for variations δg(t) of g(t) vanishing at the endpoints. Stationarity of the action
Sred in (7.26) under variation of the gauge field θ gives the conservation law,(

∂

∂t
+ v · ∇

)
c = 0 via the continuity equation,

∂D

∂t
+ ∇ · (Dv) = 0. (7.30)

Hence, we may set c = q/m in equation (7.28) and then acquire the two Maxwell
equations with sources from stationarity of the action Sred under variations of A
and Φ. Once the flow velocity v is known, the relation c = q/m determines the
gauge function θ by “quadrature”, from the definitions of c and ω̃ as

ω̃ ≡ ∂θ

∂t
+ v · ∇θ =

q

m
+ Φ − A · v . (7.31)

The remaining variations of Sred in {v, D, b} for the Euler–Poincaré dynamics
collect into the Kelvin-Noether form of equation (7.9) as(

∂

∂t
+ v · ∇

) (
1
D

δl

δv

)
+

1
D

δl

δvj
∇vj +

1
D

δl

δb
∇b −∇ δl

δD
= 0 . (7.32)

Specifically, we have(
∂

∂t
+ v · ∇

)
(v + cA + c∇θ) + (vj + cAj + cθ,j)∇vj

− T∇b − ∇
(

1
2
|v|2 +

1
2
c2 − e − p

D

)
= 0 . (7.33)

Using the fundamental vector identity of fluid dynamics in three dimensions,

(b · ∇)a + aj∇bj = −b × (∇× a) + ∇(a · b) , (7.34)

with, in this case, b = v and a = D−1δl/δv, casts the Euler–Poincaré equation
(7.32) into its equivalent “curl” form,

∂

∂t

(
1
D

δl

δv

)
− v ×∇×

(
1
D

δl

δv

)
+

1
D

δl

δb
∇b + ∇

(
v · 1

D

δl

δv
− δl

δD

)
= 0 . (7.35)

Similarly, applying the same vector identity with b = v and a = c(A + ∇θ) in the
Maxwell fluid motion equation (7.33) yields,

∂v
∂t

+ (v · ∇)v +
1
D
∇p = c

(
−∂A

∂t
−∇Φ + v × (∇× A)

)
=

q

m
(E + v × B) , (7.36)

where we have used the thermodynamic first law. Thus we find the Maxwell fluid
motion law – the first among the equations in (7.24) – after setting c = q/m and
using the definitions of the electromagnetic fields E and B in terms of the potentials
A and Φ.
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Theorem 7.1 (Kelvin circulation theorem for the Maxwell fluid.) By the MF
motion equation (7.36) and the thermodynamic first law, we have

dI

dt
=

∮
γt

Tdb , (7.37)

where the circulation integral is given by

I ≡
∮

γt

(v +
q

m
A) · dx,

for a curve γt which moves with the fluid velocity v.

Proof. The proof is the same as for Theorem 6.2; although it is also immediately
seen from the motion equation (7.33) after substituting D−1δl/δv = v + c(A+∇θ)
and D−1δl/δb = −T . �

Corollary 7.2 (Potential vorticity convection for the Maxwell fluid.) Stokes’
theorem, advection of specific entropy b and the continuity equation together imply
convection of potential vorticity for the adiabatic Maxwell fluid,

∂q

∂t
+ v · ∇q ≡ dq

dt
= 0 with q ≡ 1

D
∇b · curl(v +

q

m
A). (7.38)

Remark. The equation dq/dt = 0 for convection of potential vorticity for a general
Lagrangian with dependence l(v, b, D), with

q =
1
D
∇b · curl

( 1
D

δl

δv

)
, (7.39)

may also be proven directly from the “curl” form of the Kelvin-Noether equation
(7.35) in three dimensions, by taking the scalar product of its curl with ∇b and
applying the continuity equation for D.

Alternative interpretations of the Maxwell fluid formulation. Note that
the first line of the Euler–Poincaré motion equation (7.36) for Maxwell fluids persists,
when the electromagnetic energy terms are dropped from the MF Lagrangian in
equation (7.26), to give the action

Sred =
∫

dt l =
∫

dt d3x

(
1
2
D|v|2 +

1
2
D(A · v − Φ + ω̃)2 − De(D, b)

)
. (7.40)

The Euler–Poincaré equation which results from this action is

∂v
∂t

+ (v · ∇)v +
1
D
∇p = c

(
−∂A

∂t
−∇Φ + v × (∇× A)

)
. (7.41)

The Kelvin Theorem 7.1 and its potential vorticity Corollary 7.2 also persist for the
dynamics derived from this truncated action. The “Lorentz force” terms in equation
(7.41) in terms of A and Φ arise purely from the Kaluza-Klein coupling term — the
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second term in the integrand of the action Sred in equation (7.40). These “Lorentz
forces” may be interpreted physically as noninertial forces resulting from having
moved into a frame of reference with a prescribed velocity given by A(x, t). The
velocity v then represents fluid flow relative to this noninertial frame. This situation
reduces to Faraday driving of the fluid (Faraday [1831]), when A(x, t) corresponds
to a rigid motion of the fluid container. For a simple example, set c = f0; ∇Φ = 0;
and A = 1

2 ẑ × x. Then cv × (∇ × A) = v × f0ẑ gives the Coriolis force and v
corresponds to fluid velocity in a uniformly rotating reference frame with constant
angular velocity f0. This is the typical situation in geophysical fluid dynamics.

Alternatively, the right hand side of equation (7.41) may be interpreted as a
vortex force arising from a given wave field at the surface of an incompressible fluid
(for D = 1), as in Craik and Leibovich [1976] (see also Holm [1996b]). The Craik-
Leibovich equations are formally identical to equation (7.41) when A is identified
as the prescribed mean Stokes drift velocity due to the presence of the wave field.

Fluid motion equations of the same form as (7.41) also appear in the generalized
Lagrangian-mean (GLM) formulation of wave, mean-flow interaction theories (see
Andrews and McIntyre [1978a,b]), in which ω̃ is the Doppler-shifted frequency of
a wave packet interacting with a Lagrangian-mean flow of velocity v, and A is
the prescribed pseudomomentum per unit mass of the wave. For a discussion of
self-consistent Lie-Poisson Hamiltonian theories of wave, mean-flow interaction in a
similar form, see Gjaja and Holm [1996].

