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Abstract

This paper compares the Hamiltonian approach to systems with nonholonomic constraints
(see Weber [1982], Arnold [1988], and Bates and Sniatycki [1993], van der Schaft and Maschke
[1994] and references therein) with the Lagrangian approach (see Koiller [1992], Ostrowski [1996]
and Bloch, Krishnaprasad, Marsden and Murray [1996]). There are many differences in the
approaches and each has its own advantages; some structures have been discovered on one side
and their analogues on the other side are interesting to clarify. For example, the momentum
equation and the reconstruction equation were first found on the Lagrangian side and are useful
for the control theory of these systems, while the failure of the reduced two form to be closed
(i.e., the failure of the Poisson bracket to satisfy the Jacobi identity) was first noticed on the
Hamiltonian side. Clarifying the relation between these approaches is important for the future
development of the control theory and stability and bifurcation theory for such systems. In
addition to this work, we treat, in this unified framework, a simplified model of the bicycle (see
Getz [1994] and Getz and Marsden [1995]), which is an important underactuated (nonminimum
phase) control system.
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1 Introduction

The General Setting. Many important problems in robotics, the dynamics of wheeled vehicles
and motion generation, involve nonholonomic mechanics, which typically means mechanical systems
with rolling constraints. Some of the important issues are trajectory tracking, dynamic stability
and feedback stabilization (including nonminimum phase systems), bifurcation and control. Many
of these systems have symmetry, such as the group of Euclidean motions in the plane or in space
and this symmetry plays an important role in the theory.

In the last several years, several basic works have been done from both the Hamiltonian and
the Lagrangian points of view. Papers like Weber [1986], Koiller [1992], Bloch and Crouch [1992],
Krishnaprasad, Dayawansa and Yang [1992, 1993], Bates and Sniatycki [1993], van der Schaft
and Maschke [1994], Hermans [1995], Marle [1995], Ostrowski [1996] and Bloch, Krishnaprasad,
Marsden and Murray [1996] have laid a firm foundation for understanding nonholonomic mechanics
with symmetry.

Bates and Sniatycki [1993], hereafter denoted [BS], developed the Hamiltonian side, while Bloch,
Krishnaprasad, Marsden and Murray [1996], hereafter denoted [BKMM], has explored the La-
grangian side. It was not obvious how these two approaches were equivalent because, for example,
[BKMM] developed the momentum equation and the reduced Lagrange-d’Alembert equations and
it is not obvious how these correspond to the developments in [BS]. Our aim is to establish links
between these two sides and use the ideas and results of each to shed light on the other, with the
goal of deepening our understanding of both points of view. We hope that it will aid related efforts
such as extending the results of energy-momentum method for stability of relative equilibria and
the theory of Hamiltonian bifurcations to nonholonomic mechanics. In the spirit of [BKMM], we
do many of the calculations in coordinates to help in the study of examples.

We illustrate the basic theory with the snakeboard, the well known example treated in [BKMM].
We also treat a simplified model of the bicycle (introduced in Getz [1994] and Getz and Marsden
[1995]) and obtain results that were not known previously. This is an important prototype control
system because it is an underactuated balance system.

Outline of the Paper. We begin in §2 by recalling some of the main results of [BKMM] and of
[BS] in the general context of nonholonomically constrained systems. In that section, we establish
the precise link between them. The snakeboard example is begun in this section.
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In §3, we treat systems with symmetry and study the momentum equation, the reconstruction
equation and the reduced Lagrange-d’Alembert equations from both the Hamiltonian and the
Lagrangian points of view. This clarifies which construction in [BS] corresponds to the momentum
equation of [BKMM]. This section also continues the snakeboard example and treats the bicycle.

Summary of the Main Results. The main results of the present work are as follows:

• The precise relation between the constructions in the papers [BS] and [BKMM] are given.

• The reduced Lagrange-d’Alembert equations established in [BKMM] are shown to be equiv-
alent to the reduced nonholonomic Hamilton equations implicitly given in [BS].

• The relation between the constructions is illustrated with the example of the snakeboard.

• A simplified model of the bicycle is treated.

2 General Nonholonomic Mechanical Systems

Following the approaches of both [BS] and [BKMM], we first consider mechanics in the presence
of homogeneous linear nonholonomic velocity constraints. For now, no symmetry assumptions are
made; we add such assumptions in the following sections.

2.1 Review of the Lagrangian Approach

We start with a configuration space Q with local coordinates denoted qi, i = 1, . . . , n and a distri-
bution D on Q that describes the kinematic nonholonomic constraints. The distribution is given
by the specification of a linear subspace Dq ⊂ TqQ of the tangent space to Q at each point q ∈ Q.

In this paper we consider only homogeneous velocity constraints. The extension to affine con-
straints is straightforward, as in [BKMM].

The dynamics of a nonholonomically constrained mechanical system is governed by the Lagrange-
d’Alembert principle. The principle states that the equations of motion of a curve q(t) in configura-
tion space are obtained by setting to zero the variations in the integral of the Lagrangian subject to
variations lying in the constraint distribution and that the velocity of the curve q(t) itself satisfies
the constraints; that is, q̇(t) ∈ Dq(t). Standard arguments in the calculus of variations show that
this “constrained variational principle” is equivalent to the equations

−δL :=

(

d

dt

∂L

∂q̇i
−
∂L

∂qi

)

δqi = 0, (2.1.1)

for all variations δq such that δq ∈ Dq at each point of the underlying curve q(t). These equations
are often equivalently written as

d

dt

∂L

∂q̇i
−
∂L

∂qi
= λi, (2.1.2)

where λi is a set of Lagrange multipliers (i = 1, . . . , n), representing the force of constraint. Intrin-
sically, this multiplier λ is a section of the cotangent bundle over q(t) that annihilates the constraint
distribution. The Lagrange multipliers are often determined by using the condition that q̇(t) lies
in the distribution.
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In Bloch and Crouch [1992] and Lewis [1996], the Lagrange-d’Alembert equations are shown to
have the form of a generalized acceleration condition ∇q̇ q̇ = 0 for a suitable affine connection on
Q and the force of constraint λ is interpreted as a generalized second fundamental form (as is well
known for systems with holonomic constraints; see Abraham and Marsden [1978], for example). In
this form of the equations, one can add external forces directly to the right hand sides so that the
equations now become in the form of a generalized Newton law. This form is convenient for control
purposes.

To explore the structure of the Lagrange-d’Alembert equations in more detail, let {ωa}, a =
1, . . . , k be a set of k independent one forms whose vanishing describes the constraints; i.e., the
distribution D. One can introduce local coordinates qi = (rα, sa) where α = 1, . . . n− k, in which
ωa has the form

ωa(q) = dsa +Aaα(r, s)drα (2.1.3)

where the summation convention is in force. In other words, we are locally writing the distribution
as

D = {(r, s, ṙ, ṡ) ∈ TQ | ṡ+Aaαṙ
α = 0}.

The equations of motion (2.1.1) may be rewritten by noting that the allowed variations δqi =
(δrα, δsa) satisfy δsa +Aaαδr

α = 0. Substitution into (2.1.1) gives

(

d

dt

∂L

∂ṙα
−
∂L

∂rα

)

= Aaα

(

d

dt

∂L

∂ṡa
−
∂L

∂sa

)

. (2.1.4)

Equation (2.1.4) combined with the constraint equations

ṡa = −Aaαṙ
α (2.1.5)

gives a complete description of the equations of motion of the system; this procedure may be viewed
as one way of eliminating the Lagrange multipliers. Using this notation, one finds that λ = λaω

a,
where λa = d

dt
∂L
∂ṡa

− ∂L
∂sa

.
Equations (2.1.4) can be written in the following way:

d

dt

∂Lc
∂ṙα

−
∂Lc
∂rα

+Aaα
∂Lc
∂sa

= −
∂L

∂ṡb
Bb
αβ ṙ

β, (2.1.6)

where

Lc(r
α, sa, ṙα) = L(rα, sa, ṙα,−Aaα(r, s)ṙ

α).

is the coordinate expression of the constrained Lagrangian defined by Lc = L|D and where

Bb
αβ =

(

∂Abα
∂rβ

−
∂Abβ
∂rα

+Aaα
∂Abβ
∂sa

−Aaβ
∂Abα
∂sa

)

. (2.1.7)

Letting dωb be the exterior derivative of ωb, a computation shows that

dωb(q̇, ·) = Bb
αβ ṙ

αdrβ
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and hence the equations of motion have the form

−δLc =

(

d

dt

∂Lc
∂ṙα

−
∂Lc
∂rα

+Aaα
∂Lc
∂sa

)

δrα = −
∂L

∂ṡb
dωb(q̇, δr).

This form of the equations isolates the effects of the constraints, and shows, in particular, that in
the case where the constraints are integrable (i.e., dω = 0), the equations of motion are obtained
by substituting the constraints into the Lagrangian and then setting the variation of Lc to zero.
However in the non-integrable case the constraints generate extra (curvature) terms, which must
be taken into account.

The above coordinate results can be put into an interesting and useful intrinsic geometric
framework. The intrinsically given information is the distribution and the Lagrangian. Assume
that there is a bundle structure πQ,R : Q → R for our space Q, where R is the base manifold and
πQ,R is a submersion and the kernel of TqπQ,R at any point q ∈ Q is called the vertical space Vq.
One can always do this locally. An Ehresmann connection A is a vertical valued one form on Q
such that

1. Aq : TqQ→ Vq is a linear map and

2. A is a projection: A(vq) = vq for all vq ∈ Vq.

Hence, TqQ = Vq ⊕Hq where Hq = kerAq is the horizontal space at q, sometimes denoted horq.
Thus, an Ehresmann connection gives us a way to split the tangent space to Q at each point into
a horizontal and vertical part.

If the Ehresmann connection is chosen in such a way that the given constraint distribution
D is the horizontal space of the connection; that is, Hq = Dq, then in the bundle coordinates
qi = (rα, sa), the map πQ,R is just projection onto the factor r and the connection A can be
represented locally by a vector valued differential form ωa:

A = ωa
∂

∂sa
, ωa(q) = dsa +Aaα(r, s)dr

α,

and the horizontal projection is the map

(ṙα, ṡa) 7→ (ṙα,−Aaα(r, s)ṙα). (2.1.8)

The curvature of an Ehresmann connection A is the vertical valued two form defined by its
action on two vector fields X and Y on Q as B(X,Y ) = −A([horX,horY ]) where the bracket
on the right hand side is the Jacobi-Lie bracket of vector fields obtained by extending the stated
vectors to vector fields. This definition shows the sense in which the curvature measures the failure
of the constraint distribution to be integrable.

In coordinates, one can evaluate the curvature B of the connection A by the following formula:

B(X,Y ) = dωa(horX,hor Y )
∂

∂sa
,

so that the local expression for curvature is given by

B(X,Y )a = Ba
αβX

αY β (2.1.9)
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where the coefficients Ba
αβ are given by (2.1.7).

The Lagrange d’Alembert equations may be written intrinsically as

δLc = 〈FL,B(q̇, δq)〉,

in which δq is a horizontal variation (i.e., it takes values in the horizontal space) and B is the
curvature regarded as a vertical valued two form, in addition to the constraint equationsA(q)· q̇ = 0.
Here 〈 , 〉 denotes the pairing between a vector and a dual vector and

δLc =

〈

δrα,
∂Lc
∂rα

−
d

dt

∂Lc
∂ṙα

−Aaα
∂Lc
∂sa

〉

.

As shown in [BKMM], when there is a symmetry group G present, there is a natural bundle
one can work with and put a connection on, namely the bundle Q → Q/G. In the generality of
the preceding discussion, one can get away with just the distribution itself and can introduce the
corresponding Ehresmann connection locally. In fact, the bundle structure Q→ R is really a “red
Herring”. The notion of curvature as a TqQ/Dq valued form makes good sense and is given locally
by the same expressions as above. However, keeping in mind that we eventually want to deal with
symmetries and in that case there is a natural bundle, the Ehresmann assumption is nevertheless
a reasonable bridge to the more interesting case with symmetries.

