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Abstract

We show how one may obtain polar decomposition as well as inversion of �xed and time-varying

matrices using a class of nonlinear continuous-time dynamical systems. First we construct a dy-

namic system that causes an initial approximation of the inverse of a time-varying matrix to ow

exponentially toward the true time-varying inverse. Using a time-parameterized homotopy from the

identity matrix to a �xed matrix with unknown inverse, and applying our result on the inversion of

time-varying matrices, we show how any positive de�nite �xed matrix may be dynamically inverted

by a prescribed time without an initial guess at the inverse. We then construct a dynamical system

that solves for the polar decomposition factors of a time-varying matrix given an initial approx-

imation for the inverse of the positive de�nite symmetric part of the polar decomposition. As a

byproduct, this method gives another method of inverting time-varying matrices. Finally, using

homotopy again, we show how dynamic polar decomposition may be applied to �xed matrices with

the added bene�t that this allows us to dynamically invert any �xed matrix by a prescribed time.



1 Introduction

In [1, 2, 3] we presented a continuous-time dynamic methodology, called dynamic inversion, for the

solution of �nite-dimensional time-dependent inverse problems of the form

F (�; t) = 0 (1)

Dynamic inversion shows how to construct a dynamic system whose state � is attracted asymptoti-

cally to a continuous isolated solution ��(t) of (1).

One may also pose functions of a time-varying matrix as solutions ��(t) of problems of the

form F (�; t) = 0. For instance, if A(t) 2 Rn�n is invertible, then ��(t) = A(t)�1 is the unique

solution to (1) where F (�; t) := A(t)� � I. Motivated by this realization, in the present paper

we will investigate the use of dynamic inversion to construct dynamic systems that perform matrix

inversion as well as polar decomposition.

1.1 Previous Work

Continuous-time dynamic methods of solving matrix equations have appeared previously in the

literature. Any dynamic system on a matrix space with an asymptotically stable equilibrium may

be considered to be a dynamic inverter that solves for its equilibrium. For example, continuous-

time dynamic methods for determining eigenvalues date back at least as far as Rutishauser [4, 5].

Brockett [6, 7] has shown how one can use matrix di�erential equations to perform computation often

thought of as being intrinsically discrete. Bloch [8, 9] has shown how Hamiltonian systems may be

used to solve principal component and linear programming problems. Chu [10] has studied the Toda

ow as a continuous-time analog of the QR algorithm. Chu [11] and Chu and Driessel [12] have

explored the use of di�erential equations in solving linear algebra problems. Smith [13], and Helmke

et al. [14] have constructed dynamical systems that perform singular-value decomposition. Dynamic

methods of matrix inversion have also appeared in the arti�cial neural network literature [15, 16].

For a review of some dynamic matrix methods as well as a comprehensive list of references for

dynamic approaches to optimization see [17].

A dynamic decomposition related to polar decomposition of �xed matrices has appeared in

Helmke and Moore [17], though, as the authors point out, their gradient based method does not

guarantee the positive de�niteness of the symmetric component of the polar decomposition. We

discuss this method further in Section 7. Using dynamic inversion we will derive a system that pro-

1



duces the desired inverse and polar decomposition products at any �xed time t1 > 0 with guaranteed

positive de�niteness of the symmetric component.

As far as we know, all prior continuous-time dynamic approaches to inversion of matrix equations

use gradient ows. In contrast, dynamic inversion is not restricted to gradient methods.

1.2 Main Results

The main results of this paper are as follows: We will construct dynamic systems that

1. invert time-dependent matrices asymptotically,

2. invert constant matrices from a spectrally restricted set (including positive de�nite matrices)

by a prescribed time,

3. invert and decompose any time-dependent invertible matrix into its polar decomposition fac-

tors,

4. invert and decompose any constant nonsingular matrix into its polar decomposition factors by

a prescribed time.

Results 2 and 4 will be obtained from results 1 and 3, respectively, using homotopy.

1.3 Overview

After a description of our notation in Section 2, in Section 3 we give a brief review of the main

relevant points of dynamic inversion. In Section 4 we examine the application of dynamic inversion

to the problem of inverting time-varying matrices, assuming that a good initial guess for the matrix

inverse at time t = 0 exists. In Section 5 we consider the problem of inverting constant matrices.

By using a matrix homotopy from the identity we will use the results of Section 4 to produce

exact inversion of a restricted class of constant matrices, including positive de�nite matrices, by a

prescribed time. To remove the spectral limitations on the class of �xed matrices which we may

invert in �nite time, in Section 6 we will consider the polar decomposition of a time-varying matrix.

We will show how, starting from a good guess at the initial value of the inverse of the positive

de�nite part of the polar decomposition, we may construct a dynamic system that produces an

exponentially convergent estimate of the inverse of the positive de�nite symmetric part. From this

estimate and the original matrix we will obtain the decomposition products as well as the inverse

through multiplication. In Section 7 we will revisit the problem of constant matrix inversion and
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show how, combining homotopy with dynamic polar decomposition, we may dynamically produce

the polar decomposition factors as well as the inverse of any constant matrix by a prescribed time

without requiring an initial guess.

Remark 1.1 Numerical Issues. It is our objective in this paper to present a methodology for the

construction of analog computational paradigms for solving inverse problems. We will leave open the

issue of how dynamic inverters may best be realized by physical computing systems, whether they

be electrical, chemical, mechanical, etc. Thus we will avoid discussion of numerical considerations

such as condition number and numerical stability since these are problems that arise out of a choice

of digital implementation. However, since all dynamic inverters are stable integrators, the primary

issue to be faced in their implementation is the realization of integration. In the digital domain, for

instance, the implementation of integration is a well-studied problem. 4

2 Notation

Here, for easy reference, we de�ne some of the notation used in the sequel.

We will be concerned with problems of the following form: Given a time-dependent map F (�; t),

�nd ��(t) satisfying F (��(t); t) = 0 for all t � 0. Thus ��(t), which we sometimes refer to as �� for

brevity, denotes the exact solution of the inverse problem. We will use � to denote both the �rst

argument of F , as well as an estimator for ��(t).

R+ The set from which we draw our values of time, t, is R+ := ft 2 Rjt� 0g.

k For any integer k � 1; let k denote the set of integers f1; 2; : : : ; kg.

L(A;B) For vector spaces A and B, L(A;B) is the set of all linear maps from A to B.

GL(n;R) The group of nonsingular n� n matrices, fM 2 Rn�nj det(M ) 6= 0g.

O(n;R) The group of orthogonal n� n matrices, fM 2 Rn�njMTM = Ig.

