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Abstract

Based on recent advances in the theory of Euler–Poincaré (EP) equations with ad-
vected parameters and using the methods of Hamilton’s principle asymptotics and
averaged Lagrangians, we propose a new class of models for ideal incompressible
fluids in three dimensions, including stratification and rotation for GFD applica-
tions. In these models, the amplitude of the rapid fluctuations introduces a length
scale, α, below which wave activity is filtered by both linear and nonlinear disper-
sion. This filtering enhances the stability and regularity of the new fluid models
without compromising either their large scale behavior, or their conservation laws.
These models also describe geodesic motion on the volume-preserving diffeomor-
phism group for a metric containing the H

1 norm of the fluid velocity.

PACS Numbers: 03.40.Gc, 47.10.+g, 03.40.-t, 03.40.-z
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Linear dispersion is well known to have profound effects on wave mean flow interaction
in fluids [1]. In one dimension, for example, linear dispersion may balance nonlinear
steepening to produce coherent (spatially localized) structures such as solitary waves
and, in special circumstances, solitons. (Solitons are solitary waves that scatter among
themselves elastically – up to a phase shift.) There is a soliton-bearing equation due to
Camassa and Holm [2] that contains both linear and nonlinear dispersion, namely

ut + 2κux + 3uux − α2uxxt = 2α2uxuxx + α2uuxxx , (1)

where u : R×R → R is the fluid velocity in the x direction and subscripts denote partial
derivatives. The constants κ and α have units of speed and length, respectively. The
linear dispersion relation for CH in (1) is ω = 2κk/(1 + α2k2). The κ 6= 0 solutions of
CH are solitons which behave similarly to those for KdV (ut +2κux +3uux +α2c0uxxx =
0, with c0 a speed). However, for κ = 0, the linear dispersion in CH vanishes and
its remaining nonlinear dynamics allows the superposition of N -solitons, as u(x, t) =
∑N

i=1
pi(t) exp(−|x − qi(t)|/α). These solutions possess N peaks at which ux reflects in

sign. The N -soliton solutions of CH are called peakons, and their dynamics has been
well studied [2]-[11].

Remarkably, CH describes geodesic motion on the diffeomorphism group of the real
line R for the metric given by the H1

α norm of the fluid velocity, ‖u‖2
α =

∫

R
dx (u2+α2u2

x),
with parameter α [12]. The proof of this property in the case κ = 0 is obtained easily,
by noticing that CH is a one-dimensional Euler–Poincaré (EP) equation [13], [14], [15],

vt + uvx + 2vux = 0, where v ≡
δl

δu
and

δlCH

δu
= u − α2uxx , (2)

for the Lagrangian l given by the metric lCH = 1

2
‖u‖2

α. (EP equations are the Lagrangian
analog of Lie-Poisson Hamiltonian equations [14].) This geodesic property readily gen-
eralizes to n dimensions and thus produces an n-dimensional CH equation via the EP
theory. We shall examine this later, but first we emphasize a key feature of the nonlinear
dispersion in the EP equation (2) for l = lCH : namely, its Helmholtz smoothing. That is,
the transport velocity u = (1 − α2∂2

x)
−1v is Helmholtz-smoothed relative to the momen-

tum v for CH. This smoothing endows CH with much more regularity than the Riemann
equation ut + 3uux = 0, which is the EP equation for α = 0 corresponding to the L2

norm |u|2 =
∫

R
dx u2. The mechanism of this Helmholtz smoothing can be understood

by taking the Fourier transform of equation (2) to find (with up = vp/1 + α2p2)

dvk

dt
+ i

∑

|n+p|=|k|

n + 2p

1 + α2p2
vpvn = 0 . (3)

At low wavenumbers, when |n+2p| ≈ (1+α2p2), nonlinear steepening produces a forward
cascade in wavenumber. However, at higher wavenumbers, when |n + 2p| < (1 + α2p2),
this cascade is quickly stifled by Helmholtz smoothing. Thus, the introduction of the
length scale α and the associated Helmholtz smoothing in its nonlinear dispersion changes
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the shock behavior of the Riemann equation for α = 0 into the peakon behavior of the
CH equation. And the Lagrangian of the one-dimensional EP equation (2) changes from
the L2 norm of the fluid velocity (the kinetic energy) for α = 0 to the H1

α norm.