2.2 Review of the Hamiltonian Formulation

The approach of [BS] starts on the Lagrangian side with a configuration space Q and a Lagrangian
L of the form kinetic energy minus potential energy, i.e.,

L(q, q̇) =
1

2
〈〈q̇, q̇〉〉 − V (q),

where 〈〈 , 〉〉 is a metric on Q defining the kinetic energy and V is a potential energy function. We
do not restrict ourselves to Lagrangians of this form.

As above, our nonholonomic constraints are given by a distribution D ⊂ TQ. We also let
Do ⊂ T ∗Q denote the annihilator of this distribution.

As above, the basic equations are given by the Lagrange-d’Alembert principle.
The Legendre transformation FL : TQ → T ∗Q, assuming that it is a diffeomorphism, is used

to define the Hamiltonian H : T ∗Q → R in the standard fashion (ignoring the constraints for the
moment):

H = 〈p, q̇〉 − L = piq̇
i − L.

Here, the momentum is p = FL(vq) = ∂L/∂q̇. Under this change of variables, the equations of
motion are written in the Hamiltonian form as

q̇i =
∂H

∂pi
.

ṗi = −
∂H

∂qi
+ λaω

a
i ,

where i = 1, . . . , n, together with the constraint equations.
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The preceding Hamiltonian equations can be rewritten as

X Ω = dH + λaπ
∗
Qω

a, (2.2.1)

where X is the vector field on T ∗Q governing the dynamics, Ω is the canonical symplectic form on
T ∗Q, and πQ : T ∗Q → Q is the cotangent bundle projection. We may write X in coordinates as
X = q̇i∂qi + ṗi∂pi .

On Lagrangian side, we saw that one can get rid of the Lagrangian multipliers. On the Hamilto-
nian side, it is also desirable to model the Hamiltonian equations without the Lagrange multipliers
by a vector field on a submanifold of T ∗Q. We do this in what follows.

First of all, we define the set M = FL(D) ⊂ T ∗Q, so that the constraints on the Hamiltonian
side are given by p ∈ M. Besides M, another basic object we deal with is defined as

F = (TπQ)−1(D) ⊂ TT ∗Q.

Using a basis ωa of the annihilator Do, we can write these spaces as

M = {p ∈ T ∗Q | ωa((FL)−1(p)) = 0}, (2.2.2)

and
F = {u ∈ TT ∗Q |

〈

π∗Qω
a, u
〉

= 0}. (2.2.3)

Finally, we define
H = F ∩ TM.

Using natural coordinates (qi, pi, q̇
i, ṗi) on TT ∗Q, we see that the distribution F naturally

lifts the constraint on q̇ from TQ to TT ∗Q. On the other hand, the space M puts the associated
constraints on the variable p and therefore the intersection H puts the constraints on both variables.

To eliminate the Lagrange multipliers, we regard the Hamiltonian equations as a vector field
on the constraint submanifold M ⊂ T ∗Q which takes values in the constraint distribution H. Next
we recall from [BS] how to construct these equations intrinsically using the ideas of symplectic
geometry.

A result of [BS] is that ΩH, the restriction of the canonical two-form Ω of T ∗Q fiberwise to the
distribution H of the constraint submanifold M, is nondegenerate. Note that ΩH is not a true two
form on a manifold, so it does not make sense to speak about it being closed. We speak of it as a
fiber-restricted two form to avoid any confusion. Of course it still makes sense to talk about it being
nondegenerate; it just means nondegenerate as a bilinear form on each fiber of H. The dynamics
is then given by the vector field XH on M which takes values in the constraint distribution H and
is determined by the condition

XH ΩH = dHH (2.2.4)

where dHH is the restriction of dHM to H. We will be exploring the coordinate meaning of this
condition and its comparison with the Lagrangian formulation in the subsequent sections.

2.3 Lagrangian Side

We now construct the geometric structures on the tangent bundle TQ corresponding to those on
the Hamiltonian side from the preceding subsection and formulate a similar procedure for obtaining
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the equations of motion. By doing this, it will be easier to made comparison with the geometric
constructions and analytic formulations in [BKMM].

First of all, we can define the energy function E simply as E = H ◦ FL and pull back to TQ
the canonical two-form on T ∗Q and denote it by ΩL.

We define the distribution C = (TτQ)−1(D) ⊂ TTQ, where τQ : TQ → Q. In coordinates, the
distribution C consists of vectors annihilated by the form τ∗Qω

a:

C = {u ∈ TTQ |
〈

τ∗Qω
a, u
〉

= 0}. (2.3.1)

When C is restricted to the constraint submanifold D ⊂ TQ, we obtain the constraint distribution
K:

K = C ∩ TD. (2.3.2)

Clearly M = FL(D) and H = TFL(K).
The dynamics is given by a vector field XK on the manifold D which takes values in K and

satisfies the equation
XK ΩK = dEK, (2.3.3)

where dEK and ΩK are the restrictions of dED and ΩD respectively to the distribution K and where
ED and ΩD are the restrictions of E and ΩL to D.

2.4 The Equivalence of the Hamiltonian and the Lagrange-d’Alembert Formu-

lations

The Lagrangian procedure on TQ formulated in the preceding subsection acts as a bridge between
[BS] and [BKMM]. We can show the correctness of the Lagrangian procedure given above by
(carefully) invoking the results of [BS] (generalized to arbitrary Lagrangians and with some gaps
filled in), or by checking the methods against the results of [BKMM]. We choose the latter method.

Theorem 2.1 Consider a configuration space Q, a hyperregular Lagrangian L and a distribution
D that describes the kinematic nonholonomic constraints. The K-valued vector field XK on D given
by the equation

XK ΩK = dEK (2.4.1)

defines dynamics that are equivalent to the Lagrange-d’Alembert equations together with the con-
straints.

Proof Consider the following form of the equations: XH ΩM = dHM on H; that is,

〈XH ΩM, u〉 = 〈dHM, u〉 ,

for all u ∈ H. If we rewrite this in the form 〈dHM −XH ΩM, u〉 = 0, then on the Lagrangian
side, this is nothing but

〈dED −XK (ΩL)D, v〉 = 0,

where v ∈ K. With appropriate interpretations, this is equivalent to Lagrange-d’Alembert principle:
(

d

dt

∂L

∂q̇i
−
∂L

∂qi

)

(δqi) = 0

ωa(q̇) = 0

where ω(δq) = 0. �
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Remark: A proof done in coordinates can be found in Koon [1997]. It provides a concrete
coordinate based procedure for finding the equations of motion on the Hamiltonian side and may
make the examples easier to follow.

2.5 Example: The Snakeboard

The snakeboard is a modified version of a skateboard in which the front and back pairs of wheels
are independently actuated. The extra degree of freedom enables the rider to generate forward
motion by twisting their body back and forth, while simultaneously moving the wheels with the
proper phase relationship. For details, see [BKMM] and the references listed there. Here we shall
include some of the computations shown in that paper both for completeness as well as to make
concrete the nonholonomic theory.

The snakeboard is modeled as a rigid body (the board) with two sets of independently actuated
wheels, one on each end of the board. The human rider is modeled as a momentum wheel which sits
in the middle of the board and is allowed to spin about the vertical axis. Spinning the momentum
wheel causes a counter-torque to be exerted on the board. The configuration of the board is given
by the position and orientation of the board in the plane, the angle of the momentum wheel, and
the angles of the back and front wheels. Let (x, y, θ) represent the position and orientation of the
center of the board, ψ the angle of the momentum wheel relative to the board, and φ1 and φ2

the angles of the back and front wheels, also relative to the board. Take the distance between the
center of the board and the wheels to be r. See figure 2.5.1.

ϕ
1

ϕ
2




ψ

θ(x, y)

r

Figure 2.5.1: The geometry of the snakeboard.

In [BKMM], a simplification is made which we shall also assume in this paper, namely φ1 = −φ2,
J1 = J2. The parameters are also chosen such that J + J0 + J1 + J2 = mr2, where m is the total
mass of the board, J is the inertia of the board, J0 is the inertia of the rotor and J1, J2 are the
inertia of the wheels. This simplification eliminates some terms in the derivation but does not
affect the essential geometry of the problem. Setting φ = φ1 = −φ2, then the configuration space
becomes Q = SE(2) × S1 × S1 and the Lagrangian L : TQ → R is the total kinetic energy of the
system and is given by

L =
1

2
m(ẋ2 + ẏ2) +

1

2
mr2θ̇2 +

1

2
J0ψ̇

2 + J0ψ̇θ̇ + J1φ̇
2.

The Constraints. The rolling of the front and rear wheels of the snakeboard is modeled using
nonholonomic constraints which allow the wheels to spin about the vertical axis and roll in the
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direction that they are pointing. The wheels are not allowed to slide in the sideways direction. The
constraints are defined by

− sin(θ + φ)ẋ+ cos(θ + φ)ẏ − r cosφθ̇ = 0 (2.5.1)

− sin(θ − φ)ẋ+ cos(θ − φ)ẏ + r cosφθ̇ = 0 (2.5.2)

and can be simplified as

ẋ = −r cot φ cos θθ̇

ẏ = −r cot φ sin θθ̇.

Since the constrained Legendre transform FL|D on the constraint submanifold D and its inverse
are given by

px = −mr cot φ cos θθ̇

py = −mr cot φ sin θθ̇

pθ = mr2θ̇ + J0ψ̇

pψ = J0ψ̇ + J0θ̇

pφ = 2J1φ̇

ẋ = −
r

mr2 − J0
cot φ cos θ(pθ − pψ)

ẏ = −
r

mr2 − J0
cot φ sin θ(pθ − pψ)

θ̇ =
pθ − pψ
mr2 − J0

ψ̇ =
mr2pψ − J0pθ
J0(mr2 − J0)

φ̇ =
pφ
2J1

,

the constraint submanifold M is defined by

M = {(x, y, θ, ψ, φ, px, py, pθ, pψ, pφ) |

px = −
mr

mr2 − J0
cotφ cos θ(pθ − pψ), py = −

mr

mr2 − J0
cotφ sin θ(pθ − pψ).}

Notice that M may be thought of as a graph in T ∗Q and we can use the induced coordinates
(x, y, θ, ψ, φ, pθ , pψ, pφ) as its local coordinates. Hence the distribution H of M is

H = ker{dx+ r cotφ cos θdθ, dy + r cotφ sin θdθ}

= span{−r cotφ cos θ∂x − r cotφ sin θ∂y + ∂θ, ∂ψ, ∂φ, ∂pθ , ∂pψ , ∂pφ}.

The Hamiltonian. The corresponding Hamiltonian is given via the Legendre transform by

H =
1

2m
(p2
x + p2

y) +
1

2J0
p2
ψ +

1

2(mr2 − J0)
(pθ − pψ)2 +

1

4J1
p2
φ.

10



Now if we restrict the Hamiltonian H to the submanifold M, we get

HM =
mr2

2(mr2 − J0)2
cot2 φ(pθ − pψ)2 +

1

2J0
p2
ψ +

1

2(mr2 − J0)
(pθ − pψ)2 +

1

4J1
p2
φ.

After computing its differential dHM and restricting it to H, we have

dHH = −
mr2

(mr2 − J0)2
cot φ csc2 φ(pθ − pψ)2dφ+

mr2

(mr2 − J0)2
cot2 φ(pθ − pψ)(dpθ − dpψ)

+
1

J0
pψdpψ +

1

(mr2 − J0)
(pθ − pψ)(dpθ − dpψ) +

1

2J1
pφdpφ.

