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Abstract

We use so-called energy dependent Schrödinger operators to establish a link between
special classes of solutions of N -component systems of evolution equations and finite
dimensional Hamiltonian systems on the moduli spaces of Riemann surfaces. We also
investigate the phase space geometry of these Hamiltonian systems and introduce de-
formations of the level sets associated to conserved quantities, which results in a new
class of solutions with monodromy for N -component systems of pde’s.

After constructing a variety of mechanical systems related to the spatial flows of
nonlinear evolution equations, we investigate their semiclassical limits. In particular,
we obtain semiclassical asymptotics for the Bloch eigenfunctions of the energy dependent
Schrödinger operators, which is of importance in investigating zero-dispersion limits of
N -component systems of pde’s.

Contents

1 Introduction

There are several circumstances in which semiclassical solutions and techniques are used
for nonlinear evolution equations. Of particular interest is the zero-dispersion limit. Direct
asymptotic expansions of the evolution equations typically yield equations of hydrodynamic
type. More sophisticated techniques for integrable systems employ limiting techniques and
WKB analysis in the context of the inverse scattering theory (see Lax and Levermore I, II,
III [1983], Venakidis [1987] and for a survey see Lax, Levermore and Venakidis [1993]). The
structure of integrable equations can also be exploited using complex geometric asymptotics
in this limit (see Alber [1989, 1991] and Alber and Marsden [1992]).
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Jin, Levermore and McLaughlin [1994] use a WKB-type expansion for the associated
scattering equations of the (d)NLS (defocusing nonlinear Schrödinger) equation and obtain
equations for the conserved quantities in Riemann invariant form for the semiclassical limit
(~ → 0). This work was extended in Bronski and McLaughlin [1994] who described the
formation of caustics in a numerical context and showed that an extension of hydrodynamic
type equations must be used to adequately account for the modulational instability of the
(f)NLS (focusing nonlinear Schrödinger) equation.

There have been many important developments in which the methods of complex and
algebraic geometry have been used to investigate the eigenfunctions of Hill’s operator in the
context of integrable equations. For example, Bloch eigenfunctions of Hill’s operators, which
are meromorphic on the associated spectral curves play an important role in the inverse
scattering transform method for nonlinear soliton equations. For details see Ablowitz and
Segur [1981], Newell [1985] and Ablowitz and Clarkson [1991].

Connections have also been established between special classes of solutions of many non-
linear equations and finite dimensional mechanical systems. Moser [1980,1981] and Knörrer
[1982] used one-dimensional Schrödinger equations with finite gap potentials (having a fi-
nite number of bands of continuous spectrum) and reflectionless potentials (having a finite
number of elements of discrete spectrum) to demonstrate a connection between the classical
C. Neumann problem and quasi-periodic and soliton solutions of the KdV equation. They
also established a connection between the C. Neumann problem and the Jacobi problem of
geodesics on quadrics.

For the C. Neumann problem, the spectral parameter appears linearly in the potential
of the corresponding Schrödinger equation: V = u− λ. In contrast, Antonowicz and Fordy
[1987a,b, 1988, 1989] and Antonowicz, Fordy and Liu [1991] investigated potentials with
poles in the spectral parameter for what they refer to as energy dependent Schrödinger
operators connected to certain systems of evolution equations. Specifically, they obtained
multi-Hamiltonian structures for N -component integrable systems of equations related to
the following isospectral eigenvalue problem:

Lψ =

(
∂2

∂x2
+
V

K

)
ψ = 0 , (1)

K =

M∑

j=0

kjλ
j; V =

N∑

j=0

vj(x, t)λ
j , (2)

where the kj are constants and the vj(x, t) are functions of the variable x, the parameter t
and the spectral parameter λ is complex. This includes the coupled KdV and Dym systems.
The presence of a pole in the potential was shown in Alber, Camassa, Holm and Marsden
[1994b, 1995] to be essential for the existence of weak billiard solutions of the nonlinear
equations including the Dym equation and equations in its hierarchy. The weak billiard
solutions can be obtained for all N -component systems.

