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Abstract

This paper studies variational principles for mechanical systems
with symmetry and their applications to integration algorithms. We
recall some general features of how to reduce variational principles
in the presence of a symmetry group along with general features of
integration algorithms for mechanical systems. Then we describe some
integration algorithms based directly on variational principles using a
discretization technique of Veselov.

The general idea for these variational integrators is to directly dis-
cretize Hamilton’s principle rather than the equations of motion in a
way that preserves the original systems invariants, notably the sym-
plectic form and, via a discrete version of Noether’s theorem, the mo-
mentum map. The resulting mechanical integrators are second-order
accurate, implicit, symplectic-momentum algorithms. We apply these
integrators to the rigid body and the double spherical pendulum to
show that the techniques are competitive with existing integrators.
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1 Introduction

This paper begins with a brief survey of some aspects of variational princi-
ples for mechanical systems with symmetry as well as integration algorithms
for mechanical systems. Our main goal is to present a systematic construc-
tion of mechanical integrators for simulating finite dimensional mechanical
systems with symmetry based on a discretization of Hamilton’s principle.
We strive for a method that is theoretically attractive as well as numer-
ically competitive. Our algorithms are second order accurate symplectic-
momentum integrators valid for general and constrained systems. We do
not claim the methods are superior in specific problems for which custom
methods are available.1 However, for many mechanical systems, it provides
a good systematic, general purpose, starting point.

Reduced Variational Principles. Symmetry plays a special role in vari-
ational principles. Not only does it lead to conservation laws of Noether,
but the reduced variational principle for the Euler-Poincaré equations on
a general Lie algebra induced by Hamilton’s principle on the correspond-
ing Lie group was only recently found (Marsden and Scheurle [1993b] and
Bloch, Krishnaprasad, Marsden and Ratiu [1996]). In fluid mechanics, such
variational principles were associated with “Lin constraints”, but even here
it was only with work such as Seliger and Whitham [1968] and Brether-
ton [1970] that the situation was clarified. More generally, one can study
the role of reduction in the Euler-Lagrange equations and this leads to the
reduced Euler-Lagrange equations (Marsden and Scheurle [1993a,b]), which
have played an important role in nonholonomic mechanics.2 These general
notions are theoretically closely related to and helped motivate the develop-
ment of the variational integrators discussed here.

Mechanical Integrators. Numerical integration methods that preserve
energy, momentum, or the symplectic form, are called mechanical integra-
tors. A result of Ge and Marsden [1988] states, roughly speaking, that if the
energy and momentum map include all the integrals of motion, then one can-
not create integrators that are symplectic, energy preserving, and momen-
tum preserving unless they coincidentally integrate the equations exactly up
to a time parametrization (see §4.1 for the exact statement). Accordingly,
the class of mechanical integrators divides into symplectic-momentum and
energy-momentum integrators. By exploiting the structure of mechanical

1As, for example, in symplectic integrators for the solar system; see, for example,
Wisdom and Holman [1991].

2See, for example, Bloch, Krishnaprasad, Marsden and Murray [1996] and Koon and
Marsden [1996].
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systems, one can hope to create mechanical integrators that are not only
theoretically attractive, but are more computationally efficient and have
good long term simulation properties. The situation for mechanical inte-
grators is a complex and evolving one; we refer to Marsden, Patrick and
Shadwick [1996] for a recent collection of papers in the area.

Variational Integrators. We present a method to construct symplectic-
momentum integrators for Lagrangian systems defined on a linear space
with holonomic constraints. The constraint manifold, Q, is assumed to be
embedded in a linear space V . A discrete version of the Lagrangian is formed
and a discrete variational principle is applied to the discrete Lagrangian. The
resulting discrete equations define a generally implicit numerical integration
algorithm on Q × Q that approximates the flow of the continuous Euler-
Lagrange equations on TQ. The algorithm equations are called the discrete
Euler-Lagrange (DEL) equations or a variational integrator (VI).

The DEL equations have similarities to the continuous Euler-Lagrange
equations. They preserve a symplectic form and a discrete momentum map
derived using a discrete Noether theorem associated with a symmetry. The
value of the discrete momentum approaches the value of the continuous mo-
mentum as the step size decreases. The method need not preserve energy,
but the numerical examples suggest that the energy oscillates about a con-
stant value in many cases. The energy variations decrease and the constant
value approaches the continuous energy as the step size decreases.

We treat holonomic constraints through constraint functions on the con-
taining linear space. The constraints are satisfied at each time step through
the use of Lagrange multipliers.

Dissipation is of course very important for practical simulations of me-
chanical systems. Our philosophy, consistent with, e.g., Armero and Simo
[1996], Chorin, Hughes, Marsden and McCracken [1978], is that of under-
standing well the ideal model first, and then one can use a time-splitting
(product formula) method to interleave it with ones favorite dissipative
method.

The Examples. We apply our method using a quaternionic representation
of the rigid body with the linear space, V = R4, and the constraint manifold,
Q = S3 ⊂ V regarded as a double covering of the proper rotation group. The
second example is the double spherical pendulum. Here, the linear space is,
V = R3×R3, and the constraint manifold, Q ⊂ V , is S2×S2. This example
is motivated by our work on pattern evocation (Marsden and Scheurle [1995]
and Marsden, Scheurle and Wendlandt [1996].

For these examples, the momentum, energy, accuracy, and efficiency is
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examined as well as the comparison with an energy-momentum integrator.

Some Literature. If one naively discretizes Hamilton’s principle (as is
sometimes done) one cannot expect to get an algorithm with good conser-
vation properties. Our approach to the discrete variational principle is based
on Veselov [1988], Veselov [1991] and Moser and Veselov [1991]. It is shown
in Veselov [1988] that the DEL equations preserve a symplectic form. The
same discrete mechanics procedure is derived in an abstract form in Baez
and Gilliam [1995] using an algebraic approach, and they also establish a
discrete Noether’s theorem for infinitesimal symmetry.

Many versions of discrete mechanics have been proposed, sometimes
with the motivation of constructing integrators. Maeda [1981] presents a
version of discrete mechanics based on the concept of a difference space.
The author shows how to derive the discrete equations from a discrete ver-
sion of Hamilton’s variational principle, the same discretization later used
in Veselov [1988]. Maeda [1981] also presents a version of Noether’s theo-
rem. A different approach to discrete mechanics for point mass systems, but
not derived from a variational principle is given in Labudde and Greenspan
[1974, 1976a,b]; the corresponding algorithms preserve energy and momen-
tum. A discussion of discretizing variational principles is given in MacKay
[1992] and also in Lewis and Kostelec [1996]. It is our opinion that the
approach in Veselov [1988] we adopt in this paper is the theoretically most
appealing method and, in addition, is numerically competitive.

Some authors discretize the principle of least action instead of Hamilton’s
principle. Algorithms that conserve the Hamiltonian are derived in Itoh and
Abe [1988] based on difference quotients. Differentiation is not used and the
action is extremized using variational difference quotients. This develop-
ment presents multistep methods with variable time steps. The least action
principle is discretized in a different way in Shibberu [1994]. The resulting
equations explicitly enforce energy, and the equations preserve quadratic
invariants.

Various energy-momentum integrators have been developed by Simo and
his co-workers; for example, Simo and Tarnow [1992] and related references
cited in the bibliography. Energy-momentum integrators were derived based
on discrete directional derivatives and discrete versions of Hamiltonian me-
chanics in Gonzalez [1996a]. Additional references on energy-momentum
methods are given in Gonzalez [1996a,b]. Symplectic, momentum and en-
ergy conserving schemes for the rigid body are presented in Lewis and Simo
[1995].

The literature on symplectic schemes for Hamiltonian systems is vast.
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The overviews of symplectic integrators in Channell and Scovel [1990], Sanz-
Serna [1991] and McLachlan and Scovel [1996] provide background and ref-
erences. References related to the work in this paper are Reich [1993], Reich
[1994], McLachlan and Scovel [1995], and Jay [1996]. Reich [1993] gives an
integration method for Hamiltonian systems that enforces position and ve-
locity constraints in a way making the method symplectic. It is shown in
McLachlan and Scovel [1995] and in Reich [1994] that the algorithm also
conserves momentum corresponding to a linear symmetry group when the
constraint manifold is embedded in a linear space. For another treatment of
algorithms formed by embedding the constraint manifold in a linear space,
see Barth and Leimkuhler [1996a]. Leimkuhler and Patrick [1996] develop
an intrinsic treatement of symplectic-momentum integrators on Riemannian
manifolds using generating functions.

The algorithm presented in the present paper embeds the constraint
manifold in a linear space but only enforces position constraints. We feel
that the enforcement of velocity constraints in the context of our method is
best done in the context of nonholonomic mechanics as developed by Bloch,
Krishnaprasad, Marsden and Murray [1996].