The Two Form. After pulling back the canonical two-form of T ∗Q to M, we have

ΩM = dx ∧ dpx + dy ∧ dpy + dθ ∧ dpθ + dψ ∧ dpψ + dφ ∧ dpφ

= kdx ∧ [csc2 φ cos θ(pθ − pψ)dφ+ cotφ sin θ(pθ − pψ)dθ − cot φ cos θ(dpθ − dpψ)]

+kdy ∧ [csc2 φ sin θ(pθ − pψ)dφ− cotφ cos θ(pθ − pψ)dθ − cotφ sin θ(dpθ − dpψ)]

+dθ ∧ dpθ + dψ ∧ dpψ + dφ ∧ dpφ,

where k = mr/(mr2 − J0). If we restrict ΩM to the distribution H, we get

ΩH = −kr cotφ cos θdθ ∧

[csc2 φ cos θ(pθ − pψ)dφ+ cot φ sin θ(pθ − pψ)dθ − cotφ cos θ(dpθ − dpψ)]

− kr cotφ sin θdθ ∧

[csc2 φ sin θ(pθ − pψ)dφ− cot φ cos θ(pθ − pψ)dθ − cotφ sin θ(dpθ − dpψ)]

+ dθ ∧ dpθ + dψ ∧ dpψ + dφ ∧ dpφ

= dθ ∧ [−kr cot φ csc2 φ(pθ − pψ)dφ+ kr cot2 φ(dpθ − dpψ) + dpθ] + dψ ∧ dpψ + dφ ∧ dpφ.

The Equations of Motion. Notice that any vector field XM is of the form

XM = ẋ∂x + ẏ∂y + θ̇∂θ + ψ̇∂ψ + φ̇∂φ + ṗθ∂pθ + ṗψ∂pψ + ṗφ∂pφ .

But XH also lies in H = ker{dx+r cot φ cos θdθ, dy+r cotφ sin θdθ} and hence must be of the form

XH = θ̇(−r cotφ cos θ∂x − r cot φ sin θ∂y + ∂θ) + ψ̇∂ψ + φ̇∂φ + ṗθ∂pθ + ṗψ∂pψ + ṗφ∂pφ ,

which gives us the first set of relationships

ẋ = −r cotφ cos θ θ̇

ẏ = −r cotφ sin θ θ̇.

Moreover,

XH ΩH = − kr cot φ csc2 φ(pθ − pψ)θ̇ dφ+ kr cot2 φθ̇(dpθ − dpψ) + θ̇ dpθ

+ ψ̇ dpψ + kr cotφ csc2 φ(pθ − pψ)φ̇ dθ + φ̇ dpφ − kr cot2 φṗθ dθ − ṗθ dθ

+ kr cot2 φṗψ dθ − ṗψ dψ − ṗφ dφ,

11



and if equated with dHH and after simplification, we have

ṗθ =
cot φ

2J1(1 − J0

mr2
sin2 φ)

pφ(pθ − pψ) (2.5.3)

ṗψ = 0 (2.5.4)

ṗφ = 0 (2.5.5)

θ̇ =
pθ − pψ
mr2 − J0

(2.5.6)

ψ̇ =
mr2pψ − J0pθ
J0(mr2 − J0)

(2.5.7)

φ̇ =
pφ
2J1

. (2.5.8)

Notice that the last 3 equations are nothing but the inverse of the constrained Legendre trans-
formation FL|D written in local coordinates. The first equation is equivalent to the momentum
equation (discussed below and in [BKMM]) written in Hamiltonian form and the 2nd and 3rd
equations are the reduced equations on the shape space, again in their Hamiltonian forms.

Moreover, the corresponding Lagrangian procedure gives the equations of the motion on the
Lagrangian side as

θ̈ − cotφφ̇θ̇ +
J0

mr2
sin2 φψ̈ = 0 (2.5.9)

J0ψ̈ + J0θ̈ = 0 (2.5.10)

2J1φ̈ = 0 (2.5.11)

and it can be shown that both systems of equations are equivalent via the Legendre transform
FL|D.

3 Nonholonomic Mechanical Systems with Symmetry

Now we add the hypothesis of symmetry to the preceding development. Assume that we have a
configuration manifold Q, a Lagrangian of the form kinetic minus potential, and a distribution D
that describes the kinematic nonholonomic constraints. We also assume there is a symmetry group
G (a Lie group) that leaves the Lagrangian invariant, and that acts on Q (by isometries) and also
leaves the distribution invariant, i.e., the tangent of the group action maps Dq to Dgq (for more
details, see [BKMM].) Later, we shall refer this as a simple nonholonomic mechanical system.

3.1 Review of Lagrangian Reduction

We first recall how [BKMM] explains in general terms how one constructs reduced systems by
eliminating the group variables.

Proposition 3.1 Under the assumptions that both the Lagrangian L and the distribution D are
G-invariant, we can form the reduced velocity phase space TQ/G and the constrained re-

duced velocity phase space D/G. The Lagrangian L induces well defined functions, the reduced

Lagrangian

l : TQ/G→ R

12



satisfying L = l ◦ πTQ where πTQ : TQ → TQ/G is the projection, and the constrained reduced

Lagrangian

lc : D/G→ R,

which satisfies L|D = lc ◦πD where πD : D → D/G is the projection. Also, the Lagrange-d’Alembert
equations induce well defined reduced Lagrange-d’Alembert equations on D/G. That is, the
vector field on the manifold D determined by the Lagrange-d’Alembert equations (including the
constraints) is G-invariant, and so defines a reduced vector field on the quotient manifold D/G.

This proposition follows from general symmetry considerations, but to compute the associated
reduced equations explicitly and to reconstruct the group variables, one defines the nonholonomic
momentum map Jnh, and extends the NoetherTheorem to nonholonomic system and synthesizes,
out of the mechanical connection and the Ehresmann connection, a nonholonomic connection Anh

which is a connection on the principal bundle Q→ Q/G.

The Nonholonomic Momentum Map. Let the intersection of the tangent to the group orbit
and the distribution at a point q ∈ Q be denoted

Sq = Dq ∩ Tq(Orb(q)).

Define, for each q ∈ Q, the vector subspace g
q to be the set of Lie algebra elements in g whose

infinitesimal generators evaluated at q lie in Sq:

g
q = {ξ ∈ g | ξQ(q) ∈ Sq}.

We let g
D denote the corresponding bundle over Q whose fiber at the point q is given by g

q. The
nonholonomic momentum map Jnh is the bundle map taking TQ to the bundle (gD)∗ (whose fiber
over the point q is the dual of the vector space g

q) that is defined by

〈Jnh(vq), ξ〉 =
∂L

∂q̇i
(ξQ)i, (3.1.1)

where ξ ∈ g
q. Notice that the nonholonomic momentum map may be viewed as encoding some

of the components of the ordinary momentum map, namely the projection along those symmetry
directions that are consistent with the constraints.

[BKMM] extends the Noether Theorem to nonholonomic systems by deriving the equation for
the momentum map that replace the usual conservation law. It is proven that if the Lagrangian L
is invariant under the group action and that ξq is a section of the bundle g

D, then any solution q(t)
of the Lagrange-d’Alembert equations must satisfy, in addition to the given kinematic constraints,
the momentum equation:

d

dt

(

Jnh(ξq(t))
)

=
∂L

∂q̇i

[

d

dt
(ξq(t))

]i

Q

. (3.1.2)

When the momentum map is paired with a section in this way, we will just refer to it as the
momentum. Examples show that the nonholonomic momentum map may or may not be conserved.
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The Momentum Equation in Body Representation Let a local trivialization (r, g) be chosen
on the principal bundle π : Q → Q/G. Let η ∈ g

q and ξ = g−1ġ. Since L is G-invariant, we can
define a new function l by writing L(r, g, ṙ, ġ) = l(r, ṙ, ξ). Define Jnh

loc : TQ/G→ (gD)∗ by

〈

Jnh
loc(r, ṙ, ξ), η

〉

=

〈

∂l

∂ξ
, η

〉

.

As with connections, Jnh and its version in a local trivialization are related by the Ad map; i.e.,

Jnh(r, g, ṙ, ġ) = Ad∗

g−1J
nh
loc(r, ṙ, ξ).

Choose a q-dependent basis ea(q) for the Lie algebra such that the first m elements span the
subspace g

q. In a local trivialization, one chooses, for each r, such a basis at the identity element,
say

e1(r), e2(r), . . . , em(r), em+1(r), . . . , ek(r).

Define the body fixed basis by ea(r, g) = Adg · ea(r); thus, by G invariance, the first m elements
span the subspace g

q. In this basis, we have

〈

Jnh(r, g, ṙ, ġ), eb(r, g)
〉

=

〈

∂l

∂ξ
, eb(r)

〉

:= pb, (3.1.3)

which defines pb, a function of r, ṙ and ξ. Note that in this body representation, the functions pb
are invariant rather than equivariant, as is usually the case with the momentum map. It is shown
in [BKMM] that in this body representation, the momentum equation is given by

d

dt
pi =

〈

∂l

∂ξ
, [ξ, ei] +

∂ei
∂rα

ṙα
〉

, (3.1.4)

where the range of i is 1 to m. Moreover, the momentum equation in this representation is
independent of, that is, decouples from, the group variables g.

The Nonholonomic Connection Recall that in the case of simple holonomic mechanical sys-
tem, the mechanical connection A is defined by A(vq) = I(q)−1J(vq) where J is the associated
momentum map and I(q) is the locked inertia tensor of the system. Equivalently the mechanical
connection can also be defined by the fact that its horizontal space at q is orthogonal to the group
orbit at q with respect to the kinetic energy metric. For more information, see for example, Marsden
[1992] and Marsden and Ratiu [1994].

As [BKMM] points out, in the principal case where the constraints and the orbit directions
span the entire tangent space to the configuration space, that is,

Dq + Tq(Orb(q)) = TqQ, (3.1.5)

the definition of the momentum map can be used to augment the constraints and provide a con-
nection on Q→ Q/G. Let Jnh be the nonholonomic momentum map and define similarly as above
a map Asym

q : TqQ→ Sq given by

Asym(vq) = (Inh(q)−1Jnh(vq))Q

14



(this defines the momentum “constraints”) where I
nh : g

D → (gD)∗ is the locked inertia tensor
defined in a similar way as in holonomic systems.

Choose a complementary space to Sq by writing Tq(Orb(q)) = Sq ⊕Uq. Let Akin
q : TqQ→ Uq be

a Uq valued form that projects Uq onto itself and maps Dq to zero. Then the kinematic constraints
are defined by the equation Akin(q)q̇ = 0. This kinematic constraints equation plus the momentum
”constraints” equation can be used to synthesis a nonholonomic connection Anh which is a principal
connection on the bundle Q→ Q/G and whose horizontal space at the point q ∈ Q is given by the
orthogonal complement to the space Sq within the space Dq. Moreover,

Anh(vq) = I
nh(q)−1Jnh(vq). (3.1.6)

In a body fixed basis, (3.1.6) can be written as

Adg(g
−1ġ + Anh

loc(r)ṙ) = Adg(I
nh
loc(r)

−1p). (3.1.7)

Hence, the constraints can be represented in a nice way by

g−1ġ = ξ = −A(r)ṙ + Γ(r)p, (3.1.8)

where A(r) is the abbreviation for Anh
loc(r) and Γ(r) = I

nh
loc(r)

−1.
Moreover, with the help of the nonholonomic mechanical connection, the Lagrange-d’Alembert

principle may be broken up into two principles by breaking the variations δq into two parts, namely
parts that are horizontal with respect to the nonholonomic connection and parts that are vertical
(but still in D), and the reduced equations break up into two sets: a set of reduced Lagrange-
d’Alembert equations (which have curvature terms appearing as ’forcing’), and a momentum equa-
tion, which have a form generalizing the components of the Euler-Poincaré equations along the
symmetry directions consistent with the constraints. When one supplements these equations with
the reconstruction equations, one recovers the full set of equations of motion for the system.