Well known techniques exist for establishing a link between mechanical systems and
their quantum mechanical counterparts. One such technique uses the WKB method to
analyze asymptotic limits and thereby establish the corresponding semiclassical solutions
(modes). In this paper we use this technique to establish certain semiclassical limits of the
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spatial flows related to integrable nonlinear evolution equations. In this way we establish
a connection between special classes of solutions of nonlinear equations and mechanical
systems to form a semiclassical theory for these nonlinear equations.

In what follows we make several points. We use energy dependent Schrödinger operators
of the type (??) and their associated spectral curves to establish a link between special
classes of solutions of N -component systems of evolution equations and finite-dimensional
Hamiltonian systems on Riemann surfaces. We apply special limiting procedures (involving
the coalescence of roots of the basic polynomial of the spectral curve) to quasi-periodic
solutions to obtain a system with monodromy. This provides an example of a system of
pde’s with monodromy. Prior to this, such effects were related to mechanical systems and
their quantum counterparts such as the classical and quantum spherical pendulum (see
Cushman and Duistermaat [1988], Duistermaat [1988], and Alber and Marsden [1996]).

We also describe several mechanical systems that are associated with different classes of
solutions of N -component systems. All of these systems admit a geometric interpretation
in the form of geodesic flows on n-dimensional pseudo-spheres in the fields of different
potentials. Therefore they can be linked to the Laplace Beltrami operators in a way similar
to the method of geometric optics. These systems are solved using algebraic geometric
methods, and semiclassical approximations for eigenfunctions of Laplace Beltrami operators
having the form of complex WKB modes are studied. Using these elements we proceed to
investigate the monodromy of the semiclassical approximation to the spectrum.

To investigate the zero-dispersion limit of N -component systems one considers the class
of generalized Schrödinger equations

Lψ =

(
K

∂2

∂x2
+ V

)
ψ = 0 , (3)

where

K =
M∑

j=0

kjε
j , V =

N∑

j=0

vj(x, t)λ
j . (4)

These are similar to (??) and (??) except that the spectral parameters in the expansions
of K and V now have a different form. The parameter ε will be our small parameter
in this study. In this paper we investigate the asymptotic limit ε → 0 of the associated
Bloch eigenfunctions. Using this idea, we link Jacobi geodesic flows on quadrics and the
WKB approximation of the eigenfunctions of the stationary one-dimensional Schrödinger
equation.

Finally, we introduce time t into the system as a parameter and describe the dependence
of the WKB modes on this parameter.

2 Hamiltonian Systems on Riemann Surfaces and Solutions

of Nonlinear Equations

First we recall a link between quasi-periodic and soliton solutions of integrable nonlinear
equations and Hamiltonian systems on Riemann surfaces (see, for example, Alber, Ca-
massa, Holm and Marsden [1994, 1995]) established using algebraic geometric methods
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(see, amongst others, Ercolani and McKean [1990]). Both the inverse scattering transform
method for integrable systems (see Ablowitz and Segur [1981]) and method of generating
equations use a link between ends of the gaps of the continuous spectrum and elements of
the discrete spectrum of the Schrődinger operators and first integrals for integrable systems.
Potentials in the Schrődinger operator which yield finite gap structure of the spectrum and
discrete spectrum are called finite gap potentials and reflectionless potentials respectively.

The quasi-periodic solutions of many integrable nonlinear equations can be described in
terms of finite dimensional Hamiltonian systems on C

2n. A complete set of first integrals
for such equations can be obtained, for example, by the method of generating equations,
as is summarized in Alber, Camassa, Holm and Marsden [1994, 1995]. The method of
generating equations introduces a finite dimensional complex phase space C

2n and two
commuting Hamiltonian flows. The first Hamiltonian flow gives the spatial evolution, and
the other gives the temporal evolution of special classes of solutions of the original partial
differential equation. The level sets of the first integrals are Riemann surfaces having branch
points parameterized by the choice of values of the first integrals.

Consider the finite gap spectrum of the operator (??). (For details about the time
evolution of the eigenfunctions of generalized Schrödinger equations of this type and multi-
Hamiltonian structures associated with them, see Antonowicz and Fordy [1988, 1989].) In
some cases, such as the KdV equation, λ appears as an eigenvalue and one ultimately
equates the potential with a quasi-periodic solution of the nonlinear equation itself. In
other cases such as the NLS equation, a connection between the potential and solutions of
the equations is more complicated but can be established using the method of generating
equations.