The Verlet [1967] algorithm is common in molecular dynamics simu-
lations; see, for example, Leimkuhler and Skeel [1994]. An extension to
handle holonomic constraints is the SHAKE algorithm (Ryckaert, Ciccotti
and Berendsen [1977]). SHAKE was extended to handle velocity constraints
with RATTLE in Anderson [1983]. For a presentation of the symplectic na-
ture of the Verlet, SHAKE, and RATTLE algorithms, see Leimkuhler and
Skeel [1994]. The construction developed in the present paper, when applied
to a Lagrangian with a constant mass matrix and a potential energy term,
produces a method similar to the SHAKE algorithm written in terms of
position coordinates, but the potential force terms differ. If one applies our
construction using the discrete Lagrangian definition in Equation (51), then
one reproduces the SHAKE algorithm. One recovers the Verlet algorithm if
the Lagrangian system has no constraints. This result, due to Gillilan and
Wilson [1992], is based on a discrete variational principle similar to that
of Veselov [1988]. Gillilan and Wilson [1992] emphasize calculating a path
given end point conditions, whereas our approach emphasizes the dynam-
ics. Our procedure can also handle more general Lagrangians, such as the
Lagrangian for the rigid body in terms of quaternions.

Accuracy and Energy as a Monitor. Our construction method pro-
duces 2-step methods that have a second order local truncation error. The
position error in the numerical examples show second order convergence.

5



One should be able to use the methods in Yoshida [1990] to increase the or-
der of accuracy. In the simulations, we use energy as a monitor to catch any
obvious problems, as in Channell and Scovel [1990] and Simo and Gonzalez
[1993]. It is still unknown if this is a generally reliable indicator of accu-
racy, but based on the Ge-Marsden result mentioned before, it may well
be. Another indication is the analysis with energy oscillation and nearby
Hamiltonian systems in Sanz-Serna [1991, p.277–278], Sanz-Serna and Calvo
[1994, p. 139–140] and Sanz-Serna [1996]. We must caution, however, that
energy conservation alone does not imply good performance as is shown in
Ortiz [1986]. In our examples, we observe energy oscillations around a con-
stant value, which, because the symplectic form and other integrals are also
exactly conserved, we take as a good indication.

When comparing energy-momentum and symplectic-momentum meth-
ods, it should be kept in mind that energy-momentum methods should be
monitored using how well they conserve the symplectic form. This is of
course not so straightforward as monitoring using the energy, since the sym-
plectic condition involves computing the derivative of the flow map (e.g.,
using a cloud of initial conditions). While the present paper does not di-
rectly address these questions, it is important to keep them in mind.

2 Variational Principles and Symmetry

Hamilton’s principle states that one obtains the Euler-Lagrange equations
from extremizing the integral of the Lagrangian subject to fixed endpoint
conditions: δ

∫ b
a L(q, q̇) dt = 0. In this principle one takes variations of a

given trajectory q(t) in a configuration manifold Q subject to fixed tempo-
ral endpoint conditions. See the standard texts3 for a discussion. We take it
for granted that the reader is familiar with Hamilton’s principle and under-
stands the Legendre transform and how it is used to pass to the Hamiltonian
side and its symplectic formulation as well as the notions of momentum map
and symmetry reduction.

Noether’s Theorem. It is of course well known how to obtain the con-
servation laws of Noether directly from Hamilton’s principle but it will be
useful for later purposes to review this. Consider a Lie group G acting on
a configuration manifold Q and lift this action to the tangent bundle TQ
using the tangent operation. Given a G-invariant Lagrangian L : TQ → R,

3Such as Abraham and Marsden [1978], Arnold [1989] and Marsden and Ratiu [1994].
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the corresponding momentum map is the mapping J : TQ→ g
∗ defined by

〈J(vq), ξ〉 = 〈FL(vq), ξQ(q)〉 (1)

where FL : TQ→ T ∗Q is the fiber derivative, and ξQ denotes the infinitesi-
mal generator associated with a Lie algebra element ξ ∈ g. In coordinates,
this reads

Ja =
∂L

∂q̇i
Ki

a, (2)

where we define the action coefficients Ki
a relative to a basis ea of g, a =

1, . . . , k, by writing ξQ(q) = Ki
aξ

a∂/∂qi with ξ = ξaea, and a sum on the
index a is understood.

Theorem 2.1 (Classical Noether Theorem) For a solution of the Eu-
ler-Lagrange equations, the quantity J is a constant in time.

We remark in passing that this result holds even if the Lagrangian is
degenerate, that is, the fiber derivative defined by pi = ∂L/∂q̇i is not in-
vertible.

Noether’s theorem is proven directly from Hamilton’s principle by choos-
ing a function φ(t, s) of two variables such that the conditions φ(a, s) =
φ(b, s) = φ(t, 0) = 0 hold, where a and b are the temporal endpoints of
the given solution to the Euler-Lagrange equations. We consider the vari-
ation q(t, s) = exp(φ(t, s)ξ) · q(t) in Hamilton’s principle. Subtracting the
result from the corresponding statement of infinitesimal invariance gives the
result.4

The Rigid Body and Reduced Variational Principles. A more sub-
tle role is to understand how to reduce variational principles and how one
can form symmetric discretizations of the original system based on the vari-
ational principle. To understand these issues it should be helpful to first
outline some features for the special case of the rigid body. This is an ex-
ample we will be returning to for a numerical example later on (but from a
quaternionic, or Cayley-Klein point of view).

We regard an element R ∈ SO(3) giving the configuration of the body
as a map of a reference configuration B ⊂ R3 to the current configuration
R(B) taking a reference or label point X ∈ B to a current point x = R(X) ∈
R(B). For a rigid body in motion, the matrix R is time dependent and

4See Bloch, Krishnaprasad, Marsden and Murray [1996] for the details of this classical
proof in modern language.
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the velocity of a point of the body is ẋ = ṘX = ṘR−1x. Since R is an
orthogonal matrix, R−1Ṙ and ṘR−1 are skew matrices, and so we can write

ẋ = ṘR−1x = ω × x, (3)

which defines the spatial angular velocity vector ω. The corresponding body

angular velocity is defined by

Ω = R−1ω, i.e., R−1Ṙv = Ω × v (4)

so that Ω is the angular velocity relative to a body fixed frame. The kinetic
energy is

K =
1

2

∫

B

ρ(X)‖ṘX‖2d3X, (5)

where ρ is a given mass density. Since

‖ṘX‖ = ‖ω × x‖ = ‖R−1(ω × x)‖ = ‖Ω ×X‖,

K is a quadratic function of Ω. Writing K = ΩT IΩ/2 defines the moment

of inertia tensor I, which, if the body does not degenerate to a line, is a
positive definite 3×3 matrix thought of as a quadratic form. This quadratic
form, can be diagonalized, and this defines the principal axes and moments

of inertia . In this basis, we write I = diag(I1, I2, I3).
The well known relation between the motion in R space and in Ω space

is as follows:

Theorem 2.2 The curve R(t) ∈ SO(3) satisfies Hamilton’s principle, i.e.,
the Euler-Lagrange equations for

L(R, Ṙ) =
1

2

∫

B

ρ(X)‖ṘX‖2d3X (6)

if and only if Ω(t) defined by R−1Ṙv = Ω× v for all v ∈ R3 satisfies Euler’s
equations: IΩ̇ = IΩ × Ω.

To understand how to use variational principles to prove this (of course
there are many other ways as well), recall that by Hamilton’s principle,
R(t) satisfies the Euler-Lagrange equations if and only if δ

∫
Ldt = 0, where

variations are taken within the group SO(3) with fixed endpoints. Let the
reduced Lagrangian be defined by l(Ω) = (IΩ)·Ω/2 so that l(Ω) = L(R, Ṙ) if
R and Ω are related by (4). To see how we should transform the variational
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principle of L, we differentiate the relation R−1Ṙv = Ω × v with respect to
R to get

−R−1δRR−1Ṙv +R−1δṘv = δΩ × v. (7)

Let the skew matrix Σ̂ be defined by Σ̂ = R−1δR and define the vector Σ
by Σ̂v = Σ × v. Note that

˙̂
Σ = −R−1ṘR−1δR+R−1δṘ or R−1δṘ =

˙̂
Σ +R−1ṘΣ̂.

Substitution gives

−Σ̂Ω̂v +
˙̂
Σv + Ω̂Σ̂v = δ̂Ωv or δ̂Ω =

˙̂
Σ + [Ω̂, Σ̂].

The identity [Ω̂, Σ̂] = (Ω×Σ)̂ holds by Jacobi’s identity for the cross product,
and so

δΩ = Σ̇ + Ω × Σ. (8)

These calculations prove the following

Theorem 2.3 Hamilton’s principle δ
∫ b
a Ldt = 0 on SO(3) is equivalent to

the reduced variational principle δ
∫ b
a l dt = 0 on R3 where the variations

δΩ are of the form (8) with Σ(a) = Σ(b) = 0.