Applications to GFD. The Euler-Boussinesq (EB) equations for a rotating stratified
incompressible ideal fluid are [16]

du

dt
− u × curlR + gbẑ +

1

ρ0

∇ p = 0 , ∇ · u = 0 ,
db

dt
= 0 , (4)

where d/dt = ∂/∂t+u ·∇ is the material derivative, b is buoyancy, p is pressure, g and ρ0

are constants, and curlR = 2Ω + O(β), β � 1, is the Coriolis parameter, with constant
angular frequency Ω. These equations are EP equations [15], namely

d

dt

1

D

δl

δu
+

1

D

δl

δuj
∇uj +

1

D

δl

δb
∇b −∇

δl

δD
= 0 , (5)

which are stationarity conditions for the EB Lagrangian lEB(u, b, D) given by

lEB =

∫

d 3x ρ0D
(1

2
|u|2 + u · R(x) − gbz

)

− p(D − 1) , (6)

for certain constrained variations and for velocity tangential to the boundary. The buoy-
ancy b and the volume element D satisfy advection dynamics, db/dt = 0, dD/dt =
−D∇ · u and incompressibility (∇ · u = 0) holds when the constraint D = 1 is applied.
The Euler equations — namely (4) without rotation and buoyancy — are geodesic on
the volume-preserving diffeomorphisms with the L2 norm,

∫

dnx|u|2 [17]. There is a
Kaluza-Klein construction in which the EB equations are also geodesic [18].

Deriving α models. We consider the mean dispersive effects of internal gravity waves
on the solutions of the EB equations [1]. For this, we consider an individual fluid parcel
trajectory. In the presence of a wave that induces a displacement field αξ, this fluid
trajectory is given by xξ = x+αξ(x, t). Here, the constant length α scales the amplitude
of the displacement (or its amplitude-to-wavelength ratio α/L � 1 in a nondimensional
formulation) and the vector ξ has mean ξ = 0. The corresponding fluid velocity is
uξ = u(x + αξ) = u(x) + αξ · ∇u + O(α2). To obtain the mean dispersive effects due to
internal wave displacements, we average the Lagrangian lEB over the phase of the rapid
fluctuations following the fluid parcels to find

lEB =

∫

d 3x

{

ρ0D
(1

2
|uξ|2 + uξ · Rξ(x) − gbξzξ

)

− p(D − 1)

}

+ O(α2ε) , (7)

in which we neglect corrections due to fluctuations of the volume element D of order
O(α2ε), where ε � 1 is the ratio of time scales between fluctuations and mean quantities.
(See [1], [19] for discussions of such higher order corrections.) We approximate the mean
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kinetic energy in a Taylor expansion as follows,

1

2
|uξ(x, t)|2 =

1

2
|u(x + αξ, t)|2 =

1

2
|u(x, t) + αξ · ∇u|2 + O(α4)

=
1

2
|u|2 +

α2

2
|ξ · ∇u|2 + O(α4) ≈

1

2
|u|2 +

α2

2
|∇u|2 . (8)

In the last step, we drop terms of order O(α4) and assume isotropy of the rapid fluctu-
ations, so that ξiξj ≈ δij . (This assumption may require modification near boundaries.)
There is a corresponding expansion for the rotational terms. On the other hand, since the
buoyancy is constant following a fluid parcel, we find bξ(x)(z + αξ · ẑ) = b(x)z. Thus,
up to terms of order O(α2ε, α4) we have

lEB =

∫

dnx

{

ρ0D

(

1

2
|u|2 +

α2

2
|∇u|2 + u · R(x)

+α2tr(∇u · ∇RT ) − gbz

)

− p(D − 1)

}

. (9)

Here, tr(∇u · ∇RT ) = ω ·Ω + O(β), where ω = curl u. We shall omit the α2ω ·Ω term
in what follows, as well as the order O(α2β) term. This omission neglects the interaction
of waves with rotation and simplifies the remaining presentation, without any significant
loss of generality. The EBα equations corresponding to lEB as calculated from EP (5)
are

dv

dt
+ vj∇uj − u × curlR + gbẑ + ∇ π = 0 , ∇ · u = 0 = ∇ · v , (10)

where v = u − α2∆u , π =
p

ρ0

−
1

2
|u|2 −

α2

2
|∇u|2 ,

with u · n̂ = 0 and n̂× (n̂ · ∇u) = 0 on the boundary, and advection dynamics for b and
D. The linear dispersion relation is

ω2 =
N2|ẑ × k|2 + (k · 2Ω)2

|k|2(1 + α2|k|2)
, with N = −

g

ρ0

dρ̄(z)

dz
, (11)

where N is the buoyancy frequency. Requiring the motion equation in (10) to preserve
incompressibility implies a Poisson equation for the pressure π with a Neumann boundary
condition, obtained by taking the normal component of the motion equation evaluated
at the boundary. Of course, the EBα equation (10) reduces to the EB equation (4) when
we set α = 0. Not unexpectedly, the EBα equation is also geodesic, for a metric that
involves the H1

α norm [20].

