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Abstract

This paper is an outgrowth of the work of Bloch, Krishnaprasad,

Marsden and Sánchez de Alvarez [1992], where a feedback control

that stabilizes intermediate axis rigid body rotation using an in-

ternal rotor was found. Stabilization is determined by use of the

energy-Casimir (Arnold) method. In the present paper we show that

this feedback controlled system can be written as the Euler-Lagrange

equations for a modified Lagrangian: a velocity shift associated with

a change of connection turns the free (unforced) equations into the

feedback controlled equations. We also show how stabilization of

the inverted pendulum on a cart can be achieved in an analogous

way. We provide a general systematic construction of such controlled

Lagrangians.

The basic idea is to modify the kinetic energy of the free La-

grangian using a generalization of the Kaluza-Klein construction in

such a way that the extra terms obtained in the Euler-Lagrange

equations can be identified with control forces. The fact that the

controlled system is Lagrangian by construction enables one to make

use of energy techniques for a stability analysis. Once stabilization is

achieved in a mechanical context, one can establish asymptotic stabi-

lization by the further addition of dissipative controls. The methods

here can be combined with symmetry breaking controls obtained by

modifying the potential energy and also can be used for tracking.
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Introduction

The Motivating System: The Rigid Body with Rotors. In this

paper we construct a class of stabilizing feedback control laws which gen-

eralize those introduced in Bloch, Krishnaprasad, Marsden and Sánchez

de Alvarez [1992]. In that paper, a rigid body with a feedback controlled

rotor is considered and motion near the unstable middle axis rotation of

the rigid body is studied. It was shown that when a gain parameter k

exceeds a certain explicitly determined critical value, the motion is nonlin-

early stabilized and this feedback stabilization can be understood within

the context of the energy-Casimir (or Arnold) method for stability analysis.

In addition, phase drifts caused by this feedback (and ultimately due to the

symmetry in the problem) were studied.

Controlled Lagrangians. In the present paper we show that the spe-

cific feedback law constructed for the rigid body with a rotor can be under-

stood in terms of a general construction involving what we call controlled

Lagrangians. In the example, one finds that the controlled Euler-Lagrange

equations are identical with the Euler-Lagrange equations for the controlled

Lagrangian. Moreover, we show that the construction of controlled La-

grangians has interesting geometric underpinnings, which are related to

the Kaluza-Klein construction. We are using Kaluza-Klein theory in a very

elementary way in this paper; we mean it in the sense that, for example, the

motion of a charged particle in a magnetic field can be viewed as geodesic

motion for an appropriately constructed metric (see, for example, Marsden

and Ratiu [1994] for an exposition).

The main purpose of this paper is to present the construction of a

general class of controlled Lagrangians and to show how to apply it to

two examples. The first example is rather simple, namely the problem of

stabilization of an inverted pendulum on a cart. The second one is the

motivating one of a rigid body with an internal rotor that was mentioned

above.

In this paper we confine our attention to constructing a class of con-

trolled Lagrangians that are obtained by modifying the kinetic energy of

the given Lagrangian (assumed to be of the form kinetic minus potential

energy). We do this by changing the underlying metric structure of the

kinetic energy. It may also be viewed as a change of connection. A change

of connection acts in much the same way as a change to a rotating frame

and it generates new forces, the most interesting of which are Coriolis-type

forces which can be stabilizing. In any event, our approach is designed to
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produce controllers that, by construction, will be associated with a new

Lagrangian, and hence a Hamiltonian, system.

Advantages of the Present Approach. Some advantages over other

possible feedback stabilization control strategies are as follows. First of all,

it allows one to understand the stabilization in terms of energetics. Roughly

speaking, a saddle point, for example, of the energy can be turned into a

maximum or a minimum (this is not literally true since one has to take

the symmetry group into account). Within this context, our method au-

tomatically constructs a Liapunov function for the control system and this

provides a systematic method for determining when the control forces are

stabilizing. Secondly, even though work is done by the control forces, there

is an extension of the mechanical energy of the system that is conserved;

one can think of it as a combined energy available to the mechanism and

the control forces. This guarantees that, for example, the control rotors

will never need to attain large velocities to achieve stabilization.

Related Approaches. Energy methods in control and stabilization have

been used by many previous authors. The paper of Wang and Krish-

naprasad [1992] uses gyroscopic forces in the context of the energy mo-

mentum method with applications to stabilizing controllers. This approach

should be very useful in conjunction with our construction of controlled

Lagrangians for the assessement of the stability of the associated feedback

laws. Other references that were useful for us were Koditschek [1989],

Koditschek and Rimon [1990] and Ballieul [1993] (and related references).