3.2 Hamiltonian Reduction

In working out the nonholonomic Hamiltonian reduction, [BS] also starts out with a simple nonholo-
nomic mechanical system. Recall from Section 2 that the Legendre transformation FL : TQ→ T ∗Q
is used to define the constraint submanifold M ⊂ T ∗Q where

M = FL(D). (3.2.1)

On this manifold, there is a distribution H

H = F ∩ TM, (3.2.2)

where
F = (Tπ)−1(D), (3.2.3)

and π : T ∗Q → Q. Also recall that ΩH, the restriction of the canonical two-form Ω of T ∗Q to the
distribution H of the constraint submanifold M, is nondegenerate and that the dynamics is given
by a vector field XH on M taking values in H and satisfies the equation

XH ΩH = dHH (3.2.4)
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where dHH is the (fiberwise) restriction of dHM to H.
Now let G be the symmetry group of this system and assume that the quotient space M = M/G

of the G-orbit in M is a quotient manifold with projection map ρ : M → M. SinceG is a symmetric
group, all intrinsically defined vector fields and distributions push down to M. In particular, the
vector field XM on M pushes down to a vector field X

M
= ρ∗XM, and the distribution H pushes

down to a distribution ρ∗H on M.
However, ΩH need not push down to a two-form defined on ρ∗H, despite the fact that ΩH is

G-invariant. This is because there may be infinitesimal symmetry ξM that lies in H such that
ξM ΩH 6= 0, To eliminate this difficulty, [BS] restricts ΩH to a subdistribution U of H defined by

U = {u ∈ H | ΩH(u, v) = 0 for all v ∈ V ∩H} = H ∩ (V ∩ H)⊥, (3.2.5)

where V is the distribution on M tangent to the orbits of G in M and is spanned by the infinitesimal
symmetries and (V ∩H)⊥ is the ΩH-orthogonal complement of (V ∩H). Clearly, U and V are both
G-invariant, project down to M and ρ∗V = 0. Define H by

H = ρ∗U . (3.2.6)

It is proven in [BS] that

1. The vector field XH which satisfies the above Hamiltonian equation of motion (3.2.4) lies in
the distribution U .

2. The restriction ΩU of Ω to the distribution U pushes down to a nondegenerate 2-form Ω
H

=
ρ∗ΩU on H, which is modeled by the symplectic space (V ∩H)⊥/(V ∩H) ∩ (V ∩ H)⊥.

3. Furthermore,
X

H
Ω
H

= dh
H
, (3.2.7)

where h
M

= ρ∗HM is the pushdown of the restriction to M of the Hamiltonian H and dh
H

is the restriction of dh
M

to H. This is because the equation XH ΩH = dHH, restricted to
U ⊂ H, vanishes on vectors in V, and is G-invariant. Hence both sides push down to H.

Note that the original equations of motion are

XH ΩH = dHH (3.2.8)

where H is a distribution in the constraint manifold M. After the reduction of symmetry we obtain
equations of the same type

X
H

Ω
H

= dh
H
, (3.2.9)

where H is a distribution in the reduced space M = M/G.

3.3 Lagrangian Side

By using the Legendre transformation FL, we can construct dual geometric structures on the
tangent bundle TQ and formulate a similar Lagrangian reduction procedure. This allows us to
better compare with the geometric constructions and analytic formulations on the manifold Q in
[BKMM], and in the course of doing this, we realize that the requirement (see point (1) of last
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subsection) that the vector field XH lies in the subdistribution U is equivalent to the extended
Noether Theorem; that is, that any solution of the Lagrange-d’Alembert equations must satisfy the
momentum equation.

Recall from Section 2. We consider D as a constraint submanifold of TQ and then construct
the distribution

K = C ∩ TD, (3.3.1)

on TTQ, where
C = (TτQ)−1(D), (3.3.2)

and τQ : TQ → Q. Clearly D = (FL)−1(M),K = (TFL)−1(H). The motion is then given by a
vector field XK on the manifold D which takes values in K and satisfies the equation

XK ΩK = dEK, (3.3.3)

where dEK and ΩK are the restrictions of dED and ΩD respectively to the distribution K.
Now let G be the symmetry group of this system and assume that the quotient space D = D/G

of the G-orbit in D is a smooth quotient manifold with projection map λ : D → D. Since G
is a symmetric group, all intrinsically defined vector fields and distributions push down to D. In
particular, the vector field XD on D pushes down to a vector field X

D
= λ∗XD, and the distribution

K pushes down to a distribution λ∗K on D. Here we use the push forward symbol λ∗ to mean that
the vector fields are λ-related.

For the same reason as the Hamiltonian side, ΩK need not push down to a two-form defined on
λ∗K, despite the fact that ΩK is G-invariant. We can restrict ΩK to the subdistribution W of K
defined by

W = {w ∈ K | ΩK(w, v) = 0 for all v ∈ T ∩ K} = K ∩ (T ∩ D)⊥, (3.3.4)

where T is the distribution on D tangent to the orbits of G in D and is spanned by the infinitesimal
symmetries. Clearly, W and T are both G-invariant, W projects down to D and λ∗T = 0. Define
K by

K = λ∗W. (3.3.5)

Since the above constructions are dual to those in the Hamiltonian side, we also have

1. The vector field XK which satisfies the above equation (3.3.3) takes values in the distribution
W.

2. The restriction ΩW of ΩL to the distribution W, pushes down to a nondegenerate 2-form
Ω
K

= λ∗ΩW on K, which is modeled by the symplectic space (T ∩ K)⊥/(T ∩ K) ∩ (T ∩ K)⊥.

3. The reduced equations of motion are given by

X
K

Ω
K

= dE
K
, (3.3.6)

where E
D

= λ∗ED is the pushdown of the restriction to D of the energy function E. This
is because the equation XK ΩK = dEK, restricted to W ⊂ K, vanishes on vectors in T ,
and is G-invariant. Hence both sides push down to K. All these will become clearer in the
subsequent computations.
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3.4 The Equivalence of Hamiltonian and Lagrangian Reductions

Theorem 3.2 Consider a simple nonholonomic mechanical system with symmetry and assume
that it is in the principal case. Then the reduction procedure on TQ described in the preceding
section gives the same set of equations as in [BKMM].

Proof The first difficulty is how to represent the constraint submanifold D ⊂ TQ in a way that
is both intrinsic and ready for reduction. The comparison with the geometric constructions in
[BKMM] and the desire to have the dynamics break up in a way that are ready for reconstruction
give hints that we should use the tools like nonholonomic momentum p and the nonholonomic
connection A in [BKMM] to describe the constraint submanifold D

Recall that in [BKMM], the nonholonomic constraints together with the basic identity of the
nonholonomic momentum map are used to synthesis a nonholonomic connection A and the non-
holonomic constraints are then written in the form

g−1ġ = −A(r)ṙ + Γ(r)p, (3.4.1)

where p is G-invariant. Hence, the constraint manifold is nothing but

D = {(g, r, ġ, ṙ) | ġ = g(−A(r)ṙ + Γ(r))p)}. (3.4.2)

It is a submanifold in TQ and we can use (g, r, ṙ, p) as its induced local coordinates. Then, clearly,
the corresponding coordinates for D = D/G are (r, ṙ, p). From now on, we will use A(r) to
abbreviate Anh

loc(r).
The next difficulty is to find the corresponding representations for the distribution K, the

subdistribution T ∩ K and its annihilator distribution W where

W = K ∩ (T ∩ K)⊥. (3.4.3)

Recall that in [BKMM], a body fixed basis eb(g, r) = Adg ·eb(r) has been constructed such that the
infinitesimal generators (ei(g, r))Q of its first m elements at a point q span Sq = Dq ∩ Tq(Orb(q)).
Assume that G is a matrix group and edi is the component of ei(r) with respect to a fixed basis
{ba} of the Lie algebra g where (ba)Q = ∂ga , then

(ei(g, r))Q = gade
d
i ∂ga .

Since K = (Tτ)−1(D) where Dq is the direct sum of Sq and the horizontal space of the nonholonomic
connection Anh, it can be represented in the induced coordinates by

K = span{gade
d
i ∂ga ,−g

a
bA

b
α∂ga + ∂rα , ∂ṙ, ∂p}. (3.4.4)

Also, we have
T ∩ K = span{gade

d
i ∂ga}. (3.4.5)

To find the distribution W, we have to compute gade
d
i ∂ga ΩD, for all i = 1, . . . ,m. Since L is

G-invariant, we have

ΩD = dga ∧ d

(

∂L

∂ġa

)

+ drα ∧ d

(

∂L

∂ṙα

)

= dga ∧ d

(

(g−1)ba
∂l

∂ξb

)

+ drα ∧ d

(

∂l

∂ṙα

)

=
∂(g−1)ba
∂gc

∂l

∂ξb
dga ∧ dgc + (g−1)badg

a ∧ d

(

∂l

∂ξb

)

+ drα ∧ d

(

∂l

∂ṙα

)
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Hence

gafe
f
i ∂ga ΩD = gafe

f
i

∂(g−1)ba
∂gc

∂l

∂ξb
dgc − gcfe

f
i

∂(g−1)ba
∂gc

∂l

∂ξb
dga + ebid

(

∂l

∂ξb

)

= efi

((

gcf
∂(g−1)bc
∂ga

−
∂(g−1)ba
∂gc

gcf

)

∂l

∂ξb
dga + d

(

∂l

∂ξf

))

= efi

(

(g−1)bσ

(

−
∂gσf
∂gτ

gτa +
∂gσa
∂gτ

gτf

)

∂l

∂ξb
(g−1)aedg

e + d

(

∂l

∂ξf

))

= efi

(

−Cbaf
∂l

∂ξb
(g−1)aedg

e + d

(

∂l

∂ξf

))

= dpi −
∂l

∂ξf
d(efi ) − Cbaf

∂l

∂ξb
efi (g

−1)aedg
e.

Here, Cbaf is the structural constants for the Lie algebra g and pi = ∂l
∂ξf

efi as defined in (3.1.3).
Therefore, the subdistribution W ⊂ K is

W = ker

{

dpi −
∂l

∂ξf
d(efi ) − Cbaf

∂l

∂ξb
efi (g

−1)aedg
e

}

. (3.4.6)

Since the constraint manifold D has the induced local coordinates (g, r, ṙ, p), any vector field
XD on the manifold D is of the form

XD = ġa∂ga + ṙα∂rα + r̈α∂ṙα + ṗi∂pi .

If XD lies in the distribution K, then we have ġ = g(−Aṙ + Γp). Moreover, if XD lies in the
distribution W, then for each j, we have

ṗj −
∂l

∂ξd
∂edj
∂rα

ṙα − Cbad
∂l

∂ξb
ξaedj = 0, i.e., ṗj =

〈

∂l

∂ξ
, [ξ, ej ] + ėj

〉

, (3.4.7)

which gives exactly the momentum equation (3.1.4). Therefore, any vector field XW taking values
in W must be of the form

XW = gab ξ
b∂ga + ṙα∂rα + r̈α∂ṙα + ṗi∂pi , (3.4.8)

where

ξ = −Aṙ + Γp ṗj =

〈

∂l

∂ξ
, [ξ, ej ] + ėj

〉

, (3.4.9)

Now we are ready to do the reduction. But before that, we need to compute all the ingredients
of the equation

XK ΩK = dEK. (3.4.10)

Notice first that since E is G-invariant, we have

E =
∂L

∂q̇i
q̇i − L =

∂L

∂ġa
ġa +

∂L

∂ṙα
ṙα − L

=
∂l

∂ξa
ξa +

∂l

∂ṙα
ṙα − l
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After restricting it to the submanifold D, we have

ED =
∂l

∂ξa
(−Aaαṙ

α + Γaipi) +

(

∂lc
∂ṙα

+Aaα
∂l

∂ξa

)

ṙα − lc

=
∂l

∂ξa
Γaipi +

∂lc
∂ṙα

ṙα − lc

Therefore,

dED =
∂l

∂ξa

(

∂Γai

∂rα
pidr

α + Γaidpi

)

+ Γaipi

(

∂2l

∂rα∂ξa
drα +

∂2l

∂ṙα∂ξa
dṙα +

∂2l

∂pj∂ξa
dpj

)

+ ṙα
(

∂2lc
∂rβ∂ṙα

drβ +
∂2lc

∂ṙβ∂ṙα
dṙβ

∂2lc
∂pi∂ṙα

dpi

)

−
∂lc
∂rα

drα −
∂lc
∂pi

dpi.