To complete the proof of Theorem 2.2, it suffices to work out the equa-
tions equivalent to the reduced variational principle. This is easily done as
in the calculus of variations and one indeed gets the Euler equations.

The body angular momentum is defined in the usual way, by Π = IΩ
so that in a principal axis frame,

Π = (Π1,Π2,Π3) = (I1Ω1, I2Ω2, I3Ω3).

Assuming that no external moments act on the body, the spatial angular
momentum vector π = RΠ is conserved in time. This follows by general
considerations of symmetry, but it can, of course, be checked directly from
Euler’s equations by computing dπ/dt.

The Euler-Poincaré Equations and Variational Principles. There
is a generalization of Theorem 2.2 to general Lie groups using the Euler-
Lagrange equations and the variational principle as a starting point. (For
a discussion with the links with the Lie-Poisson equations, see for example,
Marsden and Ratiu [1994]; also see this reference and Bloch, Krishnaprasad,
Marsden and Ratiu [1996] for the proof.)
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Theorem 2.4 Let G be a Lie group and L : TG → R a left invariant
Lagrangian. Let l : g → R be its restriction to the identity. For a curve
g(t) ∈ G, let ξ(t) = g(t)−1 · ġ(t); i.e., ξ(t) = Tg(t)Lg(t)−1 ġ(t). Then the
following are equivalent
i g(t) satisfies the Euler-Lagrange equations for L on G
ii Hamilton’s principle holds, for variations with fixed endpoints
iii the Euler-Poincaré equations hold:

d

dt

δl

δξ
= ad∗

ξ

δl

δξ
(9)

iv the variational principle δ
∫
l(ξ(t))dt = 0 holds on g, using variations of

the form δξ = η̇ + [ξ, η] where η vanishes at the endpoints.

In coordinates on the Lie algebra, the Euler-Poincaré equations read as
follows

d

dt

∂l

∂ξd
= Cb

ad

∂l

∂ξb
ξa, (10)

where Cb
ad are the structure constants of the Lie algebra.

3 The Reduced Euler-Lagrange Equations

The discussion in the preceding section was generalized to arbitrary con-
figuration spaces and symmetry groups in Marsden and Scheurle [1993b].
As we mentioned in the introduction, this theory has played an important
role in nonholonomic systems and in questions of optimal control (see Bloch,
Krishnaprasad, Marsden and Murray [1996] and Koon and Marsden [1996]).

We start with a configuration manifold Q and a Lagrangian L : TQ→ R.
Let G be a Lie group and let g be its Lie algebra. Assume that G acts on
Q and lift this action to TQ by the tangent operation. Assuming that L is
G invariant, there is induced a reduced Lagrangian l : TQ/G→ R. We can
regard TQ/G as a g bundle over TS, where S = Q/G. We assume that G
acts freely and properly on Q, so we can regard Q → Q/G as a principal
G-bundle.5

An important ingredient is the introduction of a connection A on the
principal bundle Q → S = Q/G. The particular case of the mechanical
connection (see Marsden [1992] for a discussion) is often made. A connection
allows one to split the variables into a horizontal and vertical part.

5Additional work is needed to relax this assumption, as the singular case is very im-
portant in examples. However, we shall not discuss this here.

10



The Hamel Equations. Next, we introduce some notation so that we
can write the reduced Euler-Lagrange equations in coordinates. Let xα,
also called “internal variables”, be coordinates for shape space Q/G, ξa be
coordinates for the Lie algebra g relative to a chosen basis, so that as before,
ξ = g−1ġ, l be the reduced Lagrangian regarded as a function of the variables
xα, ẋα, ξa, and, as before, Ca

db be the structure constants of the Lie algebra
g of G.

If one writes the Euler-Lagrange equations on TQ in a local principal
bundle trivialization, with coordinates xα on the base and ξa in the fiber,
then one gets the Hamel equations which are the Euler-Lagrange equations
for the variables xα and the Euler-Poincaré equations for the variables ξa.
The Hamel equations do not make global intrinsic sense as a pair of equa-
tions, unless Q → S admits a global flat connection. With a connection,
one can intrinsically and globally split the original variational principle rel-
ative to horizontal and vertical variations. In addition, there are also good
mechanical reasons, related to the study of stability (see Simo, Lewis and
Marsden [1991]) for introducing connections.

The Reduced Euler-Lagrange Equations. One gets from the Hamel
equations to the equations written in terms of a connection by means of the
velocity shift given by replacing ξ by the vertical part of (ẋ, g, ġ) relative to
the connection:

Ωa = Aa
αẋ

α + ξa i.e., Ω = Aẋ+ g−1ġ.

Here, Ad
α are the local coordinates of the connection A. This change of

coordinates is also motivated from the mechanical point of view since the
variables Ω have the interpretation of the locked angular velocity ; they are
related to the momentum by means of the locked inertia tensor. One can
also read the preceding equation in reverse as a reconstruction equation to
reconstruct g(t) in terms of ẋ and Ω.

Carrying out the above velocity shift gives the following reduced Euler-

Lagrange equations:

d

dt

∂l

∂ẋα
−

∂l

∂xα
=

∂l

∂Ωa

(
−Ba

αβ ẋ
β + Ea

αdΩ
d
)

(11)

d

dt

∂l

∂Ωb
=

∂l

∂Ωa
(−Ea

αbẋ
α + Ca

dbΩ
d). (12)

In these equations, Ba
αβ are the coordinates of the curvature B of A, (here

we follow the curvature conventions of Bloch, Krishnaprasad, Marsden and

11



Murray [1996] who generalized these equations to the nonholonomic case)
and Ea

αd = Ca
bdA

b
α.

The variables Ωa may be regarded as the rigid part of the variables on
the original configuration space, while xα are the internal variables. As in
Simo, Lewis, and Marsden [1991], the division of variables into internal and
rigid parts has deep implications for both stability theory and for bifurca-
tion theory, continuing lines developed originally by Riemann, Poincaré and
others.

One of the key results in Hamiltonian reduction theory says that the
reduction of a cotangent bundle T ∗Q by a symmetry group G is a bundle
over T ∗S, where S = Q/G is shape space, and where the fiber is either g

∗,
the dual of the Lie algebra of G, or is a coadjoint orbit, depending on whether
one is doing Poisson or symplectic reduction. (See Montgomery, Marsden,
and Ratiu [1984] and Marsden [1992] for details and references). The above
reduced Euler-Lagrange equations gives the analogue of this structure on
the tangent bundle. These two sets of equations are coupled through the
curvature of a connection on the bundle and the fact that the Lagrangian
is, in general, a function of all the variables. Normally one chooses the
connection to be the mechanical connection, although any choice is allowed.

The Splitting of Hamilton’s Principle. The relation with reduced vari-
ational principles is as follows, which is consistent with the philosophy put
forward by Lagrange-d’Alembert for nonholonomic systems.

Theorem 3.1 The reduced Euler-Lagrange equations (11) are equivalent to
Hamilton’s principle for the original Lagrangian, where the variations are
restricted to be horizontal relative to the given connection. Likewise, the
equations (12) together with the reconstruction equations are equivalent to
Hamilton’s principle where the variations are constrained to be vertical.

In other words, breaking apart Hamilton’s principle into variations that
are horizontal and those that are vertical leads to the important structure
of the reduced Euler-Lagrange equations.

The above is the analogue of what one in Hamiltonian reduction would
call Poisson reduction. In the symplectic context one normally constrains
the momentum map J to a specific value µ. There is a Lagrangian analogue
of this too, which was known to Routh for the case of abelian groups (cyclic
variables). A key ingredient to the construction of a reduced Lagrangian
system in this case is the modification of the Lagrangian L to the Routhian
Rµ, which is obtained from the Lagrangian by subtracting off the connection
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paired with the constraining value µ of the momentum map. We refer to
Marsden and Scheurle [1993a] for details.

4 Generalities on Integration Algorithms

We turn our attention now to some integration algorithms for Lagrangian
systems with symmetry, giving in this section a little background material
for what was discussed in the introduction and for what follows in the next
sections.

