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Abstract

Some interesting aspects of motion and control such as those found in biological and robotic
locomotion, and attitude control of spacecraft, involve geometric concepts. When an animal or
a robot moves its joints in a periodic fashion, it can rotate or move forward. This observation
leads to the general idea that when one variable in a system moves in a periodic fashion, motion
of the whole object can result. This property can be used for control purposes; the position
and attitude of a satellite, for example, are often controlled by periodic motions of parts of the
satellite, such as spinning rotors. One of the geometric tools that has been used to describe this
phenomenon is that of connections, a notion that is extensively used in general relativity and
other parts of theoretical physics. This tool, part of the general subject of geometric mechanics,
has been helpful in the study of the stability or instability of a system and in its bifurcations,
that is, changes in the nature of the systems dynamics, as some parameter changes. Geometric
mechanics, currently in a period of rapid evolution, has been used, for example, to design
stabilizing feedback control systems in attitude dynamics. The theory is also being developed
for systems with rolling constraints such as those found in a simple rolling wheel. This article
explains how some of these tools of geometric mechanics are used in the study of motion control
and locomotion generation.

1 Introduction

We describe a geometric framework that leads to a better understanding of locomotion generation
and motion control in mechanical systems. This introduction provides some basic examples that
motivate and set the stage for this framework.

Perhaps the most popular example of the generation of rotational motion is the falling cat, which
is able to execute a 180◦ reorientation, all the while having zero angular momentum. It achieves this
by manipulating its joints to create shape changes. To understand this, one has to remember that the
angular momentum of a rotating rigid object is its moment of inertia times its instantaneous angular
velocity; this is the angular version of the familiar relation “momentum equals mass times velocity”.
Shape changes result in a change in the cat’s moment of inertia and this, together with the constancy
of the angular momentum, creates the overall orientation change. However, the exact process by
which this occurs is subtle and intuitive reasoning can lead one astray. While this problem has been
long studied, (eg, by Kane and Sher), recently new and interesting insights have been discovered
using geometric methods; see Enos [1993], Montgomery [1990] and references therein.

Astronauts who wish to reorient themselves in a free space environment can similarly do so by
means of shape changes. For example, holding one of their legs straight, they can swivel it at the
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hip, moving their foot in a circle. When they have achieved the desired orientation, they merely stop
their leg movement.1 Similar movements for robots and spacecraft can be controlled automatically
to achieve desired objections; see for example, Walsh and Sastry [1993]. One often refers to the
extra motion that is achieved by the name geometric phase.

The history of this phenomenon and its applications is a long and complex story. We shall only
mention a few highlights. Certainly the shift in the plane of the swing in the Foucault pendulum as
the earth rotates once around its axis is one of the earliest examples of this phenomenon. Anomalous
spectral shifts in rotating molecules is another. Phase formulas for special problems such as rigid
body motion and polarized light in helical fibers were understood already in the early 1950’s. (Ad-
ditional historical comments and references can be found in Berry [1990] and Marsden and Ratiu
[1994]). Gradually the subject became better understood, but it was Berry [1985] whose paper
first clarified and emphasized the ubiquity of the geometry behind all these phenomena. It was
also quickly realized that the phenomenon occurs in essentially the same way in both classical and
quantum mechanics (see Hannay [1985]) and that the phenomenon can be linked in a fundamental
way with the presence of symmetry (Montgomery [1988], Marsden, Montgomery and Ratiu [1990]).

The theory of geometric phases has an interesting link with noneuclidean geometry, a subject
first invented for its own sake, without regard to applications. A simple way to explain this link is
as follows. Hold your hand at arms length, but allow rotation in your shoulder joint. Move your
hand along three great circles, forming a triangle on the sphere and during the motion, keep your
thumb “parallel”; that is, forming a fixed angle with the direction of motion. After completing the
circuit around the triangle, your thumb will return rotated through an angle relative to its starting
position. See Figure 1.1. In fact, this angle (in radians) is given by Θ = ∆ − π where ∆ is the sum
of the angles of the triangle. The fact that Θ �= 0 is of course one of the basic facts of non-euclidean
geometry — in curved spaces, the sum of the angles of a triangle is not necessarily π (i.e., 180◦).
This angle is also related to the area A enclosed by the triangle through the relation Θ = A/r2,
where r is the radius of the sphere.

area = A

finish

start

Figure 1.1: A parallel movement of your thumb around a spherical triangle produces a phase shift.

