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Abstract

Many numerical integrators for mechanical system simulation are created
by using discrete algorithms to approximate the continuous equations of
motion. In this paper, we present a procedure to construct time-stepping
algorithms that approximate the ow of continuous ODE's for mechanical
systems by discretizing Hamilton's principle rather than the equations of
motion. The discrete equations share similarities to the continuous equa-
tions by preserving invariants, including the symplectic form and the mo-
mentum map. We �rst present a formulation of discrete mechanics along
with a discrete variational principle. We then show that the resulting
equations of motion preserve the symplectic form and that this formu-
lation of mechanics leads to conservation laws from a discrete version of
Noether's theorem. We then use the discrete mechanics formulation to
develop a procedure for constructing mechanical integrators for contin-
uous Lagrangian systems. We apply the construction procedure to the
rigid body and the double spherical pendulum to demonstrate numerical
properties of the integrators.
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1 Introduction

Goals. The goal of this paper is to present a systematic construction of
mechanical integrators for simulating �nite dimensional mechanical systems
with symmetry based on a discretization of Hamilton's principle. We strive
for a method that is theoretically attractive and numerically competitive. Of
course, we do not claim that the methods will be superior in very speci�c
problems for which custom methods may be available (as, for example, in
symplectic integrators for the solar system|see, for example, [52]).

Mechanical Integrators. These are numerical integration methods that
preserve some of the invariants of the mechanical system, such as, energy,
momentum, or the symplectic form. It is well known that if the energy and
momentummap include all the integrals from a certain class (depending on the
smoothness available), then one cannot create integrators that are symplec-
tic, energy preserving, and momentum preserving unless they coincidentally
integrate the equations exactly up to a time parametrization (see [10] for the
exact statement). Thus, mechanical integrators divide into two overall classes,
symplectic-momentum and energy-momentum integrators. It is the hope that
by exploiting the structure of mechanical systems, one can create mechanical
integrators that are not only theoretically attractive, but are more computa-
tionally e�cient and have better long term simulation properties than conven-
tional integration schemes. The overall situation for mechanical integrators is
of course a complex one, and it is still evolving. We refer to [28] for a recent
collection of papers in the area and for additional references and to [26] for
some additional background.

The Main Technique of This Paper. This paper presents a method to
construct symplectic-momentum integrators for Lagrangian systems de�ned
on a linear space with holonomic constraints. The constraint manifold, Q,
is regarded as embedded in the linear space, V . A discrete version of the
Lagrangian is then formed and a discrete variational principle is applied to
the discrete Lagrangian system. The resulting discrete equations de�ne an
implicit (explicit in some cases) numerical integration algorithm on Q � Q
that approximates the ow of the continuous Euler-Lagrange equations on
TQ. The algorithm equations are called the discrete Euler-Lagrange (DEL)
equations. We treat holonomic constraints through constraint functions on
the linear space. The constraints are satis�ed at each time step through the
use of Lagrange multipliers.

The DEL equations share similarities to the continuous Euler-Lagrange equa-
tions. The DEL equations preserve a symplectic form de�ned in the paper
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and preserve a discrete momentum derived through a discrete Noether's the-
orem. The discrete momentum corresponding to invariance of the continuous
Lagrangian system to a linear group action is conserved, and the value of the
discrete momentum approaches the value of the continuous momentum as the
step size decreases. In general, the method does not preserve energy for con-
servative Lagrangian systems, but the numerical examples suggest that the
energy varies about a constant value. The energy variations decrease and the
constant value approaches the continuous energy as the step size decreases.

Accuracy The construction method produces 2-step methods that have a
second order local truncation error. The position error in the numerical exam-
ples show second order convergence. One may be able to use the methods in
[54] to increase the order of accuracy.

The Role of Dissipation. Dissipation is of course very important for prac-
tical simulations of mechanical systems. However, our philosophy, which is con-
sistent with that of many other authors (e.g., [2], [9]) is that of understanding
well the ideal model �rst, and then one can use a time-splitting (product
formula) method to interleave it with ones favorite dissipative method.

Some of the Literature. This paper uses the discrete variational principle
presented in [48] and again in [49] and [32]. It is shown in [48] that the DEL
equations preserve a symplectic form. The same discrete mechanics procedure
is derived in [3] using an algebraic approach, and they also show that there is
a discrete Noether's theorem for in�nitesimal symmetry.

Various authors have proposed versions of discrete mechanics. Some study dis-
crete mechanics without the motivation of constructing integration schemes
while this is a de�nite motivation for other authors. In [25], the author presents
a version of discrete mechanics based on the concept of a di�erence space. The
author later shows how to derive the discrete equations from a discrete version
of Hamilton's variational principle, the same discretization later used in [48].
The author in [25] also presents a version of Noether's theorem. A di�erent
approach to discrete mechanics for point mass systems not derived from a
variational principle is shown in [16], [17], and [18]. These algorithms preserve
energy and momentum. The author in [24] discusses methods to approximate
the action integral and to use Hamilton's principle to create numerical inte-
grators. The authors in [23] use Hamilton's principle and restricted function
spaces to create integration algorithms. We prefer the approach in [48] and
adopt it in this paper.
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Some authors discretize the principle of least action instead of Hamilton's
principle. Algorithms that conserve the Hamiltonian are derived in [14] based
on di�erence quotients. Di�erentiation is not used and the action is extremized
using variational di�erence quotients. This development presents multistep
methods with variable time steps. The least action principle is discretized in
a di�erent way in [43]. The resulting equations explicitly enforce energy, and
it is stated that the equations preserve quadratic invariants.

Various energy-momentum integrators have been developed by Simo and his
co-workers. See, for example, [44]. Recently, energy-momentum integrators
have been derived based on discrete directional derivatives and discrete ver-
sions of Hamiltonian mechanics in [12]. More references on energy-momentum
methods are in the reference section of [12] and in [13]. Symplectic, momentum
and energy conserving schemes for the rigid body are presented in [22].