Stabilization by feedback is just one control objective for which we expect

these ideas to be useful. For example, we plan, in a forthcoming publica-

tion, to combine the ideas here with those of Leonard [1996] on symmetry

breaking potentials, which will extend the method here from stabilization

in the “internal balance variables” to stabilization in the symmetry direc-

tions (see also Leonard [1995] and Leonard and Marsden [1996]). We also

plan to consider problems of tracking using related ideas.

1 Bundles and Controlled Lagrangians

Principal Connections. Let G be a Lie group that acts freely and prop-

erly on the left on a configuration manifold Q and let S = Q/G be the

corresponding shape space. Thus, the canonical projection π : Q → S

defines a principal G-bundle.



4 A.M. Bloch, J.E. Marsden and G. Sánchez

Recall that a principal connection A on Q is a g-valued 1-form A :

TQ→ g such that A(ξQ(q)) = ξ for each ξ ∈ g, where ξQ is the infinitesimal

generator of ξ on Q and secondly, A is equivariant with respect to the action

of G on TQ and the adjoint action of G on g.

The vertical space is defined by

VerqQ = {vq ∈ TqQ | Tqπ(vq) = 0},

so that vertical tangent vectors are tangent to the fibers π−1(q). Equiva-

lently,

VerqQ = {ξQ(q) | ξ ∈ g}.

The horizontal space is

HorqQ = {vq ∈ TqQ | A(vq) = 0}.

One can decompose every tangent vector vq ∈ TqQ uniquely into a

horizontal and vertical part relative to a given connection; we write

TqQ = Verq ⊕ Horq,

where Ver vq = (A(vq))Q(q) and Hor vq = vq − Ver vq.

Kaluza-Klein Lagrangians. Let g = 〈〈 , 〉〉 be a G-invariant Riemannian

metric on Q, for example induced by the kinetic energy of a given mechan-

ical system. Using the given connection A, and this metric, we define a

new metric (of generalized Kaluza-Klein type) by applying the given met-

ric to the horizontal and vertical components relative to the connection.

Specifically, we define the new metric gA by

gA(vq, wq) = g(Horqvq,Horqwq) + g(Verqvq,Verqwq).

Associated with this metric and a given potential energy V (q) is the

Kaluza-Klein Lagrangian defined by

LA(vq) =
1

2
gA(vq, vq) − V (q).

The Mechanical Connection. As above, we assume there is a G-

invariant metric on the configuration space. Normally this metric is the

one associated with the kinetic energy of a given mechanical system. The

mechanical connection A0 is the connection on Q regarded as a bundle

over shape space Q/G that is defined by declaring its horizontal space at a



Feedback Stabilization of Relative Equilibria 5

point q ∈ Q to be the subspace that is the orthogonal complement to the

tangent space to the group orbit through q ∈ Q using the kinetic energy

metric.

The locked inertia tensor I(q) : g → g
∗ (where g

∗ denotes the dual

of the vector space g) is defined by

〈I(q)ξ, η〉 = 〈〈ξQ(q), ηQ(q)〉〉

where ξQ is the infinitesimal generator of ξ ∈ g and where 〈〈 , 〉〉 is the kinetic

energy inner product.

An explicit formula for the mechanical connection (see Marsden [1992]

for further details and references) is

A0(vq) = I(q)−1J(vq) (1.1)

where J : TQ→ g
∗ is the momentum map defined by

〈J(vq), ξ〉 = 〈FL(vq), ξQ(q)〉 (1.2)

where FL : TQ→ T ∗Q is the fiber derivative of L.

Another characterization of the mechanical connection is that it picks

out the “optimal” rotating frame, i.e., it minimizes the kinetic energy sub-

ject to the constraint J = µ.

The mechanical connection A0 plays a fundamental role in the theory of

cotangent bundle reduction and amended potentials (going back to work of

Smale) as well as in the theory of geometric phases (Marsden, Montgomery

and Ratiu [1990]), where holonomy of an associated connection is involved,

and in stability theory where it is used to separate internal and rotational

modes (Simo, Lewis and Marsden, [1991]).

The mechanical connection has the following physical interpretation

for a system of interconnected particles and rigid bodies with a generalized

velocity vq at a configuration q: A0(vq) is the spatial angular velocity of

the instantaneously equivalent rigid body system obtained by locking all

the joints. Thus, the phrase (spatial) locked angular velocity is sometimes

used.