The examples presented so far are rather different from what one finds in many other mechanical
systems of interest in one crucial aspect—the absence of constraints of rolling, sliding or contact.

1One can see this phenomenon in the Ride to Mars waiting room at Disneyland.
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For example, when one parks a car, the steering mechanism is manipulated and movement into the
parking spot is generated; obviously the rolling of the wheels on the road is crucial to the maneuver.
When a human or a robot manipulates an object in its fingers (imagine twirling an egg in your
fingers), it can reorient the object through the rolling of its fingers on the object. This can be
shown in a demonstration I learned from Roger Brockett: roll your fingers in a rotating motion on
a ball resting on a table—you will find that the ball reorients itself under your finger! The amount
of rotation is again related to the amount of area you capture in the rotating motion. You have
generated rotational motion! See Figure 1.2.

Figure 1.2: Rolling your finger in a circular motion on a rolling sphere generates rotations.

In all these cases, cyclic motion in one set of variables (often called the internal variables)
produces motion in another set (often called the group variables). This idea is central to the basic
geometric framework described in ensuing sections.

One can generate translational motion as well as rotational motion. For example, micro organisms
and snakes generate translations by a very specific cyclic manipulation of their internal variables
(Shapere and Wilczek [1987]). The reason for this is, in a superficial sense, that in these examples,
translation is kinematically possible (translations are available as group variables) and the controls
are such that these variables are activated. Often translational motion and rotational motion are
coupled in interesting ways, as in the snakeboard , a modification of the familiar skateboard. This
modification allows the rider to rotate the front and back wheels by rotating their feet and this,
together with the rotary motion of the rider’s body, allows both translational and rotational motion
to be generated. Such motion can be controlled with the objective that desired motions be generated.
We will discuss this example in a little more detail in §5.

The generation of motion in small robotic devices is very promising for medical applications. In
this context, one seeks devices that can move in confined spaces under variable conditions (flexible
walls, tight corners, etc.). In fact, this general philosophy is one of the reasons one hopes that
medical operations in the future will be much less intrusive than many of them are now.

There are similar links between vibratory motion and translational and rotational motion, as in
the developments of micromotors (Brockett [1989]) and in motion generation in animals, as in the
generation and control of waves from coupled oscillators, as occurs in the swimming of fish, in insect
locomotion and other creatures.
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A central question to address in this area is: how should one control motions of the internal
variables so that the desired group (usually translational and rotational) motions are produced? To
make progress on this question, one needs to combine experience with simple systems and strategies
(such as steering with sinusoids, as in Murray and Sastry [1993]) with a full understanding the math-
ematical structure of the mechanical systems, both analytical and geometrical. We also mention the
work of Brockett [1981] which shows that for certain classes of control systems that are controllable
via first level brackets, steering by sinusoids is in fact, optimal.

2 Connections and Bundles

One of the fruitful ideas from geometry that has been used in the investigation of mechanical systems
is that of a connection. While the notion of a connection is quite precise, connections have many
personalities. On the one hand, one thinks of them as describing how curved a space is; in fact, in
the classical Riemannian setting used by Einstein in his theory of general relativity, the curvature of
the space is constructed out of the connection (in that case, also called the Christoffel symbols). In a
related setting developed by Cartan, the connection is what is responsible for a corrected measure of
acceleration; for example if one is on a rotating merry-go-round, one has to correct any measurement
of acceleration to take into account the acceleration of the merry-go-round, and this correction can
be described by a connection.

In the general theory, connections are associated with mappings, called bundle mappings, that
project larger spaces onto smaller ones, as in Figure 2.1. The larger space is called the bundle and
the smaller space is called the base. Directions in the larger space that project to zero are called
vertical directions. The general definition of a connection is a specification of a set of directions,
called horizontal directions, at each point, which complements the space of vertical directions.

bundle projection

vertical direction
horizontal directions

bundle

base space

geometric phase

Figure 2.1: A connection divides the space into vertical and horizontal directions.

In the example of parallel transport of the thumb around the sphere, the larger space is the
space of all tangent vectors to the sphere, and this space projects to the sphere itself by projecting
a vector to its point of attachment to the sphere. The horizontal directions are the directions with
zero acceleration within the intrinsic geometry of the sphere; that is, the directions determined by
great circles.
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In the thumb example, we saw that going around the triangle produces a change in the orientation
of the thumb on return. The thumb is parallel transported, that is, it moves in horizontal directions
with respect to the connection. The thumb has suffered a rotational shift from the beginning to the
end of its journey.