Geodesic motion and the Kaluza-Klein construction for incompressible
fluids. Hamilton’s principle for the action in the “minimal coupling” form

S
′ =

∫
dt l =

∫
dt d3x

(
1
2
D|v|2 +

q

m
DA · v − q

m
DΦ − De(D, b)

)
, (7.42)

yields the same Euler–Poincaré equation (7.41) as results from Hamilton’s principle
for the Kaluza-Klein action in equation (7.40). Thus, we see that by introducing the
auxiliary gauge field, θ, the Kaluza-Klein construction renders the minimal coupling
form of the action for fluid dynamics quadratic in the velocity, while preserving its
corresponding Euler–Poincaré equation. The Kaluza-Klein construction for charged
particle mechanics is discussed in Marsden and Ratiu [1994]. The historical refer-
ences are Kaluza [1921], Klein [1926] and Thirry [1948].

In the incompressible case, when the Kaluza-Klein action is taken to be

Sred =
∫

dt l =
∫

dt d3x

(
1
2
D|v|2 +

1
2
D(A · v − Φ + ω̃)2 − p(D − 1)

)
, (7.43)

for arbitrary prescribed functions A and Φ, the resulting Euler–Poincaré equation
(i.e., equation (7.41) with D = 1) represents geodesic motion on the group of volume-
preserving diffeomorphisms with respect to the conserved kinetic-energy metric given
by

‖v‖2 =
∫

d3x

(
1
2
|v|2 +

1
2
(A · v − Φ + ω̃)2

)
, (7.44)
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where c ≡ A · v − Φ + ω̃ is an advected quantity, dc/dt = 0. This observation ex-
tends the geodesic property of incompressible ideal fluid flows established in Arnold
[1966a] to the case of incompressible Maxwell fluid flows, as well as to the case of
incompressible ideal fluid flows in an arbitrarily moving reference frame. From the
Euler–Poincaré point of view, this extension enlarges the particle relabelling group
G from the group of diffeomorphisms to the group of automorphisms of the single
particle Kaluza-Klein bundle. The total system for the incompressible Maxwell fluid
flows is then geodesic motion on the product of this automorphism group with the
Maxwell fields themselves. We believe that a similar extension may be involved in
the results of Ono [1995a, 1995b].

We should also remark that when one has equations in geodesic form, one can
make use of all the attendant geometry to obtain additional interesting results.
Examples of this applied to questions of stability and conjugate points are given in
the works of Misiolek listed in the references.

8 Approximate Model Fluid Equations which Preserve
the Euler–Poincaré Structure

The preceding section demonstrates the applicability of the Euler–Poincaré theorem
for ideal continua when the equations of motion are given. Here we discuss approx-
imate fluid models which preserve the Euler–Poincaré structure, and are obtained
by making asymptotic expansions and other approximations in Hamilton’s principle
for a given set of model equations. As examples, in this section we first discuss the
derivation of the quasigeostrophic approximation in geophysical fluid dynamics from
an approximation of Hamilton’s principle for the rotating shallow water equations.
Next, we discuss the Boussinesq approximation for dispersive water waves in one
dimension. As an example of the type of “bonus” which may appear in making
simplifying approximations while preserving mathematical structure, we derive the
integrable Camassa-Holm equation (Camassa and Holm [1993], Camassa, Holm and
Hyman [1994], Alber et al. [1994, 1995, 1997]), by making asymptotic approxima-
tions in the Hamilton’s principle for the Boussinesq equations. The Camassa-Holm
equation in one dimension is a completely integrable partial differential equation for
dispersive water waves that was actually discovered by making structure preserving
approximations of this type. This equation turns out to describe geodesic motion
on the group of diffeomorphisms of either the real line or the periodic interval, with
metric given by the H1 norm of the velocity. We also derive a multidimensional ana-
logue of the one-dimensional Camassa-Holm equation by invoking the n-dimensional
version of this geodesic property. There are also other potential advantages of mak-
ing structure preserving approximations, e.g., for numerical integrations. However,
discussion of these other advantages is deferred to another place. (See Marsden
and Wendlandt [1997], Wendlandt and Marsden [1997] and Marsden, Patrick and
Shkoller [1997] for recent advances in this direction.)
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Rotating shallow water dynamics as Euler–Poincaré equations. We first
consider dynamics of rotating shallow water (RSW) in a two dimensional domain
with horizontal coordinates x = (x1, x2). RSW motion is governed by the following
nondimensional equations for horizontal fluid velocity v = (v1, v2) and depth D,

ε
d

dt
v + f ẑ × v + ∇ψ = 0 ,

∂D

∂t
+ ∇ · Dv = 0 , (8.1)

with notation
d

dt
≡

(
∂

∂t
+ v · ∇

)
and ψ ≡

(
D − B

εF

)
. (8.2)

These equations include variable Coriolis parameter f = f(x) and bottom topogra-
phy B = B(x).

The dimensionless scale factors appearing in the RSW equations (8.1) and (8.2)
are the Rossby number ε and the rotational Froude number F , given in terms of
typical dimensional scales by

ε =
V0

f0L
� 1 and F =

f2
0 L2

gB0
= O(1) . (8.3)

The dimensional scales (B0, L,V0, f0, g) denote equilibrium fluid depth, horizontal
length scale, horizontal fluid velocity, reference Coriolis parameter, and gravitational
acceleration, respectively. Dimensionless quantities in equations (8.1) are unadorned
and are related to their dimensional counterparts (primed), according to

v′ = V0v, x′ = Lx, t′ =
(

L

V0

)
t, f ′ = f0f,

B′ = B0B, D′ = B0D, and D′ − B′ = B0(D − B). (8.4)

Here, dimensional quantities are: v′, the horizontal fluid velocity; D′, the fluid
depth; B′, the equilibrium depth; and D′ − B′, the free surface elevation.

For barotropic horizontal motions at length scales L in the ocean, say, for which
F is order O(1) – as we shall assume – the Rossby number ε is typically quite small
(ε � 1) as indicated in equation (8.3). Thus, ε � 1 is a natural parameter for
making asymptotic expansions. For example, we shall assume |∇f | = O(ε) and
|∇B| = O(ε), so we may write f = 1 + εf1(x) and B = 1 + εB1(x). In this scaling,
the leading order implications of equation (8.1) are v = ẑ×∇ψ and ∇·v = 0. This
is geostrophic balance.