S(n;R) The group of symmetric n� n matrices, fM 2 Rn�njMT =Mg.

s(n) := n(n+ 1)=2 The dimension of S(n;R); i.e. s(n) := 1
2n(n+ 1).
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X�; (X)�; x̂; (x)̂ Given any X 2 S(n;R); and a particular ordered basis f�1; : : : ; �s(n)g of S(n;R);

assume thatX =
P

i2s(n) x
i�i with x

i 2 R. Then �X 2 Rs(n);with �X � (X)� := [x1; : : : ; xs(n)]T .

Also, given any x 2 Rs(n); x̂ � (x)̂ :=
P

i2s(n) x
i�i 2 S(n;R).

�(M ) The spectrum of M 2 GL(n) is the set of eigenvalues of M and is denoted �(M ).

MR; ML If M 2 Rm�n, m � n, is full rank, then MR := MT (MMT ) 2 Rn�m is the right

inverse of M . Note that MMR = I 2 Rm�m. If M 2 Rm�n, m � n, is full rank, then

ML := (MTM )�1MT 2 Rn�m is the left inverse of M , and MLM = I 2 Rm�m.

DkF (a1; a2; : : : ; an) For any map F (a1; a2; : : : ; an), DkF (a1; a2; : : : ; an) is the partial derivative

of F with respect to ak. The lth derivative with respect to the kth argument is denoted

Dl
kF (a

1; a2; : : : ; an).

Br For each dimension n we de�ne the open ball Br := fx 2 Rn : kxk < rg. The choice of a

particular norm k � k will be apparent from context. In order to emphasize the dimension of

Br we will often specify the set having the same dimension as Br for which Br is a subset, e.g.

Br � Rn.

3 Dynamic Inversion

Given an inverse problem F (�; t) = 0, dynamic inversion speci�es how one can construct a system

of nonlinear ordinary di�erential equations whose solution �(t) converges asymptotically to the

continuous isolated solution ��(t) of the inverse problem.

A key element of dynamic inversion is the notion of a dynamic inverse G[w; �; t] of a nonlinear

map F (�; t). The dynamic inverse is nonunique, and is de�ned in terms of the unknown root of a

map F .

De�nition 3.1 For F : Rn� R+ ! R
n; (�; t) 7! F (�; t) let ��(t) be a continuous isolated solution

of F (�; t) = 0. A map G : Rn�Rn�R+ ! R
n; (w; t) 7! G[w; �; t] is called a dynamic inverse of

F on the ball Br := fz 2 Rnj kzk � rg; r > 0; if

1. G[0; z + ��(t); t] = 0 for all t � 0 and z 2 Br,

2. the map G[F (�; t); �; t] is Lipschitz in �; piecewise-continuous in t; and

3. there is a real constant �, with 0 < � <1; such that

Dynamic Inverse Criterion: zTG [F (z + ��(t); t) ; z + ��(t); t] � �kzk22 (2)
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for all z 2 Br .

4

As shown in [2], if D1F (��(t); t)�1 exists, then any matrixM (�; t) such thatM (�; t)D1F (��(t); t)

is positive de�nite may be used to form a dynamic inverse G[w; �; t] :=M (�; t) �w of F . Examples

of such M (�; t) include D1F (�; t)T and D1F (�; t)�1 for � su�ciently close to ��(t).

The key dynamic inversion theorem ([2], Theorem 3.5) which we will rely upon in the sequel is

as follows.

Theorem 3.2 Dynamic Inversion Theorem { Vanishing Error. Let ��(t) be a continuous

isolated solution of F (�; t) = 0; with F : Rn � R+ ! R
n; (�; t) 7! F (�; t). Assume that G :

R
n � Rn � R+ ! R

n; (w; �; t) 7! G[w; �; t]; is a dynamic inverse of F (�; t) for all � satisfying

� � ��(t) 2 Br ; and for some �nite � > 0. Let E : Rn � R+ ! R
n; (�; t) 7! E(�; t) be locally

Lipschitz in � and continuous in t. Assume that for some constant � 2 (0;1), E(�; t) satis�es

E (z + ��(t); t)� _��(t)

2
� �kzk2 (3)

for all z 2 Br . Let �(t) denote the solution to the system

_� = ��G [F (�; t) ; �; t] +E(�; t) (4)

with initial condition �(0) satisfying �(0) � ��(0) 2 Br. Then

k�(t) � ��(t)k2 � k�(0) � ��(0)k2 e
�(����)t (5)

for all t 2 R+; and in particular if � > �=�, then �(t) converges to ��(t) exponentially as t!1.

3.1 Constructing a Derivative Estimator

The map E(�; t) may be regarded as an estimator for _��. A straightforward method of obtaining

such an estimator is by di�erentiating F (��; t) = 0 with respect to t,

D1F (��; t) _�� +D2F (�; t) = 0 (6)
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solving for _��,

_�� = �D1F (��; t)
�1D2F (��; t) (7)

and replacing �� by its estimator � to get

E(�; t) := �D1F (�; t)
�1D2F (�; t): (8)

As illustrated in the next section, if an asymptotic estimator � of D1F (��; t)
�1 is available, then

for � su�ciently close to D1F (��; t)
�1 we may instead use

E(�; �; t) := ��D2(�; t): (9)

In fact we will see that in cases of interest to us in the present paper, we may set � = � .

4 Inverting Time-Varying Matrices

Consider the problem of estimating the inverse ��(t) 2 Rn�n of a time-varying matrix A(t) 2

GL(n;R). Assume that we have representations for both A(t) and _A(t), and that A(t) is C1 in t.

Let � be an element of Rn�n and let F : Rn�n�R+! R
n�n; (�; t) 7! F (�; t) be de�ned by

F (�; t) := A(t)� � I: (10)

For ��(t) to be the inverse of A(t), ��(t) must be a solution of A(t)� � I = 0.

An estimator E(�; t) for _��(t) is given by (9):

E(�; t) := �� _A(t)�: (11)

Di�erentiate F (�; t) with respect to � to get

D1F (�; t) = A(t) (12)

whose inverse is ��. Thus a choice of dynamic inverse is

G[W;�; t] := �W (13)
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for � su�ciently close to �� = A�1(t) and for W 2 Rn�n. The dynamic inverter for this problem

then takes the form

_� = ��G [F (�; t); � ]+ E(�; t); (14)

i.e. according to (10), (11), and (13),

_� = ��� (A(t)� � I) � � _A(t)� (15)

and we choose as initial conditions � (0) � ��(0) = A�1(0). Theorem 3.2 guarantees that for

su�ciently large �, and for � (0) su�ciently close to A�1(0); equation (15) will produce an estimator

� (t) whose error � (t)� ��(t) decays exponentially to zero at a rate determined by our choice of �.