There is a vast amount of literature on symplectic schemes for Hamiltonian
systems. The overview of symplectic integrators in [40] provides background
and references. See also [8] for a survey of the early work and [30] for a presen-
tation of open problems in symplectic integration. References related to the
work in this paper are [35], [36], [31], and [15]. In [35], an integration method
is presented for Hamiltonian systems that enforces position and velocity con-
straints in such a way to make the overall method symplectic. It is shown in
[36] and in [31] that the algorithm also conserves momentum corresponding
to a linear symmetry group when the constraint manifold is embedded in a
linear space. For another treatment of algorithms formed by embedding the
constraint manifold in a linear space, see [5]. See [20] for a treatment of sym-
plectic integration on Riemannian manifolds. The algorithm presented in this
paper also embeds the constraint manifold in a linear space but only enforces
position constraints.

Contributions. This paper clearly presents and develops existing results on
discrete mechanics shown in [25] and in [48]. These results are then extended
to create a general method to construct symplectic-momentum integrators for
Lagrangian systems with holonomic constraints. An equivalent algorithm is
presented in terms of generalized coordinates where the constraint equations
are eliminated. This paper uses the general technique to create a symplectic-
momentum integrator for the rigid body in terms of unit quaternions.

Outline of the Paper. The paper �rsts presents and develops discrete me-
chanics in a consistent notation by presenting the discrete variational principle
(DVP) and by deriving the properties of the discrete Euler-Lagrange (DEL)
equations. The discrete mechanics theory is then used to develop a construc-
tion procedure for mechanical integrators. A construction procedure is pre-
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sented for constrained and generalized coordinates followed by a discussion of
the structure of the Jacobian relevant to solving the DEL equations. It is then
shown that the DEL equations have a second order local truncation error, and
that the DEL equations have a solution for a small enough time step as long
as the continuous Euler-Lagrange equations are solvable. The de�nition for
the discrete momentum is then presented. The method is applied to the rigid
body (RB) to produce evolution equations in terms of unit quaternions and
is applied to the double spherical pendulum (DSP). For both examples, the
momentum, energy, accuracy, and e�ciency is examined. We also compare the
DSP integrator to an energy-momentum integrator. The paper concludes with
a discussion of future work.

2 Discrete Variational Principle

A discrete variational principle (DVP) is presented in this section that leads to
evolution equations that are analogous to the Euler-Lagrange equations. We
call the evolution equations discrete Euler-Lagrange (DEL) equations. The
results in this and the next section have appeared in [48], [49], [32] and in [3]
but are rederived here in a consistent notation for completeness and clarity.

Given a con�guration space, Q, a discrete Lagrangian is a map L : Q �
Q! R. We later show in Equation (4.1) how to de�ne a discrete Lagrangian
given a continuous-time Lagrangian. We now give a procedure that de�nes the
evolution map for the system. For a �xed, positive integer N , the action sum
is the map S : QN+1 ! R de�ned by

S=
N�1X
k=0

L (qk+1; qk) ; (2.1)

where qk 2 Q and k 2 Z is the discrete time. The action sum is a discrete
analog of the action integral. The discrete variational principle states that the
evolution equations extremize the action sum given �xed end points, q0 and
qN . Extremizing S over q1; � � � ; qN�1 leads to the DEL equations:

D2L (qk+1; qk) +D1L (qk; qk�1) = 0 for all k 2 f1; � � � ; N � 1g (2.2)

or

D2L � � +D1L = 0; (2.3)

where � : Q � Q ! Q � Q is de�ned implicitly by � (qk; qk�1) = (qk+1; qk).
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If D2L is invertible, then Equation (2.3) de�nes the discrete map, �, which
ows the system forward in discrete time.

3 Invariance Properties

The symplectic structure of Q�Q is de�ned in this section and an equation
for the symplectic form on Q�Q is given. It is then shown that � preserves
the symplectic form. We then derive a discrete Noether's theorem by showing
that invariance of the discrete Lagrangian leads to a conserved quantity, a
momentum map, for the ow of �.

3.1 Symplectic Structure

We �rst de�ne a �ber derivative by

FL : Q�Q!T �Q (3.1)

(q1; q0) 7! (q0; D2L (q1; q0))

and de�ne the 2-form on Q�Q by pulling back the canonical 2-form on T �Q:

!= FL
� (
CAN)

= FL
� (�d�CAN) (3.2)

=�d (FL � (�CAN)) :

The �ber derivative is analogous to the Legendre transform in continuous-time
Lagrangian mechanics. Choose coordinates, qi, on Q and choose the canonical
coordinates, (qi; pi), on T �Q. In these coordinates, 
CAN = dqi ^ dpi and
�CAN = pidq

i. The DEL equations are

@L

@qik
� � (qk+1; qk) +

@L

@qik+1
(qk+1; qk) = 0 (3.3)

or

@L

@qik+1
(qk+2; qk+1) +

@L

@qik+1
(qk+1; qk) = 0: (3.4)

Continuing the calculations in Equation (3.2) gives
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!=�d

 
@L

@qik
(qk+1; qk)

!
dqik (3.5)

=�
@2L

@qik@q
j
k+1

(qk+1; qk) dq
j
k+1 ^ dq

i
k �

@2L

@qik@q
j
k

(qk+1; qk) dq
j
k ^ dq

i
k (3.6)

=
@2L

@qik@q
j
k+1

(qk+1; qk) dq
i
k ^ dq

j
k+1; (3.7)

since the second term in Equation (3.6) vanishes.

3.2 Preservation of the Symplectic Form

We now show that � preserves the symplectic form, i.e. ��! = ! where �� is
the pullback of �. For clarity, let �(y; x) = (u; v) and write ! = d(p(y; x)dx) =
D12L(y; x)dx ^ dy. In this notation, y = v = qk+1, x = qk, and u = qk+2. We
now show that ��! = !:

��!=��
 
�d

 
@L

@vi
(u; v) dvi

!!
(3.8)

=�d

 
��
 
@L

@vi
(u; v) dvi

!!
(3.9)

=�d

 
@L

@vi
� � (y; x) d

�
vi (y; x)

�!
(3.10)

=�d

 
�
@L

@yi
(y; x) dyi

!
(3.11)

=
@2L

@xj@yi
dxj ^ dyi (3.12)

=! (3.13)

We have used Equation (3.4) and the fact that d(v(y; x)) = dy in deriving
Equation (3.11) from Equation (3.10).