Furthermore,

XK ΩD

= gaf ξ
f ∂(g−1)ba

∂gc
∂l

∂ξb
dgc − gcf ξ

f ∂(g−1)ba
∂gc

∂l

∂ξb
dga

+ gaf ξ
f (g−1)bad

(

∂l

∂ξb

)

−

(

∂

∂rα

(

∂l

∂ξb

)

ṙα +
∂

∂ṙα

(

∂l

∂ξb

)

r̈α +
∂

∂pi

(

∂l

∂ξb

)

ṗi

)

(g−1)badg
a

+ (ṙα∂rα + r̈α∂ṙα + ṗi∂pi)

(

drα ∧ d

(

∂l

∂ṙα

))

= ξfd

(

∂l

∂ξf

)

+

(

Cbfa
∂l

∂ξb
ξf −

d

dt

(

∂l

∂ξa

))

(g−1)aedg
e

+ (ṙα∂rα + r̈α∂ṙα + ṗi∂pi)

(

drα ∧ d

(

∂l

∂ṙα

))

. (3.4.11)

Clearly, both sides of the equation

XK ΩK = dEK (3.4.12)

are G-invariant, and when restricted to subdistribution W ⊂ K, they vanish on the distribution
T ∩ K. This can be shown to be true either by invoking how W has been constructed or by direct
calculation, noticing that when

(

Cbfa
∂l

∂ξb
ξf −

d

dt

(

∂l

∂ξa

))

(g−1)aedg
e (3.4.13)

is paired with gfc eci in T ∩ K, it is equal to zero on W. Hence both sides push down to K where

X
K

= ṙα∂rα + r̈α∂ṙα + ṗi∂pi , (3.4.14)
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with

ṗi =

〈

∂l

∂ξ
, [ξ, ei] + ėi

〉

. (3.4.15)

To find the remaining reduced equations, notice that the restriction of (3.4.13) to the subdis-
tribution spanned by {−gabA

b
α∂ga + ∂rα , ∂ṙα , ∂pi} is equivalent to

−

(

Cbfa
∂l

∂ξb
ξf −

d

dt

(

∂l

∂ξa

))

Aaαdr
α. (3.4.16)

If we compute

−

(

Cbfa
∂l

∂ξb
ξf −

d

dt

(

∂l

∂ξa

))

Aaαdr
α + ξad

(

∂l

∂ξa

)

+ (ṙα∂rα + r̈α∂ṙα + ṗi∂pi)

(

drα ∧ d

(

∂l

∂ṙα

))

and equate its terms with the corresponding terms of dE
K

which is the same as dEK, we have the
following equations after some computations

d

dt

(

∂lc
∂ṙα

)

−
∂lc
∂rα

= −Cbda
∂l

∂ξb
ξdAaα −

∂l

∂ξa

(

Ȧaα −
∂Aaβ
∂rα

ṙβ +
∂Γaipi
∂rα

)

.

After plugging in the constraint ξ = −Aṙ+Γp and simplify, we get the desired reduced equations

d

dt

(

∂lc
∂ṙα

)

−
∂lc
∂rα

= −
∂l

∂ξb
(Bb

αβ ṙ
β + F bipi), (3.4.17)

where

Bb
αβ =

∂Abα
∂rβ

−
∂Abβ
∂rα

− CbacA
a
βA

c
α (3.4.18)

F biα =
∂Γbi

∂rα
− CbadA

a
αΓdi. (3.4.19)

In an orthogonal body frame where we choose our moving basis eb(g, r) to be orthogonal, that is,
the corresponding generators [eb(g, r)]Q are orthogonal in the given kinetic energy metric (actually,
all that is needed is that the vectors in the set of basis vectors corresponding to the subspace Sq
be orthogonal to the remaining basis vectors), the momentum equation (3.4.7) can be written as
(see [BKMM])

d

dt
pi = CjhiI

hlpjpl + Dj
iαṙ

αpj + Dαβiṙ
αṙβ, (3.4.20)

where

Dj
iα = −CjaiA

a
α + γjiα + λa′αC

a′

li I
lj (3.4.21)

Dαβi = λa′α(−C
a′

aiA
a
β + γa

′

iβ). (3.4.22)

Here γcbα and λa′α are defined by

∂eb
∂rα

= γcbαec (3.4.23)

λa′α =
∂l

∂ξa′∂ṙα
−

∂l

∂ξa′∂ξb
Abα. (3.4.24)
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Notice that while the summation range of a, b, c, d... are over all Lie algebra element (1 to k). those
over i, j, l, ... are the restricted (constrained) range (1 to m) and those over a′, b′, ... run from m+ 1
to k (which correspond to the symmetry directions not aligned with the constraints).

Similarly we can rewrite the above reduced Lagrange-d’Alembert equations (3.4.17) using the
orthogonal body frame. Essentially, it is a change of basis. Instead of using the natural fixed basis
{ba} where (ba)Q = ∂ga , we do all the computations in the orthogonal body frame {eb}. With the
abuse of notation, we shall still use l(r, ṙ, ξ) and lc(r, ṙ, p) to denote the reduced Lagrangian and
the constrained reduced Lagrangian (in the orthogonal body frame) respectively. But it should be
clear that for the following computations, ξ = ξbeb. Similar interpretation should apply to all other
notations. Now let us compute the right hand side of the reduced equations in the new basis. Since

∂

∂rβ
(Aaαea) =

∂Abα
∂rβ

eb +Aaαγ
b
aβeb

∂

∂rα
(Γbipieb) =

∂Γbi

∂rα
pieb + Γaiγbaαpieb,

we have

d

dt

(

∂lc
∂ṙα

)

−
∂lc
∂rα

= −
∂l

∂ξb

(

∂Abα
∂rβ

−
∂Abβ
∂rα

− CbacA
a
βA

c
α +Acαγ

b
cβ −Acβγ

b
cα

)

ṙβ

−
∂l

∂ξb

(

∂Γbipi
∂rα

− CbadA
a
αΓ

dipi + Γciγbcαpi

)

Now applying Proposition 7.1 of [BKMM] to the above reduced equations and notice that in
the orthogonal body basis, Γbi = 0 for any b > m (recall Γji = Iji), we can rewrite the reduced
equations in the following form

d

dt

(

∂lc
∂ṙα

)

−
∂lc
∂rα

= −(Kjl
α pjpl + Kj

αβ ṙ
βpj + Kαβδ ṙ

β ṙδ) (3.4.25)

where

Kjl
α =

∂Ijl

∂rα
− CjbhA

b
αI

hl + γjhαI
hl (3.4.26)

Kj
αβ = λa′β(−C

a′

bhA
b
αI

hj + γa
′

hαI
hj) +Bj

αβ (3.4.27)

Kαβδ = λa′δB
a′

αβ . (3.4.28)

Here

Bb
αβ =

∂Abα
∂rβ

−
∂Abβ
∂rα

− CbacA
a
βA

c
α +Acαγ

b
cβ −Acβγ

b
cα. � (3.4.29)

Remarks

1. A careful reading of the proof of Theorem 3.2 and the subsections 3.2 and 3.3 shows that the
Hamiltonian reduction procedure still works as long as the constrained Legendre transform
FL|D is invertible. This is important because in some examples like the bicycle the Legendre
transform FL is singular, but its restriction to the constraint submanifold D is invertible and
the Hamiltonian reduction procedure is also applicable.
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2. In many examples like the snakeboard and the bicycle, the constraints satisfy a special condi-
tion, namely, they involve only the velocities of the group variables ġ and are independent of
the velocities of the shape variables ṙ (see equations (2.5.1) and (2.5.2)). Under this special
condition, the distribution K in equation (3.4.4) can be represented by

K = span{gade
d
i ∂ga , ∂r, ∂ṙ, ∂p}. (3.4.30)

This representation simplifies the computation for finding the reduced equations because the
restriction of the one form (3.4.13) to the subdistribution K spanned by {∂r, ∂ṙ, ∂p} will equal
to zero. Hence in pushing down XK ΩD in (3.4.11) to K, we can simply omit the one form
(3.4.13). In the following subsections, we will use this simplified procedure for the examples
of the snakeboard and the bicycle.

3. Since the momentum equation is central to the theory of nonholonomic mechanical systems
with symmetry, we make a few additional remarks about it. Before that, we state the following
proposition, the result of which is implicit in both [BKMM] and Ostrowski [1996].

Proposition 3.3 For a nonholonomic mechanical system with symmetry, we have

(

d

dt

(

∂L

∂q̇i

)

−
∂L

∂qi

)

(ξqQ)i =
d

dt

((

∂L

∂q̇i

)

(ξqQ)i
)

−
∂L

∂q̇i

(

d

dt
ξq
)i

Q

(3.4.31)

where ξq ∈ g
q

Proof: Choose a section of g
D and apply the chain rule to give

d

dt

(

∂L

∂q̇i
(ξqQ)i

)

=
d

dt

(

∂L

∂q̇i

)

(ξqQ)i +
∂L

∂q̇i

(

(TξqQ · q̇)i +

(

d

dt
ξq
)i

Q

)

.

Invariance of the Lagrangian implies that

L(exp(sξq) · q, exp(sξq) · q̇) = L(q, q̇).

Differentiating this expression and evaluating it at s = 0, we get

∂L

∂q̇i
(ξqQ)i +

∂L

∂q̇i
(TξqQ · q̇)i = 0

After eliminating the term
∂L

∂q̇i
(TξqQ · q̇)i from the above two equations, we arrive at the desired

result. �

The above equation can be rewritten as

〈

(dE −X ΩL)|D, (ξ
q
Q)′
〉

=
d

dt

((

∂L

∂q̇i

)

(ξqQ)i
)

−
∂L

∂q̇i

(

d

dt
ξq
)i

Q

, (3.4.32)

where (ξqQ)′ ∈ T ∩K and TτQ((ξqQ)′) = ξqQ. Since both the energy function E and the submanifold

D are G-invariant, the left hand of the above equation reduces to ΩD(XD, (ξ
q
Q)′) and hence any
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vector field XD which takes values in W = K ∩ (T ∩ K)⊥ will make the left hand side zero and
hence must satisfy the momentum equation (3.1.2)

d

dt

((

∂L

∂q̇i

)

(ξqQ)i
)

−
∂L

∂q̇i

(

d

dt
ξq
)i

Q

= 0, (3.4.33)

as we have already seen in the proof of Theorem 3.2.
In showing that the vector field XH, which satisfies the equation

XH ΩH = dHH,

must lie in the subdistribution U , one might think that any vector field Y ∈ V∩H can be expressed
as a linear combination of infinitesimal generators (generated by fixed Lie algebra elements). But
this is not the case, as we have pointed out earlier in the Lagrangian side, in general (ξqQ)′ is the

(vertical) lift of a section of the bundle S (generated by a section of the bundle g
D). This is also

true on the Hamiltonian side.

3.5 Example: The Snakeboard Revisited

Now we return to the snakeboard and discuss the role of the symmetry group G = SE(2). Recall
from our earlier discussion that the Lagrangian is

L(q, q̇) =
1

2
m(ẋ2 + ẏ2) +

1

2
mr2θ̇2 + +

1

2
J0ψ̇

2 + J0ψ̇θ̇ + J1φ̇
2
1, (3.5.1)

which is independent of the configuration of the board and hence it is invariant to all possible group
actions.

The Constraint Submanifold. The condition of rolling without slipping gives rise to the con-
straint one forms

ω1(q) = − sin(θ + φ)dx+ cos(θ + φ)dy − r cosφdθ

ω2(q) = − sin(θ − φ)dx+ cos(θ − φ)dy + r cosφdθ,

which are invariant under the SE(2) action. The constraints determine the kinematic distribution
Dq:

Dq = span{∂ψ, ∂φ, a∂x + b∂y + c∂θ},

where a = −2r cos2 φ cos θ, b = −2r cos2 φ sin θ, c = sin 2φ. The tangent space to the orbits of the
SE(2) action is given by

Tq(Orb(q)) = span{∂x, ∂y, ∂θ}

The intersection between the tangent space to the group orbits and the constraint distribution is
thus given by

Sq = Dq ∩ Tq(Orb(q)) = span{a∂x + b∂y + c∂θ}.