We summarize the observations above in the following consequence of Theorem 3.2.

Theorem 4.1 Dynamic Inversion of Time-Varying Matrices. Let A(t) 2 GL(n;R) be C1

in t, with A(t), A(t)�1, and _A(t) bounded on [0;1). Let G[W;�; t] be a dynamic inverse (see

De�nition 3.1) of F (�; t) = A(t)� � I for all t 2 R+, and for all � such that � � �� is in Br . Let

� (t) 2 Rn�n be the solution to

_� = ��G[A(t)� � I; �; t]� � _A(t)� (16)

with k� (0)���(0)k � r <1. Then for su�ciently small r, there exists a ~� > 0, k1 > 0, and k2 > 0

such that for all � > ~�, and for all t � 0,

k� (t)� ��(t)k2 � k1k� (0)� ��(0)ke
�k2t (17)

In particular limt!1 � (t) = A(t)�1.

Example 4.2 A Dynamic Inverter for a Time-Varying Matrix. Let

G[w; t] := A(t)TW: (18)

By Theorem 4.1, for su�ciently large constant � > 0, and for � (0) su�ciently close to A(0)�1, the

solution � (t) of

_� = ��A(t)T (A(t)� � I) � � _A(t)� (19)
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approaches A(t)�1 exponentially as t!1. 4

See also (15) where the dynamic inverse G[W;� ] = �W is used instead of G[W; t] = A(t)TW .

Example 4.3 Dynamic Inversion of a Mass Matrix. Consider a �nite dimensional mechanical

system modeled by the second order di�erential equation

M (q)�q + N (q; _q) = 0 (20)

Usually the matrix M (q) is positive de�nite and symmetric for all q since the kinetic energy,

(1=2) _qTM (q) _q, is normally greater than zero for all _q > 0. It is often convenient to express such

systems in an explicit form, with �q alone on the left side of a second order ordinary di�erential

equation. To do so we will invert M (q) dynamically.

Let � be a symmetric estimator for M (q)�1. Suppose we know M�1(q(0)) approximately. If

our approximation is su�ciently close to the true value of M�1(q(0)), then setting � (0) to that

approximation, and letting � > 0 be su�ciently large allows us to apply Theorem 4.1. Then the

system

8><
>:

_� = ��� (M (q)� � I) � �
h
@Mi;j(q)

@q _q
i
i;j2n

� �

�q = �N (q; _q)

(21)

provides an exponentially convergent estimate of �q for all t. Furthermore, if � (0) = M (q(0))�1,

then � (t) =M�1(q(t)) for all t � 0. 4

Remark 4.4 Symmetry and the Choice of Dynamic Inverse. In Example 4.3, M (q) is

symmetric, as is its inverse M (q)�1. The right hand side of (21) is also symmetric, hence if � (0)

is symmetric, so is � (t) for all t. If we had chosen G[W; q] := M (q)TW as a dynamic inverse (see,

for instance, Example 4.2) we would not have had this symmetry. The symmetry allows us to

cast the top equation of (21) on the space S(n;R) of symmetric n � n matrices thereby reducing

the complexity of the dynamic inverter; what would otherwise be n2 equations (21) is reduced to

s(n) := n(n+ 1)=2 equations. 4
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4.1 Left and Right Inversion of Time-Varying Matrices

Consider a matrix A(t) 2 Rm�n. Assume that A(t) is of full rank for all t � 0. We consider two

cases: (1) If m � n, then A(t) has a right inverse ��(t) 2 Rn�m satisfying

F (�; t) := A(t)� � I = 0: (22)

It is easily veri�ed that

G[W ] := �W: (23)

is a dynamic inverse for F (�; t) when � is su�ciently close to �� = A(t)T (A(t)A(t)T )�1. Di�erentiate

F (��; t) = 0 with respect to t, solve for _��, and replace �� by � to get the derivative estimator

E(�; t) := �� _A(t)�: (24)

Thus a dynamic inverter for right-inversion of a time-varying matrix is

_� = ��� (A(t)� � I) � � _A(t)� (25)

The form of this dynamic inverter is seen to be identical to (15). Alternatively we may use Theo-

rem 4.1 to invert A(t)A(t)T , constructing the right inverse as A(t)T� (t).

In the case that m � n, A(t) has a left inverse ��(t) which satis�es

F (�; t) := �A(t)� I = 0: (26)

We may use the dynamic inverter (25) with A(t) replaced by A(t)T , and _A(t) replaced by _A(t)T to

approximate the left inverse of A(t).

5 Inversion of Constant Matrices

In this section we consider two methods for the dynamic inversion of constant matrices; one for

asymptotic inversion, and the other for inversion in �nite time. In Section 7 we consider another

more complex, but also more general approach to the same problem.

Constant matrices may be inverted in a manner similar to the inversion of time-varying matrices
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as described in the last section. Let

F (� ) :=M� � I: (27)

Let � (t) denote the estimator for the inverse of a constant matrixM , with �� = M�1 as the solution

of F (� ) = 0. Since M is constant, _�� is zero. As a consequence, if � (0) is su�ciently close to ��,

then a dynamic inverse of F (� ) (27) is G[W;� ] := �W , and we can use the dynamic inverter

Dynamic Inverter for Constant Invertible Matrices: _� = ��� (M� � I)

(28)

Choosing � (0) su�ciently close to �� assures us that, as � (t) ows to �� = M�1, � will not

intersect the set of singular matrices.

5.1 A Comment on Gradient Methods

As shown in Example 4.2 the function G[W;� ] := �W is not our only choice of a dynamic inverse

G[W;�; t] which is linear in W . It is easily veri�ed that G[W ] = MTW , W 2 Rn�n, is also a

dynamic inverse for F (� ) := M� � I, and that for this choice of dynamic inverse we do not need

to worry about the dynamic inverse becoming singular; it is valid globally and leads to the dynamic

inverter

Dynamic Inverter for Constant Square Matrices: _� = ��MT (M� � I) (29)

for which � !M�1.

Remark 5.1 Left and Right Inverses of Constant Matrices If M has full column-rank, with

M 2 Rm�n, m � n, then the equilibrium solution �� of (29) is the left inverseML := (MTM )�1MT

of M .

Dynamic Left-Inverter for Constant Matrices: _� = ��MT (M� � I) (30)

for which � ! ML. If instead we were to choose F (� ) := �M � I and G[W ] := WMT , and if

M 2 Rm�n, m � n, has full row-rank, then the solution �� would be the right inverse MR :=
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MT (MMT )�1 of M . 4

The dynamic inverter (29) is the standard least squares gradient ow (see [17], Section 1.6) for

the function � : Rn! R; � 7! �(� ) where

�(� ) :=
1

2
kM� � Ik22: (31)

It is also the neural-network constant matrix inverter of Wang [16]. Of course other gradient schemes

may have the same solution as (29), though they may start from gradients of functions other than (31)

(See, for instance [15]). In general, arti�cial neural networks are constructed to dynamically solve

for the minimum of an energy function having a unique (at least locally) minimum, i.e. they realize

gradient ows.

