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Abstract

Many important problems in multibody dynamics,
the dynamics of wheeled vehicles and motion genera-
tion, involve nonholonomic mechanics. Many of these
systems have symmetry, such as the group of Euclidean
motions in the plane or in space and this symmetry
plays an important role in the theory.

Despite considerable advances on both Hamiltonian
and Lagrangian sides of the theory, there remains much
to do. We report on progress on two of these fronts.
The first is a Poisson description of the equations that
is equivalent to those given by Lagrangian reduction,
and second, a deeper understanding of holonomy for
such systems. These results promise to lead to further
progress on the stability issues and on locomotion gen-
eration.

1 Symplectic and Poisson Geometry of

Nonholonomic Systems

Bloch, Krishnaprasad, Marsden and Murray [1996],
hereafter denoted [BKMM], applied methods of geo-
metric mechanics to the Lagrange-d’Alembert formu-
lation and extended the use of connections and mo-
mentum maps associated with a given symmetry group
to this case. The resulting framework, including the
nonholonomic momentum and nonholonomic mechan-
ical connection, provides a setting for studying non-
holonomic mechanical control systems that may have a
nontrivial evolution of their nonholonomic momentum.

The setting is a configuration space Q with a (non-
integrable) distribution D ⊂ TQ describing the con-
straints. For simplicity, we consider only homogeneous
velocity constraints. We are given a Lagrangian L on
TQ and a Lie group G acting on the configuration space
that leaves the constraints and the Lagrangian invari-
ant. In many example, the group encodes position and
orientation information. For example, for the snake-
board, the group is SE(2) of rotations and translations
in the plane. The quotient space Q/G is called shape
space.
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The dynamics of such a system is described by a set
of equations of the following form:

g−1ġ = −Anh(r)ṙ + I−1(r)p (1.1)

ṗ = ṙTH(r)ṙ + ṙTK(r)p+ pTD(r)p (1.2)

M(r)r̈ = δ(r, ṙ, p) + τ. (1.3)

The first equation is a reconstruction equation for a
group element g, the second is an equation for the non-
holonomic momentum p (not conserved in general), and
the third are equations of motion for the reduced vari-
ables r which describe the “shape” of the system. The
momentum equation is bilinear in (ṙ, p). The variable
τ represents the external forces applied to the system,
and is assumed to affect only the shape variables, i.e.,
the external forces are G-invariant. Note that the evo-
lution of the momentum p and the shape r decouple
from the group variables.

This framework has been very useful for studying
controllability, gait selection and locomotion for sys-
tems such as the snakeboard. It has also helped in the
study of optimality of certain gaits, by using optimal
control ideas in the context of nonholonomic mechanics
(Koon and Marsden [1997a] and Ostrowski, Desai and
Kumar [1997]). Hence, it is natural to explore ways for
developing similar procedures on the Hamiltonian side.

1.1 Symplectic Reduction

Bates and Sniatycki [1993], hereafter denoted [BS],
developed the symplectic geometry on the Hamiltonian
side of nonholonomic systems, while [BKMM] explored
the Lagrangian side. It was not obvious how these two
approaches were equivalent, especially how the momen-
tum equation, the reduced Lagrange-d’Alembert equa-
tions and the reconstruction equation correspond to the
developments in [BS].

Our first main result establishes the specific links
between these two sides and uses the ideas and results
of each to shed light on the other, deepening our under-
standing of both points of view. For example, in prov-
ing the equivalence of the Lagrangian reduction and the
symplectic reduction, we have shown where the momen-
tum equation is lurking on the Hamiltonian side and
how this is related to the organization of the dynamics
of nonholonomic systems with symmetry into the three



parts displayed above: a reconstruction equation for
the group element g, an equation for the nonholonomic
momentum p and the reduced Hamilton equations for
the shape variables r, pr.

The basic theory is illustrated with the snakeboard,
as well as a simplified model of the bicycle (see Getz
and Marsden [1995]). The latter is an important pro-
totype control system because it is an underactuated
balance system. For more details, see Koon and Mars-
den [1997b].