Mechanical Integrators. By an algorithm on a phase space P we mean
a collection of maps Fτ : P → P (depending smoothly, say, on τ ∈ R for
small τ and z ∈ P ). Sometimes we write zk+1 = Fτ (zk) for the algorithm
and we write ∆t or h for the step size τ . We say that the algorithm is
consistent or is first order accurate with a vector field X on P if

d

dτ
Fτ (z)

∣∣∣∣
τ=0

= X(z). (13)

Higher order accuracy is defined similarly by matching higher order deriva-
tives. One of the basic things one is interested in is convergence namely,
when is

lim
n→∞

(Ft/n)n(z) = ϕt(z) (14)

where ϕt is the flow of X, and what are the error estimates? There are some
general theorems guaranteeing this, with an important hypothesis being
stability ; i.e., (Ft/n)n(z) must remain close to z for small t and all n =
1, 2, . . .. We refer to Chorin, Hughes, Marsden and McCracken [1978] and
Abraham, Marsden and Ratiu [1988] for details. For example, the Lie-

Trotter formula

et(A+B) = lim
n→∞

(etA/netB/n)n (15)

for the time-splitting of linear problems and their nonlinear generalizations
are instances in which one has a great variety of convergence theorems.

For a Hamiltonian system on a symplectic manifold which has symmetry,
an algorithm Fτ is said to be
a symplectic-integrator if each Fτ is symplectic,
an energy-integrator if H ◦ Fτ = H (where X = XH),
a momentum-integrator if J ◦ Fτ = J.
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If Fτ has one or more of these properties, we call it a mechanical inte-

grator . Notice that if an integrator has one of these three properties, then
so does any iterate of it.

In this paper we shall be interested in the counterpart to these ideas on
the Lagrangian side.

There are many different ways that have been employed to find mechan-
ical integrators, as has been mentioned in the introduction. For example,
one can search amongst existing algorithms and find ones with special alge-
braic properties that make them symplectic or energy-preserving. Second,
one can attempt to design mechanical integrators from scratch.

Example 1. A first order explicit symplectic scheme in the plane is given
by the map (q0, p0) 7→ (q, p) defined by

q = q0 + (∆t)p0

p = p0 − (∆t)V ′(q0 + (∆t)p0). (16)

This map is a first order approximation to the flow of Hamilton’s equations
for the Hamiltonian H = (p2/2) + V (q). Here, one can verify by direct
calculation that this scheme is a symplectic map.

Example 1 can, if one wishes, be based on the use of generating func-
tions, as we shall see below. A modification of Example 1 using Poincaré’s
generating function, but also one that can be checked directly is:

Example 2. An implicit symplectic scheme in the plane for the same
Hamiltonian as in Example 1 is

q = q0 + (∆t)(p+ p0)/2

p = p0 − (∆t)V ′((q + q0)/2). (17)

Other examples are sometimes based on special observations. The next
example shows that the second order accurate mid-point rule is symplectic
(Feng [1987]). This algorithm is also useful in developing almost Poisson
integrators (Austin and Krishnaprasad and Wang [1993]).

Example 3. In a symplectic vector space the mid point rule is symplectic:

zk+1 − zk

∆t
= XH

(
zk + zk+1

2

)
. (18)
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Notice that for small ∆t the map defined implicitly by this equation is
well defined by the implicit function theorem. One may show it is symplectic,
using the fact that the Cayley transform S = (1 − λA)−1 (1 + λA) of an
infinitesimally symplectic linear map A is symplectic if 1− λA is invertible
for some real λ.

Example 4. Here is an example of an implicit energy preserving algo-
rithm from Chorin, Hughes, Marsden and McCracken [1978]. Consider a
Hamiltonian system for q ∈ Rn and p ∈ Rn:

q̇ =
∂H

∂p
, ṗ = −

∂H

∂q
. (19)

Define the following implicit scheme

qn+1 = qn + ∆t
H(qn+1,pn+1) −H(qn+1,pn)

λT (pn+1 − pn)
λ, (20)

pn+1 = pn − ∆t
H(qn+1,pn) −H(qn,pn)

µT (qn+1 − qn)
µ, (21)

where

λ =
∂H

∂p
(αqn+1 + (1 − α)qn, βpn+1 + (1 − β)pn), (22)

µ =
∂H

∂q
(γqn+1 + (1 − γ)qn, δpn+1 + (1 − δ)pn), (23)

and where α, β, γ, δ are arbitrarily chosen constants in [0, 1].
To see that conservation of energy holds, note that from (20), we have

(qn+1 − qn)T (pn+1 − pn) = ∆t(H(qn+1,pn+1) −H(qn+1,pn)), (24)

and from (21)

(pn+1 − pn)T (qn+1 − qn) = −∆t(H(qn+1,pn) −H(qn,pn)). (25)

Subtracting (25) from (24), we obtain H(qn+1,pn+1) = H(qn,pn). This
algorithm is checked to be consistent. In general, however, it is not sym-
plectic — this is in accord with Theorem 4.1 below, that one does not
normally expect integrators for systems that are not integrable to be both
energy preserving and symplectic.

15



Example 5. Let us apply the Lie-Trotter or time splitting idea to the
simple pendulum. The equations are

d

dt

(
ϕ
p

)
=

(
p
0

)
+

(
0

− sinϕ

)
.

Each vector field can be integrated explicitly to give maps Gτ (ϕ, p) = (ϕ+
τp, p) and Hτ (ϕ, p) = (ϕ, p− τ sinϕ), each of which is symplectic. Thus, the
composition Fτ = Gτ ◦Hτ , namely,

Fτ (q, p) = (ϕ+ τp− τ2 sinϕ, p − τ sinϕ)

is a first order symplectic scheme for the simple pendulum. It is closely
related to the standard map. The orbits of Fτ need not preserve energy
and they may be chaotic, whereas the trajectories of the simple pendulum
are of course not chaotic.

We refer to the cited references for more examples of this type, including
symplectic Runge-Kutta schemes.

As we have indicated, a number of algorithms have been developed specif-
ically for integrating Hamiltonian systems to conserve the energy integral,
but without attempting to capture all of the details of the Hamiltonian struc-
ture. In fact, some of the standard energy-conservative algorithms have poor
momentum behavior over even moderate time ranges, which makes them
unsuitable for problems in satellite dynamics for example, where the exact
conservation of a momentum integral is essential.

One can get angular momentum drift in energy-conservative simulations
of, for example, rods that are free to vibrate and rotate. To control such
drifts and attain the high levels of computational accuracy demanded by
automated control mechanisms, one would be forced to reduce computa-
tional step sizes to such an extent that the numerical simulation would
be prohibitively inefficient. Similarly, if one attempts to use a standard
energy-conservative algorithm to simulate both the rotational and vibra-
tional modes of a freely moving flexible rod, the algorithm may predict that
the rotational motion will come to a virtual halt after only a few cycles!
For a documented simulation of a problem with momentum conservation,
see Simo and Wong [1989]. One can readily imagine that in the process
of enforcing energy conservation one could upset conservation of angular
momentum.

All the implicit members of the Newmark family, perhaps the most
widely used time-stepping algorithms in nonlinear structural dynamics, are
not designed to conserve energy and also fail to conserve momentum. Among
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the explicit members, only the central difference method preserves momen-
tum (see Simo, Tarnow and Wong [1991]).

A given algorithm is called group equivariant provided each Fh com-
mutes with the action of the given symmetry group. Since momentum inte-
grals in Hamiltonian systems are associated with invariance of the Hamilto-
nian of the given system under the symplectic action of symmetry groups,
one might guess that to derive momentum-conservative algorithms, one
should look for algorithms to be group equivariant. There are in fact some
general theorems to this effect, and as we shall see in our context of discrete
versions of Hamilton’s principle, this is exactly what happens.

Restrictions on Mechanical Integrators. Given the importance of
conserving integrals of motion and the important role played by the Hamil-
tonian structure in the reduction procedure for a system with symmetry, one
might hope to find an algorithm that combines all of the desirable properties:
conservation of energy, conservation of momenta (and other independent in-
tegrals), and conservation of the symplectic structure. However, one cannot
do all three of these things at once unless one relaxes one or more of the
conditions in a precise sense given by the next result.

Theorem 4.1 (Ge and Marsden, 1988) Suppose that a given algorithm
is energy preserving, symplectic and is momentum preserving. Consistent
with this, assume also that the algorithm is group equivariant. If the dy-
namics is nonintegrable on the reduced space (in the sense spelled out in
the proof ) then the algorithm already gives the exact solution of the original
dynamics problem up to a possible time reparametrization and a phase shift
given by the group action.

Proof. Suppose F∆t is the symplectic algorithm, and that it satisfies the
given hypotheses. Since it is group equivariant, it induces an algorithm on
the symplectic reduced phase space. We assume that the Hamiltonian H is
the only integral of motion of the reduced dynamics (i.e., all other integrals
of the system have been found and taken out in the reduction process in
the sense that any other conserved quantity (in a chosen smoothness class)
is functionally dependent on H. We now work with the reduced algorithm
without changing the notation.