Lines of Connections. Let A0 : TQ→ g be a principal G-connection on

a principal bundle π : Q → Q/G. Recall that a horizontal one-form is

one that vanishes on all vertical vectors. If τ is a G-equivariant horizontal

g-valued one form on this bundle, then Aτ := A0 + τ is also a connection

form. We shall denote the corresponding Kaluza-Klein metric by gτ (so

that gτ = gAτ
as defined earlier) and the associated Lagrangian by Lτ .



6 A.M. Bloch, J.E. Marsden and G. Sánchez

In the examples we will be considering, the gain parameter for stabi-

lization can be viewed as parameterizing a point on the line in the space

of connections through A0, the mechanical connection, and in the direc-

tion of τ . Using this family of connections in the Kaluza-Klein Lagrangian

produces a family of Lagrangians labeled by the gain parameter.

It will be useful to establish an identity between the free Lagrangian

and the Kaluza-Klein Lagrangian Lτ . From now on we assume that A0 is

chosen to be the mechanical connection associated with the free Lagrangian,

of the form kinetic energy minus potential, with the kinetic energy given

by a G-invariant metric g0, as above.

Proposition 1.1 For v ∈ TqQ, we have the identity

Lτ (v) = L(v + [τ(v)]Q(q)) +
1

2
‖[τ(v)]Q‖2 (1.3)

Proof. This is a consequence of the definition of Lτ , the following useful

relations between the horizontal and vertical projections for the mechanical

and the controlled connections,

Horτv = Hor v − [τ(v)]Q(q)

Verτv = Ver v + [τ(v)]Q(q),

and the fact that in the original metric Hor(v) is orthogonal to vertical

vectors and in particular to [τ(v)]Q(q). QED

Another observation that is easily checked is the following.

Proposition 1.2 The mechanical connection associated with the metric gτ

is Aτ .

In fact, if one likes, this can be used to characterize the metric gτ which

is used for the kinetic energy in the Lagrangian Lτ .

With A0 and τ fixed, one can look at the line in the space of connections

through A0 in the direction of τ . As we shall see in the examples, moving

on this line corresponds to increasing the control gain.

Controlled Lagrangians. In some problems, such as that of stabilizing

an inverted pendulum, we need to use a somewhat more general family

of Lagrangians than that obtained by the lines of connections construc-

tion given above. We will do this by generalizing formula (1.3) as follows.

Choose a quadratic form σq, a “controlled metric” on each tangent space

to the group orbit. In terms of σ we make the following.
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Definition 1.3 The controlled Lagrangian Lτ,σ associated with the free

Lagrangian L, the horizontal one form τ , and the metric σ is defined by

Lτ,σ(v) = L(v + [τ(v)]Q(q)) +
1

2
σq([τ(v)]Q). (1.4)

As we shall see in the example of the pendulum, we do not want to restrict

the form σ to be positive definite. Another remark is that choosing σ to be

the given kinetic energy metric on the fibers (i.e., the locked inertia tensor)

gives the Kaluza-Klein Lagrangian in proposition 1.1. One can therefore

view the generalization given by the preceding definition as a generalized

Kaluza-Klein construction in that the new kinetic energy is the kinetic

energy of an identifiable metric, as follows.

Proposition 1.4 The controlled Lagrangian is the kinetic energy function

of the (not necessarily positive definite) metric gτ,σ on Q defined as follows.

Let gσ be the metric which equals g on the space of A0-horizontal vectors

and which equals σ on the vertical vectors (and these two spaces are gσ-

orthogonal). Define gτ,σ to be gσ on the Aτ -horizontal vectors and g on the

vertical vectors (and these two spaces are gτ,σ-orthogonal).

Notice that the controlled Lagrangian Lτ,σ is obtained from the original

one L by modifying only the kinetic energy. One can also contemplate

modifying the potential energy (e.g., by breaking its symmetry) and this

will not “interfere” with the construction here. We intend to pursue this

point elsewhere.

Below we will develop a strategy for comparing the equations of motion

for the “controlled” Lagrangian Lτ and those for the “free” Lagrangian L0

so that we can interpret the extra term in the equations of motion as control

forces.