A simple calculation using equation (7.12) shows that the RSW equations (8.1)
arise as Euler–Poincaré equations from Hamilton’s principle with action SRSW,

SRSW =
∫

dt lRSW =
∫

dt

∫
dx1dx2

[
Dv · R(x) − (D − B)2

2εF +
ε

2
D|v|2

]
, (8.5)

where curlR(x) ≡ f(x)ẑ yields the prescribed Coriolis parameter. The RSW equa-
tions (8.1) themselves can be regarded as being derived from asymptotics in Hamil-
ton’s principle for three dimensional incompressible fluid motion, see Holm [1996a].
However, this viewpoint is not pursued further here, as we proceed to describe the
relation of RSW to the quasigeostrophic approximation of geophysical fluid dynam-
ics.
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Quasigeostrophy. The quasigeostrophic (QG) approximation is a useful model
in the analysis of geophysical and astrophysical fluid dynamics, see, e.g., Pedlosky
[1987]. Physically, QG theory applies when the motion is nearly in geostrophic
balance, i.e., when pressure gradients nearly balance the Coriolis force in a rotating
frame of reference, as occurs in meso- and large-scale oceanic and atmospheric flows
on Earth. Mathematically, the simplest case is for a constant density fluid in a
planar domain with Euclidean coordinates x = (x1, x2). QG dynamics for this case
is expressed by the following nondimensional evolution equation for the stream-
function ψ of the incompressible geostrophic fluid velocity v = ẑ ×∇ψ,

∂(∆ψ −Fψ)
∂t

+ [ψ, ∆ψ] + β
∂ψ

∂x1
= 0 . (8.6)

Here ∆ is the Laplacian operator in the plane, F denotes rotational Froude number,
[a, b] ≡ ∂(a, b)/∂(x1, x2) is the Jacobi bracket (Jacobian) for functions a and b
defined on R

2 and β is the gradient of the Coriolis parameter, f , taken as f = 1+βx2

in the β-plane approximation, with constant β. (Neglecting β gives the f -plane
approximation of QG dynamics.) The QG equation (8.6) may be derived from an
asymptotic expansion of the RSW equations (8.1) by truncating at first order in the
Rossby number, cf. Pedlosky [1987]. Equation (8.6) may be written equivalently in
terms of the potential vorticity, q, as in equation (7.38),

∂q

∂t
+ v · ∇q = 0, where q ≡ ∆ψ −Fψ + f for QG. (8.7)

This form of QG dynamics expresses its basic property of potential vorticity con-
servation on geostrophic fluid parcels.

The QG approximation to the RSW equations introduces “quasigeostrophic par-
ticles” which move with geostrophic velocity v = ẑ × ∇ψ and, thus, trace the
geostrophic component of the RSW fluid flow. These QG fluid trajectories are de-
scribed as functions of Lagrangian mass coordinates � = (�1, �2) given by x(�, t) in
the domain of flow.

Hamilton’s principle derivation of QG as Euler–Poincaré equations. As
in Holm and Zeitlin [1997], we consider the following action for QG written in the
Eulerian velocity representation with the integral operator (1 −F∆−1),

Sred =
∫

dt l =
∫

dt

∫
dx1dx2

[ ε

2
Dv · (1 −F∆−1)v + Dv · R(x) − ψ(D − 1)

]
.

(8.8)

This choice can be found as an asymptotic approximation of the RSW action SRSW

in equation (8.5), in the limit of small wave amplitudes of order O(ε2) and constant
mean depth to the same order, when the wave elevation is determined from the
fluid velocity by inverting the geostrophic relation, v = ẑ × ∇ψ. The variational
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derivatives of the reduced Lagrangian Sred at fixed x and t are

1
D

δl

δv
= R + ε

[
v − F

2
∆−1v − F

2D
∆−1(Dv)

]
,

δl

δD
=

ε

2
v · (1 −F∆−1)v + v · R − ψ ,

δl

δψ
= − (D − 1) , (8.9)

where we have used the symmetry of the Laplacian operator and assumed no con-
tribution arises from the boundary when integrating by parts. For example, we
may take the domain to be periodic. Hence, the Euler–Poincaré equation (7.12) for
action principles of this type and the fundamental vector identity (7.34) combine to
give the Eulerian QG “motion equation”,

ε
∂

∂t
(1 −F∆−1)v − v × curl

(
ε(1 −F∆−1)v + R

)
+∇

(
ψ +

ε

2
v · (1 −F∆−1)v

)
= 0 , (8.10)

upon substituting the constraint D = 1, imposed by varying ψ. The curl of this
equation yields

∂q

∂t
+ v · ∇q + q∇ · v = 0 , (8.11)

where the potential vorticity q is given by

q = εẑ · curl (1 −F∆−1)v + f = ε(∆ψ −Fψ) + f , (8.12)

with

f ≡ ẑ · curlR = 1 + βx2, (8.13)

and β is assumed to be of order O(ε). The constraint D = 1 implies ∇·v = 0 (from
the kinematic relation ∂D/∂t+∇·Dv = 0) and when v = ẑ×∇ψ is substituted, the
equation for q = ∆ψ−Fψ+f yields the QG potential vorticity convection equation
(8.7). Thus, the QG approximation follows as the Euler–Poincaré equation for an
asymptotic expansion of the action for the RSW equations when the potential energy
is modelled by inverting the geostrophic relation. The same QG equation follows
upon recasting the action (8.8) in the Kaluza-Klein form (7.43) for incompressible
fluids,

Sred =
∫

dt l =
∫

dt dx1dx2

[ ε

2
Dv · (1 −F∆−1)v +

1
2
D(R · v + ω̃)2 − ψ(D − 1)

]
,

(8.14)

where ω̃ is defined as ω̃ = dθ/dt = ∂θ/∂t + v · ∇θ for the gauge field θ, as in the
case of the Maxwell fluid. Thus, the QG motion equation (8.10) with the beta-
effect (included in R) describes geodesic motion on the group of area-preserving
diffeomorphisms with respect to the conserved kinetic-energy metric given by

‖v‖2 =
∫

dx1dx2

[ ε

2
v · (1 −F∆−1)v +

1
2
(R · v + ω̃)2

]
, (8.15)
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where c′ ≡ R · v + ω̃ is an advected quantity, dc′/dt = 0. This observation from the
Euler–Poincaré viewpoint confirms the geodesic interpretation of the QG equations
for motion in the β-plane established in Zeitlin and Pasmanter [1994].

