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Abstract

In this paper we analyze the stability of relative equilibria of non-
holonomic systems (that is, mechanical systems with nonintegrable
constraints such as rolling constraints). In the absence of external
dissipation, such systems conserve energy, but nonetheless can exhibit
both neutrally stable and asymptotically stable, as well as linearly un-
stable relative equilibria. To carry out the stability analysis, we use
a generalization of the energy-momentum method combined with the
Lyapunov-Malkin theorem and the center manifold theorem. While
this approach is consistent with the energy-momentum method for
holonomic systems, it extends it in substantial ways. The theory is
illustrated with several examples, including the the rolling disk, the
roller racer, and the rattleback top.

1 Introduction

The main goal of this paper is to analyze the stability of relative equilib-
ria for nonholonomic mechanical systems with symmetry using an energy-
momentum analysis for nonholonomic systems that is analogous to that for
holonomic systems given in Simo, Lewis, and Marsden [1991]. The theory of
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the motion of nonholonomic systems, which are mechanical systems subject
to nonintegrable constraints, typified by rolling constraints, is remarkably
rich. We will follow the spirit of the paper by Bloch, Krishnaprasad, Mars-
den and Murray [1996], hereafter referred to as [BKMM]. We will illustrate
our energy-momentum stability analysis with a low-dimensional model ex-
ample, and then with several mechanical examples of interest including the
falling disk, the roller racer, and the rattleback top.

As discussed in [BKMM] (and elsewhere), symmetries do not always lead
to conservation laws as in the classical Noether theorem, but rather to an
interesting momentum equation. This is one of the manifestations of the
difference between the Euler-Lagrange equations for holonomic mechanical
systems and the Lagrange-d’Alembert equations for nonholonomic systems,
which are not variational in nature. Another behavior which does not occur
in unconstrained Hamiltonian and Lagrangian systems is that even in the
absence of external forces and dissipation, nonholonomic systems may (but
need not) possess asymptotically stable relative equilibria. This phenomenon
was already known in the last century; cf. Walker [1896].

The momentum equation has the structure of a parallel transport equa-
tion for the momentum corrected by additional terms. This parallel trans-
port occurs in a certain vector bundle over shape space. In some instances
such as the Routh problem of a sphere rolling inside a surface of revolution
(see Zenkov [1995]) this equation is pure transport, and in fact is integrable
(the curvature of the transporting connection is zero). This leads to nonex-
plicit conservation laws.

In other important instances, the momentum equation is partially inte-
grable in a sense that we shall make precise. Our goal is to make use of,
as far as possible, the energy momentum approach to stability for Hamilto-
nian systems. This method goes back to fundamental work of Routh (and
many others in this era), and in more modern works, that of Arnold [1966]
and Smale [1970], and Simo, Lewis and Marsden [1991] (see for example,
Marsden [1992] for an exposition and additional references). Because of the
nature of the momentum equation, the analysis we present is rather dif-
ferent in several important respects. In particular, our energy-momentum
analysis varies according to the structure of the momentum equation and,
correspondingly, we divide our analysis into several parts.

There is a large literature on nonholonomic systems and here we shall cite
only a small part of it. For a more comprehensive listing, see Neimark and
Fufaev [1972] and [BKMM]. A key work on stability from our point of view
may be found in Karapetyan [1980, 1983], which we shall specifically refer to
in the course of this paper. Other work on symmetry and conservation laws
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my be found in Arnold [1988] and Bloch and Crouch [1992, 1995] for exam-
ple. For the relationship between nonholonomic systems and Hamiltonian
structures, see Bates and Sniatycki [1993] and Koon and Marsden [1997a, b,
c] and references therein.

A brief of outline of this paper is as follows: In the remainder of this
section we review the theory of nonholonomic systems and some key exam-
ples. In section 2 we discuss the role of symmetries in nonholonomic systems
and the classical energy-momentum method for holonomic systems. In sec-
tions 3 and 4 we discuss the extension of the energy-momentum method to
nonholonomic systems. As discussed above, we divide up the anaylsis into
different parts according to the structure of the momentum equation. We
list the underlying assumptions that we are making at the beginning of the
relevant section. We note also that not all nonholonomic systems fall into
the categories discussed here. We indicate in the main body of the paper
precisely which systems are covered by our analysis.

1.1 The Lagrange-d’Alembert Principle

We now describe briefly the equations of motion for a nonholonomic system,
following the notation of [BKMM].

We confine our attention to nonholonomic constraints that are homoge-
neous in the velocity. Accordingly, we consider a configuration space Q and
a distribution D that describes these constraints. Recall that a distribution
D is a collection of linear subspaces of the tangent spaces of Q; we denote
these spaces by Dq ⊂ TqQ, one for each q ∈ Q. A curve q(t) ∈ Q will be said
to satisfy the constraints if q̇(t) ∈ Dq(t) for all t. This distribution will, in
general, be nonintegrable; i.e., the constraints are, in general, nonholonomic.

Consider a Lagrangian L : TQ→ R. In coordinates qi, i = 1, . . . , n, on Q
with induced coordinates (qi, q̇i) for the tangent bundle, we write L(qi, q̇i).
The equations of motion are given by the following Lagrange-d’Alembert
principle.

Definition 1.1 The Lagrange-d’Alembert equations of motion for the
system are those determined by

δ

∫ b

a

L(qi, q̇i) dt = 0,

where we choose variations δq(t) of the curve q(t) that satisfy δq(a) =
δq(b) = 0 and δq(t) ∈ Dq(t) for each t where a ≤ t ≤ b.
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This principle is supplemented by the condition that the curve itself satisfies
the constraints. Note that we take the variation before imposing the con-
straints; that is, we do not impose the constraints on the family of curves
defining the variation. This is well known to be important to obtain the
correct mechanical equations (see [BKMM] for a discussion and references).

The usual arguments in the calculus of variations show that the Lagran-
ge-d’Alembert principle is equivalent to the equations

−δL =

(

d

dt

∂L

∂q̇i
−
∂L

∂qi

)

δqi = 0 (1.1)

for all variations δq such that δq ∈ Dq at each point of the underlying
curve q(t). One can of course equivalently write these equations in terms of
Lagrange multipliers.

Let {ωa, a = 1, . . . , p} be a set of p independent one forms whose vanish-
ing describes the constraints. Choose a local coordinate chart q = (r, s) ∈
R
n−p × R

p, which we write as qi = (rα, sa), where 1 ≤ α ≤ n − p and
1 ≤ a ≤ p such that

ωa(q) = dsa +Aaα(r, s)drα

for all a = 1, . . . , p. In these coordinates, the constraints are described by
vectors vi = (vα, va) satisfying va + Aaαv

α = 0 (a sum on repeated indices
over their range is understood).

The equations of motion for the system are given by (1.1) where we
choose variations δq(t) that satisfy the constraints, i.e., ωa(q) · δq = 0, or
equivalently, δsa + Aaαδr

α = 0, where δqi = (δrα, δsa). Substituting varia-
tions of this type, with δrα arbitrary, into (1.1) gives

(

d

dt

∂L

∂ṙα
−
∂L

∂rα

)

= Aaα

(

d

dt

∂L

∂ṡa
−
∂L

∂sa

)

(1.2)

for all α = 1, . . . , n − p. Equation (1.2) combined with the constraint equa-
tions

ṡa = −Aaαṙ
α (1.3)

for all a = 1, . . . , p gives the complete equations of motion of the system.
A useful way of reformulating equations (1.2) is to define a “constrained”

Lagrangian by substituting the constraints (1.3) into the Lagrangian:

Lc(r
α, sa, ṙα) := L(rα, sa, ṙα,−Aaα(r, s)ṙ

α).

The equations of motion can be written in terms of the constrained Lagran-
gian in the following way, as a direct coordinate calculation shows:

d

dt

∂Lc
∂ṙα

−
∂Lc
∂rα

+Aaα
∂Lc
∂sa

= −
∂L

∂ṡb
Bb
αβ ṙ

β,
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where Bb
αβ is defined by

Bb
αβ =

(

∂Abα
∂rβ

−
∂Abβ
∂rα

+Aaα
∂Abβ
∂sa

−Aaβ
∂Abα
∂sa

)

.

Geometrically, the Aaα are the coordinate expressions for the Ehresmann
connection on the tangent bundle defined by the constraints, while the Bb

αβ

are the corresponding curvature terms (see [BKMM]).1

1.2 Symmetries

As we shall see shortly, symmetries play an important role in our analysis.
We begin here with just a few preliminary notions. Suppose we are given
a nonholonomic system with the Lagrangian L : TQ → R, and a (noninte-
grable) constraint distribution D. We can then look for a group G that acts
on the configuration space Q. It induces an action on the tangent space TQ
and so it makes sense to ask that the Lagrangian L be invariant. Also, one
can ask that the distribution be invariant in the sense that the action by
a group element g ∈ G maps the distribution Dq at the point q ∈ Q to the
distribution Dgq at the point gq. If these properties hold, we say that G is
a symmetry group.

In many examples, the symmetry group will be evident. For example, for
systems rolling on the plane, the group of Euclidean motions of the plane,
SE(2) will be appropriate.

1.3 The Rolling Disk

A classical example of a nonholonomic system is a disk rolling without sliding
on the xy-plane, as in Figure 1.1.

As the figure indicates, we denote the coordinates of contact of the disk
in the xy-plane by (x, y) and let θ, φ, and ψ denote the angle between the
plane of the disk and the vertical axis, the “heading angle” of the disk, and
“self-rotation” angle of the disk respectively. In [BKMM], the vertical rolling
disk was considered, but we consider a disk that can “fall”.

A classical reference for the rolling disk is Vierkandt [1892] who showed
that on the reduced space D/SE(2)—the constrained velocity phase space

1Strictly speaking, an Ehresmann connection requires one to have a bundle for which

the distribution is regarded as the horizontal space but in fact, the bundle structure is

not required if one regards the connection one form to be not vertical valued, but rather

TQ/D-valued.
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Figure 1.1: The geometry for the rolling disk.

modulo the action of the Euclidean group SE(2)—most orbits of the system
are periodic. Modern references that treat this example are Hermans [1995]
and O’Reilly [1996].

For the moment, we just give the Lagrangian and constraints, and return
to this example later on. As we will eventually show, this is a system which
exhibits stability but not asymptotic stability. Denote the mass, the radius,
and the moments of inertia of the disk by m, R, A, B respectively. The
Lagrangian is given by the kinetic minus potential energies:

L =
m

2

[

(ξ −R(φ̇ sin θ + ψ̇))2 + η2 sin2 θ + (η cos θ +Rθ̇)2
]

+
1

2

[

A(θ̇2 + φ̇2 cos2 θ) +B(φ̇ sin θ + ψ̇)2
]

−mgR cos θ,

where ξ = ẋ cosφ + ẏ sinφ + Rψ̇ and η = −ẋ sinφ + ẏ cosφ, while the
constraints are given by

ẋ = −ψ̇R cosφ,

ẏ = −ψ̇R sinφ.

Note that the constraints may also be written as ξ = 0, η = 0.

1.4 A Mathematical Example

We now consider an instructive, but (so far as we know) nonphysical exam-
ple. Unlike the rolling disk, it has asymptotically stable relative equilibria,
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and is a simple example that exhibits the richness of stability in nonholo-
nomic systems. Our general theorems presented later are well illustrated by
this example and the reader may find it helpful to return to it again later.

Consider a Lagrangian on TR
3 of the form

L(r1, r2, s, ṙ1, ṙ2, ṡ) =
1

2

{

(1 − [a(r1)]2)(ṙ1)2 − 2a(r1)b(r1)ṙ1ṙ2

+ (1 − [b(r1)]2)(ṙ2)2 + ṡ2
}

− V (r1), (1.4)

where a, b, and V are given real valued functions of a single variable. We
consider the nonholonomic constraint

ṡ = a(r1)ṙ1 + b(r1)ṙ2. (1.5)

Using the definitions, straightforward computations show that B12 =
∂r1b = −B21. The constrained Lagrangian is Lc = 1

2

{

(ṙ1)2 + (ṙ2)2)
}

−V (r1)
and the equations of motion, namely, (d/dt)(∂ṙαLc) − ∂rαLc = −ṡBαβ ṙ

β

become
d

dt

∂Lc
∂ṙ1

−
∂Lc
∂r1

= −ṡB12ṙ
2,

d

dt

∂Lc
∂ṙ2

= ṡB12ṙ
1.