3.3 Discrete Noether's Theorem

We now derive a discrete version of Noether's theorem. For continuous-time
systems, Noether's theorem states that a symmetry of the Lagrangian leads
to a conserved quantity. A straight forward proof of Noether's theorem is in
[42](page 102-103). Let the discrete Lagrangian be invariant under the diagonal
action of a Lie group G on Q, and let � 2 g where g is the Lie algebra of G.
Invariance of L implies that
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L(exp(s�)qk+1; exp(s�)qk) = L(qk+1 ; qk): (3.14)

Di�erentiating Equation (3.14) and setting s = 0 implies that

D1L(qk+1 ; qk) � �Q(qk+1) +D2L(qk+1 ; qk) � �Q(qk) = 0; (3.15)

where �Q is the in�nitesimal generator. Consider the action sum, Equation (2.1),
where 0 < i < N and vary qk+1 over s 2 R by qk+1 (s) = exp (s�) qk+1. Since
qk+1 (0) extremizes S, we have

dS

ds

�����
s=0

= 0: (3.16)

Equation (3.16) implies that

D1L(qk+1 ; qk) � �Q(qk+1) +D2L(qk+2 ; qk+1) � �Q(qk+1) = 0: (3.17)

Subtracting Equation (3.15) from Equation (3.17) reveals that

D2L(qk+2 ; qk+1) � �Q(qk+1)�D2L(qk+1 ; qk) � �Q(qk) = 0: (3.18)

If we de�ne the momentum map, J : Q�Q! g
�, by

hJ(qk+1; qk); �i
4
= hD2L(qk+1 ; qk); �Q(qk)i ; (3.19)

then Equation (3.18) shows that the momentum map is preserved by � :
Q�Q! Q�Q.

We note that this J is equivariant with respect to the action of G on Q � Q
and the coadjoint action of G on g

�. This is proved as in the case of usual La-
grangians (see [27]). We also note that one can develop a theory of Lagrangian
reduction in the discrete case, as with the continuous case (see [29]).

4 Construction of Mechanical Integrators

We show in this section how to construct mechanical integrators for continuous-
time Lagrangian systems from the discrete variational principle. We �rst show
how to construct integrators for Lagrangian systems with holonomic con-
straints by enforcing the constraints through Lagrange multipliers. We call
this method the constrained coordinate formulation. We then present a sec-
ond construction procedure by choosing a set of generalized coordinates. The
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next section proves that the two methods are equivalent. We then show that
the Jacobian used to solve the nonlinear equations for the constrained coor-
dinate formulation has a special structure that can be exploited to increase
simulation e�ciency. Results are then presented on local truncation error and
solvability. We �nally relate the discrete-time momentum map and symplectic
form to the continuous-time counterparts.

4.1 Constrained Coordinate Formulation

We assume that we have a mechanical system with a constraint manifold,
Q � V , where V is a real, �nite dimensional vector space, and that we have
an unconstrained Lagrangian, L : TV ! R which, by restriction of L to TQ,
de�nes a constrained Lagrangian, Lc : TQ! R. We also assume that we have
a vector valued constraint function, g : V ! Rk , such that g�1(0) = Q � V
with 0 a regular value of g. The dimension of V is denoted n, and therefore, the
dimension of Q is m = n � k. Also, let � be a real, �nite dimensional vector
space of Lagrange multipliers of dimension k. We �rst de�ne the discrete,
unconstrained Lagrangian, L : V � V ! R, to be

L(y; x) = L
�
y + x

2
;
y � x

h

�
; (4.1)

where h 2 R+ is the time step. The unconstrained action sum is de�ned by

S=
N�1X
k=0

L (vk+1; vk) : (4.2)

We then extremize S : V N+1 ! R subject to the constraint that vk 2 Q � V
for k 2 f1; � � � ; N � 1g,

min
vk2V;�k2�

 
S+

N�1X
k=1

�Tk g (vk)

!
(4.3)

subject to g(vk) = 0 for all k 2 f1; � � � ; N � 1g;

to derive that

D2L (vk+1; vk) +D1L (vk; vk�1) + �TkDg (vk) = 0 (no sum over k) (4.4)

g (vk) = 0 for all k 2 f1; � � � ; N � 1g:

Given vk and vk�1 in Q � V , i.e., g (vk) = 0 and g (vk�1) = 0, we need to
solve the following equations

D2L (vk+1; vk) +D1L (vk; vk�1) + �TkDg (vk) = 0

g (vk+1) = 0 (4.5)
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for vk+1 and �k.

In terms of the original, unconstrained Lagrangian, Equation (4.5) reads as
follows:

1

h

"
@L

@ _v

�
vk + vk�1

2
;
vk � vk�1

h

�
�
@L

@ _v

�
vk+1 + vk

2
;
vk+1 � vk

h

�#
+

1

2

"
@L

@v

�
vk + vk�1

2
;
vk � vk�1

h

�
+
@L

@v

�
vk+1 + vk

2
;
vk+1 � vk

h

�#
(4.6)

+DTg (vk)�k = 0

g (vk+1) = 0:

For example, if the continuous Lagrangian system is of the form

L(q; _q) =
1

2
_qTM _q � V (q) (4.7)

g(q) = 0;

where M is a constant mass matrix, and V is the potential energy, then the
DEL equations are

M
�
vk+1 � 2vk + vk�1

h2

�
+
1

2

 
@V

@q

�
vk+1 + vk

2

�
+
@V

@q

�
vk + vk�1

2

�!

�DTg (vk)�k = 0 (4.8)

g (vk+1) = 0:

We also note that one can obtain the algorithm in Equation (4.6) with no
constraints by using �L as a generating function of type 1.