1D Boussinesq dispersive shallow water equations. For one dimensional
shallow water motion with prescribed mean depth B(x) we choose the following
action

Sred =
∫

dt l =
∫

dt dx
[1
2
Dv2 +

α2

2
(Dv)2x − g

2
(D − B(x))2

]
, (8.16)

in which g and α2 are constants and subscript x denotes partial derivative. The
second term, proportional to α2, represents the kinetic energy due to vertical motion.
The last term is the potential energy. Recall that the surface elevation h ≡ D − B(x)
satisfies ∂h/∂t = −(Dv)x for shallow water dynamics in one dimension. Thus, the
last two terms are analogous to the Lagrangian

α2

2

(∂h

∂t

)2
− g

2
h2 .

This is the Lagrangian for a harmonic oscillator whose displacement is given by the
surface elevation h and whose natural frequency is

√
g/α. For the choice of action

in equation (8.16) and for boundary conditions such that vx → 0 as |x| → ∞, the
variation is

δSred =
∫

dt dx
[
D(v − α2(Dv)xx)δv +

(v2

2
− α2v(Dv)xx − gh

)
δD

]
. (8.17)

The Kelvin-Noether form of the Euler–Poincaré equations in (7.12) then gives

0 =
( ∂

∂t
+ £v

)( 1
D

δl

δv
dx

)
− d

( δl

δD

)
=

[ ∂

∂t
(v − α2(Dv)xx) + vvx + ghx

]
dx . (8.18)

Upon inserting the one-dimensional continuity equation into the α2 term and rear-
ranging slightly, we find the system of equations

∂v

∂t
+ vvx + ghx + α2 ∂2hx

∂t2
= 0,

∂h

∂t
+ (hv + B(x)v)x = 0 , (8.19)

the second of which is just a restatement of continuity. According to Whitham
[1974] these equations were favored by Boussinesq, who first formulated them by
using the method of asymptotic expansions. Here we see that the Boussinesq shallow
water equations (8.19) are also Euler–Poincaré equations on Diff(R) derived from
the action (8.16). The term proportional to α2 in equation (8.19) arises from the
kinetic energy due to vertical motion in the action (8.16) and produces the wave
dispersion responsible for solitary wave solutions of these equations.
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1D Camassa–Holm equation for peakons. In the limit that the potential
energy gh2/2 is negligible compared to the kinetic energy (e.g., for weak gravity, or
small surface elevation), we may ignore the last term in the action (8.16) for the
Boussinesq equations in one dimension, set D = B(x) in the other terms and rescale
to α2 = 1, conforming to the notation in Camassa and Holm [1993]. We thereby
obtain the following simplified expression for the shallow water action in this regime,

Sred =
∫

dt dx B(x)
(

1
2
v2 +

1
2
v2
x

)
. (8.20)

For this action, when we also assume B(x) = 1 (for constant bottom topography)
Hamilton’s principle implies simply

0 = δSred =
∫

dt l =
∫

dt dx (v − vxx)δv , (8.21)

for vanishing boundary conditions for vx on the real line as |x| → ∞. Hence,
δl/δv = v − vxx and the basic Euler–Poincaré equations for this case reduce to

∂

∂t
(v − vxx) = − ad∗

v(v − vxx) = −v(v − vxx)x − 2(v − vxx)vx . (8.22)

This is the κ = 0 case of the completely integrable partial differential equation
derived by Camassa and Holm [1993],

∂

∂t
(v − vxx) + 2κvx = −3vvx + 2vxvxx + vvxxx . (8.23)

For κ = 0, this equation admits ‘peakon’ solutions. The peakons are solitons which
interact elastically and possess a peak, at which the derivative vx reverses sign. The
simplest case is the single peakon, which is a solitary travelling wave solution given
by v(x, t) = c0 exp − |x − c0t |, with a constant wave speed c0. The multi-peakon
solutions of the Camassa-Holm equation are obtainable from its associated Lax pair
and linear isospectral problem, as shown in Camassa and Holm [1993].

Being basic Euler–Poincaré, equation (8.22) describes geodesic motion. Camassa
and Holm [1993] note that the integrable dynamics of N peakons interacting nonlin-
early via equation (8.22) reduces to finite dimensional geodesic motion on a manifold
with N corners. This geodesic property persists to infinite dimensions and although
the equation was originally intended to be an approximation of shallow water mo-
tion, it turns out equation (8.22) is also the geodesic spray equation for motion on
the group of diffeomorphisms of the real line with metric given by the H1 norm of
v, see Kouranbaeva [1997]. The κ �= 0 case of the Camassa-Holm equation (8.23)
may be obtained formally by shifting (v−vxx) by κ in equation (8.22) and retaining
homogeneous boundary conditions for (v − vxx) as |x| → ∞. The corresponding
statement about geodesic motion for κ �= 0, however, is rather more technical than
for κ = 0 and involves the Gel’fand-Fuchs co-cycle and the Bott-Virasoro group, see
Misiolek [1997] for details. See Alber et al. [1994, 1995, 1997] for discussions of the
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periodic solutions of the Camassa-Holm equation and a related integrable shallow
water equation in the Dym hierarchy,

2κvx =
∂

∂t
vxx + 2vxvxx + vvxxx . (8.24)

This equation is the “high wave number limit” of the Camassa-Holm equation (8.23).

Higher dimensional Camassa–Holm equation. As we have seen, the Camassa-
Holm (CH) equation in one dimension describes geodesic motion on the diffeomor-
phism group with respect to the metric given by the H1 norm of the Eulerian
fluid velocity. Thus, a candidate for its n-dimensional incompressible generalization
should be the Euler–Poincaré equation that follows from the Lagrangian given by
the H1 norm of the fluid velocity in n dimensions, subject to volume preservation
(for n �= 1),

Sred =
∫

dt l =
∫

dt

∫
M

dnx
D

2
(viv

i + α2v,j
i vi

,j) − p(D − 1) , (8.25)

where M is the domain of the fluid motion and where we have restored the length-
scale, or aspect-ratio parameter, α. Varying this action at fixed x and t gives

δSred =
∫

dt

∫
M

dnx
[
(viv

i + α2v,j
i vi

,j)δD − (D − 1)δp +
(
Dvi − α2∂j(Dv,j

i )
)

δvi
]

+ α2

∫
dt

∮
∂M

dn−1x n̂j(Dv,j
i δvi) , (8.26)

whose natural boundary conditions on ∂M are

v · n̂ = 0 and (n̂ · ∇)v ‖ n̂, (8.27)

where ‖ denotes “parallel to” in the second boundary condition, which of course
is not imposed when α2 is absent. (Recall that δv in equation (8.26) is arbitrary
except for being tangent on the boundary. This tangency, along with the second
condition in equation (8.27) is sufficient for the boundary integral in equation (8.26)
to vanish.)

another set of coundary conditions which will guarantee the vanishing of the
coundary terms in 8.26 is that v = 0 on ∂M (and correspondingly, δv = 0 on ∂M.
An interesting difficulty with the boundary conditions 8.27 is that they do not from
a Lie algegra unless the boundary is flat. We shall correct this difficulty shortly with
the inclusion of the second fundamental from of the boundary. (See the Section The
Riemannian CH Equations below.)