The Lagrangian is independent of r2 and correspondingly, we introduce
the nonholonomic momentum defined by

p =
∂Lc
∂ṙ2

.

We shall review the nonholonomic momentum later on in connection with
general symmetries, but for now just regard this as a definition. Taking into
account the constraint equation and the equations of motion above, we can
rewrite the equations of motion in the form

r̈1 = −
∂V

∂r1
−

∂b

∂r1
(

a(r1)ṙ1 + b(r1)p
)

p, (1.6)

ṗ =
∂b

∂r1
(

a(r1)ṙ1 + b(r1)p
)

ṙ1. (1.7)

Observe that the momentum equation does not, in any obvious way, imply
a conservation law.

A relative equilibrium is a point (r0, p0) that is an equilibrium modulo
the variable r2; thus, from the equations (1.6) and (1.7), we require ṙ1 = 0
and

∂V

∂r1
(r10) +

∂b

∂r1
b(r10)p

2
0 = 0.

We shall see that relative equilibria are Lyapunov stable and in addition
asymptotically stable in certain directions if the following two stability con-
ditions are satisfied:
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(i) the energy function E = 1
2(ṙ1)2 + 1

2p
2 + V , which has a critical point

at (r0, p0), has a positive definite second derivative at this point.

(ii) the derivative of E along the flow of the auxilliary system

r̈1 = −
∂V

∂r1
−

∂b

∂r1
(

a(r1)ṙ1 + b(r1)p
)

p, ṗ =
∂b

∂r1
b(r1)pṙ1

is strictly negative.

1.5 The Roller Racer

We now consider a tricycle-like mechanical system called the roller racer,
or the Tennessee racer, that is capable of locomotion by oscillating the
front handlebars. This toy was studied using the methods of [BKMM] in
Tsakiris [1995]. The methods here may be useful for modeling and studying
the stability of other systems, such as aircraft landing gears and train wheels.

The roller racer is modeled as a system of two planar coupled rigid bodies
(the main body and the second body) with a pair of wheels attached on each
of the bodies at their centers of mass. We assume that the mass and the
linear momentum of the second body are negligible, but that the moment of
inertia about the vertical axis is not. See Figure 1.2.

θ

x

z

y

(x, y)
φ

d
1 d

2

Figure 1.2: The geometry for the roller racer.

Let (x, y) be the location of the center of mass of the first body and
denote the angle between the x-axis of the inertial reference frame and the
line passing through the center of mass of the first body by θ, the angle
between the bodies by φ, and the distances from the centers of mass to the
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joint by d1 and d2. The mass of body 1 is denoted m and the inertias of the
two bodies are written as I1 and I2.

The Lagrangian and the constraints are

L =
1

2
m(ẋ2 + ẏ2) +

1

2
I1θ̇

2 +
1

2
I2(θ̇ + φ̇)2

and

ẋ = cos θ

(

d1 cosφ+ d2

sinφ
θ̇ +

d2

sinφ
φ̇

)

,

ẏ = sin θ

(

d1 cosφ+ d2

sinφ
θ̇ +

d2

sinφ
φ̇

)

.

The configuration space is SE(2) × SO(2). The Lagrangian and the con-
straints are invariant under the left action of SE(2) on the first factor of the
configuration space.

We shall see later that the roller racer has a two-dimensional manifold
of equilibria and that under a suitable stability condition some of these
equilibria are stable modulo SE(2) and in addition asymptotically stable
with respect to φ̇.

1.6 The Rattleback

A rattleback is a convex nonsymmetric rigid body rolling without sliding on
a horizontal plane. It is known for its ability to spin in one direction and to
resist spinning in the opposite direction for some parameter values, and for
other values, to exhibit multiple reversals. See Figure 1.3.

Figure 1.3: The rattleback.

Basic references on the rattleback are Walker [1896], Karapetyan [1980,
1981], Markeev [1983, 1992], Pascal [1983, 1986], and Bondi [1986]. We
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adopt the ideal model (with no energy dissipation and no sliding) of these
references and within that context, no approximations are made. In par-
ticular, the shape need not be ellipsoidal. Walker did some initial stability
and instability investigations by computing the spectrum while Bondi ex-
tended this analysis and also used what we now recognize as the momentum
equation. (See Burdick, Goodwine and Ostrowski [1994]). Karapetyan car-
ried out a stability analysis of the relative equilibria, while Markeev’s and
Pascal’s main contributions were to the study of spin reversals using small
parameter and averaging techniques.

Introduce the Euler angles θ, φ, ψ using the principal axis body frame
relative to an inertial reference frame. These angles together with two hori-
zontal coordinates (x, y) of the center of mass are coordinates in the config-
uration space SO(3) × R

2 of the rattleback.
The Lagrangian of the rattleback is computed to be

L =
1

2

[

A cos2 ψ +B sin2 ψ +m(γ1 cos θ − ζ sin θ)2
]

θ̇2

+
1

2

[

(A sin2 ψ +B cos2 ψ) sin2 θ + C cos2 θ
]

φ̇2

+
1

2

(

C +mγ2
2 sin2 θ

)

ψ̇2 +
1

2
m
(

ẋ2 + ẏ2
)

+m(γ1 cos θ − ζ sin θ)γ2 sin θ θ̇ψ̇ + (A−B) sin θ sinψ cosψ θ̇φ̇

+ C cos θ φ̇ψ̇ +mg(γ1 sin θ + ζ cos θ),

where

A,B,C = the principal moments of inertia of the body,

m = the total mass of the body,

(ξ, η, ζ) = coordinates of the point of contact relative to the body frame,

γ1 = ξ sinψ + η cosψ,

γ2 = ξ cosψ − η sinψ.

The shape of the body is encoded by the functions ξ, η and ζ. The constraints
are

ẋ = α1θ̇ + α2ψ̇ + α3φ̇, ẏ = β1θ̇ + β2ψ̇ + β3φ̇,
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where

α1 = −(γ1 sin θ + ζ cos θ) sinφ,

α2 = γ2 cos θ sinφ+ γ1 cosφ,

α3 = γ2 sinφ+ (γ1 cos θ − ζ sin θ) cosφ,

βk = −
∂αk
∂φ

, k = 1, 2, 3.

The Lagrangian and the constraints are SE(2)-invariant, where the ac-
tion of an element (a, b, α) ∈ SE(2) is given by

(x, y, φ) 7→ (x cosα− y sinα+ a, x sinα+ y cosα+ b, φ+ α).

Corresponding to this invariance, ξ, η, and ζ are functions of the variables
θ and ψ only.

2 The Equations of Motion of Nonholonomic Sys-

tems with Symmetries

In this section we briefly discuss the mechanics of nonholonomic systems
with symmetries—this of course is key to our energy momentum approach
to stability. We make use of the approach introduced in [BKMM]. The key
equations are (2.3) and (2.4) in a body frame, given below. It is the form of
these equations that determines the stability and dynamics of the systems
analyzed here. The knowledgable reader may skip directly to these equations
at this point—the following text explains their derivation.

2.1 The Geometry of Nonholonomic Systems with Symme-

try

Consider a nonholonomic system with the Lagrangian L : TQ → R, the
(nonintegrable) constraint distribution D, and the symmetry group G in the
sense explained previously.

Orbits and Shape Space. The group orbit through a point q, an (im-
mersed) submanifold, is denoted

Orb(q) := {gq | g ∈ G}.

Let g denote the Lie algebra of the Lie group G. For an element ξ ∈ g, we
write ξQ, a vector field on Q for the corresponding infinitesimal generator.
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The tangent space to the group orbit through a point q is given by the set
of infinitesimal generators at that point:

Tq(Orb(q)) = {ξQ(q) | ξ ∈ g}.

Throughout this paper, we make the assumption that the action of G
on Q is free and proper. The quotient space M = Q/G, whose points are
the group orbits, is called shape space . Under these circumstances, shape
space is a smooth manifold and the projection map π : Q→ Q/G is a smooth
surjective map with a surjective derivative Tqπ at each point. The kernel of
the linear map Tqπ is the set of infinitesimal generators of the group action
at the point q, i.e.,

ker Tqπ = {ξQ(q) | ξ ∈ g} ,

so these are also the tangent spaces to the group orbits.

Reduced Dynamics. Assuming that the Lagrangian and the constraint
distribution are G-invariant, we can form the reduced velocity phase

space TQ/G and the reduced constraint space D/G. The Lagrangian L
induces well defined functions, the reduced Lagrangian

l : TQ/G→ R

satisfying L = l ◦ πTQ where πTQ : TQ → TQ/G is the projection, and the
constrained reduced Lagrangian

lc : D/G→ R,

which satisfies L|D = lc◦πD where πD : D → D/G is the projection. By gen-
eral considerations, the Lagrange-d’Alembert equations induce well defined
reduced Lagrange-d’Alembert equations on D/G. That is, the vector
field on the manifold D determined by the Lagrange-d’Alembert equations
(including the constraints) is G-invariant, and so defines a reduced vector
field on the quotient manifold D/G.

The nonholonomic momentum map. Consider the vector bundle S
over Q with fibers

Sq = Dq ∩ Tq(Orb(q)).

Define, for each q ∈ Q, the vector subspace g
q to be the set of Lie algebra

elements in g whose infinitesimal generators evaluated at q lie in Sq:

g
q = {ξ ∈ g | ξQ(q) ∈ Sq}.
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The corresponding bundle over Q whose fiber at the point q is given by g
q,

is denoted g
D. Consider a section of the vector bundle S over Q; i.e., a

mapping that takes q to an element of Sq = Dq ∩ Tq(Orb(q)). Assuming
that the action is free, a section of S can be uniquely represented as ξqQ and

defines a section ξq of the bundle g
D.

Definition 2.1 The nonholonomic momentum map Jnhc is the bundle
map taking TQ to the bundle

(

g
D
)∗

whose fiber over the point q is the dual
of the vector space g

q that is defined by

〈Jnhc(vq), ξ〉 =
∂L

∂q̇i
(ξQ)i,

where ξ ∈ g
q. Intrinsically, this reads

〈Jnhc(vq), ξ〉 = 〈FL(vq), ξQ〉 ,

where FL is the fiber derivative of L and where ξ ∈ g
q. For notational con-

venience, especially when the variable vq is suppressed, we will often write
the left-hand side of this equation as Jnhc(ξ).

Notice that the nonholonomic momentum map may be viewed as giving just
some of the components of the ordinary momentum map, namely along those
symmetry directions that are consistent with the constraints.

For a nonholonomic system, the momentum map need not be a constant
of motion. The following theorem states instead that the momentum map
satisfies a certain equation.

Theorem 2.2 Assume that the Lagrangian and the constraint distribution
are G-invariant, and that ξq is a section of the bundle g

D. Then any solution
of the Lagrange-d’Alembert equations for a nonholonomic system must sat-
isfy, in addition to the given kinematic constraints, the momentum equa-

tion :
d

dt

(

Jnhc(ξq(t))
)

=
∂L

∂q̇i

[

d

dt
(ξq(t))

]i

Q

.

When the momentum map is paired with a section in this way, we will just
refer to it as the momentum.

The momentum in body representation. Let a local trivialization be
chosen on the principle bundle π : Q → Q/G, with a local representation
having components denoted (r, g). Let r, an element of shape space Q/G,
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have coordinates denoted rα, and let g be group variables for the fiber, G.
In such a representation, the action of G is the left action of G on the second
factor.

Put
l(r, ṙ, ξ) = L(r, g, ṙ, ġ).

Choose a q-dependent basis ea(q) for the Lie algebra such that the first m
elements span the subspace g

q in the following way. First, one chooses, for
each r, such a basis at the identity element g = Id, say

e1(r), e2(r), . . . , em(r), em+1(r), . . . , ek(r).