Since F∆t is symplectic, it follows from general facts about Hamiltonian
systems that it is the ∆t-time map of some time-dependent Hamiltonian
function K. Now assume that the symplectic map F∆t also conserves H
for all (small) values of ∆t. It follows that {H,K} = 0 = {K,H}. The
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latter equation implies that K is functionally dependent on H (for each
fixed t) since the flow of H (the “true dynamics”) has no other integrals of
motion. The functional dependence of K on H in turn implies that their
Hamiltonian vector fields are parallel (this is an easy calculation using the
chain rule), so the flow of K (the approximate solution) and the flow of
H (the exact solution) must lie along identical curves in the reduced phases
space; in other words, the flows are equivalent up to time reparametrization.
Since this holds on the reduced space and the original algorithm preserves
the momentum map and is equivariant, we get the stated result. (The group
phase here is that of Gµ, the same as one has in the theory of geometric
phases). QED

Thus, it is unlikely in this sense that one can find an algorithm that
simultaneously conserves the symplectic structure, the momentum map, and
the Hamiltonian. It is tempting (but probably wrong) to guess from this
that one can monitor accuracy by keeping track of all three.

Comment on Generating Functions. We remark that many symplectic-
momentum integrators have been based on the use of generating functions.
We refer to Channell and Scovel [1990] and Ge [1991a] for surveys. They are
based on the (standard) fact that if S : Q×Q→ R defines a diffeomorphism
(q0, p0) 7→ (q, p) implicitly by

p =
∂S

∂q
and p0 = −

∂S

∂q0
, (26)

then this diffeomorphism is symplectic. One of the basic facts about Hamilton-
Jacobi theory is that the flow of Hamilton’s equations is the canonical trans-
formation generated by the solution of the Hamilton-Jacobi equation

∂S

∂t
+H

(
q,
∂S

∂q

)
= 0, (27)

where S(q0, q, t)|q=q0,t=0 generates the identity. (This may require singular
behavior in t; for example, consider S = 1

2t(q− q0)
2.) The strategy is to find

an approximate solution of the Hamilton-Jacobi equation for small time ∆t
and to use this to obtain the desired algorithm using (26).

There are several other versions of the algorithm that one can also treat.
For example, if specific coordinates are chosen on the phase space, one can
use a generating function of the form S(qi, p0i, t). In this case one can get the
simple formula for a first order algorithm given in Example 1 above by using
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S = p0iq
i − ∆tH(qi, p0i), which is easy to implement, and for Hamiltonians

of the form kinetic plus potential, leads to the stated explicit symplectic al-
gorithm. As explained in Ge [1991a], one can use other types of generating
functions. For example, using the Poincaré generating function, one recovers
the mid-point scheme. There are some general results which say that invari-
ant generating functions produce symplectic-momentum algorithms. The
simplest version of this states that if S : Q×Q → R is invariant under the
diagonal action of G, i.e., S(gq, gq0) = S(q, q0), then the cotangent momen-
tum map J is invariant under the canonical transformation ϕS generated
by S, i.e., J ◦ ϕS = J. See Ge [1991a] and Marsden [1992] and references
therein for additional information.

By putting together symplectic integrators following the generating func-
tion approach on T ∗G and using the reduced Hamilton-Jacobi equation
i.e., the Lie-Poisson Hamilton-Jacobi equation, Ge and Marsden [1988] con-
structed an interesting class of Lie-Poisson integrators. The method in par-
ticular applies to rigid body dynamics. Unfortunately, the construction of
integrators using generating functions can involve complex algebra to set up
and it can sometimes be awkward to use in the presence of constraints.

Comments on Energy-Momentum Integrators. Because of the pre-
ceding theorem, algorithms that conserve the Hamiltonian and the momen-
tum map will not, in general, conserve the symplectic structure. The fol-
lowing is one strategy for constructing energy-momentum integrators:
i. Formulate an energy-preserving algorithm on the symplectic reduced
phase space given by Pµ = J−1(µ)/Gµ or the Poisson reduced space P/G.
If such an algorithm is interpreted in terms of the primitive phase space P ,
it becomes an iterative mapping from one orbit to another.
ii. In terms of canonical coordinates (q, p) on P , interpret the orbit-to-
orbit mapping described above and if P/G was used, impose the constraint
J(qk, pk) = J(qk+1, pk+1). The constraint does not uniquely determine the
restricted mapping, so we may obtain a large class of iterative schemes.
iii. To determine a map in the above class, we must determine how points
in one Gµ-orbit are mapped to points in another orbit. There is ambiguity
about how phase space points drift along the Gµ-orbits, which is related to
geometric phases. By discretizing the geometric phase, we can specify the
shift along each Gµ-orbit associated with each iteration of the map.

Simo and Wong [1989], Krishnaprasad and Austin [1990] and Simo,
Tarnow and Wong [1991] provide methods for making the choices required
in Steps ii and iii. The projection from the level set of constant angular
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momentum onto the surface of constant energy can be performed implicitly
or explicitly leading to predictor/corrector type of algorithms. The cost in-
volved in the construction of the projection reduces to a rapid line search.
The algorithm in Simo and Wong [1989] is special in that the projection is
not needed for Q = SO(3): the discrete flow lies in the intersection of the
level set of angular momentum and the surface of constant energy.This al-
gorithm is singularity-free and integrates the dynamics exactly up to a time
reparametrization, consistent with the restrictions on mechanical integra-
tors given above. Extensions of these schemes to elasticity, rods and shells
amenable to parallelization are given in Simo and Doblare [1991]. When
one is constructing an energy-momentum integrator by a method like this,
a main issue is how to deal with systems with constraints. As we shall see,
variational symplectic-momentum integrators handle this question rather
nicely.

5 The Discrete Variational Principle

A discrete variational principle (DVP) is presented in this section that leads
to evolution equations that are discrete analogs to the Euler-Lagrange equa-
tions. We call the evolution equations discrete Euler-Lagrange (DEL) equa-
tions. Some, but not all of the results in this section are found in Veselov
[1988], Veselov [1988], Moser and Veselov [1991] and Baez and Gilliam [1995]
but are rederived here in the context of the notation and context for geomet-
ric mechanics we have recalled above for consistent notation, completeness,
and clarity.

The Discrete Variational Principle. We define a discrete Lagrangian

on a configuration manifold Q to be a map L : Q×Q→ R. Fixing a positive
integer N , the action sum is the map S : QN+1 → R defined by

S =

N−1∑

k=0

L (qk+1, qk) , (28)

where qk ∈ Q and k ∈ Z is the discrete time. The discrete variational

principle states that the evolution equations extremize the action sum given
fixed end points, q0 and qN . Extremizing S over q1, · · · , qN−1 leads to the
DEL equations:

D2L (qk+1, qk) +D1L (qk, qk−1) = 0 for all k ∈ {1, · · · , N − 1} (29)
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i.e.,

D2L ◦ Φ +D1L = 0, (30)

where Φ : Q×Q→ Q×Q is defined implicitly by Φ (qk, qk−1) = (qk+1, qk).
If D2L is invertible, then Equation (30) defines the discrete map, Φ, which
flows the system forward in discrete time.

As was observed by Patrick, this scheme is identical to the scheme ob-
tained by using the generating function S(q1, q2) = −L(q1, q2), so that some
of the facts below may also be deduced from results in Ge and Marsden
[1988]. However, the way the variational method deals with constraints,
namely with Lagrange multipliers on an ambient linear space, makes it at-
tractive.

Conservation of the Symplectic Structure. The symplectic structure
on Q × Q is defined next and an equation for the symplectic form on Q ×
Q is given. We then shown that Φ preserves this symplectic form. We
then derive a discrete Noether’s theorem by showing that invariance of the
discrete Lagrangian leads to a conserved quantity, a momentum map, for
the flow of Φ.

We first define the discrete fiber derivative by

FL : Q×Q→ T ∗Q; (q1, q0) 7→ (q0,D2L (q1, q0)) (31)

and define a 2-form ω on Q×Q by pulling back the canonical 2-form ΩCAN
on T ∗Q:

ω = FL∗
(
ΩCAN

)
= FL∗

(
−dΘCAN

)
= −d

(
FL∗

(
ΘCAN

))
, (32)

where d is the exterior derivative. Choose coordinates, qi, on Q and choose
the canonical coordinates,

(
qi, pi

)
, on T ∗Q. In these coordinates, ΩCAN =

dqi ∧ dpi and ΘCAN = pidq
i. The DEL equations are

∂L

∂qi
k

◦ Φ (qk+1, qk) +
∂L

∂qi
k+1

(qk+1, qk) = 0 (33)

i.e.,

∂L

∂qi
k+1

(qk+2, qk+1) +
∂L

∂qi
k+1

(qk+1, qk) = 0. (34)
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Continuing the calculations in Equation (32) gives

ω = −d

(
∂L

∂qi
k

(qk+1, qk)

)
dqi

k

= −
∂2L

∂qi
k∂q

j
k+1

(qk+1, qk) dq
j
k+1 ∧ dq

i
k −

∂2L

∂qi
k∂q

j
k

(qk+1, qk) dq
j
k ∧ dqi

k

=
∂2L

∂qi
k∂q

j
k+1

(qk+1, qk) dq
i
k ∧ dqj

k+1, (35)

since the second term on the second line vanishes.