1.2 Poisson Geometry

On the Hamiltonian side, besides the symplectic
point of view, one can also develop the Poisson point
of view. Because of the momentum equation, it is nat-
ural to let the value of momentum be a variable and
for this a Poisson rather than a symplectic viewpoint is
more natural. Some of this theory has been started in
van der Schaft and Maschke [1994], hereafter denoted
[VM]. In our second main result, we build on their work
and develop the Poisson reduction for the nonholonomic
systems with symmetry. We use this Poisson reduction
procedure to obtain specific formulas for the nonholo-
nomic Hamiltonian dynamics. We also show that the
equations given by Poisson reduction are equivalent to
those given by the Lagrangian reduction via a reduced
constrained Legendre transform.

Two interesting complications make this effort es-
pecially interesting. First of all, as we have mentioned,
symmetry need not lead to conservation laws but rather
to a momentum equation. Second, the natural Poisson
bracket fails to satisfy the Jacobi identity. In fact, the
so-called Jacobiizer (the cyclic sum that vanishes when
the Jacobi identity holds) is an interesting expression
involving the curvature of the underlying distribution
describing the nonholonomic constraints. We shall ex-
plore these in detail in Koon and Marsden [1997c].

Van der Schaft and Maschke [1994] use the Legendre
transformation FL : TQ→ T ∗Q to define the Hamilto-
nian H in the standard fashion: H = piq̇

i − L, where
p = FL(vq) = ∂L/∂q̇, and then write the equations of
motion in the Hamiltonian form as

(

q̇i

ṗi

)

= J
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Here J is the canonical Poisson tensor

J =

(

{qi, qj} {qi, pj}
{pi, q

j} {pi, pj}

)

=

(

0n In
−In 0n

)

,

where {, } is the canonical Poisson bracket.
On Lagrangian side, we saw that one can get rid of

the Lagrangian multipliers. On the Hamiltonian side,
it is also desirable to model the Hamiltonian equations
without the Lagrange multipliers λ by a vector field on
a submanifold of T ∗Q. In [VM], it is done through a
clever change of coordinates.

First, a constraint phase space M = FL(D) ⊂ T ∗Q
is defined and in local coordinates,

M =

{

(q, p) ∈ T ∗Q

∣

∣

∣

∣

ωa
i

∂H

∂pi

= 0

}

.

Let {Xα} be a local basis for the constraint distribu-
tion D and let {ωa} be a local basis for the annihilator
D0. Let {ωa} span the complementary subspace to D
such that 〈ωa, ωb〉 = δa

b where δa
b is the usual Kronecker

delta. Here a = 1, . . . , k and α = 1, . . . , n− k. Define a
coordinate transformation (q, p) → (q, p̃α, p̃a) by

p̃α = X i
αpi, p̃a = ωi

api.

[VM] shows that in the new (generally not canonical)
coordinates (q, p̃α, p̃a), the Poisson tensor becomes

J̃(q, p̃) =

(

{qi, qj} {qi, p̃j}
{p̃i, q

j} {p̃i, p̃j}

)

.

and the constrained Hamiltonian equations transform
into
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where H̃(q, p̃) is the Hamiltonian H(q, p) expressed in
the new coordinates (q, p̃).

Then, let (p̃α, p̃a) satisfy the constraint equations
∂H̃
∂p̃a

(q, p̃) = 0. Since

M =

{

(q, p̃α, p̃a)

∣

∣

∣

∣

∣

∂H̃

∂p̃a

(q, p̃α, p̃a) = 0

}

,

[VM] uses (q, p̃α) as an induced local coordinates for
M.

Now we are ready to eliminate the Lagrange multi-

pliers. Notice that ∂H̃
∂p̃b

(q, p̃) = 0 on M, and by restrict-
ing the dynamics on M, we can disregard the last equa-
tions involving λ in the above set of constrained Hamil-
tonian equations. In fact, we can also truncate the Pois-
son tensor J̃ by leaving out its last k columns and last k
rows and then describe the constrained dynamics on M
expressed in the induced coordinates (qi, p̃α) as follows

(

q̇i

˙̃pα

)

= JM

(

∂HM

∂qj (q, p̃α)
∂HM

∂p̃β
(q, p̃α)

)

,

(

qi

p̃α

)

∈ M.