In general, we can expect that if we have a horizontal motion in the bundle and if the corre-
sponding motion in the base is cyclic, then the horizontal motion will undergo a shift, which we will
call a phase shift, between the beginning and the end of its path. The shift in the vertical direction
is often given by an element of a group, such as a rotation or translation group. In many of the
examples discussed so far, the base space is the control space in the sense that the path in the base
can be chosen by suitable controls. The path above it in the bundle is regarded as being determined
by the condition of horizontality. This condition therefore determines its phase.

This setting of connections provides a framework in which one can understand the phrase we
started with: when one variable in a system moves in a periodic fashion, motion of the whole object
can result. Here, the “motion of the whole object” is represented by the geometric phase. Coming
along with this notion are plenty of lovely theorems and calculational tools; for example, one of these
(based on Stokes’ theorem) shows how to calculate the geometric phase in terms of the integral of
the curvature of the connection over an area enclosed by the closed curve on the base. This is one
reason that areas so commonly appear in geometric phase formulas.

Connections are ubiquitous in geometry and physics. For example, connections are one of the
main ingredients in the modern theory of elementary particles, and are the primary fields in Yang-
Mills theory, a generalization of Maxwell’s electromagentic theory. In fact, in electromagnetism, the
equation B = ∇× A for the magnetic field may be thought of as an expression for the curvature of
the connection (or magnetic potential) A.

3 Constraints: Angular Momentum and Rolling

In many mechanical systems, there are conditions called “constraints”. For our purposes, these are of
two fundamentally different sorts. The first is typified by the constraint of zero angular momentum
for the falling cat. The cat, once released, and before it reaches the ground, cannot change the fact
that its angular momentum is zero, no matter how it moves its body parts. We choose the cat’s
base space to be its shape space, which does indeed literally mean what it says—the space of shapes
of its body, which can be specified by giving the angles between its body parts. The bundle in this
case consists of these shapes together with a rotation and translation to specify the position and
orientation in space. Since the cat is free to manipulate its shape using its muscles, it can perform
maneuvers, some of them cyclic, in shape space. Meanwhile, how it turns in space is governed by the
law of conservation of angular momentum. It turns out that this law exactly defines the horizontal
space of a connection! The connection in this case is called the “mechanical connection”. That this
corresponds to a connection was discovered through the combined efforts of Smale in 1970, Abraham
and Marsden in 1978, and Kummer in 1981. Thus, when one puts together the theory of connections
with this observation, and throws in control theory, one has the beginnings of the “gauge theory of
mechanics”. This theory has been extended and developed by many workers since then.

Observing the motions of a mechanical system in its shape space is related to the theory of
reduction, a theory that seeks to make the configuration space of a mechanical system smaller by
taking advantage of symmetries. This method has led to many interesting and unexpected discoveries
about mechanics, including, for example the explanation of the integrability of the Kowaleskaya top
in terms of symmetry by Bobenko, Reyman, and Semenov-Tian-Shansky [1989]. (An algebraic-
geometric construction with similar goals was found by Haine and Horozov and Adler and van
Moerbeke around the same time). Observing the motion in shape space alone is similar to watching
the shapes change relative to an observer riding with the object. In such a frame, one sees what
seem to be extra forces, namely the Coriolis and centrifugal forces. In fact, these forces can be
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understood in terms of the curvature of the mechanical connection. Then the problem of finding the
original complete path is one of finding a horizontal path above the given one. This is sometimes
called the “reconstruction problem”. We conclude that the generation of geometric phases is closely
linked with the reconstruction problem.

One of the simplest systems in which one can see these phenomena is called the planar skater.
This device consists of three coupled rigid bodies lying in the plane. They are free to rotate and
translate in the plane, somewhat like three linked ice hockey pucks. This has been a useful model
example for a number of investigations, and was studied fairly extensively in Oh, Sreenath, et. al.
[1989], Krishnaprasad [1989] and references therein. The only forces acting on the three bodies are
the forces they exert on each other as they move. Because of their translational and rotational
invariance, the total linear and angular momentum remains constant as the bodies move. This
holds true even if one applies controls to the joints of the device; this is because the conservation of
momentum depends only on externally applied forces and torques. See Figure 3.1.

ϕ1

ϕ2

Figure 3.1: The planar skater consists of three interconnected bodies that are free to rotate about
their joints.