The Conservation Law for the Controlled Lagrangian. We now

compute the momentum map associated with the controlled Lagrangian

Lτ,σ. This calculation is straightforward using the definition. The resulting

momentum map has the form

Jτ,σ = J + jτ,σ (1.5)

where J is the uncontrolled momentum map (the momentum map for L)

and jτ,σ is a correction term depending on τ and σ. In many examples a

formula for jτ,σ can be computed directly and simply as we shall see, but

we give the general formula for completeness. To explain it, first choose a
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basis ea, a = 1, . . . ,dim g for the Lie algebra g and write elements ξ ∈ g as

ξ = ξaea (summation understood) and choose coordinates qi, i = 1, . . . , n

on Q. The dual basis of g
∗ is denoted ea and elements of g

∗ are written

µ = µae
a. The standard momentum map associated with a Lagrangian L

is written J = Jae
a and is given in coordinates by

Ja =
∂L

∂q̇i
Ki

a, (1.6)

where Ki
a are the action coefficients defined by writing the infinitesimal

generator [η]Q of a Lie algebra element η ∈ g as [η]iQ(q) = Ki
a(q)ηa.

We now give the formula for jτ,σ, which is the correction terms in the

momentum map Jτ,σ for the Lagrangian Lτ,σ verses the momentum map

J for L. We first give the formula in coordinates, writing, as with J, the

components of jτ,σ as ja. We have

ja = Ki
aτ

b
i

(

Jb + σcbτ
c
j q̇

j
)

, (1.7)

where σcb are the components of the tensor σ but thought of as a configura-

tion dependent bilinear form on the Lie algebra and τa
j are the components

of τ thought of as a Lie algebra valued one form.

Intrinsically, the formula for jτ,σ may be written as follows at a point

vq ∈ TqQ:

jτ,σ(vq) = (ψ∗
q ◦ τ∗q )(J(vq) + τ(vq)

[), (1.8)

where

ψq : g → TqQ; ξ → [ξ]Q(q)

is the infinitesimal generator map, τq : TqQ → g is the restriction of τ to

the fiber over q, the star denotes the dual linear transformation and where

the flat denotes the corresponding covector in g
∗ using the bilinear form σ.

Since the controlled Lagrangian is group invariant, we get, by Noether’s

theorem, the conservation law

d

dt
(J + jτ,σ) = 0 (1.9)

which, rewriting as
d

dt
J = u, (1.10)

defines the control force in the symmetry direction. For the case of the

satellite with the internal rotor, the symmetry direction in question will be

the rotor angle and so this indeed corresponds to what we want, namely

the control force on the rotor. For the case of the pendulum on the cart,

the symmetry direction will be the direction of the cart and so u will be

the force on the cart.
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Relative Equilibria. Since τ is horizontal, for any Lie algebra element

ξ ∈ g, we have τ(ξQ(q)) = 0 and so we have the identity L(ξQ(q)) =

Lτ,σ(ξQ(q)); that is, L and Lτ,σ have the same locked Lagrangian. From the

fact that relative equilibria are the critical points of the locked Lagrangian

(see Lewis [1992], Prop 2.3) we conclude the following:

Proposition 1.5 The relative equilibria for L and Lτ,σ are the same.

Of course one can now use the energy momentum method (Simo, Lewis,

and Marsden [1991], Marsden [1992]), especially its Lagrangian formulation

(Lewis [1992], Wang and Krishnaprasad [1992]) to ascertain stability. De-

velopment of this idea will be the subject of future investigations.

The General Strategy. Our constructions produce a G-invariant La-

grangian provided that the data L, τ and σ are G-invariant (or, as appro-

priate, equivariant). This will be the case in both of our examples. In this

situation, one can interpret the new equation for the old momentum map as

defining a control force in the symmetry direction as was explained above.

We summarize the overall situation and strategy so far as follows.

• Start with a mechanical system with a Lagrangian L of the form

kinetic minus potential energy and a symmetry group G.

• Introduce a horizontal one form τ on Q (it vanishes in the group

directions) and a quadratic form σ on each tangent space to the group

orbits and define the controlled Lagrangian by

Lτ,σ(v) = L(v + [τ(v)]Q(q)) +
1

2
σq([τ(v)]Q).

• Compute the control force in the symmetry direction using Noether’s

theorem for the controlled Lagrangian, as in equations (1.9) and

(1.10).

• The quantities τ and σ are chosen so that the controlled Euler-

Lagrange equations for the original system (i.e., the Euler-Lagrange

equations for the Lagrangian L with an control) agree with the Euler-

Lagrange equations for the controlled Lagrangian Lτ,σ. We determine

a feedback law for u, by using the Euler-Lagrange equations to elim-

inate accelerations; then the control law becomes a feedback that is

configuration and, possibly, velocity dependent.
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• This method is effective for determining stabilizing feedback laws.