We now compare the constraint algorithm in Equation (4.8) to algorithms
used in molecular dynamics simulation and give a brief background of these
algorithms. The Verlet algorithm [47] is important in molecular dynamics sim-
ulation [21]. An extension of the Verlet algorithm to handle holonomic con-
straints is SHAKE [39]. SHAKE was extended to handle velocity constraints
with RATTLE [1]. For a presentation of the symplectic nature of the Verlet,
SHAKE, and RATTLE algorithms, see [21]. The construction method devel-
oped here when applied to a Lagrangian of the form in Equation (4.7) produces
an integration method similar to the SHAKE algorithm written in terms of
position coordinates. However, the potential force terms di�er as can be seen
in Equation (4.8). If one applies the construction procedure with the discrete
Lagrangian de�nition in Equation (4.16), then one can reproduce the SHAKE
algorithm. One recovers the Verlet algorithm if the Lagrangian system has
no constraints. This result also appears in [11], and the discrete variational
principle they apply is similar to the principle in [48]. However, they don't
extend the result to constraints or more general Lagrangians and do not use
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the discrete Lagrangian de�nition in this paper. The emphasis in [11] is also
on calculating a path given end point conditions. Our procedure can handle
more general Lagrangians, such as the Lagrangian for the rigid body in terms
of quaternions.

4.2 Generalized Coordinate Formulation

For the generalized coordinate formulation, we form the discrete Lagrangian
and the action sum restricted to Q � V , and then perform the extremization
directly onQ by using a coordinate chart. The constrained, discrete Lagrangian
is given by

L
c : Q�Q! R; (4.9)

where Lc = LjQ�Q . Given a local coordinate chart,  : U � Rm ! Q � V ,
where U is an open set in Rm , the constrained, discrete Lagrangian is

L
c (qk+1; qk) = L ( (qk+1) ;  (qk))

= L

 
 (qk+1) +  (qk)

2
;
 (qk+1)�  (qk)

h

!
;

where each qk is in U . With an abuse of notation, we represent the restricted
function and its representation in a coordinate chart by the same symbol. The
constrained action sum is

S
c =

N�1X
k=0

L
c (qk+1; qk) : (4.10)

Extremizing Sc : QN+1 ! R gives the discrete Euler-Lagrange (DEL) equa-
tions in terms of generalized coordinates,

D2L
c (qk+1; qk) +D1L

c (qk; qk�1) = 0: (4.11)

In terms of the original, unconstrained Lagrangian, Equation (4.11) equals

DT (qk)

(
1

h

"
@L

@ _v
(ak; dk)�

@L

@ _v
(ak+1; dk+1)

#

+
1

2

"
@L

@v
(ak; dk) +

@L

@v
(ak+1; dk+1)

#)
= 0;

(4.12)

where

ak =
 (qk) +  (qk�1)

2
and dk =

 (qk)�  (qk�1)

h
: (4.13)
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We solve Equations (4.12) for qk+1 given qk and qk�1 to advance the ow one
time step.

4.3 Equivalence of the Formulations

This section proves the equivalence between the constrained and generalized
coordinate formulations.

Theorem 1 Let g be the constraint function and  be the coordinate chart
de�ned above. Let qk and qk�1 be the two initial points in the coordinate chart
and let vk =  (qk) and vk�1 =  (qk�1). Let Dg(vk) and D (qk) be full rank.
Then the generalized formulation, Equation (4.12), has a solution for qk+1 if
and only if the constrained formulation, Equation (4.6), has a solution for
vk+1 and �k. Furthermore, vk+1 =  (qk+1).

Proof. (() We assume that we have a solution for vk+1 for the constrained
formulation. Let qk+1 =  �1(vk+1) and we will show that qk+1 solves Equa-
tion (4.12). Multiply the top equation in Equation (4.6) on the left byDT (qk+1).
Also, substitute vk =  (qk) and vk�1 =  (qk�1) into Equation (4.6). Notice
that g( (qk)) = 0 which implies that Dg( (qk))D (qk) = 0. Using the substi-
tutions and the fact that DT (qk)D

Tg( (qk)) = 0 proves that qk+1 is a solution
for Equation (4.12).

()) To complete the proof, we assume that qk+1 is a solution for Equa-
tion (4.12) and show that there exists a Lagrange multiplier, �k, so that
vk+1 =  (qk+1) is a solution for Equation (4.6). Substitute the expressions for
vk+1; vk, and vk�1 into Equation (4.6). The lower equation in Equation (4.6)
is solved automatically since vk+1 2 Q. Note that TvkV = R(D (qk)) �
N (DT (qk)) and thatR(DTg(vk)) � N (DT (qk)). SinceD

Tg(vk) is full rank and
dim(R(DTg(vk))) = dim(N (DT (qk))), R(D

Tg(vk)) equals N (DT (qk)). We
then split the left-hand side in Equation (4.6) into a component in R(D (qk))
and an orthogonal component inN (DT (qk)). The component inR(D (qk)) is
zero by Equation (4.12) and the fact that R(DTg(vk)) = N (DT (qk)). We can
then �nd a Lagrange multiplier, �k, to make the component in N (DT (qk))
equal to zero since R(DTg(vk)) = N (DT (qk)). Therefore, there exists a �k so
that vk+1 =  (qk+1) solves Equation (4.6). �

In Figure 1, we illustrate the relationships between constrained and general-
ized coordinate formulations for discrete-time mechanics as well as continuous-
time mechanics. The �gure also points out where the discrete-time equa-
tions approximate the ow of the continuous-time equations. The results for
continuous-time mechanics are summarized on the left side of the �gure. We
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L : TV ! R

g : V ! R
k

g�1(0) = Q

L : V � V ! R

g : V ! R
k

g�1(0) = Q

Lc(q; _q) = L( (q); D (q) _q)

Lc : TQ! R???y
d

dt

 
@Lc

@ _q

!
�
@Lc

@q
= 0

J : TQ! g
�

L : TV ! R

g : V ! R
k???y

d

dt

 
@L

@ _v

!
�
@L

@v
�DTg(v)� = 0

g(v) = 0

J : TV ! g
�

L
c(b; a) = L( (b);  (a))

L
c : Q�Q! R???y

DT
2 L

c(c; b) +DT
1 L

c(b; a) = 0

J : Q�Q! g
�

L : V � V ! R

g : V ! R
k???y

DT
2 L(z; y) +DT

1 L(y; x)

+DTg(y)� = 0

g(z) = 0

J : V � V ! g
�

? ?

?

?

6

?

?