To carry out the procedure, one begins by looking for a solution A of the Lax system

Lψ = 0(
∂L

∂t
+ [L,A]

)
ψ = 0



 (1)

of the form

A = B
∂

∂x
− 1

2

∂B

∂x
, (2)

where L is defined in (??). Substituting the given form of A into the Lax system, one
obtains

∂V

∂t
= −B

′′′

2
+ 2B′ V

K
+B

V ′

K
, (3)

where the prime denotes ∂/∂x. In what follows we will also sometime use a dot to denote
∂/∂t, so V̇ = ∂V/∂t.

Equation (??) is called the generating equation. Expanding B and V in the parameter
λ and equating like powers produces different hierarchies of integrable systems. In many
cases these expansions are polynomial in λ with coefficients depending on functions vj and
a finite number of their space derivatives as well as one time derivative. Note that a fixed
potential V produces a recurrence relation for one hierarchy of evolution equations. For
instance, if we take B to be polynomial of degree n, defining B = Bn =

∑n
j=0 bjλ

n−j, we
obtain the nth system of evolution equations with dependent variables vj (see (??)).
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Stationary solutions of any member of the hierarchy such that ∂V/∂t = 0 depend on
B and V , but the evolution variable, t, becomes a parameter. Setting ∂V/∂t = 0 in (??),
multiplying by BK and integrating once produces the stationary generating equation,

K

(
−B′′B +

B′2

2

)
+ 2B2V = C(λ) , (4)

where C(λ) is a polynomial in λ of order (2n+N). A similar equation was first obtained in
connection with the KdV equation in Gelfand and Dikey [1975] by investigating asymptotics
of resolvents of the Sturm-Liouville equations.

The evolution of B is obtained using a dynamic generating equation. At each instant,
that is for each value of the parameter t, B is a solution of the the stationary generating
equation (??). Differentiating (??) with respect to t and requiring consistency with (??)
yields,

Ḃn = B′
nBl −B′

lBn, i.e,
∂

∂t

(
1

Bn

)
=

∂

∂x

(
Bl

Bn

)
, (5)

where Bl =
∑l

j=0 bjλ
n−j is a solution of the dynamical generating equation (??). This

determines the time evolution of the functions B. A proof is given, for example, in Alber
and Alber [1987] and Alber et al . [1994]. Here the n corresponds to the number of roots of
the spectral polynomial. These may be endpoints of gaps or isolated poles corresponding
to solitons. Thus, n is the dimension of the solution space and l labels the equation in the
hierarchy.

To show how the generating equations yield the quasi-periodic n-gap solutions of evolu-
tion equations, one introduces the roots, µ, of B = Bn =

∏n
j=1(λ − µj(x, t)). Substituting

λ = µj, j = 1, ..., n one by one into (??) one obtains a system of ordinary differential
equations for the spatial flow of the µ-variables:

µ
′

j =
1∏n

r 6=j(µj − µr)

√
C(µj)

K(µj)
, j = 1, ..., n . (6)

The motion in t is produced by substituting λ = µj with B this time in (??) so that,

µ̇j =
Bl(µj)∏n

r 6=j(µj − µr)

√
C(µj)

K(µj)
, j = 1, ..., n . (7)

Solutions of this system of equations for µj(x, t) can be related to the vj(x, t) to obtain
solutions of the original hierarchies of evolution equations generated by (??). Basic facts
about these systems are therefore of great interest. The systems (??) and (??) have a
Hamiltonian structure with

H =

n∑

j=1

D(µj)
(
P 2

j − C(µj)
K(µj)

)

∏n
r 6=j(µj − µr)

, j = 1, ..., n , (8)
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where D(µj) = 1 and D(µj) = Bl(µj) in the stationary and dynamical cases, respectively.
The two Hamiltonian flows have the same set of first integrals, whose zero level sets are,

P 2
j =

C(µj)

K(µj)
, j = 1, ..., n . (9)