For example, this could be a basis whose generators are orthonormal in the
kinetic energy metric. Now define the body fixed basis by

ea(r, g) = Adg ea(r),

then the first m elements will indeed span the subspace g
q since the dis-

tribution is invariant. Define the components of the momentum in body
representation to be

pb :=

〈

∂l

∂ξ
, eb(r)

〉

.

Thus, we have
Jnhc(r, g, ṙ, ġ) = Ad∗

g−1p(r, ṙ, ξ).

This formula explains why p and Jnhc are the body momentum and the
spatial momentum respectively.

The Nonholonomic Connection. Assume that the Lagrangian has the
form kinetic energy minus potential energy, and that the constraints and
the orbit directions span the entire tangent space to the configuration space
([BKMM] call this the “dimension assumption”):

Dq + Tq(Orb(q)) = TqQ. (2.1)

In this case, the momentum equation can be used to augment the constraints
and provide a connection on Q→ Q/G.

Definition 2.3 Under the dimension assumption in equation (2.1), and the
assumption that the Lagrangian is of the form kinetic minus potential ener-
gies, the nonholonomic connection A is the connection on the principal
bundle Q → Q/G whose horizontal space at the point q ∈ Q is given by the
orthogonal complement to the space Sq within the space Dq.
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Let I(q) : g
D →

(

g
D
)∗

be the locked inertia tensor relative to g
D, defined

by
〈I(q)ξ, η〉 = 〈〈ξQ, ηQ〉〉, ξ, η ∈ g

q,

where 〈〈· , ·〉〉 is the kinetic energy metric. Define a map Asym
q : TqQ→ Sq =

Dq ∩ Tq(Orb(q)) given by

Asym
q (vq) = (I−1Jnhc(vq))Q.

This map is equivariant and is a projection onto Sq. Choose Uq ⊂ Tq(Orb(q))
such that Tq(Orb(q)) = Sq ⊕ Uq. Let Akin

q : TqQ → Uq be a Uq valued form
that projects Uq onto itself and maps Dq to zero; for example, it can be given
by orthogonal projection relative to the kinetic energy metric (this will be
our default choice).

Proposition 2.4 The nonholonomic connection regarded as an Ehresmann
connection is given by

A = Akin +Asym. (2.2)

When the connection is regarded as a principal connection (i.e., takes values
in the Lie algebra rather than the vertical space) we will use the symbol A.

Given a velocity vector q̇ that satisfies the constraints, we orthogonally
decompose it into a piece in Sq and an orthogonal piece denoted ṙh. We
regard ṙh as the horizontal lift of a velocity vector ṙ on the shape space;
recall that in a local trivialization, the horizontal lift to the point (r, g) is
given by

ṙh = (ṙ,−Alocṙ) = (ṙα,−Aa
αṙ

α),

where Aa
α are the components of the nonholonomic connection which is a

principal connection in a local trivialization.
We will denote the decomposition of q̇ by

q̇ = ΩQ(q) + ṙh,

so that for each point q, Ω is an element of the Lie algebra and represents
the spatial angular velocity of the locked system. In a local trivialization,
we can write, at a point (r, g),

Ω = Adg(Ωloc),

so that Ωloc represents the body angular velocity. Thus,

Ωloc = Alocṙ + ξ
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and, at each point q, the constraints are that Ω belongs to g
q, i.e.,

Ωloc ∈ span{e1(r), e2(r), . . . , em(r)}.

The vector ṙh need not be orthogonal to the whole orbit, just to the piece
Sq. Even if q̇ does not satisfy the constraints, we can decompose it into three
parts and write

q̇ = ΩQ(q) + ṙh = Ωnh
Q (q) + Ω⊥

Q(q) + ṙh,

where Ωnh
Q and Ω⊥

Q are orthogonal and where Ωnh
Q (q) ∈ Sq. The relation

Ωloc = Alocṙ+ξ is valid even if the constraints do not hold; also note that this
decomposition of Ω corresponds to the decomposition of the nonholonomic
connection given by A = Akin +Asym that was given in equation (2.2).

To avoid confusion, we will make the following index and summation
conventions

1. The first batch of indices range from 1 to m corresponding to the sym-
metry directions along constraint space. These indices will be denoted
a, b, c, d, . . . and a summation from 1 to m will be understood.

2. The second batch of indices range from m + 1 to k corresponding to
the symmetry directions not aligned with the constraints. Indices for
this range or for the whole range 1 to k will be denoted by a′, b′, c′, . . .
and the summations will be given explicitly.

3. The indices α, β, . . . on the shape variables r range from 1 to σ. Thus,
σ is the dimension of the shape space Q/G and so σ = n − k. The
summation convention for these indices will be understood.

According to [BKMM], the equations of motion are given by the next
theorem.

Theorem 2.5 The following reduced nonholonomic Lagrange-d’Alem-

bert equations hold for each 1 ≤ α ≤ σ and 1 ≤ b ≤ m:

d

dt

∂lc
∂ṙα

−
∂lc
∂rα

= −
∂Icd

∂rα
pcpd −Dc

bαI
bdpcpd − Bcαβpcṙ

β

−DβαbI
bcpcṙ

β −Kαβγ ṙ
β ṙγ ,

d

dt
pb = CcabI

adpcpd + Dc
bαpcṙ

α + Dαβbṙ
αṙβ.

Here lc(r
α, ṙα, pa) is the constrained Lagrangian; rα, 1 ≤ α ≤ σ, are coordi-

nates in the shape space; pa, 1 ≤ a ≤ m, are components of the momentum
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map in the body representation, pa = 〈∂lc/∂Ωloc, ea(r)〉; I
ad are the compo-

nents of the inverse locked inertia tensor; Baαβ are the local coordinates of
the curvature B of the nonholonomic connection A; and the coefficients Dc

bα,
Dαβb, Kαβγ are given by the formulae

Dc
bα =

k
∑

a′=1

−Cca′bA
a′

α + γcbα +

k
∑

a′=m+1

λa′αC
a′

abI
ac,

Dαβb =

k
∑

a′=m+1

λa′α

(

γa
′

bβ −

k
∑

b′=1

Ca
′

b′bA
b′

β

)

,

Kαβγ =
k
∑

a′=1

λa′γB
a′

αβ,

where

λa′α = la′α −

k
∑

b′=1

la′b′A
b′

α :=
∂l

∂ξa′∂ṙα
−

k
∑

b′=1

∂l

∂ξa′∂ξb′
Ab′

α

for a′ = m+1, . . . , k. Here Cb
′

a′c′ are the structure constants of the Lie algebra
defined by [ea′ , ec′ ] = Cb

′

a′c′eb′ , a
′, b′, c′ = 1, . . . , k; and the coefficients γc

′

bα are
defined by

∂eb
∂rα

=

k
∑

c′=1

γc
′

bαec′ .

A relative equilibrium is an equilibrium of the reduced equations; that
is, it is a solution that is given by a one parameter group orbit, just as in
the holonomic case (see, e.g., Marsden [1992] for a discussion).

The Constrained Routhian. This function is defined by analogy with
the usual Routhian by

R(rα, ṙα, pa) = lc(r
α, ṙα, Iabpb) − Iabpapb,

and in terms of it, the reduced equations of motion become

d

dt

∂R

∂ṙα
−
∂R

∂rα
= −Dc

bαI
bdpcpd − Bcαβpcṙ

β

−DβαbI
bcpcṙ

β −Kαβγ ṙ
β ṙγ , (2.3)

d

dt
pb = CcabI

adpcpd + Dc
bαpcṙ

α + Dαβbṙ
αṙβ. (2.4)
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The Reduced Constrained Energy. As in [BKMM], the kinetic energy
in the variables (rα, ṙα,Ωa,Ωa′) equals

1

2
gαβ ṙ

αṙβ +
1

2
IacΩ

aΩc

+

k
∑

a′=m+1

(

la′α − la′c′A
c′

α

)

Ωa′ ṙα +
1

2

k
∑

a′,c′=m+1

la′c′Ω
a′Ωc′ , (2.5)

where gαβ are coefficients of the kinetic energy metric induced on the mani-
fold Q/G. Substituting the relations Ωa = Iabpb and the constraint equations
Ωa′ = 0 in (2.5) and adding the potential energy, we define the function E
by

E =
1

2
gαβ ṙ

αṙβ + U(rα, pa), (2.6)

which represents the reduced constrained energy in the coordinates (r, ṙ, p),
where U(rα, pa) is the amended potential defined by

U(rα, pa) =
1

2
Iabpapb + V (rα), (2.7)

and V (rα) is the potential energy of the system.
Now, we show that the reduced constrained energy is conserved along

the solutions of (2.3), (2.4).

Theorem 2.6 The reduced constrained energy is a constant of motion.

Proof One way to prove this is to note that the reduced energy is a
constant of motion, because it equals the energy represented in coordinates
(r, ṙ, p, g) and because the energy is conserved, since the Lagrangian and
the constraints are time-invariant. Along the trajectories, the constrained
energy and the energy are the same. Therefore, the reduced constrained
energy is a constant of motion.

One may also prove this fact by a direct computation of the time deriva-
tive of the reduced constrained energy (2.6) along the vector field defined by
the equations of motion. �

Skew Symmetry Assumption. We assume that the tensor CcabI
ad is

skew-symmetric in c, d.

We remark firstly that this assumption implies that the dimension of the
family of the relative equilibria equals the number of components of the (non-
holonomic) momentum map. This is important for our energetic approach
to the analysis of stability.
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We note also that this assumption holds for most physical examples and
certainly the systems discussed in this paper. (Exceptions include systems
with no shape space such as the homogeneous sphere on the plane and certain
cases ‘of the ‘Suslov” problem of a nonhomogeneous rigid body subject to
a linear constraint in the angular velocities.) It is an intrinsic (coordinate
independent) condition, since CcabI

ad represents an intrinsic bilinear map of
(

g
D
)∗

×
(

g
D
)∗

to
(

g
D
)∗

.

Under this assumption, the terms quadratic in p in the momentum equa-
tion vanish, and the equations of motion become

d

dt

∂R

∂ṙα
−
∂R

∂rα
= −Dc

bαI
bdpcpd − Bcαβpcṙ

β

−DβαbI
bcpcṙ

β −Kαβγ ṙ
β ṙγ , (2.8)

d

dt
pb = Dc

bαpcṙ
α + Dαβbṙ

αṙβ. (2.9)

In the case when Ccab = 0 the matrix CcabI
ad vanishes, and the preceding

equations of motion are the same as those obtained by Karapetyan [1983].
Note that Ccab = 0 when the indices a, b, c range over an abelian part of the
symmetry group. This occurs for all examples discussed here.

Below, three principal cases will be considered:

1. Pure Transport Case In this case, terms quadratic in ṙ are not
present in the momentum equation, so it is in the form of a trans-
port equation—i.e. the momentum equation is an equation of parallel
transport and the equation itself defines the relevant connection.

Under certain integrability conditions (see below) the transport equa-
tion defines invariant surfaces, which allow us to use a type of energy-
momentum method for stability analysis in a similar fashion to the
manner in which the holonomic case uses the level surfaces defined by
the momentum map. The key difference is that in our case, the addi-
tional invariant surfaces do not arise from conservation of momentum.
In this case, one gets stable, but not asymptotically stable, relative
equilibria as we shall see in §3.1. Examples include the rolling disk, a
body of revolution rolling on a horizontal plane, and the Routh prob-
lem.

2. Integrable Transport Case In this case, terms quadratic in ṙ are
present in the momentum equation and thus it is not a pure trans-
port equation. However, in this case, we assume that the transport
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part is integrable. As we shall also see, in this case relative equilibria
may be asymptotically stable. We are able to find a generalization of
the energy-momentum method which gives conditions for asymptotic
stability (see §4.3). An example is the roller racer.

3. Nonintegrable Transport Case Again, the terms quadratic in ṙ
are present in the momentum equation and thus it is not a pure trans-
port equation. However, the transport part is not integrable. Again,
we are able to demonstrate asymptotic stability using Lyapunov-Malkin
theorem and to relate it to an energy-momentum type analysis under
certain eigenvalue hypotheses, as we will see in §4.5. An example is the
rattleback top, which we discuss in §4.7. Another example is a nonho-
mogeneous sphere with a center of mass lying off the planes spanned
by the principal axis body frame. See Markeev [1992].