6

-�

-�

�

-

Continuous-Time Mechanics Discrete-Time Mechanics

TV with
constraints

gen. coor.

 : Rm ! Q � V
V � V with
constraints

gen. coor.

 : Rm ! Q � V

approx.

approx.

L(v; _v) = limh!0 L(v + h _v; v)

L(y; x) = L(y+x
2
; y�x

h
)

equivalent (Theorem 1)equivalent

V.P.
D.V.P.

V.P. D.V.P.

Fig. 1. Comparison of Continuous and Discrete Formulations of Mechanics

assume we are given an unconstrained Lagrangian with constraint functions
as shown in the upper left corner. One can use generalized coordinates and
apply Hamilton's principle to produce the Euler-Lagrange equations or one
can use constrained coordinates and enforce the constraints through Lagrange
multipliers. The right side of the �gure summarizes the results for discrete-
time mechanics. Given the continuous, unconstrained Lagrangian, one can
form the discrete, unconstrained Lagrangian. One can proceed analogously
to continuous-time mechanics by using generalized or constrained coordi-
nates. We discuss in Section 4.5 how the discrete equations approximate the
continuous-time equations.
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4.4 Jacobian Structure

For the numerical examples presented later in this paper, we solve the DEL
equations, Equation (4.5), using Newton-Raphson equation solvers. These
solvers require the construction of a Jacobian formed by di�erentiating Equa-
tion (4.5) with respect to vk+1 and �k to get

J(vk+1; vk; h) =

2
64D12L(vk+1 ; vk) D

Tg(vk)

Dg(vk+1) 0

3
75 ; (4.14)

where

[D12L (vk+1; vk)]ij =
@2L

@vik@v
j
k+1

(vk+1; vk) :

For many applications, the nearly symmetric Jacobian, Equation (4.14), is
a sparse matrix and sparse matrix techniques can be used in the Newton-
Raphson steps to increase the simulation e�ciency. For tree structured multi-
body systems, one can show that the linear equations involving the Jacobian
can be solved in linear time. The authors in [5] particulate the rigid bodies in
a multibody system with point masses. They then use symplectic-momentum
integrators with constraints and general sparse matrix techniques to simu-
late multibody systems. The author in [38] uses the methods in [37] to create
symplectic-momentum integrators for multibody systems.

4.5 Local Truncation Error and Solvability

Results on truncation error and solvability are presented in this section. We
follow the de�nition of local truncation error in [19](page 56). To calculate the
truncation error, we �rst insert an exact solution of the di�erential equations
into the algorithm equations in Equation (4.12), and then expand the resulting
equation in terms of the step size h. To calculate the expansion, it is easier to
�rst expand Equation (4.12) about

vik =  i(qk) and _vik =
@ i

@qjk
_qjk; (4.15)

and then expand the result into powers of h. This lengthy calculation which we
do not reproduce here reveals that the local truncation error of the method
is second order. The �rst term, h0, is zero since q; _q satisfy the continuous
Euler-Lagrange equations. The second term, h1, is zero through a cancellation
of terms. The h2 term is non-zero, and the coe�cient is a lengthy expression
involving second, third, and fourth partial derivatives of L : TV ! R.
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If one uses the following de�nition for the discrete Lagrangian:

L(y; x) = L(y;
y � x

h
); (4.16)

then the resulting DEL equations will only be �rst order accurate for a general
Lagrangian. There is no cancellation of terms in the h1 term as there is with
the de�nition in Equation (4.1). However, in some cases, the resulting DEL
equations may be explicit while the DEL equations from the de�nition in
Equation (4.1) are implicit. An example of this occurring is if the continuous
Lagrangian is in the form in Equation (4.7), and there are no constraints.

The existence of a solution for the continuous-time equations is related to the
solvability of the generalized coordinate discrete equations. One can show that
if D22L is non-singular and if the Jacobian of the constraints is full rank, then
for a su�ciently small time step, the generalized coordinate DEL equations
are solvable for qk+1. This is proved by showing that the DEL equations have a
solution for h = 0 by taking the limit and then by using the implicit function
theorem to conclude that there is a solution in a neighborhood of h = 0.
Theorem 1 then implies that there is also a solution for the DEL equations
with Lagrange multipliers.

4.6 Symplectic Form and Discrete Momentum Map

The integrators created through the construction procedure are symplectic-
momentum integrators; however, this statement requires clari�cation which
we present in this section. The integrators are symplectic in that the map
produced on T �V or T �Q is a symplectic map. Also, if the Lie group acts lin-
early on V , then the continuous ow of the Euler-Lagrange equations and the
discrete map produced from the DEL equations preserve the same momentum
map on T �Q.

However, if one integrates the continuous equations exactly or accurately and
uses the result to initialize the discrete equations, one will notice that the
value of the momentum map will di�er from the value of the momentum map
for the continuous system. The di�erence arises from the di�erence in the
assignment of the momentum coordinate in T �V through the �ber derivative.
In the continuous case, the momentum is D2L while in the discrete case, we
choose to use �hD2L. We multiply by a �h from the de�nitions given in
Equation (3.1) because �hD2L converges to D2L as h! 0.

If the Lagrangian of a continuous system is invariant to the action of a group,
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and if the constraints are also invariant under the group action, i.e.

L : TV ! R

L (G � v;G � _v) = L (v; _v)

g (G � v) = g (v) ;

where the action of G on v 2 V is represented as G � v, then the ow of the
Euler-Lagrange equations preserve the momentum map,

J : TV ! g
�;

where

hJ (v; _v) ; �i
4
=

*
@L

@ _v
(v; _v) ; �V (v)

+
:

If the group G also acts linearly on V , then the discrete Lagrangian is also
invariant to the group action through the following calculation:

L (G � vk+1; G � vk) = L
�
G � vk+1 +G � vk

2
;
G � vk+1 �G � vk

h

�

= L
�
G �

�
vk+1 + vk

2

�
; G �

�
vk+1 � vk

h

��

= L
�
vk+1 + vk

2
;
vk+1 � vk

h

�
= L (vk+1; vk) :

From a similar derivation to the derivation in Section (3.3), one can show that
the following momentum map

J : V � V ! g
�

de�ned by the relation

hJ(vk+1; vk); �i
4
= hD2L(vk+1 ; vk); �V (vk)i

is conserved by the ow of the DEL equations.