By equation (7.9) or (7.32), the Euler–Poincaré equation for the action Sred in
equation (8.25) is(

∂

∂t
+ v · ∇

)
(v − α2∆v) + (vj − α2∆vj)∇vj −∇

(
1
2
|v|2 +

α2

2
|∇v|2 − p

)
= 0 ,

(8.28)
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where (∇v)i
j = vi

,j ≡ ∂vi/∂xj , |∇v|2 ≡ vi
,jv

,j
i = tr(∇v · ∇vT ) and superscript

(•)T denotes transpose. We have also used the constraint D = 1, which as before
implies incompressibility via the continuity equation for D. Requiring the motion
equation (8.28) to preserve divv = 0 implies a Poisson equation for the pressure
p with a Neumann boundary condition, which is obtained just as in the case of
incompressible ideal fluid dynamics by taking the normal component of the motion
equation evaluated at the boundary.

Properties of the Camassa–Holm equation. Since the CH action Sred in
(8.25) is translation invariant, the Noether theorem ensures the CH equation (8.28)
conserves a momentum. In fact, by the stress tensor formulae (7.6)–(7.8), equation
(8.28) may be rewritten as

∂mi

∂t
= − ∂

∂xj
T j

i . (8.29)

In this case, the momentum density mi, i = 1, 2, 3 defined in equation (7.7) is given
by

mi ≡
δl

δvi

∣∣∣
D=1

= vi − α2∆vi , (8.30)

and the stress tensor T j
i defined in equation (7.8) is given by

T j
i = (vi − α2∆vi)vj − α2 vk

,iv
,j
k + δj

i p . (8.31)

Thus, equation (8.29) implies conservation of the total momentum, M =
∫
M m d 3x,

provided the normal component of the stress tensor T j
i vanishes on the boundary.

Since the CH equation (8.28) is Euler–Poincaré, it also has a corresponding
Kelvin-Noether circulation theorem. Namely, cf. equation (8.32),

d

dt

∮
γt

(v − α2∆v) · dx = 0 , (8.32)

for any closed curve γt that moves with the fluid velocity v. This expression for the
Kelvin-Noether property of the CH equation in 3D is reminiscent of corresponding
expressions in wave, mean-flow interaction theory. This correspondence suggests a
physical interpretation of the α2 term in the Kelvin-Noether circulation integral as
a Lagrangian mean closure relation for the pseudomomentum of the high frequency
(i.e., rapidly fluctuating, turbulent) components of the flow. In this interpretation,
α corresponds to the typical length scale at which these high frequency components
become important. See Foias, Holm and Titi [1998] for more discussion of using the
3D CH equation (8.28) as the basis for a turbulence closure model.

In three dimensions, we may use the vector identity (7.34) to re-express the CH
motion equation (8.28) in its “curl” form, as

∂

∂t
(1 − α2∆)v − v ×

(
∇× (1 − α2∆)v

)
+ ∇

(
v ·

(
1 − α2∆

)
v − 1

2
|v|2 − α2

2
|∇v|2 + p

)
= 0 . (8.33)
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The inner product of v with this equation then implies conservation of energy,

E =
1
2

∫
M

d 3x
(
v · (1 − α2∆)v

)
=

1
2

∫
d 3x

(
|v|2 + α2|∇v|2

)
, (8.34)

upon integrating by parts and using the boundary conditions (8.27). Naturally, this
energy is also conserved in n dimensions. In fact, Legendre transforming the action
(8.25) gives the following Hamiltonian (still expressed in terms of the velocity,
instead of the momentum density m = δl/δv),

H =
∫
M

dnx
[ D

2
(
|v|2 + α2|∇v|2

)
+ p(D − 1)

]
. (8.35)

Thus, when evaluated on the constraint manifold D = 1, the Lagrangian and the
Hamiltonian for the CH equation coincide in n dimensions. (This, of course, is not
unexpected for a stationary principle giving rise to geodesic motion.)

The curl of the 3D Camassa-Holm motion equation (8.33) yields

∂

∂t
q = q · ∇v − v · ∇q ≡ [v,q ], where q ≡ curl(v − α2∆v) , (8.36)

and we have used incompressibility and commutativity of the divergence and Lapla-
cian operators. Thus, v is the transport velocity for the generalized vorticity q and
the “vortex stretching” term q ·∇v involves ∇v, whose L2 norm is controlled by the
conservation of energy in equation (8.34). Boundedness of this norm will be useful
in future analytical studies of the 3D Camassa-Holm equation; for example, in the
investigation of the Liapunov stability properties of its equilibrium solutions.

3D periodic CH motion. In a three dimensional periodic domain, the conserved
energy E in equation (8.34) may also be expressed as

E =
1
2

∫
M

d 3x
(
|v|2 + α2|curlv|2

)
, (8.37)

upon integrating by parts and using divv = 0. Thus, in the 3D periodic case, the
CH energy E may be interpreted as the sum of the kinetic energy and the enstrophy
(i.e., the L2 norm of vorticity) of the Euler fluid.

The inner product of the generalized vorticity q with the motion equation (8.33)
implies conservation of helicity, for three dimensional periodic motion. Namely,
the quantity

Λ ≡
∫
M

d 3x (1 − α2∆)v · curl(1 − α2∆)v (helicity), (8.38)

is also a constant of motion for three dimensional periodic CH motion.
Using the CH vorticity equation (8.36), we see that steady 3D solutions of the

CH equation (denoted with subscript e for “equilibrium”) are characterized by the
vector-field commutation relation [ve,qe] = 0. Thus, the velocity of a steady CH
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flow ve generates a volume preserving diffeomorphism that leaves invariant its corre-
sponding steady generalized vorticity qe. For example, the CH Beltrami flows for
equation (8.33) are characterized by ve = µqe, for a constant µ. The CH Beltrami
flows verify the invariance property; hence, they are steady. These steady solutions
are also critical points of the sum E + Λ/2µ of the energy E in equation (8.37)
and 1/2µ times the conserved helicity in equation (8.38). Hence, they are relative
equilibrium solutions of the CH equation. The CH Beltrami flows are divergenceless
vector eigenfunctions of the product of the curl operator and the Helmholtz oper-
ator, (1 − α2∆). They are the CH analogues of “ABC flows” for the ideal Euler
fluid.