In some examples, such as the nonhomogeneous (unbalanced) Ko-
valevskaya sphere rolling on the plane, these eigenvalue hypotheses
do not hold. We intend to investigate this case in a future publication.

As indicated above, the key difference between cases 1 and 2 is the ex-
istence of the nontranport terms in the momentum equation. These terms
cause the momentum to drift between the invariant manifolds that arise from
the integrable pure transport term. As a result, in case 2 relative equilibria
may be asymptotically stable. Similar qualitative behavior occurs in case 3
where even the transport part of the momentum equation does not define
invariant manifolds.

In the sections below where these different cases are discussed we will
make clear at the beginning of each section what the underlying hypotheses
on the systems are by listing the key hypotheses and labeling them by H1,
H2, and H3.

2.2 The Energy-Momentum Method for Holonomic Systems

As mentioned above, we use here an approach to stability which general-
izes the energy-momentum method for Hamiltonian systems. Of course the
energy-momentum method has a long and distinguished history going back
to Routh, Riemann, Poincaré, Lyapunov, Arnold, Smale and many others.
The main new feature provided in the more recent work of Simo, Lewis and
Marsden [1991] (see Marsden [1992] for an exposition) is to obtain the power-
ful block diagonalization structure of the second variation of the augmented
Hamiltonian as well as the normal form for the symplectic structure. This
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formulation also allowed for the proof of a converse of the energy-momentum
method in the context of dissipation induced instabilities due to Bloch, Kr-
ishnaprasad, Marsden and Ratiu [1994, 1996].

Recall that the key idea for analyzing the stability of relative equilibria in
the holonomic setting is to use the energy plus a function of other conserved
quantities such as the momentum as a Lyapunov function. In effect, one
is analyzing stability subject to the systems lying on a level surface of the
momentum.

In a body frame and in the special case of Lie-Poisson systems, the
momentum often can be written in terms of a Casimir, a function that
commutes with every function under the Poisson bracket, and the method
is sometimes called the energy-Casimir method.

While the energy is conserved, it does not provide sufficient information
on stability since its second variation will be only semidefinite at a stable
equilibrium in general. The algorithm for analyzing stability is thus as fol-
lows:

1. write the equations of motion in Hamiltonian form and identify the
critical point of interest,

2. identify other conserved quantities such as momentum,

3. choose a function HC such that the energy plus the function of other
conserved quantities has a critical point at the chosen equilibrium and

4. show that HC is definite at the given equilibrium. This proves nonlin-
ear stability in the sense of Lyapunov.

Of course in special circumstances one has to interpret stability modulo
the symmetry or a similar space in order to obtain stability. A good example
is the study of two-dimensional ABC flows, as in Chern and Marsden [1990].

In the nonholonomic case, while energy is conserved, momentum gen-
erally is not. As indicated in the discussion of the three principle cases
above, in some cases however the momentum equation is integrable, lead-
ing to invariant surfaces which make possible an energy-momentum analysis
similar to that of the Hamiltonian case. When the momentum equation is
not integrable, one can get asymptotic stability in certain directions and the
stability analysis is rather different from the Hamiltonian case. Nonetheless,
to show stability we will make use of the conserved energy and the dynamic
momentum equation.
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3 The Pure Transport Case

In this section we assume that

H1 Dαβb are skew-symmetric in α, β. Under this assumption, the momen-
tum equation can be written as the vanishing of the connection one
form defined by dpb −Dc

bαpcdr
α.

H2 The curvature of the preceding connection form is zero.

A nontrivial example of this case is that of Routh’s problem of a sphere
rolling in a surface of revolution. See Zenkov [1995].

Under the above two assumptions, the distribution defined by the mo-
mentum equation is integrable, and so we get invariant surfaces, which makes
further reduction possible. This enables us to use the energy-momentum
method in a way that is similar to the holonomic case, as we explained
above.

Note that if the number of shape variables is one, the above connec-
tion is integrable, because it may be treated as a system of linear ordinary
differential equations with coefficients depending on the shape variable r:

dpb
dr

= Dc
bpc.

As a result, we obtain an integrable nonholonomic system, because after
solving the momentum equation for pb and substituting the result in the
equation for the shape variable, the latter equation may be viewed as a
Lagrangian system with one degree of freedom, which is integrable.

3.1 The Nonholonomic Energy-Momentum Method

We now develop the energy-momentum method for the case in which the
momentum equation is pure transport. Under the assumptions H1 and H2
made so far, the equations of motion become

d

dt

∂R

∂ṙα
−
∂R

∂rα
= −Dc

bαI
bdpcpd − Bcαβpcṙ

β −Kαβγ ṙ
β ṙγ , (3.1)

d

dt
pb = Dc

bαpcṙ
α. (3.2)

A relative equilibrium is a point (r, ṙ, p) = (r0, 0, p0) which is a fixed point
for the dynamics determined by equations (3.1) and (3.2). Under assumption
H1 the point (r0, p0) is seen to be a critical point of the amended potential.
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Because of our zero curvature assumption H2, the solutions of the mo-
mentum equation lie on surfaces of the form pa = Pa(r

α, kb), a, b = 1, . . . ,m,
where kb are constants labeling these surfaces. Using the functions pa =
Pa(r

α, kb) we introduce the reduced amended potential

Uk(r
α) = U(rα, Pa(r

α, kb)).

We think of the function Uk(r
α) as being the restriction of the function U

to the invariant manifold

Qk = {(rα, pa) | pa = Pa(r
α, kb)}.

Theorem 3.1 Let assumptions H1 and H2 hold and let (r0, p0), where p0 =
P (r0, k0), be a relative equilibrium. If the reduced amended potential Uk0(r)
has a nondegenerate minimum at r0, then this equilibrium is Lyapunov sta-
ble.

Proof First, we show that the relative equilibrium

rα = rα0 , p0
a = Pa(r

α
0 , k

0
b ) (3.3)

of system (3.1), (3.2) is stable modulo perturbations consistent with Qk0.
Consider the phase flow restricted to the invariant manifold Qk0, where k0

corresponds to the relative equilibrium. Since Uk0(r
α) has a nondegenerate

minimum at rα0 , the function E|Qk0
is positive definite. By Theorem 2.6 its

derivative along the flow vanishes. Using E|Qk0
as a Lyapunov function, we

conclude that equations (3.1), (3.2), restricted to the manifold Qk0, have a
stable equilibrium point rα0 on Qk0.

To finish the proof, we need to show that equations (3.1), (3.2), restricted
to nearby invariant manifolds Qk, have stable equilibria on these manifolds.

If k is sufficiently close to k0, then by the properties of families of Morse
functions (see Milnor [1963]), the function Uk : Qk → R has a nondegenerate
minimum at the point rα which is close to rα0 . This means that for all k
sufficiently close to k0 system (3.1), (3.2) restricted to Qk has a stable equi-
librium rα. Therefore, equilibrium (3.3) of equations (3.1), (3.2) is stable.

The stability here cannot be asymptotic, since the dynamical systems on
Qk have a positive definite conserved quantity—the reduced energy function.
�
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Remark. Even though in general Pa(r
α, kb) can not be found explicitly,

the types of critical points of Uk may be explicitly determined as follows.
First of all, note that

∂pb
∂rα

= Dc
bαpc

as long as (rα, pa) ∈ Qk. Therefore

∂Uk
∂rα

= ∇αU,

where

∇α =
∂

∂rα
+ Dc

bαpc
∂

∂pb
. (3.4)

(cf. Karapetyan [1983]). The operators ∇α may be viewed as covariant
derivatives in the vector bundle D/G → T (Q/G) with fibers

(

g
D
)∗

. They
arise from the connection defined by the transport term in the momentum
equation. We note that these derivatives commute in cases 1 and 2. The
relative equilibria satisfy the condition

∇αU = 0,

while the condition for stability

∂2Uk
∂r2

� 0

(i.e., is positive definite) becomes the condition

∇α∇βU � 0.

In the commutative case this was shown by Karapetyan [1983].
Now we give the stability condition in a form similar to that of energy-

momentum method for holonomic systems given in Simo, Lewis, and Mars-
den [1991].

Theorem 3.2 (The nonholonomic energy-momentum method) Un-
der assumptions H1 and H2, the point qe = (rα0 , 0, p

0
a) is a relative equilibrium

if and only if there is a ξ ∈ g
qe such that qe is a critical point of the aug-

mented energy Eξ : D/G → R (i.e., Eξ is a function of (r, ṙ, p)), defined
by

Eξ = E − 〈p− P (r, k), ξ〉.

This equilibrium is stable if δ2Eξ restricted to TqeQk is positive definite (here
δ denotes differentiation with respect to all variables except ξ).
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Proof A point qe ∈ Qk is a relative equilibrium if ∂rαUk = 0. This condition
is equivalent to d (E|Qk

) = 0. The last equation may be represented as
d (E − 〈p− P (r, k), ξ〉) = 0 for some ξ ∈ g

qe . Similarly, the condition for
stability d2Uk � 0 is equivalent to d2 (E|Qk

) � 0, which may be represented
as
(

δ2Eξ
)

|TqeQk
� 0. �

Note that if the momentum map is preserved, then the formula for Eξ
becomes

Eξ = E − 〈p − k, ξ〉,

which is the same as the formula for the augmented energy Eξ for holonomic
systems.

3.2 Examples

There are several examples which illustrate the ideas above. For instance the
falling disk, Routh’s problem, and a body of revolution rolling on a horizon-
tal plane are systems where the momentum equation defines an integrable
distribution and we are left with only one shape variable. Since the stability
properties of all these systems are similar, we consider here only the rolling
disk. For the body of revolution on the plane see Chaplygin [1897a] and
Karapetyan [1983]. For the Routh problem see Zenkov [1995].

The Rolling Disk. Consider again the disk rolling without sliding on
the xy-plane. Recall that we have the following: Denote the coordinates of
contact of the disk in the xy-plane by (x, y). Let θ, φ, and ψ denote the angle
between the plane of the disk and the vertical axis, the “heading angle” of
the disk, and “self-rotation” angle of the disk respectively, as was introduced
earlier.

The Lagrangian and the constraints in these coordinates are given by

L =
m

2

[

(ξ −R(φ̇ sin θ + ψ̇))2 + η2 sin2 θ + (η cos θ +Rθ̇)2
]

+
1

2

[

A(θ̇2 + φ̇2 cos2 θ) +B(φ̇ sin θ + ψ̇)2
]

−mgR cos θ,

ẋ = −ψ̇R cosφ,

ẏ = −ψ̇R sinφ,

where ξ = ẋ cosφ + ẏ sinφ + Rψ̇, η = −ẋ sinφ + ẏ cosφ. Note that the
constraints may be written as ξ = 0, η = 0.
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This system is invariant under the action of the group G = SE(2) ×
SO(2); the action by the group element (a, b, α, β) is given by

(θ, φ, ψ, x, y) 7→ (θ, φ+ α,ψ + β, x cosα− y sinα+ a, x sinα+ y cosα+ b).

Obviously,

TqOrb(q) = span

(

∂

∂φ
,
∂

∂ψ
,
∂

∂x
,
∂

∂y

)

,

and

Dq = span

(

∂

∂θ
,
∂

∂φ
,−R cosφ

∂

∂x
−R sinφ

∂

∂y
+

∂

∂ψ

)

,

which imply

Sq = Dq ∩ TqOrb(q) = span

(

∂

∂φ
,−R cosφ

∂

∂x
−R sinφ

∂

∂y
+

∂

∂ψ

)

.

Choose vectors (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) as a basis
of the Lie algebra g of the group G. The corresponding generators are
∂x, ∂y, −y∂x + x∂y + ∂φ, ∂ψ. Taking into account that the generators
∂φ, −R cosφ∂x − R sinφ∂y + ∂ψ correspond to the elements (y,−x, 1, 0),
(−R cosφ,−R sinφ, 0, 1) of the Lie algebra g, we obtain the following mo-
mentum equations:

ṗ1 = mR2 cos θ θ̇ψ̇,

ṗ2 = −mR2 cos θ θ̇φ̇,
(3.5)

where
p1 = Aφ̇ cos2 θ + (mR2 +B)(φ̇ sin θ + ψ̇) sin θ,

p2 = (mR2 +B)(φ̇ sin θ + ψ̇),
(3.6)

into which the constraints have been substituted. One may notice that

p1 =
∂lc

∂φ̇
, p2 =

∂lc

∂ψ̇
.