We now calculate �hD2L and notice

�hD2L (vk+1; vk) = �h
@

@vk

�
L
�
vk+1 + vk

2
;
vk+1 � vk

h

��

=
@L

@ _v

�
vk+1 + vk

2
;
vk+1 � vk

h

�
�
h

2

@L

@v

�
vk+1 + vk

2
;
vk+1 � vk

h

�
:

As h! 0, the discrete momentum value, �hD2L, converges to the continuous
momentum value, D2L. Therefore, the quantities that depend on the discrete
momentum value, such as the discrete momentum map de�ned to be �hJ,
converge to their continuous counterparts as h! 0.
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5 Numerical Examples

We apply the construction procedure to produce mechanical integrators for the
rigid body (RB) and the double spherical pendulum (DSP). We choose to use
constrained coordinates instead of generalized coordinates to avoid coordinate
singularities and coordinate patching. We use unit quaternions to create the
rigid body algorithm, and use the position of the two masses for the double
spherical pendulum. We compare the double spherical pendulum algorithm to
an energy-momentum algorithm presented in [50] based on the work in [12].

In the simulations, we use energy as a monitor to catch any obvious problems,
as in [8] and [45]. It is still unknown if this is a reliable indicator, but based on
the Ge-Marsden result mentioned before, it may well be. Another indication
is the analysis with energy oscillation and nearby Hamiltonian systems in
[40](page 277{278), [41](page 139{140), and [6]. We must note, however, that
energy conservation alone does not imply good performance as is shown in
[34]. In our examples, we observe energy oscillations around a constant value,
which we take as a good indication.

When comparing energy-momentum and symplectic-momentum methods, it
should be kept in mind that energy-momentum methods should be monitored
using how well they conserve the symplectic form. This is of course not so
straightforward as monitoring using the energy, since the symplectic condition
involves computing the derivative of the ow map (e.g., using a cloud of initial
conditions). We do not directly address these questions, but it is important to
keep them in mind.

5.1 Rigid Body

The algorithm presented here updates quaternion variables based on the pre-
vious two quaternion variables. The con�guration manifold is taken to be
Q = S3 � V where V = R4 . Quaternions were used instead of using V = R9

with the six orthogonal constraints of SO(3) primarily to avoid a large num-
ber of Lagrange multipliers. The constraint function is g(v) = v � v � 1 and
is enforced with a Lagrange multiplier. The use of generalized coordinates to
eliminate the use of Lagrange multipliers introduces the problem of coordinate
switching.

Rigid body integrators that preserve certain mechanical properties have been
created by several researchers. A symplectic integrator which preserves the
momentum and energy is presented in [22]. An energy-momentum integrator
is presented in [46]. A symplectic-momentum integrator is presented in [31]. A
rigid body integrator based on a discrete variational principle and in terms of
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3� 3 matrices with constraints is presented in [32]. It would be interesting to
compare in more detail the integrator in [32] to the quaternion-based integrator
in this section.

We �rst attach a body frame to the rigid body and represent the frame as a
matrix, R 2 SO(3), which maps vectors in the body frame, B, to vectors in
the spatial (inertial) frame, S. The rotation matrix is then thought of as a
mapping, R : B ! S.

We now present a background in quaternions. Consult [33] for more infor-
mation on quaternions. A unit quaternion is a four parameter representation
of SO(3). The quaternion consists of a scalar value, qs, and a vector with
three components which we denote qv = (qx; qy; qz). The following formula
constructs a SO(3) matrix, R, from its unit quaternion representation, q:

R = (2q2s � 1)I + 2qsq̂v + 2qvq
T
v ; (5.1)

where

q̂v =

2
666664

0 �qz qy

qz 0 �qx

�qy qx 0

3
777775 : (5.2)

A useful property of the unit quaternion representation is that if A;B, and
C 2 SO(3) are represented by unit quaternions, a; b, and c, respectively, then
C = AB if and only if c = �a?b where ? represents quaternion multiplication.
If c = a ? b, then cs = asbs � av � bv and cv = asbv + bsav + av � bv. Also, the
conjugate of a denoted �a is given by �a = (as;�av). For unit quaternions,
�a is the inverse of a, in that a ? �a = (1; 0; 0; 0). An additional fact about
quaternions is that if w = Av and a is a unit quaternion that represents A,
then (0; w) = a ? (0; v) ? �a where (0; w) is a quaternion formed from the vector
w.

If R : B ! S is the rotation matrix representing the orientation of the rigid
body, then the body angular velocity vector, !b, is given by !̂b = RT _R. An-
other fact about quaternions is that if r is the unit quaternion representing
R, then �r ? _r = (0; !b=2).

Using the above relationship for the body angular velocity, we construct the
continuous Lagrangian, L : TV ! R, to be

L(q; _q) =
1

2
(2q ? _q)T

2
640 0

0 I

3
75 (2q ? _q); (5.3)
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where I is the inertia matrix. The constraint is the unit norm constraint for
quaternions, q2s + qv � qv = 1.

The Lagrangian in Equation (5.3) is invariant under left quaternionic multi-
plication, i.e.

L (r ? q; r ? _q) = L (q; _q) ;

where r is a unit quaternion. The invariance leads to conservation of angular
momentum.

The discrete Lagrangian, L : TV ! R, is chosen to be

L(y; x) = L
�
y + x

2
;
y � x

h

�
: (5.4)

We �rst simplify the body angular velocity term to get

2q ? _q 7!

 
y + x

2

!
?
�
y � x

h

�
(5.5)

=
1

h
(y ? y � y ? x+ x ? y � x ? x): (5.6)

Restricted to Q, y ? y = x ? x = (1; 0; 0; 0). Simplifying restricted to Q gives

2q ? _q 7!
1

h
(x ? y � y ? x): (5.7)

Equation (5.7) is an approximation to the body angular velocity, (0; !b). The
simpli�ed discrete Lagrangian restricted to Q is then

L(y; x) =
1

2h2
(x ? y � y ? x)T

2
640 0

0 I

3
75 (x ? y � y ? x); (5.8)

and the discrete Lagrangian on all of V � V is then taken to be equal to
Equation (5.8). Since we are extremizing S restricted to Q, the extension of L
to V nQ is arbitrary.