The stability of an equilibrium may be determined by the energy-

momentum (or energy-Casimir-Arnold) method, using any available

freedom in the choice of τ and σ.

Lagrangian Reduction. Our constructions are intended to be viewed

on the original configuration space (or its tangent bundle), including any

configuration variables needed for control actuation. However, if one is

keeping the symmetry as we have indicated, one can make use of the the-

ory of Lagrangian reduction to obtain reduced Euler-Lagrange equations

in fewer configuration variables (see Marsden and Scheurle [1993a,b] and

Bloch, Krisnaprasad, Marsden and Murray [1996]). Thus, one may also

compare the equations for the controlled system and the controlled La-

grangian in reduced form. In the example of the rigid body, discussed

below, we will be implicitly doing this, but will not do it explicitly for the

pendulum on a cart although the reduction procedure is very simple in

that case. In particular, this reduction process recovers the observations in

Bloch, Krishnaprasad, Marsden and Sánchez de Alvarez [1992] concerning

Lie-Poisson (and Euler-Poincaré) structures for the controlled system.

One of the important ingredients in the reduced Euler-Lagrange equa-

tions is the curvature of the connection. In this regard, we note that the

curvature of the connection Aτ is given by (see Bloch, Krishnaprasad, Mars-

den and Murray [1996, §3.3]):

Bτ = dA− [Aτ , Aτ ] = B0 + dτ + [A0, τ ] + [τ, τ ]. (1.11)

2 The Inverted Pendulum on a Cart.

In this section we show how the ideas above can be applied to the problem

of the inverted pendulum on a cart. This example we hope will show

the effectiveness of the methods for the stabilization of balance systems.

Related examples we have in mind are systems like the inverted pendulum

on a hockey puck (which we plan to study in a future publication) and the

bicycle (see, for example, Getz and Marsden [1994] and Koon and Marsden

[1996]).

The Lagrangian for the cart-pendulum system. Let s denote the

position of the cart on the s-axis and let θ denote the angle of the pendulum

from the upright vertical, as in figure 1.
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s

θ

m

l

g

M

l = pendulum length

m = pendulum bob mass

M = cart mass

g = acceleration due to gravity

Figure 1: The pendulum on a cart system

Here the configuration space is Q = R × S1 with the first factor being

the cart position s, and the second factor being the pendulum angle, θ.

The velocity phase space, TQ has coordinates (s, θ, ṡ, θ̇).

The velocity of the cart relative to the lab frame is of course ṡ, while

the velocity of the pendulum relative to the lab frame is the vector

vpend = (ṡ+ l cos θ θ̇,−l sin θ θ̇). (2.1)

The system kinetic energy is just the sum of the kinetic energies of the cart

and the pendulum:

K((s, θ, ṡ, θ̇) =
1

2
(ṡ, θ̇)

(

M +m ml cos θ

ml cos θ ml2

) (

ṡ

θ̇

)

. (2.2)

The Lagrangian is the kinetic minus potential energies, so we get

L(s, θ, ṡ, θ̇) = K(s, θ, ṡ, θ̇) − V (θ), (2.3)

where the potential energy is V = mgl cos θ.

The symmetry group G of the pendulum-cart system is that of trans-

lation in the s variable so G = R. We do not destroy this symmetry when

doing stabilization in θ; we would, however, use symmetry breaking poten-

tials to track in the variable s if tracking were our goal. For the moment

we are focusing on stabilizing this balance system.

The Linearized Lagrangian. We specialize to the case of the linearized

Lagrangian about the upright position of the pendulum. We do this for sim-
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plicity of exposition; the method is fully nonlinear and does not depend on

linearization. With a few modifications, as indicated below, the techniques

we develop here work perfectly well for the full nonlinear pendulum and for

many other examples as well.

The linearized Lagrangian is

L(s, θ, ṡ, θ̇) =
1

2
(αθ̇2 + 2βṡθ̇ + γṡ2) −

1

2
Dθ2 , (2.4)

where α = ml2, β = ml, γ = M +m and D = −mgl. Positive definiteness

of the mass matrix corresponds to the inequality αγ − β2 > 0.

Notice that the momentum conjugate to s is ps = γṡ+βθ̇ and that the

momentum conjugate to θ is pθ = αθ̇ + βṡ.

The relative equilibrium defined by θ = 0, θ̇ = 0 and ṡ = 0 is unstable

since D < 0.