One can think of C
2n as being the cotangent bundle of C

n, with configuration vari-
ables µ1, . . . , µn and with canonically conjugate momenta P1, . . . , Pn. The two commuting
Hamiltonians on C

2n both have the form

H =
1

2
gjjP 2

j + V (µ1, . . . µn) , (10)

where gjj is a Riemannian metric on C
n. The two Hamiltonians are distinguished by

different choices of the metric but they have the same set of first integrals (??). Thus, two
commuting flows are obtained on the symmetric product of n copies of the Riemann surface

R : P 2 =
C(µ)

K(µ)

defined by the first integrals. It is called the spectral curve associated with the completely
integrable problem. Branch points of the Riemann surface are given by the roots of C(λ)
and K(λ). (For details about completely integrable systems on complex tori see Ercolani
and McKean [1990]). These Riemann surfaces can be regarded as complex Lagrangian
submanifolds. This is called the µ-representation of the problem. Sometimes the µ variables
are also called Dirichlet eigenvalues or an auxiliary spectrum. The µ variables move along
cycles on the corresponding Riemann surface in accordance with the equations (??) and
(??), which define their motion over the basic cuts on the Riemann surface whose endpoints
are the endpoints of the gaps in the spectrum of the associated operator (??).

In the case of quasi-periodic and soliton solutions, one obtains compact and noncompact
Riemann surfaces (see for example Alber and Marsden [1992, 1994] and §3 and §4 of this
paper). The µ-representation yields complex angle representations on Jacobi varieties in
a way described in Alber et . al . [1994, 1995]. This yields, amongst other things, a repre-
sentation of the µ-variables in terms of θ and τ -functions (see McKean[1979] and Mumford
[1983]). In the last step, the solution of the initial nonlinear equation is expressed in terms
of the µ-variables.

In the µ-representation the calculation of modulation equations is facilitated. Whitham
equations can be obtained in terms of holomorphic and meromorphic differentials. They
describe the slow modulation of branch points on the Riemann surfaces (see Flaschka,
Forest and McLaughlin [1980]). Notice that the monodromy effect to be described in §4 is
important in investigating Whitham equations of N -component systems.

In the most general case, the µ-representation describes a geodesic flow for the metric
ds2 =

∑n
j=1 gjjµ

j2
on complex Riemannian manifolds. Classification of all such metrics

which yield separation of variables in Hamilton-Jacobi equations and integrability of the
geodesic flows has been investigated recently in Benenti et al . [1995]. In the context of their
paper µ-variables are viewed as generalized elliptic coordinates.
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We will use this interpretation of the µ-variables in the next section to clarify a connec-
tion to mechanical systems. Namely, the procedure outlined in this section also produces
many important classical as well as new integrable mechanical systems with Hamiltonians
of the form (??) for particular choices of B and V . These expansions can also be used
to obtain semiclassical solutions of the eigenvalue problem represented by L in (??) and
yields asymptotics for the Bloch eigenfunctions. These finite dimensional representations
also permit the analysis of a connection between caustic envelopes in the phase space of
these mechanical systems and Maslov-Keller indices in the semiclassical approximation of
the spectrum of the Laplace-Beltrami operators (see Alber [1989, 1991], Alber and Marsden
[1992] and §6 and §7 of this paper).

3 The Family of Homoclinic Orbits Described as Hamilto-

nian Flows on a Riemann surface

Here we recall the µ representation for the quasi-periodic and homoclinic Hamiltonian flows
of the classical C. Neumann problem of mechanics.

Devaney [1978] investigated homoclinic orbits of the C. Neumann problem. Moser [1981]
studied equilibrium solutions possessing stable and unstable manifolds for this mechanical
problem in connection with the spectral theory of finite gap and reflectionless potentials
of Schrődinger operators and quasi-periodic and soliton solutions of the KdV equation. In
particular, it was shown that equilibrium solutions are associated with the reflectionless
potentials which correspond to a set of negative double points of the discrete spectrum.

Here we show that a special limiting process applied to the quasi-periodic µ representa-
tion leads to the introduction of a new set of first integrals and exponential Hamiltonians
for homoclinic orbits. (See Alber and Marsden [1994] for details). This approach will be
applied in the next section to the 2-component Dym system to describe special classes of
solutions with monodromy.