The discrete Lagrangian in Equation (5.8) is also invariant under left quater-
nionic multiplication, i.e.

L (r ? y; r ? x) = L (y; x) ;

where r is a unit quaternion, and the invariance leads to conservation of dis-
crete momentum which converges to the continuous momentum as the step
size decreases, as we have seen.
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The DEL equations for the RB and relevant Jacobian are created in Mathe-
matica [53] and exported to C-code for simulation. The initial conditions and
RB parameters are

q0 =

2
666666664

1

0

0

0

3
777777775

!b =

2
666664
0

3

4

3
777775 I=

2
666664
1 0 0

0 2 0

0 0 3

3
777775 : (5.9)

We must �rst initialize the rigid body integrator by choosing two initial quater-
nion values. We do this by using an Euler step with _q = q ? (0; !b=2) with
h = 10�5s. We then use the DVP integrator with h = 10�5s to set the second
initial point for h = 10�4s, 10�3s, 10�2s, and 10�1s. The system is simulated
for 30 seconds. To calculate errors in energy, momentum, and position, we �rst
choose a standard value. We use the energy and momentum given initially af-
ter the �rst Euler step at h = 10�5s as the standard energy and momentum
values. We use the results of the 30s simulation with h = 10�4s as the standard
position variables. We use the following formula to calculate errors for each
simulation:

error =
1

Nm

NX
i=1

k vi � vsi k2; (5.10)

where m is the length of the vector vi, v
s
i is the standard value at the ith

sample, and N is the number of samples. The results of the simulations are
tabulated in Table 5.1. The table lists CPU time on a SGI Indy (1 100 MHZ

Table 1
Simulation Results for the Rigid Body Simulation

h (s) CPU time (s) Quat. Error Energy Error Mom. Error

0.0001 97.620 0.0 6.256e-7 1.671e-7

0.001 9.905 3.960e-6 6.274e-5 1.687e-5

0.01 1.397 3.997e-4 6.274e-3 1.687e-3

0.1 0.301 3.648e-2 6.217e-1 1.665e-1

IP22 Processor, FPU: MIPS R4610 Floating Point, CPU:MIPS R4600 Pro-
cessor), quaternion error, energy error, and momentum error.

Figure 2 is a log-log plot of CPU time in seconds versus time step in seconds.
The CPU time drops o� nearly linearly as the time step increases. The CPU
time is corrected for the time it takes to initialize each simulation with the
h = 10�5s simulation.
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Fig. 3. Quaternion Error Versus Time Step

The quaternion error versus time step is shown in Figure 3. The plot shows a
second order relationship between error and time step.

Figure 4 compares the plot of the quaternion, qy, versus time for the simu-
lations at h = 10�4s and h = 10�1s. The trajectory for the large time step
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Fig. 4. Quaternion Coordinate Versus Time

exhibits the same qualitative behavior as the small time step, but the devia-
tions increase for longer simulation times.

The energy error versus time step is shown in Figure 5. The �gure reveals a
second order relationship between energy error and time step. The energy for
the h = 10�4s simulation deviates between 32:999999359J and 32:999999349J.
The energy for the simulation at h = 10�3s deviates between 32:999937236J
and 32:999937235J. There is no deviation in energy for the h = 10�2s and
h = 10�1s simulations.

For each time step, the constant value of the discrete momentum map is
conserved; however, as explained in Section 4.6, the value converges to the
continuous momentum value as the step size decreases. The convergence of
the discrete momentum is shown in Figure 6. The �gure reveals a second order
relationship between momentum error and time step. The angular momentum
for each simulation should remain constant, but there are small deviations
(�10�9) in the data for the h = 10�4s simulation. There are no deviations in
the momentum value for the other simulations.

5.2 Double Spherical Pendulum

The double spherical pendulum consists of two constrained point masses. The
con�guration space is Q = S2 � S2 and the linear space is V = R3 � R3 . The
position of the �rst mass is q1 = (x1; y1; z1), and the position of the second
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Fig. 5. Energy Error Versus Time Step for the Rigid Body Simulation
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Fig. 6. Momentum Error Versus Time Step for the Rigid Body Simulation

mass is q2 = (x2; y2; z2). The constraint equation, given by the pendulum
length constraints, is

g(v) =

2
64 q1 � q1 � l21

(q2 � q1) � (q2 � q1)� l22

3
75 : (5.11)
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The DSP Lagrangian system is of the form in Equation (4.7), and the DEL
equations for this system are of the form in Equation (4.8). The DVP algorithm
for the DSP is the SHAKE algorithm:

1

h
M
h
qn+1 � 2qn + qn�1

i
+ h

2
6666666666666664

0

0

m1g

0

0

m2g

3
7777777777777775

� hDTg (qn)� = 0

g
�
qn+1

�
= 0;

where

M =

2
64m1I 0

0 m2I

3
75 ; q =

2
64q1
q2

3
75 ; (5.12)

and m1 and m2 are the masses.

We compare the simulation from the discrete variational principle (DVP) con-
struction to an energy-momentum (EM) formulation based on the construction
procedure in [12], and applied to the DSP in [50]. The EM algorithm for the
DSP is

qn+11 � qn1 � h
1

m1

p
n+ 1

2

1 = 0

qn+12 � qn2 � h
1

m2

p
n+ 1

2

2 = 0

pn+1 � pn + h

2
6666666666666664

2
6666666666666664

0

0

m1g

0

0

m2g

3
7777777777777775

+ �1

2
64 qn+11 + qn1

0

3
75+ �2

2
64 qn+11 + qn1 � qn+12 � qn2

qn+12 + qn2 � qn+11 � qn1

3
75

3
7777777777777775

= 0

�
qn+11

�
�
�
qn+11

�
� l21 = 0�

qn+12 � qn+11

�
�
�
qn+12 � qn+11

�
� l22 = 0;

where pi is the momentum for the ith mass, p is the six vector of momentum
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Fig. 7. CPU Time Versus Time Step for the DSP Simulation

formed by stacking p1 and p2, and

p
n+ 1

2

i =
1

2

�
pn+1i + pni

�
:

The following parameters are used for the DSP:m1 = 2:0Kg,m2 = 3:5Kg, l1 =
4:0m, l2 = 3:0m, and g = 9:81m/s2. The initial conditions are x1 = 2:820m,
y1 = 0:025m, x2 = 5:085m, y2 = 0:105m, _x1 = 3:381m/s, _y1 = 2:506m/s,
_x2 = 2:497m/s, and _y2 = 10:495m/s. The position and velocity of the z-
coordinate is determined from the constraints, and the z-coordinate for both
masses is taken to be negative. The output of the EM simulation at a time
step of 0:0001s is used as the standard and initializes the second step in the
DVP simulations. The results of the EM simulations and the DVP simulations
are summarized in Table 5.2. The table contains the CPU time, position error,
energy error and momentum error for the EM and the DVP simulations. The
energy and momentum error for the EM simulations are zero. Equation (5.10)
is used to calculate the errors for the DSP simulations.

Figure 7 is a plot of CPU time versus time step for the EM and DVP simu-
lations. The DVP simulations are slightly faster for each time step and both
CPU times drop o� nearly linearly with increasing time step.

The position error for the EM and DVP simulations is shown in Figure 8.
Both simulations show a second order relationship between position error and
time step. The error for the EM simulation is slightly greater than the error
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Fig. 8. Position Error Versus Time Step for the DSP Simulation

for the DVP simulation for h � 10�3s.

Table 2
Simulation Results for the DSP Simulation

h (s) Method CPU time (s) Pos. Error Energy Error Mom. Error

0.0001
DVP 73.648 2.329e-7 6.475e-6 2.547e-6

EM 103.871 0.0 0.0 0.0

0.001
DVP 9.065 1.146e-5 3.269e-4 1.707e-4

EM 13.250 1.214e-5 0.0 0.0

0.01
DVP 1.152 1.135e-3 3.224e-2 1.696e-2

EM 1.549 1.225e-3 0.0 0.0

0.1
DVP 0.211 9.576e-2 2.665 1.560

EM 0.263 1.184e-1 0.0 0.0

The y position of the second mass is shown in Figure 9 for the EM and DVP
simulations for h = 0:0001s and h = 0:1s. Both the EM and DVP simulations
at h = 0:0001s overlap and cannot be distinguished when plotted on the same
graph. For both the EM and DVP simulations, reasonably accurate and fast
trajectories are produced at large time steps, h = 0:1s. Both simulation meth-
ods may have uses in interactive simulation applications, such as design and
animation, where real-time, reasonably accurate simulations are important.
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The error in energy versus time step is shown in Figure 10. The DVP en-
ergy error appears to drop o� as the square of the time step, at least for the
large time steps. The energy error is zero for all time steps for the EM sim-
ulation. The energy for the DVP simulation at h = 0:0001s deviates between
24:944495109J and 24:944499828J and deviates between 20:910805793J and
25:583335766J for h = 0:1s.

The error in the momentum about the z-axis is shown in Figure 11. The mo-
mentum error for the EM simulation is zero for all time steps. The DVP algo-
rithm should preserve momentum but for the smallest time step, h = 0:0001s,
the momentum varies between 199:825467170m2/s to 199:825467184m2/s. The
variation may be due to numerical errors. The momentum is constant for the
other time steps. Again, the constant discrete momentum value approaches
the value of the continuous momentum as the step size decreases.

Figure 12 shows the energy for the DVP simulations versus time for h = 0:1s
and 0:01s in the lower graph. The upper graph shows energy versus time
for h = 0:001s and 0:0001s. The energy oscillates about a constant value,
and the constant value approaches the true energy. The amplitude of the
oscillations decrease as the step size decreases. The uctuations in energy
appear to be related to the constraint forces. The middle graph is a plot of the
multipliers versus time, and the uctuations in the multipliers are correlated
to the uctuations in energy. This relationship has also been noticed in [4],
and they use variable step size to decrease the energy oscillation.

27



10
−4

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

time step (s)

E
ne

rg
y 

E
rr

or

Fig. 10. Energy Error Versus Time Step for the DSP Simulation
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Fig. 11. Momentum Error Versus Time Step for the DSP Simulation

6 Conclusion

This paper �rst presented results on discrete mechanics and then presented
a general method to construct symplectic-momentum mechanical integrators
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Fig. 12. Energy and Multipliers Versus Time for the DSP Simulation

for Lagrangian systems with holonomic constraints. The method was then
applied to the rigid body and the double spherical pendulum. The discrete
Euler-Lagrange (DEL) equations share similarities to the continuous equations
of motion and preserve a symplectic form and invariants resulting from group
invariance of the Lagrangian.

There are many areas of future work and development. We list a few of these
here.

Energy-Momentum Integrators. One may proceed analogously to the
derivation in this paper to create energy-momentum integrators possibly based
on discretizing the principle of least action.

Nonholonomic Systems. The method presented in this paper treats holo-
nomic constraints and one would like to generalize the method to treat non-
holonomic constraints, as in [7]. For nonholonomic systems, the standard sym-
plectic form is not preserved, and there are momentum equations and not
conservation laws. Also, energy can be conserved in these systems. One has to
develop algorithms taking into account these e�ects.

Multistep Methods and Time Step Control. It seems possible to mod-
ify the method to construct multistep mechanical integrators to increase the
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accuracy of the method. One would also like to modify the method to allow
variable time steps to improve e�ciency.

External Forces. It would also be desirable to generalize the method to
include external forces. This should be straightforward since they can be in-
cluded in Hamilton's principle in standard fashion. One would also like to add
control forces and dissipative forces to simulate controlled mechanical systems.
The �rst author is currently using the techniques presented in this paper to
develop a multibody simulator to simulate control systems for human models
(see [51]).

Spacetime Integrators Since the method here is variational by nature and
focuses on the temporal behavior, it should be helpful in the development of
spacetime integrators by synthesis with existing �nite element methods.
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