Solving (3.6) for φ̇ and ψ̇ and substituting the solutions back in the equa-
tions (3.5) we obtain another representation of the momentum equations:

dp1

dt
= mR2 cos θ

(

−
sin θ

A cos2 θ
p1 +

(

1

mR2 +B
+

sin2 θ

A cos2 θ

)

p2

)

θ̇,

dp2

dt
= mR2 cos θ

(

−
1

A cos2 θ
p1 +

sin θ

A cos2 θ
p2

)

θ̇.

(3.7)
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The right-hand sides of (3.7) do not have terms quadratic in the shape
velocity θ̇. The distribution, defined by (3.7), is integrable and defines two
integrals of the form p1 = P1(θ, k1, k2), p2 = P2(θ, k1, k2). It is known that
these integrals may be written down explicitly in terms of the hypergeometric
function. See Appel [1900], Chaplygin [1897a], and Korteweg [1899] for
details.

To carry out stability analysis, we use the remark following Theorem 3.1.
Using formulae (3.6), we obtain the amended potential

U(θ, p) =
1

2

[

(p1 − p2 sin θ)2

A cos2 θ
+

p2
2

B +mR2

]

+mgR cos θ.

Straightforward computation shows that the condition for stability ∇2U � 0
of a relative equilibrium θ = θ0, p1 = p0

1, p2 = p0
2 becomes

B

A(mR2 +B)
(p0

2)
2 +

mR2 cos2 θ0 + 2A sin2 θ0 +A

A2
(p0

1 − p0
2 sin θ0)

2

−
(mR2 + 3B) sin θ0
A(mR2 +B) cos2 θ0

(p0
1 − p0

2 sin θ0)p
0
2 −mgR cos θ0 > 0.

Note that this condition guarantees stability here relative to (θ, θ̇, p1, p2); in
other words we have stability modulo the action of SE(2) × SO(2).

The falling disk may be considered as a limiting case of the body of
revolution which also has an integrable pure transport momentum equation
(this example is treated in Chaplygin [1897a] and Karapetyan [1983]). The
rolling disc has also been analyzed recently by O’Reilly [1996] and Cush-
man, Hermans and Kemppainen [1996]. O’Reilly considered bifurcation of
relative equilibria, the stability of vertical stationary motions, as well as the
possibility of sliding.

4 The Non-Pure Transport Case

In this section we consider the case in which the coefficients Dαβb are not
skew symmetric in α, β and the two subcases where the transport part of
the momentum equation is integrable or is not integrable, respectively. In
either case one may obtain asymptotic stability.

We begin by assembling some preliminary results on center manifold
theory and show how they relate to the Lyapunov-Malkin theorem. The
center manifold theorem provides new and useful insight into the existence
of integral manifolds. These integral manifolds play a crucial role in our
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analysis. Lyapunov’s original proof of the Lyapunov-Malkin theorem used
a different approach to proving the existence of local integrals, as we shall
discuss below. Malkin extended the result to the nonautonomous case.

4.1 Center Manifold Theory in Stability Analysis

Here we discuss the center manifold theory and its applications to the sta-
bility analysis of nonhyperbolic equilibria.

Consider a system of differential equations

ẋ = Ax+X(x, y), (4.1)

ẏ = By + Y (x, y), (4.2)

where x ∈ R
m, y ∈ R

n, and A and B are constant matrices. It is supposed
that all eigenvalues of A have nonzero real parts, and all eigenvalues of
B have zero real parts. The functions X, Y are smooth, and satisfy the
conditions X(0, 0) = 0, dX(0, 0) = 0, Y (0, 0) = 0, dY (0, 0) = 0. We now
recall the following definition:

Definition 4.1 A smooth invariant manifold of the form x = h(y) where h
satisfies h(0) = 0 and dh(0) = 0 is called a center manifold.

We are going to use the following version of the center manifold theorem
following the exposition of Carr [1981] (see also Chow and Hale [1982]).

Theorem 4.2 (The center manifold theorem) If the functions X(x, y),
Y (x, y) are Ck, k ≥ 2, then there exists a (local) center manifold for (4.1),
(4.2), x = h(y), |y| < δ, where h is Ck. The flow on the center manifold is
governed by the system

ẏ = By + Y (h(y), y). (4.3)

The next theorem explains that the reduced equation (4.3) contains in-
formation about stability of the zero solution of (4.1), (4.2).

Theorem 4.3 Suppose that the zero solution of (4.3) is stable (asymptot-
ically stable) (unstable) and that the eigenvalues of A are in the left half
plane. Then the zero solution of (4.1), (4.2) is stable (asymptotically stable)
(unstable).
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Let us now look at the special case of (4.2) in which the matrix B van-
ishes. Equations (4.1), (4.2) become

ẋ = Ax+X(x, y), (4.4)

ẏ = Y (x, y). (4.5)

Theorem 4.4 Consider the system of equations (4.4), (4.5). If X(0, y) = 0,
Y (0, y) = 0, and all eigenvalues of the matrix A have negative real parts, then
system (4.4), (4.5) has n local integrals in the neighborhood of x = 0, y = 0.

Proof The center manifold in this case is given by x = 0. Each point
of the center manifold is an equilibrium of system (4.4), (4.5). For each
equilibrium point (0, y) of our system, consider a stable manifold Ss(y).
The center manifold and these manifolds Ss(y) can be used for a (local)
substitution (x, y) → (x̄, ȳ) such that in the new coordinates the system of
differential equations become

˙̄x = Āx̄+ X̄(x̄, ȳ), ˙̄y = 0.

The last system of equations has n integrals ȳ = const, so that the original
equation has n smooth local integrals. Observe that the tangent spaces to the
common level sets of these integrals at the equilibria are the planes y = y0.
Therefore, the integrals are of the form y = f(x, k), where ∂xf(0, k) = 0.
�

The following theorem gives stability conditions for equilibria of system
(4.4), (4.5).

Theorem 4.5 (Lyapunov-Malkin) Consider the system of differential
equations (4.4), (4.5), where x ∈ R

m, y ∈ R
n, A is an m × m-matrix,

and X(x, y), Y (x, y) represent nonlinear terms. If all eigenvalues of the
matrix A have negative real parts, and X(x, y), Y (x, y) vanish when x = 0,
then the solution x = 0, y = 0 of system (4.4), (4.5) is stable with respect to
(x, y), and asymptotically stable with respect to x. If a solution (x(t), y(t))
of (4.4), (4.5) is close enough to the solution x = 0, y = 0, then

lim
t→∞

x(t) = 0, lim
t→∞

y(t) = c.

The proof of this theorem consists of two steps. The first step is a
reduction of the system to the common level set of integrals described in
Theorem 4.4. The second step is the construction of a Lyapunov function
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for the reduced system. The details of the proof may be found in Lyapunov
[1992] and Malkin [1938].

Historical Note. The proof of the Lyapunov-Malkin theorem uses the
fact that the system of differential equations has local integrals, as discussed
in Theorem 4.4. To prove existence of these integrals, Lyapunov uses a
theorem of his own about the existence of solutions of PDE’s. He does this
assuming that the nonlinear terms on the right-hand sides are series in x and
y with time-dependent bounded coefficients. Malkin generalizes Lyapunov’s
result for systems for which the matrix A is time-dependent. We consider
the nonanalytic case, and to prove existence of these local integrals, we use
center manifold theory. This simplifies the arguments to some extent as well
as showing how the results are related.

The following lemma specifies a class of systems of differential equations,
that satisfies the conditions of the Lyapunov-Malkin theorem.

Lemma 4.6 Consider a system of differential equations of the form

u̇ = Au+By + U(u, y), ẏ = Y(u, y), (4.6)

where u ∈ R
m, y ∈ R

n, detA 6= 0, and where U and Y represent higher order
nonlinear terms. There is a change of variables of the form u = x + φ(y)
such that

(i) in the new variables (x, y) system (4.6) becomes

ẋ = Ax+X(x, y), ẏ = Y (x, y),

(ii) if Y (0, y) = 0, then X(0, y) = 0 as well.

Proof Put u = x+ φ(y), where φ(y) is defined by

Aφ(y) +By + U(φ(y), y) = 0.

System (4.6) in the variables (x, y) becomes

ẋ = Ax+X(x, y), ẏ = Y (x, y),

where

X(x, y) = Aφ(y) +By + U(x+ φ(y), y) −
∂φ

∂y
Y (x, y),

Y (x, y) = Y(x+ φ(y), y).

Note that Y (0, y) = 0 implies X(0, y) = 0. �
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4.2 The Mathematical Example

The Lyapunov-Malkin conditions. Recall from §1.4 that the equations
of motion are

r̈ = −
∂V

∂r
−
∂b

∂r
(a(r)ṙ + b(r)p) p,

ṗ =
∂b

∂r
(a(r)ṙ + b(r)p) ṙ,

(4.7)

here and below we write r instead of r1.
Recall also that a point r = r0, p = p0 is a relative equilibrium if r0 and

p0 satisfy the condition

∂V

∂r
(r0) +

∂b

∂r
b(r0) p

2
0 = 0.

Introduce coordinates (u1, u2, v) in the neighborhood of this equilibrium by

r = r0 + u1, ṙ = u2, p = p0 + v.

The linearized equations of motion are

u̇1 = u2,

u̇2 = Au2 + Bu1 + Cv,

v̇ = Du2,

where

A = −
∂b

∂r
ap0,

B = −
∂2V

∂r2
−

[

∂2b

∂r2
b+

(

∂b

∂r

)2
]

p2
0,

C = −2
∂b

∂r
bp0,

D =
∂b

∂r
bp0,

and where V , a, b, and their derivatives are evaluated at r0. The character-
istic polynomial of these linearized equations is calculated to be

λ[λ2 − Aλ− (B + CD)].

It obviously has one zero root. The two others have negative real parts if

B + CD < 0, A < 0. (4.8)
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These conditions imply linear stability. We discuss the meaning of these
conditions later.

Next, we make the substitution v = y + Du1, which defines the new
variable y. The (nonlinear) equations of motion become

u̇1 = u2,

u̇2 = Au2 + (B + CD)u1 + Cy + U(u, y),

ẏ = Y(u, y),

where U(u, y), Y(u, y) stand for nonlinear terms, and Y(u, y) vanishes when
u = 0. By Lemma 4.6 there exists a further substitution u = x+ φ(y) such
that the equations of motion in coordinates (x, y) become

ẋ = Px+X(x, y),

ẏ = Y (x, y),

where X(x, y) and Y (x, y) satisfy the conditions X(0, y) = 0, Y (0, y) = 0.
Here,

P =

(

0 1
B + CD A

)

.

This form enables us to use the Lyapunov-Malkin theorem and conclude that
the linear stability implies nonlinear stability and in addition that we have
asymptotic stability with respect to (x1, x2).

The Energy-Momentum Method. To find a Lyapunov function based
approach for analyzing the stability of the mathematical example, we intro-
duce a modified dynamical system and use its energy function and momen-
tum to construct a Lyapunov function for the original system. This modified
system is introduced for the purpose of finding the Lyapunov function and
is not used in the stability proof. We will generalize this approach below
and this example may be viewed as motivation for the general approach.

Consider then the new system obtained from the Lagrangian (1.4) and
the constraint (1.5) by setting a(r) = 0. Notice that Lc stays the same and
therefore, the equation of motion may be obtained from (4.7):

r̈ = −
∂V

∂r
−
∂b

∂r
b(r)p2, ṗ =

∂b

∂r
b(r)pṙ.

The condition for existence of the relative equilibria also stays the same.
However, a crucial observation is that for the new system, the momentum
equation is now integrable, in fact explicitly, so that in this example:

p = k exp(b2(r)/2).
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Thus, we may proceed and use this invariant surface to perform reduction.
The amended potential, defined by U(r, p) = V (r) + 1

2p
2, becomes

Uk(r) = V (r) +
1

2

(

k exp(b2(r)/2)
)2
.