5.1.1 Connecting Gradient Methods with Dynamic Inversion

In general a dynamic inverter for F consists of three functions, F , G, and E as described in Section 3.

The function F (�; t) is the implicit function to be inverted, G[w; �; t] is a dynamic inverse for F (�; t),

and E(�; t) is an estimator for the derivative with respect to t of the root �� of F (�; t) = 0. To relate

gradient methods to dynamic inversion, we consider the decomposition of a gradient ow system

into an E, F , and G forming a dynamic inverter. For instance, let H : Rn�n�R! R be a smooth

function. A gradient system for �nding critical points of H with respect to � is

Gradient System: _� = �rH(�; t) +
@

@t
H(�; t) (32)

where r denotes the � -gradient of H(�; t). We may always identify gradient systems with dynamic

inversion through the trivial dynamic inverse G[W ] = W . Then F (�; t) = rH(�; t) and E(�; t) =

@
@tH(�; t). Let � = 1. Then

_� = �G[F (�; t)] + E(�; t) (33)

is the same as (32). Thus we have decomposed the gradient system (32) into an E, F , and G.

It is more interesting, however, to �nd a dynamic inverse G such that if G were changed to the

identity map, then the desired root would still be the solution to F (�; t) = 0, but the resulting

dynamic inverter would not converge to the desired root. For example, identifying F (� ) = M� � I,

G[W ] =MTW , and E = 0 decomposes the gradient ow (29) into a dynamic inverter. For arbitrary
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M 2 GL(n;R), the stability properties of _� = ��F (� ) are unknown. But with G de�ned as

G[W ] = MTW , _� = ��G[F (� )] has an asymptotically stable equilibrium at �� = M�1. For a

system of the form (29) such a decomposition is straightforward. For more complicated gradient

systems however, we have no general methodology for decomposition into E, F , and G.

5.2 Dynamic Inversion of Constant Matrices by a Prescribed Time

The constant matrix dynamic inverters (28) and (29) above have the potential disadvantage of

producing an exact inverse only asymptotically as t ! 1. One may, however, wish to obtain the

inverse by a prescribed time. To this end we now consider another method. If we could create a

time-varying matrixH(t) that is invertible by inspection at t = 0, and that equalsM at some known

�nite time t > 0, say t = 1, then perhaps we could use the technique of Section 4 for the inversion of

time-varying matrices to invert H(t). If � (0) = H(0)�1, then the solution of the dynamic inverter

at time t = 1 will be M�1. We require, of course, that H(t) remain in GL(n;R) as t goes from 0

to 1. One ideal candidate for the initial value of the time-varying matrix is the identity matrix I,

since it is its own inverse.

Example 5.2 Constant Matrix Inversion by a Prescribed Time Using Homotopy. Let M

be a constant matrix in Rn�n. Consider the t-dependent matrix,

Matrix Homotopy: H(t) = (1� t)I + tM: (34)

In the space of n�n matrices, t 7! H(t) describes a t-parameterized curve, or homotopy, of matrices

from the identity to M = H(1) as indicated in Figure 1; in fact this curve (34) is a straight line.

From Theorem 4.1 we know how to dynamically invert a time-varying matrix given that we have an

approximation of its inverse at time t = 0. Since we know the exact inverse at time t = 0, we may

use the dynamic inverter of Theorem 4.1 to track the exact inverse of the time-varying matrix for

all t � 0. We may invert H(t) by substituting H(t) for A(t), and _H(t) = M � I for _A(t) in (16),

setting � (0) = I. Since our initial conditions are a precise inverse of H(0), Theorem 4.1 tells us that

the matrix � at t = 1 is the precise inverse of M , as shown schematically in Figure 2. That is, of
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I

M

[ ]
0 1

H(t)

RR nxn

RR

Figure 1: The matrix homotopy H(t).

course, if H(t) remains nonsingular as t goes from 0 to 1! 4

I

RR nxn

M

H(t)

RR nxn

I

M-1

Γ*(t)

Matrix Homotopy Dynamic Inversion Solution

t=0

t=1

Figure 2: The matrix homotopyH(t) from I toM with the corresponding solution ��(t), the inverse
of H(t).

For a dynamic inverter for this example let

F (�; t) := ((1� t)I + tM )� � I

G[W;� ] := �W

E(� ) := �� (M � I)�:

(35)

Then a dynamic inverter is _� = ��G[F (�; t); � ]+ E(� ) with � (0) = I. Expanded, this is

_� = ��� ((1 � t)I + tM )� � I) � � (M � I)�: (36)

Another choice of linear dynamic inverse is G[W; t] := ((1� t)I + tM )TW giving

_� = ��H(t)T (H(t)� � I) � � (M � I)� (37)

13



as an alternative choice of prescribed-time dynamic inverter for constant matrices. 4

Homotopy-based methods, also called continuation methods, for solving sets of linear and nonlin-

ear equations have been around for quite some time. For a review of developments prior to 1980 see

Allgower and Georg [18]. The general idea is that one starts with a problem with a known solution

(e.g. the inverse of the identity matrix) and smoothly transforms that problem to a problem with an

unknown solution, transforming the known solution in a corresponding manner until the unknown

solution is reached. Often it is considerably easier to transform a known solution to a problem into an

unknown solution to a closely related problem rather than calculating the new solution from scratch.

Solution of the roots of nonlinear polynomial equations (see Dunyak et al. [19] and Watson [20] for

examples) is a typical example with broad engineering application.

Now we deal with the fact that the scheme of Example 5.2 requires that there is no t 2 [0; 1] for

which H(t) given by (34) is singular. To do this recall that there are two maximal connected open

subsets which comprise GL(n;R), namely GL+(n;R) = fM 2 Rn�nj det(M ) > 0g and GL�(n;R) =

fM 2 Rn�nj det(M ) < 0g. These two sets are disjoint and are separated by the variety of singular

n�n matrices fM 2 Rn�nj det(M ) = 0g. The identity I is in GL+(n;R). For the curve t 7! H(t) to

be invertible, it must never leave GL+(n;R) (see Figure 3). For our particular choice of H(t), since

det = 0

GL+(n, R)

GL-(n, R)

I

M

GL+(n, R)

GL-(n, R)

I M

H(t)

Non-Invertible H(t) Invertible H(t)

H(t)

Figure 3: The homotopy from I to M must remain in GL+(n;R) to be invertible.