The system of first integrals introduced by Devaney and Uhlenbeck (see Devaney [1978])
for the C. Neumann problem, namely

Fj(y, ẏ) : TSn → R , (1)

Fj(y, ẏ) = y2
j +

1

2

∑

k 6=j

(ẏjyk − ẏkyj)
2

l2k − l2j
, j = 1, ..., n (2)

plays a central role in Devaney’s [1978] description of transversal homoclinic orbits. Here

l0 < l1 < ... < ln and l0 = 0 .

Namely, he proved that the first integrals are identically zero along the orbits; i.e.,

Fj(y, ẏ) = 0 , j = 1, ..., n . (3)
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We shall use this observation together with the µ representations for the quasi-periodic
flows of the C. Neumann problem, i.e., solutions of the system

∂µj

∂x
= 2

√
−
∏n

r=1(µj −mr)
∏n+1

k=1(µj − ak)∏
i6=j(µj − µi)

, j = 1, ..., n . (4)

In accordance with the general result described in §2, this system is defined on the the
symmetric product

Γ : (<× . . .×<)/σn (5)

of n copies of the Riemannian surface

< : P 2 = −
n+1∏

k=1

(µ− ak)
n∏

r=1

(µ−mr) ; (6)

in fact, Γ is a Lagrangian submanifold of the phase space C
2n. In this setting, the first

integrals of the problem can be represented in the form

Fj =

∏n
r=1(aj −mr)∏
k 6=j(aj − ak)

. (7)

Here,
aj = −2l2j , j = 0, ..., n ,

and the constants mr and aj are the endpoints of the gaps in the spectrum of the associated
Schrödinger equation. Condition (??) and formula (??) yield the following choice of first
integrals mj:

mj = aj = bj , j = 1, ..., n; a0 = 0 , (8)

which corresponds to a homoclinic orbit, meaning that all roots of the basic polynomial of
the Riemannian surface (??) are double negative roots, except a0 = 0.

The system (??) corresponding to the case of a singular spectrum (??) coincides with
the system of equations describing profiles of the soliton solutions of the KdV equation;
that is, with

∂µj

∂x
= 2

√−µj

∏n
k=1(µj − bk)∏

i6=j(µj − µi)
, j = 1, ..., n . (9)

This system may be rewritten as

∂µj/∂x

(µj − br)
= 2

√−µj

∏n
k 6=r(µj − bk)∏

i6=j(µj − µi)
, j = 1, ..., n; r = 1, ..., n . (10)

Summing with respect to j = 1, ..., n for each r and integrating, one obtains the following
angle variables

θr =

n∑

j=1

1

2

∫ µj

µ0

j

dµj√−µj(µj − br))
= x+ θ0

r , r = 1, ..., n . (11)
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The corresponding action function and action variables can be chosen as follows

S =

n∑

j=1

1

2

∫ µj

µ0

j

log(µj − br)dµj√−µj
, Ir = ar , r = 1, ..., n . (12)

This results in θr = −∂S/∂Ir and so leads to the following form of the first integrals:

Pj =

∑n
k=1 log(µj − bk)

2
√−µj

, j = 1, ..., n . (13)

This gives a new Hamiltonian on C
2n that is of exponential type for the system (??) de-

scribing the family of homoclinic orbits, namely

H =

∑n
j=1(e

2
√

−µjPj − C̄(µj))∏
r 6=j(µj − µr)

, (14)

where C̄(µ) =
∏n

k=1(µ− ak). Note that the flow of (??) is defined on the noncompact level
sets of (??) and it is linearized in terms of the angle variables (??).