The momentum can be constructed by choosing a section of S = D∩TOrb regarded as a bundle
over Q. Since Dq ∩ TqOrb(q) is one-dimensional, the section can be chosen to be

ξqQ = a∂x + b∂y + c∂θ,
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which is invariant under the action of SE(2) on Q. The nonholonomic momentum is thus given by

p =
∂L

∂q̇i
(ξqQ)i

= maẋ+mbẏ +mr2cθ̇ + J0cψ̇.

The kinematic constraints plus the momentum are given by

0 = − sin(θ + φ)ẋ+ cos(θ + φ)ẏ − r cosφθ̇

0 = − sin(θ − φ)ẋ+ cos(θ − φ)ẏ + r cosφθ̇

p = −2mr cos2 φ cos θẋ− 2mr cos2 φ sin θẏ

+mr2 sin 2φθ̇ + J0 sin 2φψ̇.

Adding, subtracting, and scaling these equations, we can write (away from the point φ = π/2),







cos θẋ+ sin θẏ

− sin θẋ+ cos θẏ

θ̇






+











−
J0

2mr
sin 2φψ̇

0

J0

mr2
sin2 φψ̇











=











−1

2mr
p

0

tan φ

2mr2
p











. (3.5.2)

These equations have the form
g−1ġ +A(r)ṙ = Γ(r)p

where

A(r) = −
J0

2mr
sin 2φex dψ +

J0

mr2
sin2 φeθ dψ

Γ(r) =
−1

2mr
ex +

1

2mr2
tanφ eθ.

These are precisely the terms which appear in the nonholonomic connection relative to the (global)
trivialization (r, g).

After applying the constrained Legendre transformation and its inverse to the constraint equa-
tions (3.5.2), we have







cos θpx + sin θpy

− sin θpx + cos θpy

pθ






+













−
mr sinφ cosφ

(mr2 − J0 sin2 φ)
pψ

0

−
mr2 cos2 φ

(mr2 − J0 sin2 φ)
pψ













=













−mr

2(mr2 − J0 sin2 φ)
p

0

(mr2 − J0) tan φ

2(mr2 − J0 sin2 φ)
p













, (3.5.3)

where
p = −2r cos2 φ cos θpx − 2r cos2 φ sin θpy + sin 2φpθ

and is SE(2)-invariant.
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Therefore, the constraint submanifold M ⊂ T ∗Q is defined by

px =
mr sinφ cosφ

(mr2 − J0 sin2 φ)
pψ cos θ −

mr

2(mr2 − J0 sin2 φ)
p cos θ

py =
mr sinφ cosφ

(mr2 − J0 sin2 φ)
pψ sin θ −

mr

2(mr2 − J0 sin2 φ)
p sin θ

pθ =
mr2 cos2 φ

(mr2 − J0 sin2 φ)
pψ +

(mr2 − J0) tan φ

2(mr2 − J0 sin2 φ)
p

It is a submanifold in T ∗Q and we can use (x, y, θ, ψ, φ, pψ , pφ, p) as its induced local coordinates.

The Distributions H,V ∩H and U . With the induced coordinates, the distribution H on M is

H = span{−2r cos2 φ cos θ∂x − 2r cos2 φ sin θ∂y + sin 2φ∂θ, ∂ψ , ∂φ, ∂pψ , ∂pφ , ∂p} (3.5.4)

and the subdistribution V ∩ H is

V ∩H = span{−2r cos2 φ cos θ∂x − 2r cos2 φ sin θ∂y + sin 2φ∂θ}. (3.5.5)

As for the subdistribution U , we first calculate the two form ΩM. After pulling back the
canonical two-form of T ∗Q to M, we have

ΩM = dx ∧ dpx + dy ∧ dpy + dθ ∧ dpθ + dψ ∧ dpψ + dφ ∧ dpφ

= (cos θdx+ sin θdy) ∧

(

mr sin 2φ

2(mr2 − J0 sin2 φ)
dpψ −

mr

2(mr2 − J0 sin2 φ)
dp

)

+(cos θdx+ sin θdy) ∧

(

mr(mr2 cos 2φ+ J0 sin2 φ)

(mr2 − J0 sin2 φ)2
pψdφ−

mrJ0 sin 2φ

2(mr2 − J0 sin2 φ)2
pdφ

)

+dθ ∧

(

mr2 cos2 φ

(mr2 − J0 sin2 φ)
dpψ +

(mr2 − J0) tan φ

2(mr2 − J0 sin2 φ)
dp

)

+dθ ∧

(

mr2(J0 −mr2) sin 2φ

(mr2 − J0 sin2 φ)2
pψdφ+

(mr2 − J0)(mr
2 sec2 φ+ J0 tan2 φ cos 2φ)

2(mr2 − J0 sin2 φ)2
pdφ

)

+(− sin θdx+ cos θdy) ∧

(

mr sin 2φ

2(mr2 − J0 sin2 φ)
pψ −

mr

2(mr2 − J0 sin2 φ)
p

)

dθ

+dψ ∧ dpψ + dφ ∧ dpφ

Since U = (V ∩ H)⊥ = ker{(V ∩ H) ΩH}, we need to calculate (V ∩ H) ΩM, and restrict it
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to H:

(V ∩ H) ΩH =

− 2r cos2 φ

(

mr sin 2φ

2(mr2 − J0 sin2 φ)
dpψ −

mr

2(mr2 − J0 sin2 φ)
dp

)

− 2r cos2 φ

(

mr(mr2 cos 2φ+ J0 sin2 φ)

(mr2 − J0 sin2 φ)2
pψdφ−

mrJ0 sin 2φ

2(mr2 − J0 sin2 φ)2
pdφ

)

+ sin 2φ

(

mr2 cos2 φ

(mr2 − J0 sin2 φ)
dpψ +

(mr2 − J0) tan φ

2(mr2 − J0 sin2 φ)
dp

)

+ sin 2φ

(

mr2(J0 −mr2) sin 2φ

(mr2 − J0 sin2 φ)2
pψdφ+

(mr2 − J0)(mr
2 sec2 φ+ J0 tan2 φ cos 2φ)

2(mr2 − J0 sin2 φ)2
pdφ

)

= dp−
2mr2 cos2 φ

mr2 − J0 sin2 φ
pψdφ+

(mr2 + J0 cos 2φ) tan φ

mr2 − J0 sin2 φ
pdφ

Hence,

U = ker

{

dp−
2mr2 cos2 φ

mr2 − J0 sin2 φ
pψdφ+

(mr2 + J0 cos 2φ) tan φ

mr2 − J0 sin2 φ
pdφ

}

. (3.5.6)

The Reconstruction and Momentum Equations A vector field XU taking values in U must
be of the form

XU = ẋ∂x + ẏ∂y + θ̇∂θ + ψ̇∂ψ + φ̇∂φ + ṗψ∂pψ + ṗφ∂pφ + ṗ∂p (3.5.7)

where

ẋ =
J0

2mr
sin 2φψ̇ cos θ −

1

2mr
p cos θ

ẏ =
J0

2mr
sin 2φψ̇ sin θ −

1

2mr
p sin θ

θ̇ = −
J0

mr2
sin2 φψ̇ +

tanφ

2mr2
p

and

ṗ =
2mr2 cos2 φ

mr2 − J0 sin2 φ
pψφ̇−

(mr2 + J0 cos 2φ) tan φ

mr2 − J0 sin2 φ
pφ̇ (3.5.8)

The equations for ẋ, ẏ and θ̇ are the same reconstruction equations as equations (3.5.2) and the last
one for ṗ is the momentum elution on the Hamiltonian side. As noted in [BKMM], the momentum
p is the angular momentum of the system about the point P shown in figure 3.5.1.

It can be checked that the momentum equation (3.5.8) is equivalent to the equation (2.5.3) via
a change of variables with

p = −2r cos2 φ cos θpx − 2r cos2 φ sin θpy + sin 2φpθ

=
2(mr2 − J0 sin2 φ) cot φ

mr2 − J0
pθ −

2mr2 cos2 φ cot φ

mr2 − J0
pψ

as the key link. Similarly the two full sets of equations of motion in both section 2.5 and this
section are also related in the same way.
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P

Figure 3.5.1: The momentum p is the angular momentum of the snakeboard system about the
point P .

The Reduced Hamilton Equations. To find the remaining reduced equations, we need to
compute

XH ΩM = dHM, (3.5.9)

restrict it to the subdistribution U and then push it down to the reduced constraint submanifold
M. Let us first compute XH ΩM

XH ΩM =

(ẋ cos θ + ẏ sin θ)

(

mr sin 2φ

2(mr2 − J0 sin2 φ)
dpψ −

mr

2(mr2 − J0 sin2 φ)
dp

)

+(ẋ cos θ + ẏ sin θ)

(

mr(mr2 cos 2φ+ J0 sin2 φ)

(mr2 − J0 sin2 φ)2
pψdφ−

mrJ0 sin 2φ

2(mr2 − J0 sin2 φ)2
pdφ

)

+θ̇

(

mr2 cos2 φ

(mr2 − J0 sin2 φ)
dpψ +

(mr2 − J0) tan φ

2(mr2 − J0 sin2 φ)
dp

)

+θ̇

(

mr2(J0 −mr2) sin 2φ

(mr2 − J0 sin2 φ)2
pψdφ+

(mr2 − J0)(mr
2 sec2 φ+ J0 tan2 φ cos 2φ)

2(mr2 − J0 sin2 φ)2
pdφ

)

+ψ̇dpψ + φ̇dpφ − ṗψdψ − ṗφdφ

−θ̇

(

mr sin 2φ

2(mr2 − J0 sin2 φ)
pψ −

mr

2(mr2 − J0 sin2 φ)
p

)

(− sin θdx+ cos θdy)

−mr

(

mr2 cos 2φ+ J0 sin2 φ

(mr2 − J0 sin2 φ)2
pψφ̇−

J0 sin 2φ

2(mr2 − J0 sin2 φ)2
pφ̇

)

(cos θdx+ sin θdy)

−

(

mr2(J0 −mr2) sin 2φ

(mr2 − J0 sin2 φ)2
pψφ̇+

(mr2 − J0)(mr
2 sec2 φ+ J0 tan2 φ cos 2φ)

2(mr2 − J0 sin2 φ)2
pφ̇

)

dθ

−
mr sin 2φ

2(mr2 − J0 sin2 φ)
ṗψ(cos θdx+ sin θdy) −

mr2 cos2 φ

(mr2 − J0 sin2 φ)
ṗψdθ

+
mr

2(mr2 − J0 sin2 φ)
(cos θdx+ sin θdy)−

(mr2 − J0) tan φ

2(mr2 − J0 sin2 φ)
ṗdθ.
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As for dHH, recall that the constrained Hamiltonian HM is

HM =
mr2

2(mr2 − J0)2
cot2 φ(pθ − pψ)2 +

1

2J0
p2
ψ +

1

2(mr2 − J0)
(pθ − pψ)2 +

1

4J1
p2
φ.

Notice that HM is SE(2)-invariant and hence HM = h
M

where

h
M

=
mr2

2

(

1

2(mr2 − J0 sin2 φ)
p−

sin2 φ

2(mr2 − J0 sin2 φ)
pψ

)2

+
1

2J0
p2
ψ

+
mr2 − J0

2

(

tanφ

2(mr2 − J0 sin2 φ)
p−

sin2 φ

mr2 − J0 sin2 φ
pψ

)2

+
1

4J1
p2
φ.