Theorem 5.1 The map Φ preserves the symplectic form ω, i.e. Φ∗ω = ω
where Φ∗ω denotes the pullback of ω by the map Φ.

This means that when the algorithm is transferred to the cotangent bundle
via the discrete fiber derivative, one gets a symplectic integrator for the
standard symplectic structure.

The proof of the theorem is very simple. Let Φ(y, x) = (u, v) and write
ω = d(p(y, x)dx) = D12L(y, x)dx ∧ dy. In this notation, y = v = qk+1,
x = qk, and u = qk+2. To show that Φ∗ω = ω, write

Φ∗ω = Φ∗

(
−d

(
∂L

∂vi
(u, v) dvi

))
= −d

(
Φ∗

(
∂L

∂vi
(u, v) dvi

))

= −d

(
∂L

∂vi
◦ Φ (y, x) d

(
vi (y, x)

))
= −d

(
−
∂L

∂yi
(y, x) dyi

)

=
∂2L

∂xj∂yi
dxj ∧ dyi = ω (36)

Here we have used Equation (34) and the fact that d(v(y, x)) = dy.

The Discrete Noether Theorem. We now derive a discrete version
of Noether’s theorem by the same method we used in the continuous case.
Assume that the discrete Lagrangian L is invariant under the diagonal action
of a Lie group G that acts on Q, and let ξ ∈ g where g is the Lie algebra of
G. Invariance of L implies that

L(exp(sξ)qk+1, exp(sξ)qk) = L(qk+1, qk). (37)

Differentiating (37) and setting s = 0 implies that

D1L(qk+1, qk) · ξQ(qk+1) +D2L(qk+1, qk) · ξQ(qk) = 0, (38)
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where ξQ is the infinitesimal generator. Consider the action sum, (28),
where 0 < k < N − 1 and vary qk+1 using a parameter s ∈ R by considering
qk+1 (s) = exp (sξ) qk+1. Since qk+1 (0) extremizes S, dS/ds = 0 at s = 0,
which implies that

D1L(qk+1, qk) · ξQ(qk+1) +D2L(qk+2, qk+1) · ξQ(qk+1) = 0. (39)

Subtracting Equation (38) from Equation (39) reveals that

D2L(qk+2, qk+1) · ξQ(qk+1) −D2L(qk+1, qk) · ξQ(qk) = 0. (40)

If we define the momentum map, J : Q×Q→ g
∗, by

〈J(qk+1, qk), ξ〉
4
= 〈D2L(qk+1, qk), ξQ(qk)〉 , (41)

then (40) shows that the momentum map is preserved by Φ : Q×Q→ Q×Q,
and so we have proved the following:

Theorem 5.2 Assume that the discrete Lagrangian L is invariant under
the diagonal action of a Lie group G and let the discrete momentum map be
defined by (41). Then J ◦ Φ = J.

The discrete momentum map J is equivariant with respect to the action
of G on Q×Q and the coadjoint action of G on g

∗. This is proved as in the
case of usual Lagrangians (see Marsden and Ratiu [1994]). Using these prop-
erties, one should be able to develop a theory of Lagrangian reduction in the
discrete case, as with the continuous case. In particular, for Euler-Poincaré
systems on a Lie algebra g, one expects to be able to directly discretize the
constrained variational principle and arrive at the same integrator obtained
by reducing the integrator we have constructed on TG.

6 Construction of Mechanical Integrators

We still must deal with how to discretize the Lagrangian with constraints.
We first show how to construct integrators for Lagrangian systems with holo-
nomic constraints by enforcing the constraints through the use of Lagrange
multipliers. We then present a second, equivalent, construction procedure
by choosing a set of generalized coordinates.
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Constrained Formulation. Assume we have a mechanical system on a
(finite dimensional) linear space V with a constraint manifold, Q ⊂ V ,
and that L → R is the unconstrained Lagrangian, which, by restriction
of L to TQ, defines the constrained Lagrangian, Lc : TQ → R. (See
Marsden and Ratiu [1994] for basic facts about constrained systems.) We
also assume that we have a vector valued constraint function, g : V → Rk,
such that g−1(0) = Q ⊂ V , with 0 a regular value of g. If dimV = n,
then dimQ = m = n − k. We first define the discrete, unconstrained

Lagrangian, L : V × V → R, to be

L(y, x) = L

(
y + x

2
,
y − x

h

)
, (42)

where h ∈ R+ is the time step. The discrete unconstrained action sum is
defined by

S =

N−1∑

k=0

L (vk+1, vk) . (43)

We then extremize S : V N+1 → R subject to the constraint that vk ∈ Q ⊂ V
for k ∈ {1, · · · , N − 1}, which via Lagrange multipliers leads to

D2L (vk+1, vk) +D1L (vk, vk−1) + λT
kDg (vk) = 0 (44)

(with no sum over k), with constraints g (vk) = 0, for all k ∈ {1, · · · , N −1}.
Given vk and vk−1 in Q ⊂ V , i.e., g (vk) = 0 and g (vk−1) = 0, we need

to solve
D2L (vk+1, vk) +D1L (vk, vk−1) + λT

kDg (vk) = 0 (45)

along with the constraints
g (vk+1) = 0 (46)

for vk+1 and λk.
In terms of the original, unconstrained Lagrangian, (45) reads as follows:

1

h

[
∂L

∂v̇

(
vk + vk−1

2
,
vk − vk−1

h

)
−
∂L

∂v̇

(
vk+1 + vk

2
,
vk+1 − vk

h

)]

+
1

2

[
∂L

∂v

(
vk + vk−1

2
,
vk − vk−1

h

)
+
∂L

∂v

(
vk+1 + vk

2
,
vk+1 − vk

h

)]

+ DTg (vk)λk = 0

together with g (vk+1) = 0. For example, if the continuous Lagrangian sys-
tem is of the form

L(q, q̇) =
1

2
q̇TMq̇ − V (q) (47)
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with constraints g(q) = 0, where M is a constant mass matrix, and V is the
potential energy, then the DEL equations are

M

(
vk+1 − 2vk + vk−1

h2

)
+

1

2

(
∂V

∂q

(
vk+1 + vk

2

)
+
∂V

∂q

(
vk + vk−1

2

))

−DTg (vk)λk = 0

together with the constraints g (vk+1) = 0.

Intrinsic Formulation. For the intrinsic formulation (also called the gen-
eralized coordinate formulation, even though the construction is not coor-
dinate dependent), we form the discrete Lagrangian and the action sum
restricted to Q ⊂ V , and then perform the extremization directly on Q.
The constrained, discrete Lagrangian is the map Lc : Q×Q→ R, defined
by Lc = L|Q×Q. Given a local coordinate chart, ψ : U ⊂ Rm → Q ⊂ V ,
(note that it goes into V ) where U is an open set in Rm, the constrained,
discrete Lagrangian is given by

L
c (qk+1, qk) = L (ψ (qk+1) , ψ (qk))

= L

(
ψ (qk+1) + ψ (qk)

2
,
ψ (qk+1) − ψ (qk)

h

)
.

The constrained action sum is

S
c =

N−1∑

k=0

L
c (qk+1, qk) . (48)

Extremizing Sc : QN+1 → R gives the discrete Euler-Lagrange (DEL) equa-
tions in terms of generalized coordinates,

D2L
c (qk+1, qk) +D1L

c (qk, qk−1) = 0. (49)

In terms of the original, unconstrained Lagrangian, Equation (49) equals

DTψ (qk)

{
1

h

[
∂L

∂v̇
(ak, dk) −

∂L

∂v̇
(ak+1, dk+1)

]

+
1

2

[
∂L

∂v
(ak, dk) +

∂L

∂v
(ak+1, dk+1)

]}
= 0 (50)

where ak = 1
2 [ψ (qk) + ψ (qk−1)] and dk = 1

h [ψ (qk) − ψ (qk−1)]. We solve
Equations (50) for qk+1 given qk and qk−1 to advance the flow one time step.
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Equivalence of the Formulations. The constrained and generalized co-
ordinate formulations are in fact equivalent according to the next theorem.

Theorem 6.1 Let g be the constraint function and ψ be the coordinate chart
defined above. Let qk and qk−1 be the two initial points in the coordinate
chart and let vk = ψ(qk) and vk−1 = ψ(qk−1). Let Dg(vk) and Dψ(qk) be
full rank. Then the generalized formulation, Equation (50), has a solution
for qk+1 if and only if the constrained formulation has a solution for vk+1

and λk. Furthermore, vk+1 = ψ(qk+1).