The planar skater illustrates well some of the basic ideas of geometric phases. If the device starts
with zero angular momentum and it moves its arms in a periodic fashion, then the whole assemblage
can rotate, keeping, of course, zero angular momentum. This is analogous to our astronaut in free
space who rotates his arms or legs in a coordinated fashion and finds that he rotates. One can
understand this simple example directly by using conservation of angular momentum. In fact, the
definition of angular momentum allows one to reconstruct the overall attitude of the device in terms
of the motion of the joints using simply freshman calculus. Doing so, one gets a motion generated in
the overall attitude, which is indeed a geometric phase. This example is sufficiently simple that one
does not need the geometry of connections to understand it, but nonetheless it provides a simple
situation in which one can test the ideas. For more complex examples, such as the falling cat, the
geometric setting of connections has indeed proven useful.

To indicate some of the flavor of three dimensional examples, we discuss the rigid body. Each
position of the rigid body is specified by a Euclidean motion giving the location and orientation
of the body. The motion is then governed by the equations of mechanics in this space. Assuming
that no external forces act on the body, conservation of linear momentum allows us to solve for the
components of the position and momentum vectors of the center of mass. Passage to the center of
mass frame reduces one to the case where the center of mass is fixed, so only pure rotations remain.
Each possible orientation corresponds to the specification of a proper orthogonal matrix A. Back in
1740, Euler parametrized the matrix A in terms of three (Euler) angles between axes that are either
fixed in space or are attached to symmetry planes of the body’s motion.

We regard the element A ∈ SO(3) giving the configuration of the body as a mapping of a
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reference configuration to the current configuration. The matrix A takes a reference or label point
X to a current point x = A(X). For a rigid body in motion, the matrix A is time dependent and the
velocity of a point of the body is ẋ = ȦX = ȦA−1x. Since A is an orthogonal matrix, we can write
ẋ = ȦA−1x = ω × x, which defines the spatial angular velocity vector ω. The corresponding body
angular velocity is defined by Ω = A−1ω, so that Ω is the angular velocity as seen in a body fixed
frame. The kinetic energy is given by integrating the kinetic energy expression for particles (one
half the mass density times the square of the velocity) over the reference configuration. In fact, this
kinetic energy is a quadratic function of Ω. Writing K = 1

2ΩT IΩ defines the (time independent)
moment of inertia tensor I which, if the body does not degenerate to a line, is a positive definite
3 × 3 matrix, or better, a quadratic form. Every calculus student learns how to calculate moments
of inertia as illustrations of the process of multiple integration.

The equations of motion in A space define certain equations in Ω space that were discovered
by Euler: IΩ̇ = IΩ × Ω. The body angular momentum is defined, analogous to linear momentum
p = mv, as Π = IΩ. In terms of Π, the Euler equations read Π̇ = Π × Ω. This equation implies
that the spatial angular momentum vector π = AΠ is fixed in time. One may view this fact as a
conservation law that results from the rotational symmetry of the problem. These and other facts
given here are proven in every mechanics textbook, such as Marsden and Ratiu [1994].

Viewing the components (Π1,Π2,Π3) of Π as coordinates in three dimensional space, the Euler
equations are evolution equations for a point in this space. A constant of motion for the system
is given by the square length of the total angular momentum vector: ‖Π‖2 = Π2

1 + Π2
1 + Π2

1. This
follows from conservation of π and the fact that ‖π‖ = ‖Π‖ or can be verified directly from the Euler
equations by computing the time derivative of ‖Π‖2.

Because of conservation of ‖Π‖, the evolution in time of any initial point Π(0) is constrained
to the sphere ‖Π‖2 = ‖Π(0)‖2 = constant. Thus we may view the Euler equations as describing a
two dimensional dynamical system on an invariant sphere. This sphere is called the reduced phase
space for the rigid body equations. Another constant of the motion is the Hamiltonian or energy:
H = 1

2 〈Π, I−1Π〉. Since solutions curves are confined to the sets where H is constant, which are
in general ellipsoids, as well as to the invariant spheres ‖Π‖ = constant, the intersection of these
surfaces are precisely the trajectories of the rigid body, as shown in Figure 3.2.

Let us briefly indicate how geometric phases come into the rigid body example. Suppose we are
given a trajectory Π(t) on Pµ that has period T and energy E. After time T the rigid body has
rotated in physical 3-space about the axis µ by an angle given by

∆θ = −Λ +
2ET

‖µ‖ + 2kπ.