The Controlled Cart. The equations of motion of the cart pendulum

system with a control force u acting on the cart (and no direct forces acting

on the pendulum) are, since s is a cyclic variable,

d

dt

∂L

∂ṡ
= u

d

dt

∂L

∂θ̇
−
∂L

∂θ
= 0 ,

i.e.,

d

dt
ps =

d

dt
(γṡ+ βθ̇) = u

d

dt
pθ +Dθ =

d

dt
(αθ̇ + βṡ) +Dθ = 0 .

The Controlled Lagrangian. Recall that we form the controlled La-

grangian by modifying only the kinetic energy of the free pendulum cart

Lagrangian according to (1.4), which involves the choice of τ and σ.

In this case, clearly any horizontal one form τ is a multiple of dθ and

σ is just a scalar. Since we are dealing with the linearized system, σ is not

configuration space dependent. Thus, let σ be a number and define the one

form τ = kdθ. (For the full nonlinear pendulum one should take k to be a

function of θ; specifically the choice k(θ) = κ cos θ will do.) Following the

general construction, we let

Lτ,σ :=
1

2
(αθ̇2 + 2β(ṡ+ kθ̇)θ̇ + γ(ṡ+ kθ̇)2) +

σ

2
γk2θ̇2 −

1

2
Dθ2. (2.5)
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Notice also that, as in the general theory, the variable ṡ is “shifted” and a

term quadratic in θ̇ is added.

Notice that the variable s is still cyclic. Following the guidelines of

the theory, we look for the feedback control by looking at the change in

the conservation law. Associated to the new Lagrangian Lτ,σ, we have the

associated conservation law

d

dt
(βθ̇ + γ(ṡ+ kθ̇)) = 0, (2.6)

which we can rewrite using the same conjugate momentum ps as for the

uncontrolled Lagrangian as follows

d

dt
ps = u := −γkθ̈ (2.7)

Thus, we identify the term on the right hand side as the control force

exerted on the cart.

Still using the controlled Lagrangian, as well as (2.6), the θ equation is

computed to be

(

α−
β2

γ
+ γk2σ

)

θ̈ +Dθ = 0. (2.8)

For many examples, such as the the rigid body with an internal rotor, it is

important here to use the conservation law itself rather than its differenti-

ated form.

Interestingly, the Euler-Lagrange equation for θ using the controlled

Lagrangian agrees with the θ equation for the controlled cart provided

σ = −β/(γk), as a direct calculation shows. (The choice σ = −β/(γκ) is

used for the nonlinear pendulum).

The Cart Feedback Control. By manipulating the preceding Euler-

Lagrange equations for the controlled Lagrangian, we obtain the resulting

control law:

u = νθ, (2.9)

where

ν =
γ2kD

(αγ − β2 + γ2k2σ)
=

γ2kD

αγ − β2 − γkβ
.

Stabilization. Since this system is so simple, stabilization can be readily

analyzed using the dynamics of a harmonic oscillator. Since D < 0, the
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θ dynamics is stabilized if the coefficient of θ̈ is negative, which gives the

condition

αγ − β2 − γkβ < 0 .

Simplifying, this stability condition becomes

k >
αγ − β2

βγ
> 0 . (2.10)

Thus, k is positive and in this case, ν > 0, which is the correct sign for a

stabilizing proportional position controller.

In summary, we get a stabilizing proportional feedback control law pro-

vided k is chosen to be positive and it satisfies the inequality (2.10).

This approach is nice because it is done within the context of mechanics;

one can understand the stabilization in terms of the effective creation of an

energy well by the feedback control.

3 The rigid body with a symmetric rotor.

Following Krishnaprasad [1985] and Bloch, Krishnaprasad, Marsden and

Sánchez de Alvarez [1992], we consider a rigid body with a rotor aligned

along the third principal axis of the body; see Figure 2. The rotor spins

under the influence of a torque u acting on the rotor. The Lagrangian

(discussed explicitly below) is simply the total kinetic energy of the system,

rigid carrier plus the rotor kinetic energy, with no potential energy.

Equations of Motion. The equations of motion are given by

Π̇ = Π × Ω

l̇ = u,

where

• I1 > I2 > I3 are the rigid body moments of inertia,

• J1 = J2 and J3 are the rotor moments of inertia.