H(0) = I, and I is in GL+(n;R), the homotopy H(t) should remain in GL+(n;R) to be invertible

for all t 2 [0; 1]. The following lemma speci�es su�cient conditions on M for H(t) (34) to remain

in GL+(n;R) as t goes from 0 to 1.

Lemma 5.3 Matrix Homotopy Lemma. If M 2 GL(n;R) has no eigenvalues in (�1; 0), then

for each t 2 [0; 1], H(t) = (1� t)I + tM is in GL(n;R).

14



Remark 5.4 Inversion of Positive-De�nite Symmetric Constant Matrices. If M is a pos-

itive de�nite symmetric matrix, then the assumption of Lemma 5.3 holds. 4

Remark 5.5 Subset Star-like about I. Lemma 5.3 tells us that the subset of GL(n;R) consisting

of allM � GL(n;R) such that �(M )\ (�1; 0) = ; is starlike about I, i.e. for eachM in this subset,

the straight line segment from I to M remains in the subset. 4

Proof of Lemma 5.3: Suppose that H(t) = (1 � t)I + tM is singular for some �t 2 [0; 1]. The

identity I is nonsingular as is M by assumption, so �t 62 f0; 1g. Thus there exists a non-zero v 2 Rn

such that

((1� �t)I + �tM ) v = 0: (38)

Since �t 6= 0 we can divide (38) by ��t to obtain

�
(�t� 1)

�t
I �M

�
v = 0: (39)

But �t can only satisfy (39) if �(�t) := (�t � 1)=�t is an eigenvalue of M . As t ranges over (0; 1), �(t)

ranges over (�1; 0). But by assumption M has no eigenvalues in (�1; 0), hence no such �t exists

in (0; 1) and so H(t) is nonsingular on [0; 1]. �

We may obtain the exact inverse of M at any prescribed time t1 > 0 by replacing H(t) with

H(t=t1) in (36) or (37). We summarize our results of this section in the following theorem.

Theorem 5.6 Dynamic Inversion of Constant Matrices by a Prescribed Time. For any

constant M 2 GL(n;R), and for any prescribed t1 > 0, if �(M ) \ (�1; 0) = ?, then the solution

� (t) of the dynamic inverter

Prescribed-Time Dynamic Inverter for Constant Matrices

_� = ���
��

(1� t
t1
)I + t

t1
M
�
� � I

�
� � (M � I)�

(40)

with � (0) = I, satis�es � (t1) =M�1.

15



Remark 5.7 Preservation of Symmetry. If M is symmetric, then the right-hand side of (40) is

also symmetric. Thus if � (0) is symmetric, then � (t) is symmetric for all t 2 [0; t1]. Note that this

symmetry does not hold for (37) where G[W; t] = H(t)TW is used as the dynamic inverse. 4

Example 5.8 Right and Left Inverses of Constant Matrices by a Prescribed Time. Let

A 2 Rm�n be a constant matrix with m � n and assume that A has full rank. The right inverse of

A is given by AR := AT (AAT )�1. To obtain AR at time t1, we may apply Theorem 5.6 replacing

M by AAT which is positive de�nite. Then AT (AAT )�1 = AT� (t1).

Prescribed-Time Dynamic Right-Inversion of a Constant Matrix

_� = ���

��
(1�

t

t1
)I +

t

t1
AAT

�
� � I

�
� � (AAT � I)

AT� (t1) = AR:

(41)

If a constant A has full column rank, then since ATA is positive de�nite, the left inverse AL :=

(ATA)�1AT may be obtained by substituting ATA for M in Theorem 5.6. Then AL = � (t1)A
T .

4

Theorem 5.6 is limited in its utility by the necessity that M have a spectrum which does not

intersect (�1; 0). By appealing to the polar decomposition in Section 7 below, we will show that

we may, at the cost of a slight increase in complexity, use dynamic inversion to produce an exact

inverse of any invertible constant M , irrespective of its spectrum, by any prescribed time t1 � 0.

6 Polar Decomposition for Time-Varying Matrices

In this section we will show how dynamic inversion may be used to perform polar decomposition [21]

and inversion of a time-varying matrix. We will assume that A(t) 2 GL(n;R), and that A(t), _A(t),

and A(t)�1 are bounded for t 2 R+.

Though polar decomposition will be used here largely as a path to inversion, polar decomposition

�nds substantial utility in its own right. In particular it is used widely in the study of stress and

strain in continuous media. See, for instance, Marsden and Hughes [22].

First consider the polar decomposition of a constant matrixM 2 GL(n;R),M = PU where U is

in the space of n�n orthogonal matrices with real entries, O(n;R), and P is the symmetric positive

16



de�nite square root of MMT . RegardingM as a linear operator Rn! R
n, the polar decomposition

expresses the action of M on a vector as a rotation (possibly with a reection) followed by a scaling

along the eigenvectors of MMT . If M 2 GL(n;R), then P and U are unique.

Now consider the case of a t-dependent nonsingular square matrixA(t). Since A(t) is nonsingular

for all t � 0, A(t)A(t)T is positive de�nite for all t � 0. For any t � 0, the unique positive de�nite

solution to XA(t)A(t)TX � I = 0 is X�(t) = P (t)�1. Thus if we know X�(t), then from A(t) =

P (t)U (t) we can get the orthogonal factor U (t) of the polar decomposition by U (t) = X�(t)A(t), as

well as the symmetric positive de�nite part P (t) = X�(t)A(t)A(t)T . We can also obtain the inverse

of A(t) as A(t)�1 = U (t)TX�(t).

Since P (t) is a symmetric n� n matrix, it is parameterized by s(n) := n(n+ 1)=2 elements as is

its inverse P�1(t). We will construct the dynamic inverter that produces P�1(t).

Let

�(t) := A(t)A(t)T : (42)

Let F : S(n;R)�R+! S(n;R); (X; t) 7! F (X; t) be de�ned by

F (X; t) := X�(t)X � I: (43)

Let X� be a solution of F (X; t) = 0. Then X�(t) is a symmetric square root of �(t).

Nothing in the form of F (X; t) (43) enforces the positive de�niteness of the solution X�(t). For

instance, for each solution X�(t) of F (x; t) = 0, �X�(t) is also a solution. Each solution t 7! X�(t)

is, however, isolated as long as Y 7! D1F (X�; t) �Y , where F (X; t) is de�ned by (43), is nonsingular.

We will show in the next subsection, Subsection 6.1, that the nonsingularity of A(t) implies the

nonsingularity of Y 7! D1F (X�; t) � Y .