Consider the function

Wk =
1

2
ṙ2 + Uk(r) + ε(r − r0)ṙ.

If ε is small enough and Uk has a nondegenerate minimum, then so does
Wk. Suppose that all eigenvalues of the matrix P have negative real parts.
Then by Theorem 4.4 equations (4.7) have a local integral p = P(r, ṙ, c).
Differentiate Wk along the vector field determined by (4.7). We obtain

Ẇk = −ε

(

∂2V

∂r2
(r0) +

(

∂2b

∂r2
b(r0) + 2

(

∂b

∂r
b(r0)

)2

+

(

∂b

∂r
(r0)

)2
)

p2
0

)

−
∂b

∂r
a(r0)p0ṙ

2 + εṙ2 + {higher order terms}.

Therefore, Wk is a Lyapunov function for the flow restricted to the local
invariant manifold p = P(r, ṙ, c) if

∂2V

∂r2
(r0) +

(

∂2b

∂r2
b(r0) + 2

(

∂b

∂r
b(r0)

)2

+

(

∂b

∂r
(r0)

)2
)

p2
0 > 0 (4.9)

and
∂b

∂r
a(r0)p0ṙ

2 > 0. (4.10)

Notice that the Lyapunov conditions (4.9) and (4.10) are the same as con-
ditions (4.8).

Introduce the operator

∇ =
∂

∂r
+
∂b

∂r
b(r)p

∂

∂p
.

Then condition (4.9) may be represented as

∇2U > 0,

which is the same as the condition for stability of stationary motions of a
nonholonomic system with an integrable momentum equation (recall that
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this means that there are no terms quadratic in ṙ, only transport terms
defining an integrable distribution). The left-hand side of formula (4.10)
may be viewed as a derivative of the energy function

E =
1

2
ṙ2 +

1

2
p2 + V

along the flow

r̈ = −
∂V

∂r
−
∂b

∂r
(a(r)ṙ + b(r)p) p, ṗ =

∂b

∂r
b(r)pṙ,

or as a derivative of the amended potential U along the vector field defined
by the nontransport terms of the momentum equations

ṗ =
∂b

∂r
a(r)ṙ2.

4.3 The Nonholonomic Energy-Momentum Method

We now generalize the energy-momentum method discussed above for the
mathematical example to the general case in which the transport part of the
momentum equation is integrable.

Here we assume hypothesis H2 in the present context, namely:

H2 The curvature of the connection form associated with the transport
part of the momentum equation, namely dpb −Dc

bαpcdr
α, is zero.

The momentum equation in this situation is

d

dt
pb = Dc

bαpcṙ
α + Dαβbṙ

αṙβ.

Hypothesis H2 implies that the form due to the transport part of the mo-
mentum equation defines an integrable distribution. Associated to this dis-
tribution, there is a family of integral manifolds

pa = Pa(r
α, kb)

with Pa satisfying the equation dPb = Dc
bαPcdr

α. Note that these manifolds
are not invariant manifolds of the full system under consideration because
the momentum equation has non-transport terms. Substituting the functions
Pa(r

α, kb), kb = const, into E(r, ṙ, p), we obtain a function

Vk(r
α, ṙα) = E(rα, ṙα, Pa(r

α, kb)),
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that depends only on (rα, ṙα) and parametrically on k. This function will
not be our final Lyapunov function but will be used to construct one in the
proof to follow.

Pick a relative equilibrium rα = rα0 , pa = p0
a. In this context we introduce

the following definiteness assumptions:

H3 At the equilibrium rα = rα0 , pa = p0
a the two symmetric matrices

∇α∇βU and (Dαβb + Dβαb)I
bcpc are positive definite.

Theorem 4.7 Under assumptions H2 and H3, the equilibrium rα = rα0 ,
pa = p0

a is Lyapunov stable. Moreover, the system has local invariant man-
ifolds that are tangent to the family of manifolds defined by the integrable
transport part of the momentum equation at the relative equilibria. The rel-
ative equilibria, that are close enough to (r0, p0), are asymptotically stable in
the directions defined by these invariant manifolds. In addition, for initial
conditions close enough to the equilibrium rα = rα0 , pa = p0

a, the perturbed
solution approaches a nearby equilibrium.

Proof The substitution pa = p0
a + ya + Db

aα(r0)p
0
bu
α, where uα = rα − rα0 ,

eliminates the linear terms in the momentum equation. In fact, with this
substitution, the equations of motion (2.8), (2.9) become

d

dt

∂R

∂ṙα
−
∂R

∂rα
= −Dc

bαI
bdpcpd − Bcαβpcṙ

β

−DβαbI
bcpcṙ

β −Kαβγ ṙ
β ṙγ ,

d

dt
yb = Dc

bαycṙ
α + (Dc

bα −Dc
bα(r0))p

0
c ṙ
α + Dαβbṙ

αṙβ.

We will show in §4.6 that H3 implies the hypotheses of Theorem 4.4. Thus,
the above equations have local integrals ya = fa(r, ṙ, c), where the functions
fa are such that ∂rfa = ∂ṙfa = 0 at the equilibria. Therefore, the original
equations (2.8), (2.9) have n local integrals

pa = Pa(r
α, ṙα, cb), cb = const, (4.11)

where Pa are such that

∂P

∂rα
=
∂P

∂rα
,

∂P

∂ṙα
= 0

at the relative equilibria.
We now use the Vk(r

α, ṙα) to construct a Lyapunov function to determine
the conditions for asymptotic stability of the relative equilibrium rα = rα0 ,
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pa = p0
a. We will do this in a fashion similar to that used by Chetaev

[1959] and Bloch, Krishnaprasad, Marsden, and Ratiu [1994]. Without loss
of generality, suppose that gαβ(r0) = δαβ . Introduce the function

Wk = Vk + ε
σ
∑

α=1

uαṙα.

Consider the following two manifolds at the equilibrium (rα0 , 0, p
0
a): the

integral manifold of the transport equation

Qk0 = {pa = Pa(r
α, k0)} ,

and the local invariant manifold

Qc0 =
{

pa = Pa(r
α, ṙα, c0)

}

.

Restrict the flow to the manifold Qc0. Choose (rα, ṙα) as local coordinates
on Qc0, then Vk0 and Wk0 are functions defined on Qc0 . Since

∂Uk0
∂rα

(r0) = ∇αU(r0, p0) = 0

and
∂2Uk0
∂rα∂rβ

(r0) = ∇α∇βU(r0, p0) � 0,

the function Vk0 is positive definite in some neighborhood of the relative
equilibrium (rα0 , 0) ∈ Qc0 . The same is valid for the function Wk0 if ε is
small enough.

Now we show that Ẇk0 (as a function on Qc0) is negative definite. Cal-
culate the derivative of Wk0 along the flow:

Ẇk0 = gαβ ṙ
αr̈β +

1

2
ġαβ ṙ

αṙβ + IabPaṖb

+
1

2
İabPaPb + V̇ + ε

σ
∑

α=1

(

(ṙα)2 + uαr̈α
)

. (4.12)

Using the explicit representation of equation (2.8), we obtain

gαβ r̈
β + ġαβ ṙ

β =
1

2

∂gβγ
∂rα

ṙβ ṙγ −
∂V

∂rα
−

1

2

∂Iab

∂rα
PaPb −Dc

bαI
bdPcPd

−DβαbI
bcPcṙ

β − BcαβPcṙ
β −Kαβγ ṙ

β ṙγ . (4.13)
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Therefore,

gαβ ṙ
αr̈β +

1

2
ġαβ ṙ

αṙβ + IabPaṖb +
1

2
İabPaPb + V̇

= −
1

2
ġαβ ṙ

αṙβ +
1

2

∂gβγ
∂rα

ṙαṙβ ṙγ −
∂V

∂rα
ṙα −

1

2

∂Iab

∂rα
PaPbṙ

α

−Dc
bαI

bdPcPdṙ
α −DβαbI

bcPcṙ
αṙβ − BcαβPcṙ

αṙβ

−Kαβγ ṙ
αṙβ ṙγ + IabDc

bαPaPcṙ
α +

1

2

∂Iab

∂rα
PaPbṙ

α + V̇ .

Using skew-symmetry of Bcαβ and Kαβγ with respect to α, β and canceling
the terms

−
1

2
ġαβ ṙ

αṙβ +
1

2

∂gβγ
∂rα

ṙαṙβ ṙγ −
∂V

∂rα
ṙα + V̇ ,

we obtain

gαβ ṙ
αr̈β +

1

2
ġαβ ṙ

αṙβ + IabPaṖb +
1

2
İabPaPb + V̇

= −DβαbI
bcPcṙ

αṙβ +

(

1

2

∂Iab

∂rα
+ IacDb

cα

)

(PaPb − PaPb) ṙ
α. (4.14)

Substituting (4.14) in (4.12) and determining r̈α from (4.13), we obtain

Ẇk0 = −DβαbI
bcPcṙ

αṙβ + ε
σ
∑

α=1

(ṙα)2

− ε

σ
∑

γ=1

gαβuγ
(

∂V

∂rα
+

1

2

∂Iab

∂rα
PaPb + Dc

bαI
bdPcPd

)

+ ε
σ
∑

γ=1

gαγuγ
(

−ġαβ ṙ
β +

1

2

∂gβγ
∂rα

ṙβ ṙγ −BcαβPcṙ
β

−DβαbI
bcPcṙ

β −Kαβγ ṙ
β ṙγ
)

+
1

2

∂Iab

∂rα
(PaPb − PaPb) ṙ

α + IacDb
cα (PaPb − PaPb) ṙ

α. (4.15)

Since
∂V

∂rα
+

1

2

∂Iab

∂rα
PaPb + Dc

bαI
bdPcPd = 0

at the equilibrium and the linear terms in the Taylor expansions of P and
P are the same,

∂V

∂rα
+

1

2

∂Iab

∂rα
PaPb + Dc

bαI
bdPcPd = Fαβu

β + {nonlinear terms}, (4.16)
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where

Fαβ =
∂

∂rβ

(

∂V

∂rα
+

1

2

∂Iab

∂rα
PaPb + Dc

bαI
bdPcPd

)

=
∂2V

∂rα∂rβ
+

1

2

∂2Iab

∂rα∂rβ
PaPb +

∂Iab

∂rα
Pa
∂Pb
∂rβ

+
∂

∂rβ

(

Dc
bαI

bd
)

PcPd + Dc
bαI

bd

(

∂Pc
∂rβ

Pd + Pc
∂Pd
∂rβ

)

=
∂2V

∂rα∂rβ
+

1

2

∂2Iab

∂rα∂rβ
PaPb +

∂Iab

∂rα
PaD

c
bβPc

+
∂

∂rβ

(

Dc
bαI

bd
)

PcPd + Dc
bαI

bd
(

Da
cβPaPd + Da

dβPaPc
)

= ∇α∇βU.

In the last formula all the terms are evaluated at the equilibrium.
Taking into account that gαβ = δαβ + O(u), that the Taylor expansion

of PaPb −PaPb starts from the terms of the second order, and using (4.16),
we obtain from (4.15)

Ẇk0 = −DβαbI
bc(r0)p

0
c ṙ
αṙβ − εFαβu

αuβ + ε
σ
∑

α=1

(ṙα)2

− ε
(

DβαbI
bc(r0)p

0
c + Bcαβ(r0)p

0
c

)

uαṙβ + {cubic terms}.

Therefore, the condition (Dαβb+Dβαb)I
bcp0

c � 0 implies that Ẇk0 is negative
definite if ε is small enough and positive. Thus, Wk0 is a Lyapunov function
for the flow on Qc0 , and therefore the equilibrium (rα0 , 0) for the flow on Qc0

is asymptotically stable.
Using the same arguments we used in the proof of Theorem 3.1, we con-

clude that the equilibria on the nearby invariant manifolds Qk are asymp-
totically stable as well. �

There is an alternative way to state the above theorem, which uses the
basic intuition we used to find the Lyapunov function.