Here Λ is the solid angle enclosed by the curve Π(t) on the sphere and is oriented according to the
right hand rule and k is an integer (reflecting the fact that we are really only interested in angles
up to multiples of 2π).

An interesting feature of this formula is the fact that ∆θ splits into two parts. The term Λ is
the purely geometric quantity, the geometric phase. It does not depend on the energy of the system
or the period of motion, but rather on the fraction of the surface area of the sphere that is enclosed
by the trajectory. The second term, the dynamic phase, depends on the system’s energy and the
period of the trajectory.

Geometrically we can picture the rigid body as tracing out a path in its phase space; that is the
space of rotations (playing the role of positions) and corresponding momenta with the constraint
of a fixed value of the spatial angular momentum. The phase space plays the role of the bundle,
and the projection map to the base, the momentum sphere, is the map we described earlier that
takes the orientation A and its velocity (or momentum) to the body momentum sphere. As Figure
3.2 shows, almost every trajectory on the momentum sphere is periodic, but this does not imply
that the original curve of rotations was periodic, as is shown in Figure 3.3. The difference between
the true trajectory and a periodic trajectory is given by the geometric plus the dynamic phase.
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Π2

Π3

Π1

Figure 3.2: The solutions of Euler’s equations for rigid body motion.

Although this figure is given in the context of rigid body dynamics, its essential features are true
for any mechanical system with symmetry.

This formula for the rigid body phase has a long and interesting history. It was known in
classical books, such as that of Whittaker, in terms of quotients of theta functions, but not in terms
of areas, as above. This aspect was discovered in the 1950’s independently in work of Ishlinskii and
of Goodman and Robinson. Montgomery [1991] and Marsden, Montgomery and Ratiu [1990] that
showed, following the lead of Berry and Hannay, that the formula can be interpreted in terms of
holonomy of a connection. Further historical details may be found in Marsden and Ratiu [1994].

It is possible to observe some aspects of the geometric phase formula for a rigid body with a
simple experiment. Put a rubber band around a book so that the cover will not open. (A tall thin
book works best.) With the front cover pointing up, gently toss the book in the air so that it rotates
about its middle axis. Catch the book after a single rotation and you will find that it has also
rotated by 180◦ about its long axis; that is, the front cover is now facing the floor.

In addition to its use in understanding phases, the mechanical connection has been helpful in
stability theory. For example, when a rigid body such as a satellite tumbles about its long or short
axis, it does so stably, but it is unstable when it rotates about the middle axis. When one takes
into account small dissipative effects such as a vibrating antenna, then the rotational motion about
the long axis becomes unstable as well, but this effect is more delicate. Corresponding statements
for systems like rigid bodies with flexible appendages, or interconnected rigid bodies is more subtle
than the dynamics of a single rigid body. There is a powerful method for determining the stability
of such solutions called the energy momentum method. This method is an outgrowth of basic work
of Riemann, Poincaré and others in the last century and more recently by Arnold; further recent
developments were made by Simo, Lewis and Marsden [1991] and Bloch, Krishnaprasad, Marsden
and Ratiu [1994, 1996] and references therein. Here the main problem is to split the variables
properly into those that correspond to internal, or shape changes, and to those that correspond to
rotational and translational motions. Interestingly, the mechanical connection plays a key role in
the solution of this problem and it makes many otherwise intractable problems soluble.

This gauge theory of mechanics has been successful for a number of important problems, such
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reduced trajectory
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solid angle Λ

angular mometum sphere

Figure 3.3: The geometric phase formula for rigid body motion.

as the falling cat problem, as we shall discuss below. Nevertheless, there is another important class
of problems that it does not apply to as stated, namely mechanical systems with rolling constraints,
typified by the constraint that a wheel or ball rolls without slipping on a plane. One very simple idea
ties this type of problem to the zero angular momentum constraint problem that was just described.
This idea is that of realizing the constraint as the horizontal space of a connection. In fact, the
constraint itself defines a connection by declaring the constraint space to be the horizontal space.
This, in effect, defines the connection. In the case of rolling constraints, we call this connection
the kinematic connection to avoid confusion with the mechanical connection described earlier. This
point of view for systems with rolling (and rolling type) constraints was developed by Koiller [1992]
and by Bloch, Krishnaprasad, Marsden and Murray [1996]. For example, the equations of motion
expressed on the base space again involve the curvature of the kinematic connection. This shows
again that the links with geometry are strong at a very basic level.