6.1 The Lyapunov Map

We will use a linear dynamic inverse for F (X; t) in (43) based upon the inverse of Y 7! D1F (X�; t) �

Y . We will estimate this inverse using dynamic inversion. It is not obvious, however, that Y 7!

D1F (X�; t) � Y is invertible, so we deal with this issue �rst.

Di�erentiate (43) with respect to X to get

D1(X; t) : Y 7! D1(X; t) � Y := Y �(t)X +X�(t)Y: (44)

17



We will refer to a map of the form

LM : Y 7! LMY := Y M +MY (45)

with Y andM inRn�n as a Lyapunov map due to its relation to the Lyapunov equation YM+MY =

Q which arises in the study of the stability of linear control systems (see e.g. Horn and Johnson [23],

Chapter 4). It may be proven that LM is an invertible linear map if no two eigenvalues of M add

up to zero (see e.g. [23], Theorem 4.4.6, page 270).

Now note that �(t)X� = X��(t) = P (t) which is positive de�nite and symmetric, having only

real-valued and strictly positive eigenvalues. Thus no pair of eigenvectors of �(t)X� sum to zero.

Therefore D1(X; t) � Y is nonsingular. Since D1F (X; t) � Y is continuous in X, it follows that

D1F (X; t) � Y remains invertible for all X in a su�ciently small neighborhood of X�.

6.2 Dynamic Polar Decomposition

The estimator for the map W 7! D1F (X�; t)�1 �W will be denoted � 2 L(S(n;R); S(n;R)) so that

�� �W = D1F (x�; t)
�1 �W: (46)

Using � , we may de�ne a dynamic inverse for F (X; t). Let G : S(n;R)� L(S(n;R); S(n;R)) !

S(n;R); (W;� ) 7! G[W;� ] be de�ned by

G[W;� ] := D1F (X�; t)
�1
��
��=�

�W = � �W: (47)

for W 2 S(n;R). This makes G[W;� ] (47) a dynamic inverse for F (X; t) = X�(t)X � I, as long as

� is su�ciently close to ��.

To construct an estimator E(X;�; t) 2 S(n;R) for _X�, �rst di�erentiate F (X�; t) = 0,

D1F (X�; t) � _X� +D2F (X�; t) = 0: (48)

and then solve for _X�,

_X� = �D1F (X�; t)
�1 �D2F (X�; t) = ��� �D2F (X�; t): (49)
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Note that D2F (X�; t) = X� _�(t)X�. Now substitute X and � for X� and �� to obtain

E(X;�; t) := �� �
�
X _�(t)X

�
: (50)

To obtain � dynamically, let F  : S(n;R) � L(S(n;R);S(n;R)) � R+ ! L(S(n;R); S(n;R));

(X;�; t) 7! F (X;�; t) be de�ned by

F (X;�; t) := D1F (X; t)� � Id (51)

where Id denotes the identity mapping from L(S(n;R);S(n;R)) to L(S(n;R); S(n;R)). A linear dy-

namic inverse for F (X;�; t) is G : L(S(n;R);S(n;R))� L(S(n;R); S(n;R))! L(S(n;R); S(n;R));

(W;� ) 7! G [W;� ] de�ned by

G [W;� ] := � �W: (52)

For an estimator E(X;�; t) for _��, we di�erentiate F (X�; ��; t) = 0 with respect to t, solve

for _��, and substitute X and � for X� and �� respectively to get

E(X;�; t) := �� �

�
d

dt
D1F (X; t)

�����
_X�=E(X;�;t)

� �: (53)

Combining the E's, F 's, and G's from (50), (43), (47), (53), (51), and (52), we obtain the

dynamic inverter

8><
>:

_X = ��G[F (X; t); � ]+ E(�;X; t)

_� = ��G [F (X;�; t); � ] +E (X;�; t)
(54)

or in an expanded form

Dynamic Polar Decomposition for Time-Varying Matrices:8><
>:

_X = ��� � (X�(t)X � I) � � �
�
X _�(t)X

�
_� = ��� � (D1F (X; t)� � Id)� � �

�
d
dt
D1F (X; t)

���
_X=�� �(X _�X)

� �

XA(t) ! U (t); XA(t)A(t)T ! P (t); A(t)TX2 ! A�1(t):

(55)

Initial conditions for the dynamic inverter (55) may be set so that X(0) � P (0)�1 and � (0) �

D1F (P (0)�1; 0)�1. Under these conditions � (t) � P (t)�1 for all t � 0.
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Combining the results above with the dynamic inversion theorem, Theorem 3.2 gives the following

theorem.

Theorem 6.1 Dynamic Polar Decomposition of Time-Varying Matrices. Let A(t) be in

GL(n;R) for all t 2 R+. Let the polar decomposition of A(t) be A(t) = P (t)U (t) with P (t) 2

S(n;R) the positive de�nite symmetric square root of �(t) := A(t)A(t)T , and U (t) 2 O(;R) for

all t 2 R+. Let X be in S(n;R), and let � be in L(S(n;R); S(n;R)). Let (X(t); � (t)) denote

the solution of the dynamic inverter (55) where F (X; t) is given by (43). Then there exists a ~�

such that if the dynamic inversion gain � satis�es � > ~�, and (X(0); � (0)) is su�ciently close to

(P (0)�1; D1F (P (0)
�1; t)�1), then

1. �(t)X(t) exponentially converges to P (t),

2. X(t)A(t) exponentially converges to U (t), and

3. A(t)X(t)2 exponentially converges to A(t)�1.

6.3 A Numerical Example

Though numerical inversion of the Lyapunov map has long been a topic of interest in the context of

control theory [24, 25], we do not know of any matrix map L�1 : S(n;R)! S(n;R), taking matrices

to matrices, which inverts Y 7! D1F (X; t) � Y = X�(t)Y + Y �(t)X. By converting D1F (X; t) � Y

to an s(n) � s(n) matrix, however, and representing elements of S(n;R) as vectors, the inverse

D1F (X; t)
�1 �Y as a mapping between vector spaces Rs(n)! R

s(n) can be obtained through matrix

inversion. For the purposes of the example below, we will resort to vector notation in referring to

elements of S(n;R).

Remark 6.2 Vector Notation for Symmetric Matrices. We will adopt a notation that allows

us to switch between matrix representation and vector representation of elements of S(n;R).