Compute dHM = dh
M

and we have

dh
M

=

mr2(p − sin 2φpψ)

2(mr2 − J0 sin2 φ)

(

1

2(mr2 − J0 sin2 φ)
dp −

sin 2φ

2(mr2 − J0 sin2 φ)
dpψ

)

+
mr2(p− sin 2φpψ)

2(mr2 − J0 sin2 φ)

(

pd

(

1

2(mr2 − J0 sin2 φ)

)

− pψd

(

sin 2φ

2(mr2 − J0 sin2 φ)

))

+
(mr2 − J0)(tan φp − 2 sin2 φpψ)

2(mr2 − J0 sin2 φ)

(

tanφ

2(mr2 − J0 sin2 φ)
dp−

sin2 φ

(mr2 − J0 sin2 φ)
dpψ

)

+
(mr2 − J0)(tan φp − 2 sin2 φpψ)

2(mr2 − J0 sin2 φ)

(

pd

(

tanφ

2(mr2 − J0 sin2 φ)

)

− pψd

(

sin2 φ

(mr2 − J0 sin2 φ)

))

+
1

J0
pψdpψ + +

1

2J1
pφdpφ.

It is easy to check that XH ΩM = dHM is SE(2)-invariant, and vanishes on V ∩ H when
restricted to U . Hence both sides push down to H. The push down of XH ΩM is given by

X
H

Ω
H

=
(

J0

2mr
sin(2φ)ψ̇ −

1

2mr
p

)(

mr sin 2φ

2(mr2 − J0 sin2 φ)
dpψ −

mr

2(mr2 − J0 sin2 φ)
dp

)

+

(

J0

2mr
sin(2φ)ψ̇ −

1

2mr
p

)(

mr(mr2 cos 2φ+ J0 sin2 φ)

(mr2 − J0 sin2 φ)2
pψdφ−

mrJ0 sin 2φ

2(mr2 − J0 sin2 φ)2
pdφ

)

+

(

−J0

mr2
sin2(φ)ψ̇ +

tanφ

2mr2
p

)(

mr2 cos2 φ

(mr2 − J0 sin2 φ)
dpψ +

(mr2 − J0) tan φ

2(mr2 − J0 sin2 φ)
dp

)

+

(

−J0

mr2
sin2(φ)ψ̇ +

tanφ

2mr2
p

)

mr2(J0 −mr2) sin 2φ

(mr2 − J0 sin2 φ)2
pψdφ

+

(

−J0

mr2
sin2(φ)ψ̇ +

tanφ

2mr2
p

)

(mr2 − J0)(mr
2 sec2 φ+ J0 tan2 φ cos 2φ)

2(mr2 − J0 sin2 φ)2
pdφ

+ψ̇dpψ + φ̇dpφ − ṗψdψ − ṗφdφ.

Equating the terms of dh
H

= dh
M

with those of the push down of XH ΩM gives the remaining
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reduced Hamilton equations:

ψ̇ = −
tanφ

2(mr2 − J0 sin2 φ)
p+

mr2

J0(mr2 − J0 sin2 φ)
pψ (3.5.10)

φ̇ =
pφ
2J1

(3.5.11)

ṗψ = 0 (3.5.12)

ṗφ = 0. (3.5.13)

Notice that both the momentum equation (3.5.8) and the above set of reduced equations are inde-
pendent of the group elements of the symmetry group SE(2). If we add in the set of reconstruction
equations (3.5.2), we recover the full dynamics of the system, and in a form that is suitable for
control theoretical purposes.

Finding the Reduced Equations on the Lagrangian Side As shown in the proof of Theorem
3.2, we can derive the reduced Lagrange-d’Alembert equations in two ways. Here we will first use
the equations (3.4.17).

d

dt

(

∂lc
∂ṙα

)

−
∂lc
∂rα

= −
∂l

∂ξb
(Bb

αβ ṙ
β + F bipi), (3.5.14)

where

Bb
αβ =

∂Abα
∂rβ

−
∂Abβ
∂rα

− CbacA
a
βA

c
α and F biα =

∂Γbi

∂rα
− CbadA

a
αΓdi.

From the Lagrangian L, we find the reduced Lagrangian

l(r, ṙ, ξ) =
1

2
m((ξ1)2 + (ξ2)2) +

1

2
mr2(ξ3)2 +

1

2
J0ψ̇

2 + +J0ψ̇(ξ3) + J1φ̇
2, (3.5.15)

where ξ = g−1ġ. After plugging in the constraints (3.5.2), we have the constrained reduced La-
grangian

lc(r, ṙ, p) = −
J2

0

2mr2
sin2 φψ̇2 +

1

8mr2
sec2 φp2 +

1

2
J0ψ̇

2 + +J1φ̇
2. (3.5.16)

Let us find all the ingredients of the above equations:

∂l

∂ξ1
= mξ1 = m

(

J0

2mr
sin 2φψ̇ −

1

2mr
p

)

∂l

∂ξ2
= mξ2 = 0

∂l

∂ξ3
= mr2

(

−
J0

mr2
sin2 φψ̇ +

tanφ

2mr2
p

)

+ J0ψ̇;

since ∂l
∂ξ2

= 0, we do not need to compute B2
αβ and F 2

α (notice that i = 1). Also it is straightforward
to find

B1
12 =

∂

∂φ

(

−
J0

2mr
sin 2φ

)

= −
J0

mr
cos 2φ

B3
12 =

∂

∂φ

(

J0

mr
sin2 φ

)

=
J0

mr
sin 2φ

F 3
2 =

∂

∂φ

(

tanφ

2mr2

)

=
sec2 φ

2mr2
,
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and F 1
1 = F 3

1 = F 1
2 = 0. Substituting into (3.5.14), we get the reduced equations after some

computations

(

1 −
J0

mr2
sin2 φ

)

ψ̈ =
J0

2mr2
sin 2φψ̇φ̇−

J0

2mr2
φ̇p (3.5.17)

J1φ̈ = 0 (3.5.18)

It is easy to check that these two equations are equivalent to the set of reduced equations (3.5.10)-
(3.5.13) on the Hamiltonian side through the constrained Legendre transformation FL|D.

Next we will find the reduced equations use the equations (3.4.25)

d

dt

(

∂lc
∂ṙα

)

−
∂lc
∂rα

= −(Kjl
α pjpl + Kj

αβ ṙ
βpj + Kαβδ ṙ

β ṙδ) (3.5.19)

where

Kjl
α =

∂Ijl

∂rα
− CjbhA

b
αI

hl + γjhαI
hl

Kj
αβ = λa′β(−C

a′

bhA
b
αI

hj + γa
′

hαI
hj) +Bj

αβ

Kαβδ = λa′δB
a′

αβ .

Here

Bb
αβ =

∂Abα
∂rβ

−
∂Abβ
∂rα

− CbacA
a
βA

c
α +Acαγ

b
cβ −Acβγ

b
cα.

First we need to construct the orthogonal body frame. Recall that

(e1(g, r))Q = gade
d
1∂ga = −2r cos2 φ cos θ∂x − 2r cos2 φ sin θ∂y + sin 2φ∂θ.

Hence
e1 = −2r cos2 φex + sin 2φeθ,

where ex, ey, eθ are the generators of ∂x, ∂y, ∂θ. Using the kinetic energy metric, we find

e2 = −
1

m
sinφex +

1

m
cosφey −

1

mr
cosφeθ

e3 =
1

m
sinφex +

1

m
cosφey +

1

mr
cosφeθ

Recall that we only need e1 to be orthogonal to e2 and e3.
Let ηb be the components of ξ in the new basis, i.e., ξ = ξ1ex + ξ2ey + ξ3eθ = ηaea, then

ξ1 = −2r cos2 φη1 −
1

m
sinφη2 +

1

m
sinφη3

ξ2 =
1

m
cosφη2 +

1

m
cosφη3

ξ1 = sin 2φη1 −
1

mr
cosφη2 +

1

mr
cosφη3,

and l̄(r, ṙ, ηa) = l(r, ṙ, T baη
a) where T ab is defined as above by ξb = T baη

a.
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Notice that in the new basis, the constraints (3.5.2) become







η1

η2

η3






= −









J0

2mr2
tanφψ̇

0

0









+









1

4mr2
sec2 φp

0

0









, (3.5.20)

but the constrained reduced equation l̄c(r, ṙ, p) remains the same and is equal to lc(r, ṙ, p).
Let us find all the ingredients of equations (3.5.19). After finding from (3.5.20) that

A1
1 =

J0

2mr2
tanφ and I11 =

1

4mr2
sec2 φ

and the rest of Abα equal to zero (which is not true in general), it is straightforward to calculate

K11
1 = 0, K1

11 = 0, K1
21 = 0, K122 = 0, K1

22 = 0,

K11
2 =

1

4mr2
sec2 φ tan φ, K1

12 =
J0

2mr2
, K121 =

J2
0

2mr2
sin 2φ

After substituting into (3.5.19) we get the same reduced equations as (3.5.17) and (3.5.18).

3.6 Example: The Bicycle

Control of the bicycle is a rich problem offering a number of considerable challenges of current
research interest in the area of mechanical and robotic control. The bicycle is an underactuated
system, subject to nonholonomic contact constraints associated with the rolling constraints on the
front and rear wheels. It is unstable (except under certain combinations of fork geometry and
speed) when not controlled. It is also, when considered to traverse flat ground, a system subject to
symmetries; its Lagrangian and constraints are invariant with respect to translations and rotations
in the ground plane.

Here a simplified bicycle model will be considered. The wheels of the bicycle are considered to
have negligible inertia moments, mass, radii, and width, and roll without side or longitudinal slip.
The vehicle is assumed to have a fixed steering axis that is perpendicular to the flat ground when
the bicycle is upright. For simplicity we concern ourselves with a point mass bicycle. The rigid
frame of the bicycle will be assumed to be symmetric about a plane containing the rear wheel.

Consider a ground fixed inertial reference frame with x and y axis in the ground plane and
z-axis perpendicular to the ground plane in the direction opposite to gravity. The intersection
of the vehicle’s plane of symmetry with the ground plane forms a contact line. The contact line
is rotated about the z-direction by a yaw angle θ. The contact line is considered directed, with
its positive direction from the rear to the front of the vehicle. The yaw angle θ is zero when the
contact line is in the x-direction. The angle that the bicycle’s plane of symmetry makes with the
vertical direction is the roll angle ψ ∈ (−π

2 ,
π
2 ). Front and rear wheel contacts are constrained to

have velocities parallel to the lines of intersection of their respective wheel planes and the ground
plane, but free to turn about an axis through the wheel/ground contact and parallel to the z-axis.
Let σ ∈ (−π

2 ,
π
2 ) be the steering angle between the front wheel plane/ground plane intersection and

the contact line. With σ we associate a moment of inertia J which depends both on ψ and σ. We
will parametrize the steering angle by φ := tanσ/b. For more details, see Getz and Marsden [1995]
and Getz [1996]. See figure 3.6.1.
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Figure 3.6.1: Notation for the bike.

The configuration space is Q = SE(2) × S1 × S1 and the Lagrangian L : TQ → R is the total
kinetic energy minus potential energy of the system and is given by

L = −mga cosψ +
1

2
J(ψ, φ)φ̇2

+
m

2

(

(cos θẋ+ sin θẏ + a sinψθ̇)2 + (− sin θẋ+ cos θẏ − a cosψψ̇ + cθ̇)2 + (−a sinψψ̇)2
)

where m is the mass of the bicycle, considered for simplicity to be a point mass, and J(ψ, φ) is the
moment of inertia associated with the steering action. The nonholonomic constraints associated
with the front and rear wheels, assumed to roll without slipping, are expressed by

θ̇ − φ(cos θẋ+ sin θẏ) = 0

− sin θẋ+ cos θẏ = 0.

Clearly both the Lagrangian and the constraints are invariant under the SE(2) action.
Notice that the Legendre transform FL is singular but by the remark following Theorem 3.2 the

Hamiltonian procedure still works because the constrained Legendre transform FL|D is invertible.

The Constraint Submanifold The constraints above give rise to the constraint one forms

ω1(q) = dθ − φ cos θdx− φ sin θdy

ω2(q) = − sin θdx+ cos θdy

which determine the kinematic distribution Dq:

Dq = span{∂ψ, ∂φ, cos θ∂x + sin θ∂y + φ∂θ}.