Constitutive properties of the CH “fluid.” Physically, conservation of the
energy in equation (8.37) means that the CH fluid can exchange energy between its
translational, and its rotational and shear motions. One may ask, what constitutive
relation describes such a fluid?

One may verify directly that the 3D Camassa–Holm equation (8.28) in Cartesian
coordinates implies the following formula for the geodesic spray form of the CH
equations in 3D:

(1 − α2∆)
(

∂

∂t
+ v · ∇

)
vi = α2(∆vj)(v

j
,i − v,j

i )

− ∂

∂xj

[(
p − α2

2
vi
,kv

,k
i

)
δj
i + 2α2vj

,kv
,k
i

]
. (8.39)

In vector notation, this is

(1 − α2∆)
(

∂

∂t
+ v · ∇

)
v = α2(∆v) × curlv

− div
[(

p − α2

2
|∇v|2

)
Î + 2α2∇v · ∇vT

]
, (8.40)

where Î is the unit tensor. Viewed this way, the CH fluid acceleration dv/dt is non-
local, nonlinear, and (as we know from the general Euler–Poincaré theory) geodesic.
Foias, Holm and Titi [1998] show, among other things, that the geodesic spray
equation (8.40) may be rearranged into a viscoelastic constitutive relation of Jef-
freys type.

Discussion. The essential idea of the CH equation is that its specific momentum
(i.e., its momentum per unit mass) is transported by a velocity which is smoothed
by inverting the elliptic Helmholtz operator (1− α2∆), where α corresponds to the
length scale at which this smoothing becomes important, i.e., when it becomes of
order O(1). When the smoothing operator (1 − α2∆)−1 is applied to the transport
velocity in Euler’s equation to produce the CH equation, its effect on length scales
smaller than α is that steep gradients of the specific momentum function tend not
to steepen much further, and thin vortex tubes tend not to get much thinner as they
are transported. And, its effect on length scales that are considerably larger than α
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is negligible. Hence, the transport of vorticity in the CH equation is intermediate
between that for the Euler equations in 2D and 3D. As for Euler vorticity, the curl
of the CH specific momentum is convected as an active two form, but its transport
velocity is the smoothed, or filtered CH specific momentum.

The effects of this smoothing or filtering of the transport velocity in the CH
equation can be seen quite clearly from its Fourier spectral representation in the
periodic case. In this case, we define mk as the k-th Fourier mode of the specific
momentum m ≡ (1 − α2∆)v for the CH equation, so that mk ≡ (1 + α2|k|2)vk.
Then the Fourier spectral representation of the CH equation for a periodic three-
dimensional domain is expressed as

Π

 d

dt
mk − i

∑
p+q=k

mp

1 + α2|p|2 × (q × mq)

 = 0, (8.41)

where Π is the Leray projection onto Fourier modes transverse to k. (As usual, the
Leray projection ensures incompressibility.) In this Fourier spectral representation
of the CH equation, one sees that the coupling to high modes is suppressed by the
denominator when 1+α2|p|2 � 1. Consequently, when |p| ≥ O(1/α), the smoothing
of the transport velocity suppresses the development of higher modes |k|≥O(2|p|).
And, it also suppresses the “stochastic backscatter” from higher modes to lower
ones, |k| = O(1). Thus, thinking of “interaction triangles” among the modes, one
sees that all p + q = k triangles are suppressed when |p| ≥ O(1/α). Hence, the
CH smoothing of the transport velocity suppresses both the forward and backward
cascades for wave numbers |p| ≥ O(1/α), but leaves the Euler dynamics essentially
unchanged for smaller wave numbers. As we have seen, the result is that the vortex
stretching term in the dynamics of q = curlm is mollified in the CH model and so
the vortices at high wave numbers will tend to be “shorter and fatter” than in the
corresponding Euler case.

When the kinetic energy terms are neglected relative to the gradient velocity
terms, the CH action Sred in (8.25) becomes

S
∞
red =

∫
dt l =

∫
dt

∫
M

dnx

[
D

2
vi
,jv

,j
i − p(D − 1)

]
, (8.42)

whose Euler–Poincaré equation in 3D implies the following,

∂

∂t
∆v − v × (∇× ∆v) + ∇

(
v · ∆v +

1
2
|∇v|2 − p

)
= 0 . (8.43)

This equation is the “high wave number limit” of the 3D Camassa-Holm equation
(8.33). Scale invariance is restored in this limiting equation and its corresponding
group invariant (e.g., self-similar) solutions may be illuminating.

The Riemannian CH equations. One can formulate the CH equations on a
general Riemannian manifold, possibly with boundary. Although this will be the
subject of future papers, we will make some comments about some of the features
(some of them conjectural) here.
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We start with a smooth, oriented, compact Riemannian manifold M , possibly
with a smooth boundary. We first define the group DiffCH to be the group of
diffeomorphisms η : M → M of class Hs, where s > (n/2) + 2 with the boundary
condition that the tangent map Tη : TM → TM takes the outward normal direction
to the boundary ∂M at a point x ∈ M to the outward normal direction at the point
η(x). In the incompressible case, one imposes the condition that each η be volume
preserving. We first conjecture that this group is a smooth manifold and is a Lie
group (in the same sense as in Ebin and Marsden [1970]) with Lie algebra the set
of vector fields v on M which are tangent to the boundary of M and that satisfy the
boundary condition

〈∇nv, u〉 = S(u, v)

for all vectors u tangent to the boundary. Here S(u, v) is the second fundamental
form of the boundary. This condition on the boundary is the CH analogue to
the condition of parallel to the boundary in the case of the Euler equations. The
condition comes about by differentiation of the condition on η in the definition of
DiffCH using a routine calculation.

Notice that the boundary conditions are different from those previously (see
equation (8.27). This appears, however, to be needed for the group theoretic version
of the equations. Now we put a right invariant Lagrangian on DiffCH which, at the
identity, is given by

L(v) =
1
2

∫
M

(
‖v‖2 + ‖∇v‖2

)
dµ −−1

2

∮
∂M

S(u, u)dA (8.44)

where ∇v is the covariant derivative of v, where dµ is the Riemannian volume
element and where dA is the area element of the boundary. We are using terminology
appropriate to the case in which M is three dimensional, but of course there is no
restriction on the dimension of M . Also, ‖∇v‖2 denotes the norm in the sense of
the full Riemannian contraction of the tensor ∇v. The associated Laplace operator
is usually called the rough Laplacian.