Properties of α models. The EBα equation (10) conserves an energy Eα involving the
H1

α norm, ‖u‖2
α,

Eα =

∫

d 3x

{

ρ0

(

1

2
|u|2 +

α2

2
|∇u|2 + gbz

)}

=
ρ0

2
‖u‖2

α + ρ0g

∫

d 3x bz . (12)
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This is the sum of the Lagrangian mean kinetic and potential energies. Since b is advected,
the potential energy integral is bounded (for a finite domain). Consequently, conservation
of Eα gives H1

α control on u, or L2 control on ∇u. The curl of the EBα motion equation
yields the vorticity equation,

∂q

∂t
= q · ∇u− u · ∇q − g∇b × ẑ , where q ≡ curl(v + R) , (13)

Thus, the Helmholtz-smoothed quantity u = (1 − α2∆)−1v is the transport velocity for
the generalized vorticity q and the “vortex stretching” term q · ∇u involves ∇u, whose
L2 norm is controlled by the conservation of energy in equation (12). Boundedness of this
norm will be useful in future analytical studies of the EBα equation. For example, the
filtering by the α term allows nonlinear Liapunov stability conditions to be formulated
for equilibrium solutions of the EBα model. In fact, Abarbanel et al. [21], introduced
the notion of “conditional” Liapunov stability for the EB model, using wavenumber
conditions that now turn out to be satisfied for the EBα model. Equation (13) implies
the potential vorticity qEBα = q ·∇b is conserved along fluid trajectories, i.e., ∂qEBα/∂t+
u · ∇qEBα = 0. This also follows from the Kelvin-Noether circulation theorem for the
EBα model, d

dt

∮

γ
(v + R) · dx = −

∮

γ
gz db, where the loop γ moves with the transport

velocity u. Hence EBα conserves
∫

d 3x Φ(qEBα, b) for any function Φ. These are the
Casimirs for the Lie-Poisson Hamiltonian formulation of the EBα model.

When the further approximation is made that the EBα fluid is in hydrostatic balance,
i.e., that ∂p/∂z + ρ0gb = 0, then we find a new primitive equation α-model (PEα).
We expect this PEα model to be useful for numerically simulating large-scale weather
patterns and global wind-driven ocean circulation over long times, because its linear and
nonlinear dispersion filters out rapid gravity wave fluctuations while taking their mean
effects into account at coarse scales L, where α/L � 1. We address the three-dimensional
mechanism of this nonlinear dispersion next.

n-dimensional CH. Ignoring buoyancy and rotation terms in lEB in equation (9) re-
moves the linear dispersion and gives the Lagrangian for the following n-dimensional
incompressible generalization of the CH equation (1),

∂v

∂t
+ u · ∇v + vj∇uj + ∇ π = 0 , ∇ · u = 0 = ∇ · v , (14)

where v = u− α2∆u , π =
p

ρ0

−
1

2
|u|2 −

α2

2
|∇u|2 .

Equations of the type (14) but with additional dissipative terms were considered previ-
ously in the theory of second grade fluids [22] and were treated recently in the math-
ematical literature [23], [24]. Second grade fluid models are derived from continuum
mechanical principles of objectivity and material frame indifference, after which ther-
modynamic principles such as the Clausius-Duhem relation and stability of stationary
equilibrium states are imposed that restrict the allowed values of the parameters in these
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models. In contrast, the CH equation (14) is derived here by applying asymptotic ex-
pansions, Lagrangian means, and an assumption of isotropy of fluctuations in Hamilton’s
principle for an ideal incompressible fluid. This derivation provides the interpretation
of α as the typical amplitude of the rapid fluctuations over whose phase the Lagrangian
mean is taken in Hamilton’s principle.

The n-dimensional CH equation (14) is geodesic on the volume-preserving diffeomor-
phisms with the H1

α norm. Its conservation laws include energy 1

2

∫

d 3xu ·v and helicity
1

2

∫

d 3xv · curlv. Its steady vortical flows include the analogs of the Beltrami flows
curlv = λu. In the periodic case, we define vk as the k-th Fourier mode of the specific
momentum v ≡ (1 − α2∆)u; so that vk ≡ (1 + α2|k|2)uk. Then equation (14) becomes

Π⊥

(

d

dt
vk − i

∑

p+n=k

vp

1 + α2|p|2
× (n × vn)

)

= 0, (15)

where Π⊥ is the Leray projection onto Fourier modes transverse to k (this ensures in-
compressibility). Hence, the nonlinear coupling among the modes is suppressed by the
denominator when 1 + α2|p|2 � |n|.

An essential idea of the n-dimensional CH equation (14) is that its specific momentum
v is transported by a velocity u which is smoothed, or filtered, by inverting the elliptic
Helmholtz operator (1 − α2∆). The effect on length scales smaller than α is that steep
gradients of the specific momentum v tend not to steepen much further, and thin vortex
tubes tend not to get much thinner as they are transported. And, as numerical simula-
tions verify [25], the effect on length scales larger than α is negligible. This is also borne
out for vortex interaction in two dimensions [26]. Hence, the n-dimensional CH equation
and the other α models preserve the assumptions under which they are derived. One
may also formulate the n-dimensional CH equation on a general Riemannian manifold.
The formulation of CH as a geodesic spray equation on a Riemannian manifold is useful
in studying certain analytical properties of its solutions [27]. Finally, the formulation of
compressible α models is straightforward, see [15].
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