Here JM is the (2n − k) × (2n − k) truncated matrix
of J̃ restricted to M and is expressed in the induced
coordinates. Also it is easy to show that

∂H̃

∂qj
(q, p̃α, p̃a) =

∂HM

∂qj
(q, p̃α)

and
∂H̃

∂p̃β

(q, p̃α, p̃a) =
∂HM

∂p̃β

(q, p̃α),



where HM is the constrained Hamiltonian on M ex-
pressed in the induced coordinates.

The matrix JM defines a bracket {, }M on the con-
straint submanifold M as follows

{FM, GM}M(q, p̃α) :=
(

∂FT
M

∂qi

∂FT
M

∂p̃α

)

JM(qi, p̃α)

(

∂GM

∂qj

∂GM

∂p̃β

)

for any two smooth functions FM, GM on the con-
straint submanifold M. Clearly this bracket satisfies
the first two defining properties of a Poisson bracket,
namely, skew symmetry and Leibniz rule, and it is
shown in [VM] that it satisfies the Jacobi identity if
and only if the constraints are holonomic.

In Koon and Marsden [1997c], we will develop a
general formula for the Jacobiizer which is an interest-
ing expression involving the curvature of the underly-
ing distribution that describes the nonholonomic con-
straints. From this formula, we can see clearly that the
Poisson bracket defined here satisfies the Jacobi iden-
tity if and only if the constraints are holonomic.

1.3 Poisson Reduction for Nonholonomic Me-

chanics

However, [VM] did not deal with the important case
when the system have a symmetry group. In order to
develop similar procedures for breaking the dynamics of
such systems on the Hamiltonian side from a Poisson
viewpoint, we need to build on their work and develop
the Poisson reduction.

Let G be the symmetry group of the system. We
will write the equations of motion for the reduced con-
strained Hamiltonian dynamics using a reduced “Pois-
son” bracket on the reduced constraint phrase space
M̄.

The crucial step here is how to represent the con-
straint distribution D in a way that is both intrinsic
and ready for reduction. The work in both [BKMM]
and Koon and Marsden [1997b] suggest that we should
use the tools like nonholonomic momentum p and the
nonholonomic connection A in [BKMM] to describe D

Recall that in [BKMM], a body fixed basis eb(g, r) =
Adg ·eb(r) has been constructed such that the infinites-
imal generators (ei(g, r))Q of its first m elements at a
point q span Sq = Dq ∩ Tq(Orb(q)) where Tq(Orb(q))
is the tangent space to the orbit of the group. Assume
that G is a matrix group and ed

i is the component of
ei(r) with respect to a fixed basis {ba} of the Lie algebra
g where (ba)Q = ∂ga , then (ei(g, r))Q = ga

de
d
i ∂ga Since

Dq is the direct sum of Sq and the horizontal space of
the nonholonomic connection A, it can be represented
by

D = span{ga
de

d
i ∂ga ,−ga

bA
b
α∂ga + ∂rα}.

Here a, b, c, ...(corresponding to the symmetry direc-
tion) range from 1 to k (k = dim g); i, j, k, ... (symme-
try direction along constraint space) range from 1 to

m; α, β, ... (shape variables r) range from 1 to n − k
(n− k = dim (Q/G)).

Then the induced coordinates (ga, rα, p̃i, p̃α) for the
constraint submanifold M are defined by

p̃i = ga
de

d
i pa = µde

d
i

p̃α = pα − ga
bA

b
αpa = pα − µbA

b
α.

Here µ is an element of the dual of the Lie algebra g
∗

and µa are its coordinates with respect to a fixed dual
basis. Notice that p̃i are nothing but the corresponding
momentum functions on the Hamiltonian side.

After applying the results of [VM] summarized in
the previous section to these special induced coordi-
nates and doing a reduction by the symmetry group G,
we are able to prove the following theorem.

Theorem 1.1 The momentum equation and the re-
duced Hamilton equations on the reduced constraint sub-
manifold M̄ can be written as follows

˙̃pi = −µaC
a
bde

b
ie

d
j

∂hM̄
∂p̃j

+ µaF
a
iβ

∂hM̄
∂p̃β

ṙα =
∂hM̄
∂p̃α

˙̃pα = −
∂hM̄
∂rα

− µaF
a
jα

∂hM̄
∂p̃j

− µaB
a
αβ

∂hM̄
∂p̃β

.