The tangent space to the orbits of the SE(2) action is given by

Tq(Orb(q)) = span{∂x, ∂y, ∂θ},
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and the intersection between the tangent space to the group orbits and the constraint distribution
is thus given by

Sq = Dq ∩ Tq(Orb(q)) = span{cos θ∂x + sin θ∂y + φ∂θ}.

The momentum can be constructed by choosing a section of S = D∩TOrb regarded as a bundle
over Q. Since Dq ∩ TqOrb(q) is one-dimensional, the section can be chosen to be

ξqQ = cos θ∂x + sin θ∂y + φ∂θ,

which is invariant under the action of SE(2) on Q. The nonholonomic momentum map is thus
given by

p =
∂L

∂q̇i
(ξqQ)i

= m(ẋ+ a sinψ cos θθ̇ + a cosψ sin θψ̇ − c sin θθ̇) cos θ

+m(ẏ + a sinψ sin θθ̇ − a cosψ cos θψ̇ + c cos θθ̇) sin θ

+m(cos θẋ+ sin θẏ + a sinψθ̇)aφ sinψ

+m(− sin θẋ+ cos θẏ − a cosψψ̇ + cθ̇)cφ.

The kinematic constraints plus the momentum are given by

0 = ξ3 − φξ1

0 = ξ2

p = m(ξ1 + a sinψξ3) +maφ sinψ(ξ1 + a sinψξ3)

mφ(cξ2 − ca cosψψ̇ + c2ξ3)

where

ξ1 = cos θẋ+ sin θẏ

ξ2 = − sin θẋ+ cos θẏ

ξ3 = θ̇

Adding, subtracting, and scaling these equations, we can write







ξ1

ξ2

ξ3






+













−
caφ cosψ

K
ψ̇

0

−
caφ2 cosψ

K
ψ̇













=











1

mK
p

0

φ

mK
p











(3.6.1)

where
K = (1 + aφ sinψ)2 + c2φ2. (3.6.2)

These equations have the form
g−1ġ +A(r)ṙ = Γ(r)p.
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Next find the Legendre transform FL and restrict it to the constraint submanifold D ⊂ TQ, we
get

px = m(1 + aφ sinψ)ξ1 cos θ −m(cφξ1 − a cosψψ̇) sin θ

py = m(1 + aφ sinψ)ξ1 sin θ +m(cφξ1 − a cosψψ̇) cos θ

pθ = ma sinψ(1 + aφ sinψ)ξ1 +m(c2φξ1 − ca cosψψ̇)

pψ = ma2ψ̇ −mac cosψφξ1

pφ = J(ψ, φ)φ̇.

After applying the constrained Legendre transformation FL|D and its inverse to the constraint
equations (3.6.1), we have







µ1

µ2

µ3






+















−
cφ cosψ(1 + aφ sinψ)

F

pψ
a

(1 + aφ sinψ)2 cosψ

F

pψ
a

c cosψ(1 + aφ sinψ)

F

pψ
a















=















1 + aφ sinψ

F
p

cφ sin2 ψ

F
p

(1 + aφ sinψ)a sinψ + c2φ sin2 ψ

F
p















, (3.6.3)

where

µ1 = cos θpx + sin θpy

µ2 = − sin θpx + cos θpy

µ3 = pθ

and

F = (1 + aφ sinψ)2 + c2φ2 sin2 ψ (3.6.4)

p = px cos θ + py sin θ + pθφ. (3.6.5)

Therefore, the constraint submanifold M ⊂ T ∗Q is defined by

px = µ1 cos θ − µ2 sin θ

py = µ1 sin θ + µ2 cos θ

pθ = µ3.

It is a submanifold in T ∗Q and we can use (x, y, θ, ψ, φ, pψ , pφ, p) as its induced local coordinates.

The Distributions H,V ∩ H and U . Using the induced coordinates, the distribution H on M
is

H = span{cos θ∂x + sin θ∂y + φ∂θ, ∂ψ, ∂φ, ∂pψ , ∂pφ , ∂p} (3.6.6)

and the subdistribution V ∩ H is

V ∩ H = span{cos θ∂x + sin θ∂y + φ∂θ}. (3.6.7)

Notice that in the case of the bicycle, the constraints are independent of the velocities of the
shape variables and hence the simplified procedure employed in the snakeboard is also used here.
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As for the subdistribution U , we first calculate the two form ΩM. After pulling back the
canonical two-form of T ∗Q to M, we have

ΩM = dx ∧ dpx + dy ∧ dpy + dθ ∧ dpθ + dψ ∧ dpψ + dφ ∧ dpφ

= (cos θdx+ sin θdy) ∧ dµ1 + µ1(− sin θdx+ cos θdy) ∧ dθ

+(− sin θdx+ cos θdy) ∧ dµ2 − µ2(cos θdx+ sin θdy) ∧ dθ

+dθ ∧ dµ3 + dψ ∧ dpψ + dφ ∧ dpφ

Since U = (V ∩ H)⊥ = ker{(V ∩ H) ΩH}, we need to calculate (V ∩ H) ΩM, and restrict it
to H:

(V ∩H) ΩH = dµ1 − µ1φ(− sin θdx+ cos θdy)

−µ2dθ + µ2φ(cos θdx+ sin θdy) + φdµ3

= dµ1 + φdµ3

= dp+
c cosψ(1 + aφ sinψ)

F

pψ
a
dφ−

a sinψ(1 + aφ sinψ) + c2φ sin2 ψ

F
pdφ.

Hence,

U = ker

{

dp+
c cosψ(1 + aφ sinψ)

F

pψ
a
dφ−

a sinψ(1 + aφ sinψ) + c2φ sin2 ψ

F
pdφ

}

. (3.6.8)

The Reconstruction and Momentum Equations A vector field XU taking values in U must
be of the form

XU = ẋ∂x + ẏ∂y + θ̇∂θ + ψ̇∂ψ + φ̇∂φ + ṗψ∂pψ + ṗφ∂pφ + ṗ∂p (3.6.9)

where

ẋ = ξ1 cos θ − ξ2 sin θ =

(

caφ cosψ

K
ψ̇ +

1

mK
p

)

cos θ

ẏ = ξ1 sin θ + ξ2 cos θ =

(

caφ cosψ

K
ψ̇ +

1

mK
p

)

sin θ

θ̇ = φξ1 =

(

caφ2 cosψ

K
ψ̇ +

φ

mK
p

)

and

ṗ = −
c cosψ(1 + aφ sinψ)

F

pψ
a
φ̇+

a sinψ(1 + aφ sinψ) + c2φ sin2 ψ

F
pφ̇. (3.6.10)

The equations for ẋ, ẏ and θ̇ are the same reconstruction equations as equations (3.6.1) and the
last one for ṗ is the momentum equation on the Hamiltonian side. Similar to the example of the
snakeboard, the momentum p equals the angular momentum of the system about a fixed point P
that can be determined in the same way as in the case of the snakeboard. Notice also that the last
equation can be written simply as ṗ = µ3φ̇.
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The Reduced Hamilton Equations. To find the remaining reduced equations, we need to
compute

XH ΩM = dHM, (3.6.11)

restrict it to the subdistribution U and then push it down to the reduced constraint submanifold
M. Let us first compute XH ΩM

XH ΩM =

(cos θẋ+ sin θẏ)dµ1 + µ1(− sin θẋ+ cos θẏ)dθ − µ1θ̇(− sin θdx+ cos θdy)

+(− sin θẋ+ cos θẏ)dµ2 − µ2(cos θẋ+ sin θẏ)dθ + µ2θ̇(cos θdx+ sin θdy)

+θ̇dµ3 + ψ̇dpψ + φ̇dpφ − ṗψdψ − ṗφdφ

−((ψ̇∂ψ + φ̇∂φ + ṗψ∂pψ + ṗφ∂pφ + ṗ∂p) dµ1)(cos θdx+ sin θdy)

−((ψ̇∂ψ + φ̇∂φ + ṗψ∂pψ + ṗφ∂pφ + ṗ∂p) dµ2)(− sin θdx+ cos θdy)

As for dHH, we can find the constrained Hamiltonian HM via the constrained Legendre trans-
form and have

HM = mga cosψ +
1

2J
p2
φ +

1

2m

(

µ2
1 + µ2

2 +

(

K sinψ

F

pψ
a

+
cφ sinψ cosψ

F
p

)2
)

.

Notice that HM is SE(2)-invariant and hence HM = h
M

. Compute dHM = dh
M

and we have

dh
M

=

−mga sinψdψ +
1

J
pφdpφ −

1

2J2
p2
φ

(

∂J

∂ψ
dψ +

∂J

∂φ
dφ

)

+
1

m

(

µ1dµ1 + µ2dµ2 +

(

K sinψ

F

pψ
a

+
cφ sinψ cosψ

F
p

)

d

(

K sinψ

F

pψ
a

+
cφ sinψ cosψ

F
p

))

.

It can be checked that XH ΩM = dHM is SE(2)-invariant, and vanishes on V ∩ H when
restricted to U . Hence both sides push down to H. The push down of XH ΩM is given by

X
H

Ω
H

= (cos θẋ+ sin θẏ)dµ1 + θ̇dµ3 + ψ̇dpψ + φ̇dpφ − ṗψdψ − ṗφdφ

= ξ1dµ1 + ξ3dµ3 + ψ̇dpψ + φ̇dpφ − ṗψdψ − ṗφdφ

Equating the terms of dh
H

= dh
M

with those of the push down of XH ΩM gives the remaining
reduced Hamilton equations:

ψ̇ =
1

ma

(

K

F

pψ
a

+
cφ cosψ

F
p

)

(3.6.12)

φ̇ =
pφ
J

(3.6.13)

ṗψ = mga sinψ +
1

2J2
p2
φ

∂J

∂ψ
+m(1 + aφ sinψ)aφ cosψ(ξ1)2 +mcaφ sinψξ1ψ̇ (3.6.14)

ṗφ =
1

2J2

∂J

∂φ
p2
φ, (3.6.15)
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where

ξ1 =
cφ cosψ

K
ψ̇ +

1

mK
p =

cφ cosψ

mF

pψ
a

+
1

mF
p

as defined earlier in (3.6.1). The first two equations are nothing but the inverse of the constrained
Legendre transform. Notice that both the momentum equation (3.6.10) and the above set of reduced
equations are independent of the group elements of the symmetry group SE(2). If we add in the
set of reconstruction equations (3.6.1), we recover the full dynamics of the system, and in a form
that is suitable for control theoretical purposes. Methods developed in Koon and Marsden [1995]
and Ostrowski, Desai and Kumar [1996] will be used to study the optimal control of the bicycle
whose equations of motion have been found in this section.

Conclusions.

In this paper we have analyzed the relation between the Lagrangian and Hamiltonian approaches
to problems in nonholonomic mechanics. In the course of doing this, we have clarified each of the
pictures. For example, we have shown how the momentum equation first found on the Lagrangian
side fits into the Hamiltonian approach. We have also explored the reduced Lagrange-d’Alembert
equations in greater detail than was known previously. An example, a simplified model of the
bicycle is used to illustrate the ideas.

This paper concentrates in comparing different but equivalent formulations of mechanics with
nonholonomic constraints from the intrinsic point of view. While a further comparison with the
extrinsic point of view taken in Dezord [1994] and Marle [1995] would be interesting, we will leave
it to the future.

One aspect we do not address in this paper is the point of view of Poisson geometry and the
Dirac theory of constraints. It is known that the obvious Poisson structures for nonholonomic
systems do not satisfy the Jacobi identity (this is already mentioned in [BS] and van der Schaft
and Maschke [1994]). Thus, any discussion in this direction should take this into account. We hope
to address some of these issues in the future. Another item for future work is the extension of the
theory of geometric phases (as in Marsden, Montgomery and Ratiu [1990]) to the nonholonomic
case.
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