The homoclinic angle representations (??) are defined on a noncompact Jacobi variety
J . The variety J is defined by a generalized Abel Jacobi map (??), as in Ercolani [1989].
This map is associated with <n, the symmetric product of n copies of the Riemann surface

< : P =
1

2
√−µ

∏n
r=1(µ− br)

. (15)

Let the double covering of <n be denoted <̃n. This covering is defined by the following
change of variables

ξ2j = −µj , β2
j = −bj , j = 1, ..., n . (16)

The Hamiltonian (??) defines a dynamical system on <n, which lifts to a dynamical system

on <̃n. An analysis of the angle representation (??) shows that the system has a homoclinic
point b = (b1, ..., bn) on <n as x→ ∞ (or x→ −∞) and, correspondingly, two heteroclinic

points β+ and β− on <̃n associated with the following values of µj:

µj = bj , j = 1, ..., n . (17)

(For details see Alber and Marsden [1994].)
The stable W s (and unstable W u) manifolds of the point b are coincident and consist of
the orbits in <n that are forward (and backward) asymptotic to the homoclinic point b.
On the other hand, the unstable manifold of the point β+ connects it to the point β− in
<̃n and similarly for the stable manifold; these heteroclinic manifolds cover the homoclinic
manifold in <n.
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4 Solutions with Monodromy for the 2-component Dym Sys-

tem

For the C. Neumann problem, the spectral parameter appears linearly in the potential of the
corresponding Schrödinger equation. However, in other systems of interest, this dependence
is more complicated. In this section we discuss such systems; specifically, we consider Hamil-
tonian systems on Riemann surfaces that are associated with energy dependent Schrödinger
operators. In these systems, the dependence of the potential on the spectral parameter can
have a pole. We also consider N -component systems of equations, using the hierarchy of
the 2-component Dym systems as an example. In particular, we construct special solutions
with monodromy for these systems of equations.

Using the method described in §2 and §3 with a potential of the form

V = u(x, t) + λ+
v(x, t)

λ
,

and the dynamical recurrence chain for coefficients bj obtained from the dynamical gen-
erating equation (??) by setting B(x, λ) = b0(x)λ + b1(x) and equating coefficients of the
same power of λ, one obtains the following system of coupled pde’s which is called the first
member of the hierarchy of the 2-component Dym systems,

∂u

∂t
=

1

4
u′′′ − 3

2
uu′ + v′ ,

∂v

∂t
= −u′v − 1

2
uv′ .





(1)

Notice that the choice of polynomial Bl(x, λ) = b0(x)λ
l + . . .+ bl of the l’th order yields the

l’th integrable system of evolution equations of the 2-component Dym hierarchy.
In what follows, we will introduce a Hamiltonian structure for the set of quasi-periodic

solutions of the equations from the hierarchy of 2-component Dym systems. Certain lim-
iting procedures applied to this Hamiltonian system will then yield special solutions with
monodromy.

One obtains µ-representations for the l’th system from the hierarchy after substituting
E = µj into the generating equations (??) and (??):

µ
′

j =
1∏n

r 6=j(µj − µr)

√
C(µj)

µj
, j = 1, ..., n , (2)

µ̇j =
Bl(µj)∏n

r 6=j(µj − µr)

√
C(µj)

µj
, j = 1, ..., n , (3)

where

C(µj) = −L2
0

2n+2∏

k=1

(µj −mk) ,
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l labels the number of a system in the 2-component Dym hierarchy, and L0 is a constant.
In the case l = 1 one obtains µ-representations for the system (??). Each of the µ-variables
is defined on a copy of the Riemann surface

< : P 2 =
C(µ)

µ
. (4)

Recall that the µ variables move along cycles on the corresponding Riemann surface (??)
over the basic cuts between m2j and m2j−1, j = 1, ..., n.

Equations (??) and (??) define Hamiltonian systems with the Hamiltonians

H =
n∑

j=1

D(µj)

(
P 2

j − C(µj)

µj

)

∏n
r 6=j(µj − µr)

, (5)

where D(µj) = 1 and D(µj) = Bl(µj) in the stationary (??) and dynamical (??) cases,
respectively. These have the following common set of first integrals

P 2
j =

C(µj)

µj
, j = 1, ..., n . (6)

Now we construct a system of action-angle variables to linearize quasi-periodic Hamiltonian
flows using a method similar to the one described in §3.

Here we are dealing with a degenerate system because, as will be shown below, the genus
of the associated Riemann surface is (n + 1) and yet we have only n µ-variables. Related
to this, there is also a degeneracy in the problem of inversion.