Choose an ordered basis � = f�1; : : : ; �s(n)g for S(n;R). For any x 2 R
s(n) there corresponds a

unique matrix x̂ 2 S(n;R) where the correspondence is through the expansion of x̂ in the ordered

basis �,

x̂ � (x)̂ :=
X
i2s(n)

xi�i 2 S(n;R): (56)
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Conversely, for any X 2 S(n;R), let �X denote the vector of the expansion coe�cients of

X =
X
i2s(n)

xi�i (57)

in the basis � so that �X � (X)�= x Then ( �X )̂ = X and (x̂)�= x. 4

Using the notation of Remark 6.2, and letting � 2 Rs(n)�s(n) be the estimator for the matrix

representation of D1F (X; t)
�1, the dynamic inverter (55) takes the form

8><
>:

_x = ��� (x̂�(t)x̂� I)�� �
�
x̂ _�(t)x̂

�
�

_� = ��� (D1F (x; t)� � I) � �
�
��

�
x̂ _�(t)x̂

�
�ddtD1F (x; t)

����
_x=
�

x̂A(t)! U (t); x̂A(t)A(t)T ! P (t); A(t)T (x̂)2 ! A�1(t):

(58)

An example of the polar decomposition of a 2�2 matrix will illustrate application of Theorem 6.1

and equations (58).

Example 6.3 Polar Decomposition of a Time-Varying Matrix. Let

A(t) :=

2
64 10 + sin(10t) cos(t)

�t 1

3
75 : (59)

In this case x 2 R3 and � 2 R3�3. We will perform polar decomposition and inversion of A(t)

over t 2 [0; 8], an interval over which A(t) is nonsingular. We will estimate P (t) and U (t) such that

A(t) = P (t)U (t), with P (t) 2 S(2;R) being the positive de�nite symmetric square root of A(t)A(t)T ,

and with U (t) 2 O(2;R).

Let

�(t) =

2
64 �1 �2

�2 �3

3
75 = A(t)A(t)T : (60)

We choose the ordered basis � of S(2;R) to be

� =

8><
>:

2
64 1 0

0 0

3
75 ;
2
64 0 1

1 0

3
75 ;
2
64 0 0

0 1

3
75
9>=
>; : (61)
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In this basis we have

F (x; t) = (x̂�(t)x̂)�=

2
66664

�1x
2
1 + 2�2x1x2 + �3x

2
2 � 1

�1x1x2 + �2x
2
2 + �2x1x3 + �3x2x3

�1x
2
2 + 2�2x2x3 + �3x

2
3 � 1

3
77775 : (62)

Then

D1F (x; t) =

2
66664

2(�1x1 + �2x2) 2(�2x1 + �3x2) 0

�1x2 + �2x3 �1x1 + 2�2x2 + �3x3 �2x1 + �3x2

0 2(�1x2 + �2x3) 2(�2x2 + �3x3)

3
77775 : (63)

For an estimator for _x we have from (50)

E(x; �; t) = ��

2
66664

_�1x
2
1 + 2 _�2x1x2 + _�3x

2
2

_�1x1x2 + _�2x
2
2 + _�2x1x3 + _�3x2x3

_�1x
2
2 + 2 _�2x2x3 + _�3x

2
3

3
77775 : (64)

The estimator E for �� is given by (53), where

d

dt
D1F (x; t)

����
_x=E(x;�;t)

=

2
66664

_L11
_L12 0

_L21
_L22

_L23

0 _L32
_L33

3
77775 (65)

with

_L11 = 2 _�1x1 + 2�1E1(x; �; t) + 2 _�2x2 + 2�2E2(x; �; t)

_L12 = 2 _L23

_L21 = _�1x2 + �1E2(x; �; t) + _�2x3 + �2E3(x; �; t)

_L22 = _�1x1 + �1E1(x; �; t) + 2 _�2x2 + 2�2E2(x; �; t) + _�3x3 + �3E3(x; �; t)

_L23 = _�2x1 + �2E1(x; �; t) + _�3x2 + �3E2(x; �; t)

_L32 = 2 _L21

_L33 = 2 _�2x2 + 2�2E2(x; �; t) + 2 _�3x3 + 2�3E3(x; �; t)

(66)

Dynamic inversion using equations (55) was simulated using the adaptive step size Runge-Kutta

integrator ode45 from Matlab, with the default tolerance of 10�6. The initial conditions were set so
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that

x̂(0) = �(0)1=2 + êx

� (0) = D1F (x(0); t)
�1

(67)

where ex = [�0:55; 0:04;�2:48]T is an error that has been deliberately added to demonstrate the

error transient of the dynamic inverter. The value of � was set to 10.

The graph of Figure 4 shows the values of the individual elements of A(t). The top graph of

0 1 2 3 4 5 6 7 8
-8

-6

-4

-2

0

2

4

6

8

10

12
A(t)

t

Figure 4: Elements of A(t) (see (59)). See Example 6.3

Figure 5 shows the elements of x(t), the estimator for P (t)�1, and the bottom graph of Figure 5

shows the elements of � (t).

Figure 6 shows log10(kx̂(t)�(t)x̂(t) � Ik1) indicating the extent to which x̂, the estimator for

P (t)�1 fails to be the square root of �(t) = A(t)A(t)T .

For estimates of P (t), U (t), and A(t)�1 we have

x̂(t)A(t)A(t)T ! P (t); x̂(t)A(t) ! U (t); and A(t)T x̂(t)2 ! A(t)�1: (68)

4
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Figure 5: Elements of x (top), and � (bottom). See Example 6.3.
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Log10 of Error in Estimation of  P(t)-1

Figure 6: The error log10(kx̂(t)�(t)x̂(t) � Ik1) indicating the extent to which x fails to satisfy
x̂�(t)x̂� I = 0. The ripple from t � 1:8 to t = 8 is due to numerical noise. See Example 6.3.
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Remark 6.4 Symmetry of the Dynamic Inverter. It is interesting to note that P (t)�1, besides

being a solution to x̂�(t)x̂ � I = 0 is also a solution to �(t)x̂2 � I = 0 as well as x̂2�(t) � I = 0.

But �(t)x̂2 � I and x̂2�(t)� I are not, in general, symmetric even when �(t) and x̂ are symmetric.

Though exponential convergence is still guaranteed when using these forms, the ow � (t) is not,

in general, con�ned to S(n;R). Using these forms would increase the number of equations in the

dynamic inverter by n(n � 1)=2 + n2 � s(n)2 since, not only would the right hand side of the top

equation of (55) no longer be symmetric, but � would be n2 � n2 rather than s(n) � s(n). 4

7 Polar Decomposition and Inversion of Constant Matrices

In the dynamic inversion techniques of Sections 4 and 6 we assumed that we had available an

approximation of A�1(0) with which to set � (0) in the dynamic inversion of A(t). Thus we would

need to invert at least one constant matrix, A(0), in order to start the dynamic inverter. Methods of

constant matrix inversion presented in Section 5 had the potential disadvantage of either producing

exact inversion only asymptotically as t ! 1, or of only working on matrices with no eigenvalues

in the interval (�1; 0). The question naturally arises then, how might we use dynamic inversion to

invert any constant matrix so that the exact inverse is available by a prescribed time. In this section,

by appealing to both homotopy and polar decomposition, we give an answer to this question.