At this point there are some choices one can make. One can use a different H1

metric built out of thinking of v as a one form and using the d and δ operators
and the corresponding Laplace deRham operator. This leads to a slightly different
system in general, but one that has similar analytical properties. One can also
use the group Diff0 of diffeomorphisms that leave the boundary pointwise fixed,
corresponding to the boundary conditions v = 0 on ∂M. (This group was studied
in Ebin and Marsden [1970].) In this case, one omits the boundary integral in the
preceding displayed equation.

The Riemannian CH equations are, by definition, the Euler–Poincaré equa-
tions for this group and this Lagrangian. The boundary term in the Lagrangian is
designed to make the boundary conditions in the resulting equations come out agree-
ing with those for the Lie algebra of the group DiffCH. Apart from the boundary
conditions, the resulting equations agree with the ones we developed in Euclidean
space, but in general one replaces the Laplacian with the rough Laplacian. Note
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that since the Lagrangian is quadratic in v, the equations on DiffCH are geodesic
equations (possibly with respect to an indefinite metric).

Conjecture 8.1 As in the case of the Euler equations (Ebin and Marsden [1970]),
the geodesic spray of the Riemannian CH equations is smooth if s > (n/2) + 2.

This conjecture is based on a direct examination of the expression for the spray
of the Riemannian CH equations and seeing that there is no derivative loss. If this
is true, then other analytic things, including results on the limit of zero viscosity (or
viscoelasticity) also hold. We also note that because energy conservation involves a
stronger norm than in the Euler equations for ideal flow, one expects other analytic
properties of the Riemannian CH equation to be improved. This would include
results on stability and long time existence.

Another consequence of this would be that the spray of the incompressible Rie-
mannian CH equations would also be smooth. This follows since the projection map
is smooth and the fact that the spray of the incompressible equations is given by the
composition of the spray of the compressible ones and the tangent of the projection
map. (These facts are proved in Ebin and Marsden [1970]).

As we have mentioned, all of these things will be explored in detail in other
publications.

2D Camassa–Holm equation. In two dimensions, the curl of the Euler–Poincaré
motion equation (8.33) produces a scalar relation for potential vorticity convection,
namely,

∂q

∂t
+ v · ∇q = 0, where q ≡ (1 − α2∆)∆ψ for 2dCH. (8.45)

In terms of the stream function ψ, with v = ẑ×∇ψ, the boundary conditions (8.27)
in two dimensions with ŝ = ẑ × n̂ become

ψ = const and n̂ · ∇∇ψ · n̂ = 0 ⇒ ∆ψ = 0 on the boundary. (8.46)

Potential vorticity convection (8.45) for the 2dCH equation, combined with incom-
pressibility and the first boundary condition in (8.27) imply conservation of the
following quantity,

CΦ ≡
∫

d2x Φ(q) , (8.47)

for any suitably well-behaved function Φ. (This is a Casimir function, in the Lie-
Poisson bracket formulation.) Substituting v = ẑ × ∇ψ and using the divergence
theorem yields an expression for the kinetic energy Lagrangian for the 2dCH equa-
tion in terms of the stream function, ψ. Namely,

E =
1
2

∫
d 2x

(
v · (1 − α2∆)v

)
=

1
2

∫
d 2x

(
∇ψ · (1 − α2∆)∇ψ

)
(8.48)

=
1
2

∑
i

ψ(i)

∮
γ(i)

ds
∂

∂n
(1 − α2∆)ψ(i) − 1

2

∫
d 2x

(
ψ(1 − α2∆)∆ψ

)
,
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where we sum over the connected components of the boundary γ(i) and use ψ(i)

constant on the ith component. Thus, solutions of the CH equation (8.28) in two
dimensions optimize the integrated product of the stream function and potential
vorticity, constrained by the circulation of v−α2∆v on each connected component
of the boundary. The Lagrange multiplier for this circulation is the corresponding
boundary component’s (constant) stream function.

Steady CH solutions in two dimensions. Steady solutions of the 2dCH equa-
tion (8.45) with boundary conditions (8.46) satisfy

ẑ · ∇ψe ×∇qe = J(qe, ψe) = 0, for qe ≡ (1 − α2∆)∆ψe . (8.49)

Thus, steady CH solutions exist when there is a functional relation between the
potential vorticity qe and its associated stream function ψe. For example, one could
have qe = F (ψe) for function F . In particular, the linear steady flows satisfy

qe = ∆(1 − α2∆)ψe = −|k|2(1 + α2|k|2)ψe. (8.50)

These are sines and cosines with wave number k for periodic boundary conditions.
The corresponding fluid velocity for any of these steady 2dCH solutions is found
from ve = ẑ ×∇ψe.

As another example, the point potential-vortex solution centered at z′ =
x′ + iy′ in the infinite x, y plane has stream function

ψ(|z − z′|) = log(|z − z′|) + K0(|z − z′|/α), (8.51)

where K0(|z−z′|/α) is the Bessel function of the second kind. This stream function
satisfies

q = ∆(1 − α2∆)ψ = 2πδ(|z − z′|),

where ∆ is the Laplacian operator in the plane and δ(|z − z′|) is the Dirac delta
function. (The proof uses ∆log(|z−z′|) = 2πδ(|z−z′|) and (1−α2∆)K0(|z−z′|/α) =
2πδ(|z−z′|).) The circular potential-vortex patch solution, q = ∆(1−α2∆)ψ =
C = const for |z − z′| ≤ a and q = 0 for |z − z′| > a, has stream function

ψ = C

( |z − z′|2
4

+ 1
)

for |z − z′| ≤ a,

ψ = log(|z − z′|) + α2K0(|z − z′|/α) for |z − z′| ≥ a , (8.52)

where the constant C is chosen so the velocity is continuous at |z − z′| = a. The
interior of this solution is also a uniformly rotating vortex patch. These special
potential-vortex solutions illustrate the “screening” in the vortex interaction dy-
namics for the 2dCH equation introduced by the Helmholtz operator (1 − α2∆),
which modifies the momentum density of the 2dCH flow relative to the standard
incompressible Euler equations in the plane. As we have seen, the corresponding
screening length α is an additional parameter in the model.
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Quasigeostrophic analogue of CH in two dimensions. We extend the nondi-
mensional QG action principle in equation (8.8) for QG dynamics in a periodic
two-dimensional domain to include CH α2 terms, as follows,

Sred =
∫

dt l =
∫

dt

∫
dx1dx2

[ ε

2
Dv · (1 −F∆−1 − α2∆)v + Dv · R − ψ(D − 1)

]
.