This degeneracy can be resolved by introducing an additional µn+1 variable, solving the
problem of inversion in terms of Riemann Θ functions on the (n+ 1)-dimensional Jacobian
and then setting µn+1 equal to a constant m2n+2 at the end. This is equivalent to projecting
a class of solutions of the enlarged (n+ 1)-dimensional Hamiltonian system onto a subclass
of solutions defined on an n-dimensional subspace in phase space.

After introducing µn+1 into (??) and (??) and adding a pair of equations for the µ′n+1

and µ̇n+1, rearranging the resulting system of equations, summing and using Lagrange-type
interpolation formulas, one obtains the following expressions

n+1∑

j=1

µk+1
j µ

′

j√
C(µj)µj

=
n+1∑

j=1

µk
j∏n+1

r 6=j (µj − µr)
= δn−1

k ,

n+1∑

j=1

µk+1
j µ̇j√
C(µj)µj

=

n+1∑

j=1

µk
jB2(µj)∏n+1

r 6=j (µj − µr)
= δn−2

k ,





(7)

where δ is the Kronecker delta. After integrating (??), one obtains the action-angle vari-
ables:

θk =

n+1∑

j=1

∫ µj

µ0

j

µk+1
j dµj√
C(µj)µj

= δn−1
k x+ δn−2

k t+ θ0
k , Ik = c2n−k+1 , k = 0, ..., n , (8)
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where c2n−k+1 are coefficients of the polynomial C(µ) and θ0
k are constants. The above

integrals are taken along cycles aj over basic cuts on the Riemann surface

< : W 2 = C(µ)µ , (9)

which has genus g = n+ 1. The system (??) is equivalent to a Jacobi problem of inversion.
It can be solved for µj , j = 1, . . . , n + 1 as functions of x and t in terms of Riemann
Θ-functions (see for example Ercolani and McKean [1990] and Alber and Alber [1987]).
Finally, we obtain the solution of our Hamiltonian system by setting µn+1 = m2n+2.

On the other hand, after setting m2n+2 = m2n+1 = b in the initial Hamiltonian systems
(??) and (??) there is no need to introduce an additional µ variable. This yields in the
manner described above, a system of angle variables

θk =
n+1∑

j=1

∫ µj

µ0

j

µk+1
j dµj

(µj − b)
√
C̄(µj)µj

= σk,1x+ σk,2t+ θ0
k , k = 0, ..., n − 1 , (10)

where C̄(µj) =
∏2n

k=1(µ−mk) and σk,1, σk,2 are constants. This can be viewed as a problem
of inversion with a singularity at µ = b, resulting in a phenomenon of monodromy for the
Hamiltonian system which can be demonstrated as follows.

We define a Jacobian fibration with the base parametrized by roots of the basic polyno-
mial C(λ)λ of the Riemann surface (??). Now, moving b along a certain closed loop in the
space of parameters (the base of the fibration) can lead to a nontrivial shift in the action
angle variables. Consider first the case n = 1. The limiting process m3,m4 → b applied to
the quasi-periodic angle variables yields the angle variable

θ1 =

∫ µ1

µ0

1

µ1dµ1

(µj − b)
√

−µ1(µ1 −m1)(µ1 −m2)
= L0x+ θ0

1 . (11)

In the case of n = 2, the limiting angle variables are as follows

θ1 = − ∂S

∂β1
=

∫ µ1

µ0

1

µ1dµ1

(µ1 − b)
√
C5(µ1)

+

∫ µ2

µ0

2

µ2dµ2

(µ2 − b)
√
C5(µ2)

= θ0
1 ,

θ2 = − ∂S

∂β2
=

∫ µ1

µ0

1

µ1dµ1√
C5(µ1)

+

∫ µ2

µ0

2

µ2dµ2√
C5(µ2)

= L0x+ θ0
2 ,





(12)

where

S =

∫ µ1

µ0

1

√
C5(µ1)dµ1

µ1 − b
+

∫ µ2

µ0

2

√
C5(µ2)dµ2

µ2 − b

is an action function and

C5(µ) = −µ(µ−m1)(µ−m2)(µ−m3)(µ−m4) .