Here, hM̄ is the reduced Hamiltonian on M̄; ξ =
(g−1)ġ; Ca

bd are the structure coefficients of the Lie al-
gebra g and F a

iβ is defined by

F a
iβ =

∂ea
i

∂rβ
+ Ca

bde
b
iA

d
β .

With the following reconstruction equation

ξ̇b = −Ab
β

∂hM̄
∂p̃β

+ eb
i

∂hM̄
∂p̃i

,= −Ab
β ṙ

β + (I−1)bipi

we recover the full dynamics of the system.

Notice that the first equation can be considered as
the momentum equation on the Hamiltonian side which
corresponds to the momentum equation developed in
[BKMM]. It generalizes the Lie-Poisson equation to the
nonholonomic case.

Furthermore, we have also proved

Theorem 1.2 The equations given by the Poisson re-
duction in Theorem 1 are equivalent to the equations
given by the Lagrangian reduction

ξb = −Ab
β ṙ

β + (I−1)bipi = −Ab
β ṙ

β + eb
iΩ

i

ṗi =
∂l

∂ξa

(

Ca
bdξ

bed
i +

∂ea
i

∂rβ
ṙβ

)

d

dt

(

∂lc
∂ṙα

)

−
∂lc
∂rα

= −
∂l

∂ξb
(Bb

αβ ṙ
β + F b

αiΩ
i),



via a reduced Legendre transform

p̃α =
∂lc
∂ṙα

p̃i =
∂lc
∂Ωi

.

Here the reduced constrained Lagrangian is defined by
lc(r, ṙ,Ω) = l(r, ṙ,−Aṙ+Ωe). where Ω is the body angu-
lar velocity and e(r) is the body fixed basis at the identity
defined earlier.

Thus, we have developed the Poisson reduction and
a corresponding procedure that can break the nonholo-
nomic dynamics on the Hamiltonian side into a recon-
struction equation, a momentum equation and the re-
duced Hamilton equations. Also we have shown that
Hamiltonian reductions (Poisson and Symplectic) are
equivalent to Lagrangian reduction. For more details,
see Koon [1997].

These results are important for the future devel-
opment of control as well as the stability theory for
nonholonomic mechanical systems with symmetry. In
particular, they will be required for the development
of the powerful block diagonalization properties of the
energy-momentum method developed by Simo, Lewis
and Marsden [1991]. This technique is very important
for the development of systematic methods for stability
criteria.

2 Holonomy and Locomotion.

It is now well known how the geometric effect of holon-
omy plays an important role in the understanding of
phase drifts and that this is a crucial ingredient in prob-
lems of stabilization and tracking. On the other hand,
parts of the basic theory for this is not as well developed
in the case of nonholonomic systems as for holonomic
ones. We are specifically referring to the approach in
which the holonomy is that associated with a connec-
tion that is constructed from the kinetic energy met-
ric of the problem (the mechanical connection) and the
constraints.

For systems with holonomic constraints, the geo-
metric approach is described in Marsden, Montgomery
and Ratiu [1990]. The basic idea of this approach is
described below. On the other hand, these ideas are
clearly important and are used for systems with non-
holonomic constraints as well, as described in Marsden
and Ostrowski [1997] and references therein.

The geometric tools needed to further develop the
theory for systems with nonholonomic constraints are
laid in Marsden, Montgomery and Ratiu [1990] and in
[BKMM]. We aim to develop the theory by combining
the approach in these two papers and also by making
the calculations more concrete and accessible. In par-
ticular, in the latter paper the notion of the nonholo-
nomic connection is defined and this is what replaces
the mechanical connection in the case of holonomic con-
straints. As earlier, what makes this theory more inter-
esting is the presence of the distribution describing the

nonholonomic constraints (so that one gets a contribu-
tion of holonomy from two sources) as well as the fact
that the momentum equation need not be conserved.