• Ω = (Ω1,Ω2,Ω3) is the body angular velocity vector of the carrier

• α is the relative angle of the rotor.
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spinning rotor

rigid carrier

Figure 2: A rigid body with a rotor aligned on the long axis

• The body angular momenta are determined by the Legendre trans-

form to be

Π1 = λ1Ω1

Π2 = λ2Ω2

Π3 = λ3Ω3 + J3α̇

l3 = J3(Ω3 + α̇),

where λi = Ii + Ji.

The equations written out in components relative to a principal axis

frame are

Π̇1 =

(

1

I3
−

1

λ2

)

Π2Π3 −
l3Π2

I3

Π̇2 =

(

1

λ1
−

1

I3

)

Π1Π3 +
l3Π1

I3
(3.1)

Π̇3 =

(

1

λ2
−

1

λ1

)

Π1Π2

l̇3 = u.

Although we shall work with the reduced equations as we have stated

them, it is important to keep in mind that these equations may be regarded
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as coming from a configuration space via either Hamiltonian or Lagrangian

reduction. The original or primitive configuration space is Q = SO(3)×S1,

corresponding to the rigid carrier and the rotor variables. There are two

commuting symmetry groups in the problem, namely the left action of

SO(3) and the right action of S1. For the constructions in this paper, the

symmetry group is regarded as G = S1, but we are also freely reducing

by the commuting group K = SO(3), as is convenient. It is clear that for

our general constructions that one can pass the ideas through a commuting

symmetry group reduction.

The Feedback Control and Hamiltonian Structure. If the control

force is zero, i.e., u = 0, then the S1 symmetry of the rotor gives the obvious

conservation law, namely that l3 is a constant of motion. Substituting

this conservation law into the remaining equations for the body angular

momentum, one finds that they are Hamiltonian with respect to the Lie-

Poisson bracket and with Hamiltonian function

H =
1

2

(

Π2
1

λ1
+

Π2
2

λ2
+

(Π3 − l3)
2

I3

)

+
1

2
l23.

The Lie-Poisson bracket used here is the standard one for so(3)∗, namely the

rigid body bracket. (See Marsden and Ratiu [1994] for general background.)

This Lie-Poisson structure follows by general properties of cotangent bundle

and Lie-Poisson reduction.

The feedback control law chosen in Bloch, Krishnaprasad, Marsden and

Sánchez de Alvarez [1992] is given by

u = k

(

1

λ2
−

1

λ1

)

Π1Π2, (3.2)

where k is a gain parameter.

With this feedback law, notice that the system retains the S1 symmetry

and has, by direct calculation, a new conserved quantity given by Pk =

l3 − kΠ3.

Eliminating the rotor variable using this conservation law leads to the

closed loop equations

Π̇1 = Π2

(

(1 − k)Π3 − Pk

I3

)

−
Π3Π2

λ2

Π̇2 = −Π1

(

(1 − k)Π3 − Pk

I3

)

+
Π1Π3

λ1

Π̇3 =

(

1

λ2
−

1

λ1

)

Π1Π2.
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Noteworthy special cases are

1. k = 0, the uncontrolled case,

2. k = J3/λ3, the driven case where α̇ = constant, so the rotors are

driven with constant angular velocity.

The preceding displayed equations are also Hamiltonian with

H =
1

2

(

Π2
1

λ1
+

Π2
2

λ2
+

((1 − k)Π3 − Pk)2

(1 − k)I3

)

+
1

2

P 2
k

J3(1 − k)
, (3.3)

again using the Lie-Poisson (rigid body) Poisson structure on so(3)∗. This

may be verified by a direct calculation, although the reasons for such a

structure may seem mysterious at this point. After all, the rotor is being

forced (work is being done!) and so why should the resulting equations be

Hamiltonian at all? Of course, there is no immediate contradiction since

the Hamiltonian is not simply the system kinetic energy. As we shall see,

this structure fits into the general scheme of the present paper.

How the Rigid Body with a Rotor fits the General Scheme. We

start with the free Lagrangian given, as mentioned, by the system kinetic

energy. We write it in reduced form, but it may be equally well regarded

as being defined on TQ. It is given by

L0 =
1

2
(λ1Ω

2
1 + λ2Ω

2
2) +

1

2
I3Ω

2
3 +

1

2
J3(Ω3 + α̇)2. (3.4)

Recall that the Euler-Poincaré equations for a Lagrangian l on a Lie

algebra g are given in coordinates by

d

dt

∂l

∂ξd
= Cb

ad

∂l

∂ξb
ξa (3.5)

where Cb
ad are the structure constants of the Lie algebra relative to a given

basis of g. See Marsden and Ratiu [1994] for a general discussion of these

equations and for their intrinsic formulation.