This is proved by a straightforward chase of the definitions (see Wend-
landt and Marsden [1996] for the details). The procedure is the discrete
analogue of the well known fact that one can do constrained Lagrangian
dynamics either via Lagrange multipliers or by a direct restriction of the
Lagrangian (see Marsden and Ratiu [1994] for example.)

For the numerical examples presented later, we solve the DEL equations,
Equation (45), using Newton-Raphson equation solvers. These solvers re-
quire the construction of a Jacobian formed by differentiating (45) and (46)
with respect to vk+1 and λk. For many applications, the resulting Jacobian
is nearly symmetric and sparse; this and scaling tricks can be exploited to
increase the simulation efficiency. For tree structured multibody systems,
one can show that the linear equations involving the Jacobian can be solved
in linear time. Sparse matrix techniques and symplectic integration are also
used for multibody systems in Barth and Leimkuhler [1996a].

Local Truncation Error and Solvability. To calculate the truncation
error, we first insert an exact solution of the differential equations into (50),
and expand the result in powers of the step size h. To calculate the expan-
sion, we expand Equation (50) about vi

k = ψi(qk) and v̇i
k = (∂ψi/∂qj

k)q̇
j
k, and

expand the result in powers of h. This lengthy calculation, not reproduced
here, shows that the local truncation error of the method is second order.
The coefficient of the h2 term is a lengthy expression involving second, third,
and fourth partial derivatives of L : TV → R.

If one uses the following definition for the discrete Lagrangian:

L(y, x) = L

(
y,
y − x

h

)
, (51)

then the resulting DEL equations will only be first order accurate for a
general Lagrangian. There is no cancellation of terms in the h1 term as
there is with the definition in Equation (42). However, in some cases, the
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resulting DEL equations may be explicit while the DEL equations from the
definition in Equation (42) are implicit. An example of this occurring is if
the continuous Lagrangian is in the form in Equation (47), and there are no
constraints.

One can show, using the implicit function theorem, that if D22L is non-
singular and if the Jacobian of the constraints is full rank, then for a suffi-
ciently small time step, the generalized coordinate DEL equations are solv-
able for qk+1.

The Symplectic Form and Discrete Momentum Map. The integra-
tors created through the construction procedure are symplectic-momentum
integrators. The integrators are symplectic in that the map produced on
T ∗V or T ∗Q is a symplectic map. Also, if the Lie group acts linearly on V ,
then the continuous flow of the Euler-Lagrange equations and the discrete
map produced from the DEL equations preserve the same momentum map
on T ∗Q.

If one accurately integrates the continuous equations and uses the re-
sult to initialize the discrete equations, one will notice that the value of
the momentum map will differ from the value of the momentum map for
the continuous system. The difference arises from the difference in the as-
signment of the momentum coordinate in T ∗V through the discrete fiber
derivative. In the continuous case, the momentum is D2L while in the dis-
crete case, we use −hD2L. We multiply by a −h from the definitions given
in Equation (31) because −hD2L converges to D2L as h→ 0.

If the Lagrangian of a continuous system is invariant under the action
of a group, and if the constraints are also invariant under the group action,
i.e. if we have the identities

L (G · v,G · v̇) = L (v, v̇) , g (G · v) = g (v) ,

where the action of G on v ∈ V is represented as G · v, then the flow of the
Euler-Lagrange equations preserve the momentum map J : TV → g

∗, where

〈J (v, v̇) , ξ〉
4
=

〈
∂L

∂v̇
(v, v̇) , ξV (v)

〉
.

If the group G also acts linearly on V , then the discrete Lagrangian is
also invariant under the group action as is readily verified. As earlier, the
momentum map J : V × V → g

∗ defined by the relation

〈J(vk+1, vk), ξ〉
4
= 〈D2L(vk+1, vk), ξV (vk)〉
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is conserved by the flow of the DEL equations.
We now calculate −hD2L and notice that

−hD2L (vk+1, vk)

= −h
∂

∂vk

(
L

(
vk+1 + vk

2
,
vk+1 − vk

h

))

=
∂L

∂v̇

(
vk+1 + vk

2
,
vk+1 − vk

h

)
−
h

2

∂L

∂v

(
vk+1 + vk

2
,
vk+1 − vk

h

)
.

As h → 0, the discrete momentum value, −hD2L, converges to the contin-
uous momentum value, D2L. Therefore, the quantities that depend on the
discrete momentum value, such as the discrete momentum map defined to
be −hJ, converge to their continuous counterparts as h→ 0.

7 Numerical Examples

We apply the construction procedure to produce mechanical integrators for
the rigid body and the double spherical pendulum (DSP). We choose to
use constrained coordinates instead of generalized coordinates to avoid co-
ordinate singularities and coordinate patching. We use unit quaternions to
create the rigid body algorithm, and use the position of the two masses for
the double spherical pendulum.

The Rigid Body. The algorithm presented here updates quaternion vari-
ables based on the previous two quaternion variables. The configuration
manifold is taken to be Q = S3 ⊂ V where V = R4. Quaternions were
used instead of using V = R9 with the six orthogonal constraints of SO(3)
primarily to avoid a large number of Lagrange multipliers. The constraint
function is enforced with Lagrange multipliers.

Rigid body integrators that preserve certain mechanical properties have
been created by several researchers as we noted in the introduction. An
energy-momentum integrator is presented in Simo and Wong [1991]. A sym-
plectic integrator which preserves the momentum and energy is presented
in Lewis and Simo [1995]. A symplectic-momentum integrator is presented
in McLachlan and Scovel [1995]. A rigid body integrator based on a dis-
crete variational principle and in terms of 3× 3 matrices with constraints is
presented in Moser and Veselov [1991].

We first attach a body frame to the rigid body and represent the frame as
a matrix, R ∈ SO(3), which maps vectors in the body frame, B, to vectors in
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the spatial (inertial) frame S, consistent with our earlier description of rigid
body motion. The rotation matrix is thought of as a mapping R : B → S.

We now recall some background on quaternions in this context (see Mur-
ray, Li, and Sastry [1994]). As a set, the quaternions comprise R4 and the
set of unit quaternions form the three sphere S3 ⊂ R4. If we think of a
quaternion a ∈ R4 as consisting of a scalar value, as, and a vector with
three components denoted av = (ax, ay, az), then quaternionic multipli-

cation is given in terms of ordinary multiplication and the dot and cross
products as follows:

If a and b are quaternions, then quaternionic multiplication is
given by c = a ? b, where cs = asbs − av · bv and cv = asbv +
bsav + av × bv.

With this multiplication, the unit sphere S3 is a three dimensional Lie
group. The conjugate of a denoted ā is given by ā = (as,−av) and for unit
quaternions, ā is the inverse of a, in that a ? ā = (1, 0, 0, 0).

The following formula constructs an element A ∈ SO(3) from its unit
quaternion representation, a ∈ S3:

A = (2a2
s − 1)I + 2asâv + 2ava

T
v , (52)

where the hat operation (v̂ ·w = v×w) is as was defined earlier in our review
of rigid body dynamics.

This defines a group homomorphism of S3 → SO(3) which is two to
one. Correspondingly, if A,B, and C ∈ SO(3) are represented by unit
quaternions, a, b, and c, respectively, then C = AB if and only if c = ±a? b.
An additional fact about quaternions is that if w = Av and a is a unit
quaternion that represents A, then (0, w) = a ? (0, v) ? ā where (0, w) is
regarded as a quaternion formed from the vector w.

If R : B → S is the rotation matrix representing the orientation of the
rigid body, recall that the body angular velocity vector, ωb, is given by
ω̂b = RT Ṙ. In terms of quaternions, this reads as follows: if r is the unit
quaternion representing R, then r̄ ? ṙ = (0, ωb/2).

Using the above relationship for the body angular velocity, we construct
the continuous Lagrangian, L : TV → R, to be

L(q, q̇) =
1

2
(2q ? q̇)T

[
0 0
0 I

]
(2q ? q̇), (53)

where I is the inertia matrix. The constraint manifold Q is defined by
q2s + qv · qv = 1.
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The Lagrangian in Equation (53) is invariant under left quaternionic
multiplication, i.e. L (r ? q, r ? q̇) = L (q, q̇) , where r is a unit quaternion.
The invariance leads to conservation of angular momentum.

The discrete Lagrangian, L : TV → R, is chosen to be

L(y, x) = L

(
y + x

2
,
y − x

h

)
. (54)

A calculation shows that when restricted to Q, we have

L(y, x) =
1

2h2
(x ? y − y ? x)T

[
0 0
0 I

]
(x ? y − y ? x). (55)

The discrete Lagrangian on all of V × V is then taken to be (55). Since we
are extremizing S restricted to Q, the extension of L to V \Q can be chosen
arbitrarily.