Things get even more interesting when the system has both rolling constraints and symmetry.
Then we have the kinematic connection as well as the symmetry group to deal with, but now they are
interlinked. One of the things that makes systems with rolling constraints with symmetry different
from free systems is that the law of conservation of angular momentum is no longer valid for them.
This is already well illustrated by a famous toy called the rattleback, a canoe shaped piece of wood
or plastic. This toy has the feature that when it rocks on a flat surface like at table, the rocking
motion induces a rotational motion, so that it can go from zero to nonzero angular momentum
about the vertical axis as a result of the interaction of the rocking and rotational motion and the
rolling constraint with the table. One can say that it is the forces of constraint that enforce the
condition of rolling can upset the balance of angular momentum. This is also the case for the
snakeboard discussed below, but nonetheless, this turns out to be a key point in understanding
locomotion generation for this system. One of the interesting aspects of this is that, as shown
by Bloch, Krishnaprasad, Marsden and Murray [1994], there is a very nice equation satisfied by a
particular combination of the linear and angular momentum that they call the momentum equation.
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Because of that success, one can imagine that this understanding will be important for many other
similar systems as well.

4 Stabilization and Optimal Control

Control theory is closely tied to dynamical systems theory in the following way. Dynamical systems
theory deals with the time evolution of systems by writing the state of the system, say z in a general
space P and writing an evolution equation

d

dt
z = f(z, µ)

for the motion, where µ includes other parameters of the system (masses, lengths of pendula, etc).
The equations themselves include things like Newton’s second law, the Hodgkin-Huxley equations
for the propagation of nerve impulses, Maxwell’s equations for electrodynamics, etc. Many valuable
concepts have developed around this idea, such as stability, instability, chaotic solutions, etc.

Control theory adds to this the idea that in many instances, one can directly intervene in the
dynamics rather than passively watching it. For example, while Newtons equations govern the
dynamics of a satellite, we can intervene in these dynamics by controlling the onboard gyroscopes.
One simple way to describe this mathematically is by making f dependent on additional control
variables u that can be functions of t, z and µ. Now the equation becomes

d

dt
z = f(z, µ, u(t, z, µ))

and the objective, naively stated, is with an appropriate dependence of f on u to choose the function
u itself to achieve certain desired goals. In many circumstances control engineers are tempted to
overwhelm the intrinsic dynamics of a system with the control. However, in many circumstances
(fluid control is an example—see, for example, the discussion in Bloch and Marsden [1989]) one
needs to work with the intrinsic dynamics and make use of its structure.

Two of the basic notions in control theory involve steering and stabilizability. Steering has, as
its objective, the production of a control that has the effect of joining two points by means of a
solution. One imagines manipulating the control, much the way one imagines driving a car so that
the desired final state is achieved. Already this type of question has received much development
and many important and basic questions have been solved. For example, two of the main themes
that have developed are the Lie algebraic techniques based on brackets of vector fields (in driving
a car, you can repeatedly make two alternating steering motions to produce a motion in a third
direction) and the second based on the application of differential systems (a subject invented by Elie
Cartan in the mid 1920s whose power is only now being significantly tapped in control theory). The
work of Tilbury, Murray and Sastry [1993] and Walsh and Bushnell [1993] typify some of the recent
applications of these ideas.

The problem of stabilizability has also received much attention. Here the goal is to take a
dynamic motion that might be unstable if left to itself, but which can be made stable through
intervention. A famous example is the F-15 fighter that can fly in an unstable (forward wing swept)
mode, but which, through delicate control is stabilized. Flying in this mode has the advantage that
one can execute tight turns with rather little effort—just appropriately remove the controls! The
situation is really not much different from what people do everyday when they ride a bicycle. One
of the interesting things is that the subjects that have come before, namely the use of connections
in stability theory can be turned around to be used to find useful stabilizing controls, for example,
how to control the onboard gyroscopes in a spacecraft to stabilize the otherwise unstable motion
about the middle axis of a rigid body; see Bloch, Krishnaprasad, Marsden and Sanchez [1992] and
Kammer and Gray [1993].
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Another issue of importance in control theory is that of optimal control. Here one has a cost
function (literally think of how much you have to pay to have a motion occur in a certain way).
The question is not just if one can achieve a given motion but how to achieve it with the least
cost. There are many well developed tools to attack this question, the best known of these being
what is called the Pontryagin Maximum Principle. In the context of problems like the falling cat,
there a remarkable consequence of the Maximum Principle, namely that relative to an appropriate
cost function, the optimal trajectory in the base space is a trajectory of a Yang-Mills particle.
The equations for a Yang-Mills particle are a generalization of the classical Lorentz equations for a
particle with charge e in a magnetic field B:

d

dt
v =

e

c
v × B

where v is the velocity of the particle and where c is the velocity of light. The mechanical connection
comes into play though the general formula for the curvature of a connection; this formula is a
generalization of the formula B = ∇× A expressing the magnetic field as the curl of the magnetic
potential. This remarkable link between optimal control and the motion of a Yang-Mills particle is
due to Montgomery [1990, 1991a].

One would like to make use of results like this for systems with rolling constraints as well. For
example, one can (probably naively, but hopefully constructively) ask what is the precise connection
between the techniques of steering by sinusoids mentioned earlier and the fact that a particle in
a constant magnetic field also moves by sinusoids, that is, moves in circles. Of course if one can
understand this, it immediately suggests generalizations by using Montgomery’s work. This is just
one of many interesting theoretical things that requires more investigation. One of the positive
things that has already been achieved by these ideas is the beginning of a deeper understanding
of the links between mechanical systems with angular momentum type constraints and those with
rolling constraints. The use of connections has been one of the valuable tools in this endeavor. One
of the papers that has been developing this point of view is that of Bloch, Krishnaprasad, Marsden
and Murray [1994]. We shall see some further glimpses into that point of view in the next section.

5 The Snakeboard

The snakeboard is an interesting example that illustrates several of the ideas we have been discussing
(see Lewis, Murray, Ostrowski and Burdick [1993]). This device is a modification of the standard
skateboard, the most important of which is that riders can use their feet to independently turn the
front and back wheels—in the standard skateboard, these wheels are of course fixed to the frame
of the skateboard. In addition, one can manipulate ones body using a swivelling motion and this
motion is coupled to the motion of the snakeboard itself. We show the skateboard schematically in
Figure 5.1.

One of the fascinating things about the snakeboard is that one can generate locomotion without
pedaling, solely by means of internal motions. When the user’s feet and body are moved in the right
way, rotational and translational motion of the device can be generated. The snakeboard is simple
enough so that one can analyze many parts of it analytically and so that numerical simulations of
its motion are reasonably economical to implement. On the other hand, it seems to have all of
the essential features that one would want for more complex systems, the main one for the present
goals being its ability to generate rotational and translational motion. From the mathematical
and mechanical point of view, it is also rich in geometry and symmetry structure that also makes
it attractive. Thus, it provides a good testing and development ground for both theoretical and
numerical investigations.

From the theoretical point of view, one feature of the snakeboard that sets it truly apart from
examples like the planar skater and the falling cat is that even though it has the symmetry group of
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Figure 5.1: The snakeboard has three movable internal parts, the front and back wheels and the
angle of the riders body.

rotations and translations of the plane, the linear and angular momentum is not conserved. Recall
that for the planar skater, no matter what motions the arms of the device make, the values of the
linear and angular momentum cannot be altered. This is not true for the snakeboard and this can
be traced to the presence of the forces of constraint, just as in the rattleback mentioned earlier.
Thus, one might suspect that one should abandon the ideas of linear and angular momentum for
the snakeboard. However, a deeper inspection shows that this is not the case. In fact, one finds that
there is a special component of the angular momentum, namely that about the point P shown in
Figure 5.2.

P

Figure 5.2: The angular momentum about the point P plays an important role in the analysis of
the snakeboard.

If we call this component p, one finds that due to the translational and rotational invariance of
the whole system, there is a “momentum equation” for p of the form

d

dt
p = f(x, ẋ, p),

where x represents the internal variables of the system (the three angles shown in the preceding
figure). The point is that this equation does not depend on the rotational and translational position
of the system. Thus, if one has a given internal motion, this equation can be solved for p and from
it, the attitude and position of the snakeboard calculated by means of another integration. This
strategy is thus parallel to that for the falling cat and the planar skater.

With this set up, one is now in a good position to identify the resulting geometric phase with the
holonomy of a connection that is a synthesis of the kinematic and mechanical connection. Carrying
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this out and implementing these ideas for more complex systems is in fact the subject of current
research.
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