Theorem 4.8 (The nonholonomic energy-momentum method) Un-
der the assumption that H2 holds, the point qe = (rα0 , 0, p

0
a) is a relative

equilibrium if and only if there is a ξ ∈ g
qe such that qe is a critical point of

the augmented energy Eξ = E − 〈p − P (r, k), ξ〉. Assume that

(i) δ2Eξ restricted to TqeQk is positive definite (here δ denotes differenti-
ation by all variables except ξ);
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(ii) the quadratic form defined by the flow derivative of the augmented en-
ergy is negative definite at qe.

Then H3 holds and this equilibrium is Lyapunov stable and asymptotically
stable in the directions of due to the invariant manifolds (4.11).

Proof We have already shown in Theorem 3.2 that positive definiteness
of δ2Eξ|TqeQk

is equivalent to the condition ∇α∇βU � 0. To complete the
proof, we need to show that the requirement (ii) of the theorem is equivalent
to the condition (Dαβb + Dβαb)I

bc(r0)p
0
c � 0. Compute the flow derivative

of Eξ:

Ėξ = Ė − 〈ṗ− Ṗ , ξ〉 = Ė − (Db
aαpbṙ

α + Dαβaṙ
αṙβ −Db

aαPbṙ
α)ξa.

Since at the equilibrium p = P , ξa = Iabpb, and Ė = 0 (Theorem 2.6), we
obtain

Ėξ = −DαβaI
ab(r0)p

0
b ṙ
αṙβ.

The condition Ėξ � 0 is thus equivalent to (Dαβb + Dβαb)I
bc(r0)p

0
c � 0.

�

For some examples, such as the roller racer, we need to consider a de-
generate case of the above analysis. Namely, we consider a nongeneric case,
when U = 1

2I
ab(r)papb (the original system has no potential energy), and

the components of the locked inertia tensor Iab satisfy the condition

1

2

∂Iab

∂rα
+ IacDb

cα = 0. (4.17)

Recalling our definition of the covariant derivatives in formula (3.4), we
observe that the covariant derivatives ∇αU of the amended potential are
equal to zero, and further that the equations of motion (2.8), (2.9) become

d

dt

(

gαβ ṙ
β
)

−
1

2

∂gβγ
∂rα

ṙβ ṙγ = −DβαbI
bcpcṙ

β − Bcαβpcṙ
β −Kαβγ ṙ

β ṙγ , (4.18)

d

dt
pb = Dc

bαpcṙ
α + Dαβbṙ

αṙβ. (4.19)

Thus, we obtain an (m + σ)-dimensional manifold of equilibria r = r0, p =
p0 of these equations. Further, we cannot apply Theorem 4.7 because the
condition ∇2U � 0 fails. However, we can do a similar type of stability
analysis as follows.
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As before, set

Vk = E(r, ṙ, P (r, k)) =
1

2
gαβ ṙ

αṙβ +
1

2
Iab(r)Pa(r, k)Pb(r, k).

Note that P satisfies the equation

∂Pb
∂rα

= Dc
bαPc,

which implies that

∂

∂rα

(

1

2
Iab(r)PaPb

)

=
1

2

∂Iab

∂rα
PaPb + IabPa

∂Pb
∂rα

=

(

1

2

∂Iab

∂rα
+ IabDc

bα

)

PaPb = 0.

Therefore
1

2
IabPaPb = const

and

Vk =
1

2
gαβ ṙ

αṙβ

(up to an additive constant). Thus, Vk is a positive definite function with
respect to ṙ. Compute V̇k:

V̇k = gαβ ṙ
αr̈β + ġαβ ṙ

αṙβ = −DβαbI
bcpcṙ

αṙβ +O(ṙ3).

Suppose that (Dαβb + Dβαb)(r0)I
bc(r0)p

0
c � 0. Now the linearization

of equations (4.18) and (4.19) about the relative equilibria given by setting
ṙ = 0 has (m+ σ) zero eigenvalues corresponding to the r and p directions.
Since the matrix corresponding to ṙ-directions of the linearized system is
of the form D + G, where D is positive definite and symmetric (in fact,
D = 1

2 (Dαβb+Dβαb)(r0)I
bc(r0)p

0
c) andG is skew-symmetric, the determinant

of D+G is not equal to zero. This follows from the observation that xt(D+
G)x = xtDx > 0 for D positive-definite and G skew-symmetric. Thus using
Theorem 4.4, we find that the equations of motion have local integrals

r = R(ṙ, k), p = P(ṙ, k).

Therefore Vk restricted to a common level set of these integrals is a Lyapunov
function for the restricted system. Thus, an equilibrium r = r0, p = p0 is
stable with respect to (r, ṙ, p) and asymptotically stable with respect to ṙ if

(Dαβb + Dβαb)I
bc(r0)p

0
c � 0. (4.20)

Summarizing, we have:
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Theorem 4.9 Under assumptions H2 if V = 0 and conditions (4.17) and
(4.20) hold, the nonholonomic equations of motion have an (m+σ)-dimensional
manifold of equilibria parametrized by r and p. An equilibrium r = r0, p = p0

is stable with respect to (r, ṙ, p) and asymptotically stable with respect to ṙ.

4.4 The Roller Racer

The roller racer provides an illustration of Theorem 4.9. Recall that the
Lagrangian and the constraints are

L =
1

2
m(ẋ2 + ẏ2) +

1

2
I1θ̇

2 +
1

2
I2(θ̇ + φ̇)2

and

ẋ = cos θ

(

d1 cosφ+ d2

sinφ
θ̇ +

d2

sinφ
φ̇

)

,

ẏ = sin θ

(

d1 cosφ+ d2

sinφ
θ̇ +

d2

sinφ
φ̇

)

.

The configuration space is SE(2) × SO(2) and, as observed earlier, the La-
grangian and the constraints are invariant under the left action of SE(2) on
the first factor of the configuration space.

The nonholonomic momentum is

p = m(d1 cosφ+ d2)(ẋ cos θ + ẏ sin θ) + [(I1 + I2)θ̇ + I2φ̇] sinφ.

See Tsakiris [1995] for details of this calculation. The momentum equation
is

ṗ =
((I1 + I2) cosφ−md1(d1 cosφ+ d2)) sin φ

m(d1 cosφ+ d2)2 + (I1 + I2) sin2 φ
pφ̇

+
m(d1 + d2 cosφ)(I2d1 cosφ− I1d2)

m(d1 cosφ+ d2)2 + (I1 + I2) sin2 φ
φ̇2.

Rewriting the Lagrangian using p instead of θ̇, we obtain the energy
function for the roller racer:

E =
1

2
g(φ)φ̇2 +

1

2
I(φ)p2,

where

g(φ) = I2 +
md2

2

sin2 φ
−

[

m(d1 cosφ+ d2)d2 + I2 sin2 φ
]2

sin2 φ
[

m(d1 cosφ+ d2)2 + (I1 + I2) sin2 φ
]
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and

I(φ) =
1

m(d1 cosφ+ d2)2 + (I1 + I2) sin2 φ
. (4.21)

The amended potential is given by

U =
p2

2[m(d1 cosφ+ d2)2 + (I1 + I2) sin2 φ]
,

which follows directly from (2.7) and (4.21).
Straightforward computations show that the locked inertia tensor I(φ)

satisfies condition (4.17), and thus the roller racer has a two-dimensional
manifold of relative equilibria parametrized by φ and p. These relative equi-
libria are motions of the roller racer in circles about the point of intersection
of lines through the axles. For such motions, p is the system momentum
about this point scaled by a factor of sinφ, where φ is the relative angle
between the two bodies.

Therefore, we may apply the energy-momentum stability conditions (4.20)
obtained in §4.3 for the degenerate case. Multiplying the coefficient of the
nontransport term of the momentum equation, evaluated at φ0, by I(φ)p0

and omitting a positive factor, we obtain the condition for stability of a
relative equilibrium φ = φ0, p = p0 of the roller racer:

(d1 + d2 cosφ0)(I2d1 cosφ0 − I1d2)p0 > 0.

Note that this equilibrium is stable modulo SE(2) and in addition asymp-
totically stable with respect to φ̇.

4.5 Nonlinear Stability by the Lyapunov-Malkin Method

Here we study stability using the Lyapunov-Malkin approach; correspond-
ingly, we do not a priori assume hypotheses H1 (skewness of Dαβb in α, β),
H2 (a curvature is zero) or H3 (definiteness of second variations). Rather,
at the end of this section we will make eigenvalue hypotheses.

We consider the most general case, when the connection due to the trans-
port part of the momentum equation is not necessary flat and when the non-
transport terms of the momentum equation are not equal to zero. In the case
when g

q is commutative, this analysis was done by Karapetyan [1980]. Our
main goal here is to show that this method extends to the noncommutative
case as well.

We start by computing the linearization of equations (2.8) and (2.9).
Introduce coordinates (uα, vα, wa) in the neighborhood of the equilibrium
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r = r0, p = p0 by the formulae

rα = rα0 + uα, ṙα = vα, pa = p0
a + wa.

The linearized momentum equation is

ẇb = Dc
bα(r0)p

0
cv
α.

To find the linearization of (2.8), we start by rewriting its right-hand side
explicitly. Since R = 1

2gαβ ṙ
αṙβ − 1

2I
abpapb − V , equation (2.8) becomes

gαβ r̈
β + ġαβ ṙ

αṙβ −
1

2

∂gβγ
∂rα

ṙβ ṙγ +
1

2

∂Iab

∂rα
papb +

∂V

∂rα

= −Da
cαI

cdpapd −DβαcI
capaṙ

β − Baαβpaṙ
β −Kαβγ ṙ

β ṙγ .

Keeping only the linear terms, we obtain

gαβ(r0)r̈
β +

∂2V

∂rα∂rβ
(r0)u

β +
1

2

∂2Iab

∂rα∂rβ
(r0)p

0
ap

0
b u

β +
∂Iab

∂rα
(r0)p

0
a wb

= −Da
cαI

cd(r0)p
0
a wd −Da

cαI
cd(r0)p

0
d wa −

∂Da
cαI

cd

∂rβ
(r0)p

0
ap

0
d u

β

−DβαcI
ca(r0)p

0
a v

β − Baαβ(r0)p
0
a v

β.

Next, introduce matrices A, B, C, and D by

Aαβ = −
(

DβαcI
ca(r0)p

0
a + Baαβ(r0)p

0
a

)

,

Bαβ = −

(

∂2V

∂rα∂rβ
(r0) +

1

2

∂2Iab

∂rα∂rβ
(r0)p

0
ap

0
b +

∂Da
cαI

cb

∂rβ
(r0)p

0
ap

0
b

)

, (4.22)

C
a
α = −

(

∂Iab

∂rα
(r0)p

0
b + Db

cαI
ca(r0)p

0
b + Da

cαI
cb(r0)p

0
b

)

, (4.23)

Daα = Dc
aα(r0)p

0
c . (4.24)

Using these notations and making a choice of rα such that gαβ(r0) = δαβ ,
we can represent the equation of motion in the form

u̇α = vα, (4.25)

v̇α = A
α
βv

β + B
α
βu

β + C
αawa + V

α(u, v,w), (4.26)

ẇa = Daαv
α + Wa(u, v,w), (4.27)

44



where V and W stand for nonlinear terms, and where

A
α
β = δαγAγβ ,

B
α
β = δαγBγβ ,

C
αa = δαγCaγ .

(Or Aα
β = gαγAγβ , Bα

β = gαγBγβ, Cαa = gαγCaγ if gαβ(r0) 6= δαβ .) Note that

Wa =
(

Dc
aα(p0

c + wc) − Daα

)

vα + Dαβav
αvβ . (4.28)

The next step is to eliminate the linear terms from (4.27). Putting

wa = Daαu
α + za,

(4.27) becomes
ża = Za(u, v, z),

where Za(u, v, z) represents nonlinear terms. Formula (4.28) leads to

Za(u, v, z) = Zaα(u, v, z)vα.

In particular, Za(u, 0, z) = 0. Equations (4.25), (4.26), (4.27) in the variables
(u, v, z) become

u̇α = vα,

v̇α = A
α
βv

β + (Bα
β + C

αa
Daβ)u

β + C
αaza + V

α(u, v, za + Daαu
α),

ża = Za(u, v,w).