(8.53)

The corresponding Euler–Poincaré equation is to be compared to the QG motion
equation (8.10). We find,

ε
∂

∂t
(1 −F∆−1 − α2∆)v − v × curl

(
ε(1 −F∆−1 − α2∆)v + R

)
+∇

(
ψ +

ε

2
v · (1 −F∆−1 − α2∆)v

)
= 0 . (8.54)

The curl of this equation yields

ε
∂q

∂t
+ v · ∇(εq + f) = 0 , (8.55)

where the potential vorticity q is now given by

q = ẑ · curl (1 −F∆−1 − α2∆)v , (8.56)

and we choose

f ≡ ẑ · curlR = 1 + εβx2 . (8.57)

The constraint D = 1 implies ∇·v = 0 as usual and when v = ẑ×∇ψ is substituted,
the equation for q = ∆(1 − α2∆)ψ −Fψ yields

∂

∂t
(∆(1 − α2∆)ψ −Fψ) + [ψ, ∆(1 − α2∆)ψ] + β

∂ψ

∂x1
= 0 . (8.58)

Here [a, b] ≡ ∂(a, b)/∂(x1, x2) = J(a, b) is the Jacobi bracket (Jacobian) for functions
a and b defined on the two dimensional domain. Steady solutions of the QG-CH
equation (8.55) satisfy

J(qe + βx2, ψe) = 0, for qe = ∆(1 − α2∆)ψe −Fψe . (8.59)

The dispersion relation for plane-wave solutions of equation (8.58) with frequency
ω and wavenumber k is

ω(k) =
−βk1

F + |k|2(1 + α2|k|2) . (8.60)

Such plane-wave solutions are analogous to Rossby waves in QG. As with QG Rossby
waves, these plane-wave solutions are nonlinear solutions of equation (8.58) in a two
dimensional periodic domain. If we choose F = O(1) and α2 = o(1), then the effect
of the α2 term in this dispersion relation is to significantly reduce the oscillation
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frequency and propagation speeds of those waves at wave numbers greater than
about α−1. Thus, such short waves are suppressed, and the emerging dynamics of
this modified QG theory will tend to possess significant activity only at length scales
larger than α. Apparently the dispersion relation for the dynamics at these larger
length scales will faithfully approximate the corresponding QG dynamics at these
scales. This scenario is, of course, consistent with our earlier discussion of the wave
number dynamics of the CH solutions in three dimensions.

Appendix

Left Representation and Right Invariant Lagrangian. There is a version of
this theorem for right invariant Lagrangians, but with the representation of G on V
still on the left. The proof is, of course, identical so we shall only state this theorem.
The set–up is the following:

• There is a left representation of Lie group G on the vector space V and G acts
in the natural way on the right on TG × V ∗: (vg, a)h = (vgh, h−1a).

• Assume that the function L : TG × V ∗ → R is right G–invariant.

• In particular, if a0 ∈ V ∗, define the Lagrangian La0 : TG → R by La0(vg) =
L(vg, a0). Then La0 is right invariant under the lift to TG of the right action
of Ga0 on G.

• Right G–invariance of L permits us to define l : g × V ∗ → R by

l(vgg
−1, ga0) = L(vg, a0).

Conversely, this relation defines for any l : g × V ∗ → R a right G–invariant
function L : TG × V ∗ → R.

• For a curve g(t) ∈ G, let ξ(t) := ġ(t)g(t)−1 and define the curve a(t) as
the unique solution of the linear differential equation with time dependent
coefficients ȧ(t) = ξ(t)a(t) with initial condition a(0) = a0. The solution can
be equivalently written as a(t) = g(t)a0.

Theorem 8.2 The following are equivalent:

i Hamilton’s variational principle

δ

∫ t2

t1

La0(g(t), ġ(t))dt = 0 (8.61)

holds, for variations δg(t) of g(t) vanishing at the endpoints.

ii g(t) satisfies the Euler–Lagrange equations for La0 on G.
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iii The constrained variational principle

δ

∫ t2

t1

l(ξ(t), a(t))dt = 0 (8.62)

holds on g × V ∗, using variations of the form

δξ = η̇ − [ξ, η], δa = ηa, (8.63)

where η(t) ∈ g vanishes at the endpoints.

iv The Euler–Poincaré equations hold on g × V ∗

d

dt

δl

δξ
= − ad∗

ξ

δl

δξ
−

(
δl

δa

)
� a. (8.64)

Right Representation and Left Invariant Lagrangian. The set up is as fol-
lows:

• There is a right representation of Lie group G on the vector space V and G
acts in the natural way on the left on TG × V ∗: h(vg, a) = (hvg, ah−1).

• Assume that the function L : TG × V ∗ → R is left G–invariant.

• In particular, if a0 ∈ V ∗, define the Lagrangian La0 : TG → R by La0(vg) =
L(vg, a0). Then La0 is left invariant under the lift to TG of the left action of
Ga0 on G.

• Left G–invariance of L permits us to define l : g × V ∗ → R by

l(g−1vg, a0g) = L(vg, a0).

Conversely, this relation defines for any l : g × V ∗ → R a left G–invariant
function L : TG × V ∗ → R.

• For a curve g(t) ∈ G, let ξ(t) := g(t)−1ġ(t) and define the curve a(t) as
the unique solution of the linear differential equation with time dependent
coefficients ȧ(t) = a(t)ξ(t) with initial condition a(0) = a0. The solution can
be equivalently written as a(t) = a0g(t).

Theorem 8.3 The following are equivalent:

i Hamilton’s variational principle

δ

∫ t2

t1

La0(g(t), ġ(t))dt = 0 (8.65)

holds, for variations δg(t) of g(t) vanishing at the endpoints.

ii g(t) satisfies the Euler–Lagrange equations for La0 on G.
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iii The constrained variational principle

δ

∫ t2

t1

l(ξ(t), a(t))dt = 0 (8.66)

holds on g × V ∗, using variations of the form

δξ = η̇ + [ξ, η], δa = aη, (8.67)

where η(t) ∈ g vanishes at the endpoints.

iv The Euler–Poincaré equations hold on g × V ∗

d

dt

δl

δξ
= ad∗

ξ

δl

δξ
− δl

δa
� a. (8.68)
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