In [BKMM] it was also shown that the momentum
equation is, in certain circumstances, a parallel trans-
port equation, which introduces yet another connection.
This structure is in fact very important in the stability
theory of Zenkov, Bloch and Marsden [1997]. One can
view the build up of momentum in locomotion problems
(such as the snakeboard) as a holonomy effect itself, and
this is coupled to the phase drifts in the configuration
variables themselves.

2.1 Bundles and Connection

We now amplify a few basic facts on which the above
locomotion ideas are based. For instance, consider the
reorientation of a vehicle in space or an underwater ve-
hicle due to the articulation of joints or due to the con-
trolled spinning of internal rotors. Such reorientation
can take place while the total system angular momen-
tum is constant during the maneuver. This effect may
be understood in terms of a division of variables for
the entire configuration space Q into group variables
such as position and orientation variables and internal
or shape variables such as rotor and joint angles. This
gives rise to a principal bundle π : Q → S whose base
space S is the space of shape variables and whose fibers
are just the group orbits.

The mechanical connection is a connection whose
horizontal space is orthogonal (via the kinetic energy
metric) to these fibers. A construction more familiar
to mechanicians would be to compute the effective an-
gular velocity of a system by multiplying the angular
momentum by the inverse of the total system moment
of inertia tensor. More precisely, the mechanical con-
nection is a map A : TQ→ g that assigns to each (q, v)
the “angular velocity of the locked system”

A(q, v) = I(q)−1J(q, v). (2.1)

Here J is the momentum map. I(q) is the locked inertia
tensor which is the classical moment of inertia tensor
of the instantaneous rigid system.

The mechanical connection plays a very important
role in reduction theory (Marsden [1992]). Symmetry
for mechanical systems often manifest themselves as in-
variances of the system dynamics with respect to trans-
lational or rotational inertial position. The goal of re-
duction theory is to factor out the invariances in order
to provide a simplified analysis in terms of the base
(shape) space. Observe motion in shape space alone is
similar to watch the shapes change relative to an ob-
server riding with the object. Then the problem of find-
ing the original complete path is called reconstruction,
which is closely linked with the generation of geometric
and dynamic phases.

For general holonomic mechanical system with sym-
metry, we can write down the information encoded
by the mechanical connection in a very simple form.



The conservation law can be written as A(q, v) =
I(q)−1J(q, v) = I(q)−1µ where µ is a (constant) mo-
mentum. In a local trivialization, the conservation
law becomes A(r, g)(ṙ, ġ) = Adg(g

−1ġ + Aloc(r)ṙ) =
(AdgI

−1

loc
(r)Ad∗g)µ. Rearranging this equation, we see

that the group variables evolve according to

ġ = g(−Aloc(r)ṙ + I
−1

loc
(r)p) (2.2)

where p = Ad∗gµ is the body angular momentum. Here,
Aloc(r) and Iloc(r) are local forms of the mechanical
connection and locked inertia tensor and will be abbre-
viated below by A and I respectively.

2.2 Geometric and Dynamic Phases

For concreteness, consider a simple example of two
planar rigid bodies connected at their centers of mass by
a pin joint. Let I1 and I2 be their moments of inertia
and θ1 and θ2 be the angle they make with a fixed
inertial direction. In this case, the shape space is the
circle S1 parametrized by the hinge angle ψ = θ2 −
θ1 and the configuration space is S1 × S1 and can be
parametrized by (θ, ψ) (if we set θ = θ1). Conservation
of angular momentum states that I1θ̇+I2(θ̇+ ψ̇) = µ =
constant; that is, dθ + I2

I1+I2
dψ = µ

I1+I2
dt. The left

hand is the mechanical connection. Suppose that the
total angular momentum is zero: µ = 0. When body
2 goes through one revolution so that ψ traverses the
base circle one time, body 1 rotates by the amount

∆θ = −
I2

I1 + I2

∫ 2π

0

dψ = −

(

I2
I1 + I2

)

2π,

which is the total change in the group variable. But if
the angular momentum is not zero, we will have

∆θ = −
I2

I1 + I2

∫ 2π

0

dψ +
I2

I1 + I2
µ

∫ T

0

dt

and equal to I2
I1+I2

(−2π+µT ) where T is the time body
2 takes to make one revolution.