Let M be in GL(n;R) with P = PT > 0; UUT = I; and M = PU Helmke and Moore (see

[17], pages 150-152) have described a gradient ow for the function kA� UPk2 (Frobenius norm),

_�U = �U �PMT �U �M �P

_�P = �2 �P +MT �U + �UTM
(69)

where �P and �U are meant to approximate P and U respectively. Asymptotically, this system

produces factors P� and U� satisfying M � P�U� = 0 for almost all initial conditions �P (0); �U (0) as

t!1. A di�culty with this approach, as the authors point out, is that positive de�niteness of the

approximator �P is not guaranteed.

In this section we describe a dynamic system that provides polar decomposition of any nonsin-

gular constant matrix by any prescribed time, with the positive de�niteness of the estimator of P
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guaranteed. This will be accomplished by applying Theorem 6.1 on dynamic polar decomposition

of time-varying matrices to the homotopy

�(t) := (1� t)I + tMMT : (70)

Unlike the homotopy H(t) = (1 � t)I + tM of Section 5, the homotopy �(t) (70) is guaranteed

to have a spectrum which avoids (�1; 0) for any nonsingular M since �(t) is a positive de�nite

symmetric matrix for all t 2 [0; 1]. The situation is depicted in Figure 7.
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Λ(t)
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Figure 7: �(t) is positive de�nite and symmetric for all t 2 [0; 1].

Recall that M is in GL(n;R). For �(t) as de�ned in (70) note that �(0) = I, �(1) = MMT ,

and for all t 2 [0; 1], �(t) is positive de�nite and symmetric. Let P (t) denote the positive de�nite

symmetric square root of �(t). Let the estimator of P�1(t) be X 2 S(n;R). Di�erentiate �(t) (70)

with respect to t to get

_�(t) =MMT � I: (71)

Now we may apply the dynamic inverter of Section 6 in order to perform the polar decomposition

of M . As in (43), let

F (X; t) := X�(t)X � I: (72)

By inspection it may be veri�ed that X�(0) = I and ��(0) = I. If we set X(0) = I and � (0) = I,

then Theorem 3.2 and the results of the last section assure us that X(t) � P�1(t) for all t � 0, and
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thus X(1) = P�1. Consequently

X(1) = P�1; �(1)X(1) =MMTX(1) = P

X(1)M = U; MTX(1)2 =M�1:
(73)

Note that _�(t) =MMT � I = 0 if and only if M is unitary, in which case M�1 =MT .

Combining the results of this section with the results of the last section gives the following

Theorem.

Theorem 7.1 Dynamic Polar Decomposition of Constant Matrices by a Prescribed

Time. Let M be in GL(n;R). Let the polar decomposition of M be M = PU with P 2 S(n;R) the

positive de�nite symmetric square root of MMT and U 2 O(n;R). Let X be in S(n;R), and let �

be in L(S(n;R); S(n;R)). Let X(0) = I and � (0) = 1
2Id. Let (X(t); � (t)) denote the solution of

Prescribed-Time Dynamic Inverter for Constant Matrices8><
>:

_� = ��G [F (�;X; t); � ] +E(�;X)

_X = ��G[F (X; t); � ] +E(�;X)

�(t) = (1� t)I + tMMT

F (X; t) = X�(t)X � I

G[W;� ] = � �W

E(�;X) = �� � (X(MMT � I)X)

F (�;X; t) = D1F (X; t) � � � Id

G [W;� ] = � �W

E (X;� ) = ��
�
d
dt
D1F (X; t)

���
_X=E(�;X)

� �

(74)

Then for any � > 0,

MMTX(1) = P; X(1)M = U; and MTX(1)2 =M�1 (75)

4
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Remark 7.2 Polar Decomposition by Any Prescribed Time. As in Theorem 5.6 we can

force X to equal P�1 at any time t1 > 0 by substituting t=t1 for t in �(t), and proceeding with the

derivation of the dynamic inverter as above. Then X(t1) = P�1. 4

Example 7.3 A numerical simulation of a dynamic inverter for the polar decomposition of a con-

stant 2-by-2 matrix was performed. The integration was performed in Matlab [26] using ode45 an

adaptive step size Runge-Kutta routine using the default tolerance of 10�6. The matrix M was

chosen (randomly) to be

M =

2
64 7 �3

�24 �3

3
75 (76)

The value of � was set to 10. The evolution of the elements of x(t) and � (t) are shown in Figure 8.
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Figure 8: Elements of x(t) (top) and � (t) (bottom), for Example 7.3.

Figure 9 shows the base 10 log of kF (x; t)k1 = kx̂(t)MMT x̂(t) � Ik1 indicating the extent to

which x, the estimator for P�1 fails to be the square root of �(t) =MMT .
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Figure 9: The base 10 log of the error kx̂(t)MMT x̂(t) � Ik1, for Example 7.3.

The �nal value (t = 1) of the error kx̂(t)MMT x̂(t) � Ik1 was

kx̂(1)�(1)x̂(1)� Ik1 = 1:0611� 10�6 (77)

Final values of P , U , and A�1 were

P =MMT x̂(1) =

2
64 5:2444 �5:5223

�5:5223 23:5479

3
75

U = x̂(1)M =

2
64 0:3473 �0:9377

�0:9377 �0:3473

3
75

M�1 =MT x̂(1)2 =

2
64 0:0323 �0:0323

�0:2581 �0:0753

3
75

(78)

4
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8 Summary

We have seen how the polar decomposition and inversion of time-varying and constant matrices may

be accomplished by continuous-time dynamical systems. Our results are easily modi�ed to provide

solutions for time-varying and time-invariant linear equations of the form A(t) can provide a useful

and general conceptual framework through which to view other methods of dynamic computation

such as gradient ow methods.

Dynamic inversion is showing promise in the context of the control of physical systems. For

instance, in some control problems, dynamic inversion may provide essential signals which can be

incorporated into controllers for nonlinear dynamic systems [27, 1]. In those same problems it may

also be used for matrix inversion. For example, dynamic inversion has been incorporated into a

controller for robotic manipulators in [1, 28] where the dynamic inverter produces inverse kinematic

solutions necessary for the control law. If inversion of, say, a time-varying mass matrix is also

required in the same problem, a dynamic inverter may be augmented to provide that capability too,

without interfering with other inversions within the same problem.
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