The equations (3.1) with u = 0 (and thought of as functions of the body

angular velocities) are readily checked to be the Euler-Poincaré equations

for the Lagrangian L0 on the Lie algebra g = so(3)×R. In the closed loop

case, we likewise get Euler-Poincaré equations on so(3).

As we also mentioned, the conserved quantity associated with the S1

action (the symmetry of the rotor) is

P0 = J3(Ω3 + α̇) = l3 .
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We choose σ to be the metric determined by L0; that is, we are going to

be in the pure Kaluza-Klein case in this example. Since our group is S1,

any (SO(3)-equivariant) horizontal one form must be a linear combination

of the carrier angular velocities (thinking of this as a one-form). We choose

it to be a multiple of Ω3. The particular multiple is chosen so that the

resulting control force is of the form given in equation (3.2). Namely, we

write

τ = −
k

1 − k

I3
J3

Ω3 := rΩ3, (3.6)

which defines r. We also choose σ to be the standard kinetic energy metric.

Construct, according to the general procedure, a new Lagrangian obtained

by replacing α̇ by α̇+ τQ and adding 1
2‖τQ‖2 ; one gets

Lτ,σ =
1

2
(λ1Ω

2
1 +λ2Ω

2
2)+

1

2
I3Ω

2
3 +

1

2
J3((1+r)Ω3 + α̇)2 +

1

2
J3(rΩ3)

2. (3.7)

Amazingly enough, one computes that the momentum conjugate to

α for this Lagrangian is Pk (up to a factor of 1 − k) and the resulting

Euler-Poincaré equations give the feedback controlled system! Thus, our

construction explains the otherwise “strange” Lagrangian and Hamiltonian

structures.

Stabilization. Once one has the problem in Lagrangian and hence

Hamiltonian form, one can proceed to use the energy-Casimir or energy-

momentum method to determine stability. This is often much more compu-

tationally efficient than an analysis of eigenvalues of the linearized equations

(which, in any case, need not imply nonlinear stability in the mechanical

case).

As in Bloch, Krishnaprasad, Marsden and Sánchez de Alvarez [1992],

we consider the case P = 0 and the special equilibrium (0,M, 0). The

energy-Casimir method then shows that

Proposition 3.1 For k > 1 − J3/λ2, the equilibrium (0,M, 0) is nonlin-

early stable.

Indeed, we look at H+C where C = ϕ(||m||2). Pick ϕ so that the first

variation vanishes:

δ(H + C)|(0,M,0) = 0,

One computes that δ2(H + C) is negative definite if k > 1 − J3/λ2 and

ϕ′′(M2) < 0, which proves the claim.

The stabilization that takes place as the gain is increased can be viewed

in terms of a modification of the phase portrait of the rigid body: the four
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heteroclinic orbits for the rigid body close up along the “hinge” joining the

two saddle points forming a circle of fixed points and then open up along

a “hinge” joining two stable points, forming a stability island where there

were saddle points previously.

The feedback control in effect modifies the Lagrangian to interchange

the moments of inertia of the system.

Other related examples can be treated in a similar way. For example,

one can use these techniques to stabilize a spinning Lagrange top (a heavy

top with a fixed point rotating in a gravitational field) using a torque control

on a rotor attached along the symmetry axis of the top.

Concluding Remarks.

As we have indicated, the technique in this paper can be combined with the

technique of Leonard [1996] who introduced symmetry breaking potentials

for purposes of stabilizing relative equilibria of underwater vehicles. (The

potentials can be for either rotational or translational symmetry breaking).

The nice thing is that the two methods can simply be concatenated; if the

“balance stability” has been achieved in some of the variables (here the

carrier angular velocity variables), then the symmetry breaking potentials

can be introduced by additional control forces that do not destroy the

achieved stability.

It is also expected that one can extend the techniques for purposes of

tracking by forming a tracking function T (t) by taking the function pro-

duced by the energy-Casimir method, but with the relative equilibrium

(which is a minimum of the function) replaced by the trajectory one wishes

to track. The fact that this trajectory is time dependent introduces an

explicit time dependence into the tracking function. One then computes

the total time derivative of T (t) under the influence of control forces and

requires that these control forces decrease T (t); thus, one is guaranteed

of tracking, perhaps approximately, its minimum. For a relative equilib-

rium obviously no control forces are needed. The tracking methodology

suggested by this approach is in the spirit of that of Koditschek and Rimon

[1990].
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