Using Lemma 4.6, we find a substitution xα = uα + φα(z), yα = vα such
that in the variables (x, y, z) we obtain

ẋα = yα +Xα(x, y, z),

ẏα = A
α
βy

β + (Bα
β + C

αa
Daβ)x

β + Y α(x, y, z), (4.29)

ża = Za(x, y, z),

where the nonlinear terms X(x, y, z), Y (x, y, z, ), Z(x, y, z) vanish if x = 0
and y = 0. Therefore, we can apply the Lyapunov-Malkin theorem and
conclude:

Theorem 4.10 The equilibrium x = 0, y = 0, z = 0 of system (4.29) is
stable with respect to (x, y, z) and asymptotically stable with respect to (x, y)
if all eigenvalues of the matrix

(

0 I
B + CD A

)

(4.30)

have negative real parts.
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4.6 The Lyapunov-Malkin and the Energy-Momentum Meth-

ods

Here we introduce a forced linear Lagrangian system associated with our
nonholonomic system. The linear system will have matrix (4.30). Then
we compare the Lyapunov-Malkin approach and the energy-momentum ap-
proach for systems satisfying hypothesis H2.

Thus, we consider the system with matrix (4.30)

ẋ = y,

ẏ = Ay + (B + CD)x.
(4.31)

According to Theorem 4.10, the equilibrium x = 0, y = 0, z = 0 of (4.29)
is stable with respect to (x, y, z) and asymptotically stable with respect to
(x, y) if and only if the equilibrium x = 0, y = 0 of (4.31) is asymptotically
stable. System (4.31) may be viewed as a linear unconstrained Lagrangian
system with additional forces imposed on it. Put

C = −
1

2

(

(B + CD) + (B + CD)t
)

,

F =
1

2

(

(B + CD) − (B + CD)t
)

,

D = −
1

2

(

A + A
t
)

,

G =
1

2

(

A − A
t
)

.

The equations become

ẍα = −Cαβ x
β + Fαβ x

β −Dα
β ẋ

β +Gαβ ẋ
β. (4.32)

These equations are the Euler-Lagrange equations with dissipation and forc-
ing for the Lagrangian

L =
1

2

σ
∑

α=1

(ẋα −Gαβx
β)2 −

1

2
Cαβx

αxβ,

with the Rayleigh dissipation function

1

2
Dαβ ẋ

αẋβ ,

and the nonconservative forces

Fαβ x
β .
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Note that Dαβ = (Dαβb + Dβαb)I
ab(r0)p

0
a.

The next theorem explains how to compute the matrices C and F using
the amended potential of our nonholonomic system.

Theorem 4.11 The entries of the matrices C and F in the dissipative forced
system (4.32), which is equivalent to linear system (4.31), are

Cαβ =
1

2
(∇α∇β + ∇β∇α)U(r0, p0), Fαβ =

1

2
(∇α∇β −∇β∇α)U(r0, p0).

Proof Recall that the operators of covariant differentiation due to the
transport equation are (see (3.4))

∇α =
∂

∂rα
+ Dc

aαpc
∂

∂pa
.

Consequently,

∇β∇α = ∇β

(

∂

∂rα
+ Dc

aαpc
∂

∂pa

)

=

(

∂

∂rβ
+ Dd

bβpd
∂

∂pb

)(

∂

∂rα
+ Dc

aαpc
∂

∂pa

)

=
∂2

∂rβ∂rα
+

∂

∂rβ

(

Dc
aα

∂

∂pa

)

pc + Dd
bβpd

∂2

∂pb∂rα

+ Dd
bβpdD

c
aα

∂

∂pb

(

pc
∂

∂pa

)

.

Therefore, for the amended potential U = V + 1
2I
abpapb we obtain

∇β∇αU =
∂2V

∂rβ∂rα
+

1

2

∂2Iab

∂rβ∂rα
papb +

∂

∂rβ

(

Dc
aαI

ab
)

pcpd

+ Dd
bβ

∂Iab

∂rα
papd + Dd

bβD
c
aαI

abpcpd + Dd
bβD

b
aαI

acpcpd.

Formulae (4.22), (4.23), and (4.24) imply that

(BC + D)αβ =
∂2V

∂rβ∂rα
(r0) +

1

2

∂2Iab

∂rβ∂rα
(r0)p

0
ap

0
b

+
∂

∂rβ

(

Dc
aαI

ab
)

(r0)p
0
cp

0
d + Dd

bβ

∂Iab

∂rα
(r0)p

0
ap

0
d

+ Dd
bβD

c
aαI

ab(r0)p
0
cp

0
d + Dd

bβD
b
aαI

ac(r0)p
0
cp

0
d

= ∇β∇αU(r0, p0).
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Therefore

Cαβ =
1

2
(∇α∇β+∇β∇α)U(r0, p0), Fαβ =

1

2
(∇α∇β−∇β∇α)U(r0, p0). �

Observe that the equilibrium x = 0, y = 0, z = 0 of (4.29) is stable with
respect to (x, y, z) and asymptotically stable with respect to (x, y) if and
only if the equilibrium x = 0, y = 0 of the above linear Lagrangian system is
asymptotically stable. The condition for stability of the equilibrium r = r0,
p = p0 of our nonholonomic system becomes: all eigenvalues of the matrix

(

0 I
∇β∇αU(r0, p0) −(DβαbI

ab(r0) + Baαβ(r0))p
0
a

)

have negative real parts.
If the transport equation is integrable (hypothesis H2), then the opera-

tors ∇α and ∇β commute, and the corresponding linear Lagrangian system
(4.32) has no nonconservative forces imposed on it. In this case the sufficient
conditions for stability are given by the Thompson theorem (Thompson and
Tait [1987], Chetaev[1959]): the equilibrium x = 0 of (4.32) is asymptoti-
cally stable if the matrices C and D are positive definite. These conditions
are identical to the energy-momentum conditions for stability obtained in
Theorem 4.7. Notice that if C and D are positive definite, then matrix
(4.30) is positive definite. This implies that the matrix A in Theorem 4.4
has spectrum in the left half plane. Further, our coordinate transformations
here give the required form for the nonlinear terms of Theorem 4.4. There-
fore, the above analysis shows that hypothesis H3 implies the hypotheses of
Theorem 4.4.

Remark. On the other hand (cf. Chetaev [1959]), if the matrix C is not
positive definite (and thus the equilibrium of the system ẍ = −Cx is unsta-
ble), and the matrix D is degenerate, then in certain cases the equilibrium of
the equations ẍ = −Cx−Dẋ+Gẋ may be stable. Therefore, the conditions
of Theorem 4.7 are sufficient, but not necessary.

4.7 The Rattleback

Here we outline the stability theory of the rattleback to illustrate the results
discussed above. The details may be found in Karapetyan [1980, 1981] and
Markeev [1992].
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Recall that the Lagrangian and the constraints are

L =
1

2

[

A cos2 ψ +B sin2 ψ +m(γ1 cos θ − ζ sin θ)2
]

θ̇2

+
1

2

[

(A sin2 ψ +B cos2 ψ) sin2 θ + C cos2 θ
]

φ̇2

+
1

2

(

C +mγ2
2 sin2 θ

)

ψ̇2 +
1

2
m
(

ẋ2 + ẏ2
)

+m(γ1 cos θ − ζ sin θ)γ2 sin θ θ̇ψ̇ + (A−B) sin θ sinψ cosψ θ̇φ̇

+ C cos θ φ̇ψ̇ +mg(γ1 sin θ + ζ cos θ)

and
ẋ = α1θ̇ + α2ψ̇ + α3φ̇, ẏ = β1θ̇ + β2ψ̇ + β3φ̇,

where the terms were defined in §1.6.
Using the Lie algebra element corresponding to the generator ξQ =

α3∂x + β3∂y + ∂φ we find the nonholonomic momentum to be

p = I(θ, ψ)φ̇ + [(A−B) sin θ sinψ cosψ −m(γ1 sin θ + ζ cos θ)γ2] θ̇

+
[

C cos θ +m(γ2
2 cos θ + γ1(γ1 cos θ − ζ sin θ))

]

ψ̇,

where

I(θ, ψ) = (A sin2 ψ +B cos2 ψ) sin2 θ + C cos2 θ

+m(γ2
2 + (γ1 cos θ − ζ sin θ)2).

The amended potential becomes

U =
p2

2I(θ, ψ)
−mg(γ1 sin θ + ζ cos θ).

The relative equilibria of the rattleback are

θ = θ0, ψ = ψ0, p = p0

where θ0, ψ0, and p0 satisfy the conditions

mg(γ1 cos θ0 − ζ sin θ0)I
2(θ0, ψ0)

+
[

(A sin2 ψ0 +B cos2 ψ0 − C) sin θ0 cos θ0

−m(γ1 cos θ0 − ζ sin θ0)(γ1 sin θ0 + ζ cos θ0)
]

p2
0 = 0,

mgγ2I
2(θ0, ψ0) + [(A−B) sin θ0 sinψ0 cosψ0

−mγ2(γ1 sin θ0 + ζ cos θ0)] p
2
0 = 0,
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which are derived from ∇θU = 0, ∇ψU = 0.
In particular, consider the relative equilibria

θ =
π

2
, ψ = 0, p = p0,

that represent the rotations of the rattleback about the vertical axis of in-
ertia. For such relative equilibria ξ = ζ = 0, and therefore the conditions
for existence of relative equilibria are trivially satisfied with an arbitrary
value of p0. Omitting the computations of the linearized equations for the
rattleback, which have the form discussed in §4.6 (see Karapetyan [1980] for
details), and the corresponding characteristic polynomial, we just state here
the Routh-Hurwitz conditions for all eigenvalues to have negative real parts:

(

R− P
p2
0

B2

)

p2
0

B2
> S > 0, (4.33)

(A− C)(r2 − r1)p0 sinα cosα > 0. (4.34)

If these conditions are satisfied, then the relative equilibrium is stable, and
it is asymptotically stable with respect to (θ, θ̇, ψ, ψ̇).

In the above formulae r1 and r2 stand for the radii of curvature of the
body at the contact point, α is the angle between horizontal inertia axis ξ
and the r1-curvature direction, and

P = (A+ma2)(C +ma2),

R =
[

(A+ C −B + 2ma2)2

− (A+ C −B + 2ma2)ma(r1 + r2) +m2a2r1r2
] p2

0

B2

−

[

(A−B)
p2
0

B2
+m(a− r1 sin2 α− r2 cos2 α)

(

g + a
p2
0

B2

)]

(A+ma2)

−

[

(C −B)
p2
0

B2
+m(a− r2 sin2 α− r1 cos2 α)

(

g + a
p2
0

B2

)]

(C +ma2),

S = (A−B)(C −B)
p4
0

B4
+m2(a− r1)(a− r2)

(

g +m
p2
0

B2

)2

+m
p2
0

B2

(

g + a
p2

B2

)

[

A(a− r1 cos2 α− r2 sin2 α)

+ C (a− r1 sin2 α− r2 cos2 α) −B(2a− r1 − r2)
]

.

Condition (4.33) imposes restrictions on the mass distribution, the mag-
nitude of the angular velocity, and the shape of the rattleback only. Condi-
tion (4.34) distinguishes the direction of rotation corresponding to the stable
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relative equilibrium. The rotation will be stable if the largest (smallest) prin-
cipal inertia axis precedes the largest (smallest) direction of curvature at the
point of contact.

The rattleback is also capable of performing stationary rotations with its
center of mass moving at a constant rate along a circle. A similar argument
gives the stability conditions in this case. The details may be found in
Karapetyan [1981] and Markeev [1992].

4.8 Conclusions

We have given a general energy-momentum method for analyzing the sta-
bility of relative equilibria of a large class of nonholonomic systems. We
have also shown that for systems to which the classical Lyapunov-Malkin
theorem applies, one can interpret and even verify the hypotheses in terms
of definiteness conditions on the second variation of energy-momentum func-
tions. We have also studied stability of some systems (in the pure transport
case) for which energetic arguments give stability, but the hypotheses of the
Lyapunov-Malkin theorem fail (because eigenvalues are on the imaginary
axis).

As indicated in the text, not all nonholonomic systems satisfy the as-
sumptions made in this paper (and of the Lyapunov-Malkin theorem) and
we intend to consider these in a forthcoming publication.
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