The discrete Lagrangian (55) is also invariant under left quaternionic
multiplication, i.e. L (r ? y, r ? x) = L (y, x) , where r is a unit quaternion,
and the invariance leads to conservation of discrete momentum which con-
verges to the continuous momentum as the step size decreases, as we have
seen.

An Example Simulation The DEL equations for the rigid body and
relevant Jacobian are created in Mathematica and exported to C-code for
simulation. The initial conditions and rigid body parameters are

q0 =




1
0
0
0


 ; ωb =




0
3
4



 ; I =




1 0 0
0 2 0
0 0 3



 . (56)

We must first initialize the rigid body integrator by choosing two initial
quaternion values. We do this by using an Euler step with q̇ = q ? (0, ωb/2)
with h = 10−5s. We then use the DVP integrator with h = 10−5s to set
the second initial point for h = 10−4s, 10−3s, 10−2s, and 10−1s. The system
is simulated for 30 seconds. To calculate errors in energy, momentum, and
position, we first choose a standard value. We use the energy and momentum
given initially after the first Euler step at h = 10−5s as the standard energy
and momentum values. We use the results of the 30s simulation with h =
10−4s as the standard position variables. We use the following formula to
calculate errors for each simulation:

error =
1

Nm

N∑

i=1

‖ vi − vs
i ‖2, (57)
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Figure 1: Quaternion Error Versus Time Step

where m is the length of the vector vi, v
s
i is the standard value at the ith

sample, and N is the number of samples. We find that the CPU time drops
off nearly linearly as the time step increases; see Wendlandt and Marsden
[1996] for details. The quaternion error versus time step is shown in Figure 1.
The plot shows a second order relationship between error and time step,
consistent with the theory.

Figure 2 compares the plot of the quaternion, qy, versus time for the
simulations at h = 10−4s and h = 10−1s. The trajectory for the large time
step exhibits the same qualitative behavior as the small time step, but the
deviations increase for longer simulation times.

The energy error versus time step reveals a second order relationship be-
tween energy error and time step. The energy for the h = 10−4s simulation
deviates between 32.999999359J and 32.999999349J. The energy for the sim-
ulation at h = 10−3s deviates between 32.999937236J and 32.999937235J.
There is no deviation in energy for the h = 10−2s and h = 10−1s simulations.

For each time step, the constant value of the discrete momentum map is
conserved, and converges to the continuous momentum value as the step size
decreases. There is a second order relationship between momentum error
and time step.
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Figure 2: Quaternion Coordinate Versus Time

The Double Spherical Pendulum. The simulation in this section is
motivated by our work on pattern evocation for the double spherical pen-
dulum given in Marsden and Scheurle [1995] and Marsden, Scheurle and
Wendlandt [1996].

The double spherical pendulum consists of two constrained point masses.
The configuration space is Q = S2×S2 and the linear space is V = R3×R3.
The position of the first mass is q1 = (x1, y1, z1), and the position of the
second mass is q2 = (x2, y2, z2). The constraint function, given by the
pendulum length constraints, is

g(v) =

[
q1 · q1 − l21

(q2 − q1) · (q2 − q1) − l21

]
. (58)

The DSP Lagrangian system is of the form in Equation (47), and the
DVP algorithm for the DSP is, in this case, identical to the SHAKE algo-
rithm:

1

h
M

[
qn+1 − 2qn + qn−1

]
+ hu− hDTg (qn)λ = 0

with the constraint g
(
qn+1

)
= 0, where u is the column vector with compo-

nents (0, 0,m1g, 0, 0,m2g), m1 and m2 are the masses, and

M =

[
m1I 0
0 m2I

]
, q =

[
q1
q2

]
. (59)
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Figure 3: Position Error Versus Time Step for the DSP Simulation

Wendlandt and Marsden [1996] compare the simulation from the discrete
variational principle (DVP) construction to an energy-momentum (EM) for-
mulation based on Gonzalez [1996a], and applied to the DSP in Wendlandt
[1995]. Here we summarize the results.

An Example Simulation. The following parameters are used for the
DSP: m1 = 2.0Kg, m2 = 3.5Kg, l1 = 4.0m, l2 = 3.0m, and g = 9.81m/s2.
The initial conditions are x1 = 2.820m, y1 = 0.025m, x2 = 5.085m, y2 =
0.105m, ẋ1 = 3.381m/s, ẏ1 = 2.506m/s, ẋ2 = 2.497m/s, and ẏ2 = 10.495m/s.
The position and velocity of the z-coordinate is determined from the con-
straints, and the z-coordinate for both masses is taken to be negative. The
output of the EM simulation at a time step of 0.0001s is used as the standard
and initializes the second step in the DVP simulations. The DVP simula-
tions are slightly faster for each time step and both CPU times drop off
nearly linearly with increasing time step.

The position error for the EM and DVP simulations is shown in Figure 3.
Both simulations show a second order relationship between position error
and time step. The error for the EM simulation is slightly greater than the
error for the DVP simulation for h ≥ 10−3s.

The y position of the second mass is shown in Figure 4 for the EM
and DVP simulations for h = 0.0001s and h = 0.1s. Both the EM and DVP
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Figure 4: Position Coordinate Versus Time for the DSP Simulation

simulations at h = 0.0001s overlap and cannot be distinguished when plotted
on the same graph. For both the EM and DVP simulations, reasonably
accurate and fast trajectories are produced at large time steps, h = 0.1s.

The DVP energy error appears to drop off as the square of the time step,
at least for the large time steps. The energy error is zero for all time steps
for the EM simulation. The energy for the DVP simulation at h = 0.0001s
deviates between 24.944495109J and 24.944499828J and deviates between
20.910805793J and 25.583335766J for h = 0.1s.

The DVP algorithm should preserve momentum but for the smallest
time step, h = 0.0001s, the momentum varies between 199.825467170m2/s
to 199.825467184m2/s; this may be due to numerical errors. The momentum
is constant for the other time steps. Again, the constant discrete momentum
value approaches the value of the continuous momentum as the step size
decreases.

Figure 5 shows the energy for the DVP simulations versus time for h =
0.1s and 0.01s in the lower graph. The upper graph shows energy versus
time for h = 0.001s and 0.0001s. The energy oscillates about a constant
value, and the constant value approaches the true energy. The amplitude
of the oscillations decrease as the step size decreases. The fluctuations in
energy appear to be related to the constraint forces. The middle graph is a
plot of the multipliers versus time, and the fluctuations in the multipliers is
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Figure 5: Energy and Multipliers Versus Time for the DSP Simulation

correlated to the fluctuations in energy (see Barth and Leimkuhler [1996a],
who use variable step size to decrease the energy oscillation.)

Conclusions

This paper reviewed some of the basic theory of variational principles and
integration algorithms and presented a discrete variational procedure to con-
struct mechanical integrators for Lagrangian systems and applied it to the
rigid body and the double spherical pendulum. The discrete Euler-Lagrange
(DEL) equations share similarities to the continuous equations of motion and
preserve a symplectic form and invariants resulting from group invariance
of the Lagrangian. Some areas of future work are the following:
Energy-Momentum Integrators. One can look for an analogue of the
DVP based on discretizing the principle of least action that would lead to
energy-momentum integrators.
Additional Examples. It would be of interest to try out these methods
on many other examples, such as the dynamics of an underwater vehicle
studied by Leonard [1995a,b] and Leonard and Marsden [1996].
Discrete Lagrangian Reduction. It is natural to further investigate the
dynamics on (Q × Q)/G induced by our G-invariant discrete Lagrangian
analogous to the reduced Euler-Lagrange equations to produce the discrete
reduced Euler-Lagrange equations. In particular, the relation between the
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integrator for the rigid body as presented here and its induced reduced
integrator (which is not just an integrator on the Lie algebra!) would be
interesting to investigate.
Nonholonomic Systems. The method presented in this paper treats holo-
nomic constraints and one would like to generalize the method to treat non-
holonomic constraints, as in Bloch, Krishnaprasad, Marsden and Murray
[1996]. For nonholonomic systems, the standard symplectic form is not pre-
served, and there are momentum equations and not conservation laws. Also,
energy can be conserved in these systems. It would be of interest to develop
algorithms taking into account these effects.
Multistep Methods and Time Step Control. It seems possible to
modify the method to construct multistep mechanical integrators to increase
the accuracy of the method. One would also like to modify the method to
allow variable time steps to improve efficiency.
External Forces. It should be straightforward to add external and control
forces to simulate controlled mechanical systems. The second author is
currently using the techniques presented in this paper to develop a multibody
simulator to simulate control systems for human models (see Wendlandt and
Sastry [1996]).
Spacetime Integrators Since the method here is variational by nature and
focuses on the temporal behavior, it should be helpful in the development
of spacetime integrators by synthesis with existing finite element methods.
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