One does not need the geometry of connections to
understand such a simple example, but it does provide
a simple illustration of the ideas. For more complex ex-
amples, the geometric setting of connections in general
and the formula (2.2) in particular has indeed proven
useful. Below we will mention some new results that
make the calculations of the phases for dynamical sys-
tems on any trivial S1-bundle more accessible. They
also works for any Gµ-bundle in the case Gµ = S1.
Recall that Gµ is the isotropy subgroup of G used
for reduction: J−1(µ) → J−1/Gµ. It is also used to
construct the Gµ-bundle: Q → Q/Gµ. In Marsden,
Montgomery and Ratiu [1990], both of these two Gµ-
bundle have played an important role in the study of
the phases.

We have used these results to compute the phases
for several well-known examples like planar N -body
problem and the 3D rigid body. First let us state a re-
sult in Murray [1995] which describes a splitting of the

reduced Lagrangian l that enables one to write down
the local forms of the locked inertia tensor and con-
nection by directly looking at the reduced mass-inertial
matrix.

Theorem 2.1 Let L be G-invariant. The reduced La-
grangian can be written as

l(r, ṙ, ξ) =
1

2
(ξT , ṙT )

(

I IA
AT I m(r)

)(

ξ
ṙ

)

− V (r)

Theorem 2.2 For simple holonomic mechanical sys-
tems on a trivial S1-bundle, the total phase ∆θ of the
reconstructed (integral) curve is given by

∆θ = −

∮

Aα(r)ṙαdt+ µ

∫ T

0

I(r)−1dt (2.3)

where the line integral is along r(t) which is a closed
(base integral) curve in the shape space with period T .

As we have mentioned, this result also holds for sys-
tems like the rigid body where Gµ = S1.

In case that the angular momentum is zero, if the
system undergoes cyclic motion in the shape space, then
it need not undergo cyclic motion in the configuration
space. The difference between the beginning and the
end of the motion is given by a drift in the group vari-
ables and this is the geometric phase and is given by
the first term of (2.3). Notice that by Stokes’ theorem,
it can be calculated in terms of the integral of the cur-
vature of the connection over an area enclosed by the
closed curve on the base.

In the event that the momentum is not zero, the
system experiences a steady drift to the motion caused
by the internal shape changes. The reorientation of
this system can always be decomposed into two com-
ponents: the geometric phase, determined by the shape
of the path and the area enclosed by it, and the dynamic
phase, driven by the internal kinetic energy of the sys-
tem characterized by the momentum.

For general systems where Gµ is not abelian, there
are still some work to do to clarify the relation between
equation (2.2) and the formulations in Marsden, Mont-
gomery and Ratiu [1990]. A fuller understanding of
this relationship will help to lay a better foundation for
nonholonomic phases.

Indeed, things get even more interesting and also
harder to analyse when the system has both rolling
constraints and symmetry. As brought out earlier (see
equations (1.1) and (1.2)), [BKMM] has developed a
framework for studying such systems and has used an
interesting example, the snakeboard, to illustrate this
theory. It shows that for the snakeboard, while its mo-
mentum is not conserved, there is a particular com-
ponent of its angular momentum, called nonholonomic
momentum, p, that satisfies a special equation

ṗ = ṙTH(r)ṙ + ṙTK(r)p+ pTD(r)p. (2.4)



Equation (2.2) remains valid if one uses the nonholo-
nomic momentum and nonholonomic connection. Since
the momentum equation (2.4) has no explicit g depen-
dence, when one has a given internal motion, this equa-
tion can be solved for p and from it, the attitude and
position of the snakeboard can be calculated by an in-
tegration using equation (2.2). This strategy parallels
that used for the planar N -body and 3D rigid body.

While computer simulations on the snakeboard and
the roller racer (see Tsakiris [1995]) using periodic in-
puts have provided us some insights, we do not yet have
a complete geometric understanding of the phases for
such systems. In general, the net displacement of the
mechanism produced by periodic inputs is the geomet-
ric phase, or holonomy, associated with the connection.
In the case of snakeboard, however, the net displace-
ment is a non-trivial combination of the geometric and
dynamic phases. Understanding the increased complex-
ity of the relationship between geometric and dynamic
phases for this class of systems is the subject of current
research.
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