The variables µ1 and µ2 move along cycles a1 and a2 over the cuts [m1,m2] and [m3,m4] on
the Riemann surfaceW 2 = C5(µ). There is also a singularity at µ = b. Transport of a system
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of canonical action-angle variables, which linearize the Hamiltonian flow, along a certain
loop in the space of parameters (b,mj) in a way similar to the case of the spherical pendulum
and some other integrable systems with monodromy (see, for example, Duistermaat [1980]
and Bates and Zou [1993]) will result in a nontrivial shift, which is a manifestation of the
monodromy phenomenon. This can be demonstrated as follows. Canonical actions are
calculated in terms of periods of the differential

Ij =

∮

aj

dS =

∮

aj

√
C5(µ)dµ

µ− b
,

along cycles aj on the Riemann surface; for details see Arnold [1978]. Now suppose initially
that b does not belong to any of the cycles a1 and a2. Then moving b along a closed loop
on the Riemann surface around one of the branch points mj , one continuously transforms
one of the a-cycles. At some moment b becomes a branch point itself, which results in a
shift of the action variable that is given by the residue of the integrand at µ = b.

Flaschka, Forest and McLaughlin [1980] proposed the use of µ-representations in calcu-
lations of modulation equations and showed that in case of the KdV equation, Whitham
theory can be described in terms of holomorphic and meromorphic differentials on the
moduli spaces of Riemann surfaces. Namely, they described the slow modulation of branch
points of the Riemann surfaces.

The monodromy effect described in this section provides an example of a singularity of
Whitham type equations. It has to be taken into account in the investigation of modula-
tional theory of the N -component systems.

5 Mechanical Systems and Nonlinear Equations

In §2 we recalled the link between quasi-periodic solutions of integrable nonlinear equations
and Hamiltonian systems on Riemann surfaces established using generating equations and
algebraic-geometric methods. Here we expand on this by generating the Euler-Lagrange
equations for some well known mechanical problems. This establishes a link between such
systems and the stationary Hamiltonian flows for classes of solutions of integrable nonlinear
pde’s. (See, for example, Alber et al . [1994, 1995] for additional information.) This will be
used in §6 to study the semiclassical theory of such solutions.

One obtains the Euler-Lagrange equations, using the method of generating equations
described in §2 and by changing variables in B(x, λ) from µ’s to q’s:

B(x, λ) =
n∏

i=1

(λ− µi(x, t)) =
n+1∑

j=1

n+1∏

r=1,r 6=j

(λ− lr)q
2
j (x) . (1)

We also denote

W (λ) =
C(λ)

K(λ)
=

∏2n+N
r=j (λ− lj)
∏M

j=r(λ− ar)
,

where λ is a complex parameter and the constants lj and ar will be shown to be determined
by the parameters and first integrals of the particular mechanical system.
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The expression (??) can be viewed as a definition of generalized elliptic µ coordinates
on Riemann surfaces. Coordinates q2j = x2

j/lj are normalized cartesian coordinates of a
particular mechanical system. Equating coefficients for the λn in (??) yields

n+1∑

j=1

q2j =
n+1∑

j=1

x2
j

lj
= 1 . (2)

The parameters lj can be complex and so (??) defines a pseudo-sphere in C
n+1 and provides

a constraint for the Euler-Lagrange equations.
In terms of the q-variables, our mechanical problems may be thought of as problems

of geodesics on the pseudo-sphere (??) in the presence of a potential. In §6 we link them
to the Laplace Beltrami operators in a way similar to the method of geometric optics and
study semiclassical approximations for eigenfunctions of Laplace Beltrami operators having
the form of complex WKB modes.

Substituting B and V into (??) and setting λ = lr one by one, a system of equations is
generated for the functions qj(x). Below we obtain several different integrable systems for
different choices of the potential V (x, λ).

Recall (from Moser [1981]) the classical C. Neumann and Jacobi problems. The C.
Neumann problem for the motion of a particle on the n-sphere in the field of a quadratic
potential corresponds to V = u(x) − λ. Substituting (??) into (??), and setting λ = lr one
by one, yields a system of Euler-Lagrange equations,

q′′j − qj(u− lj) = 0 , j = 1, ..., n + 1 ,

corresponding to the Lagrangian

L =

n+1∑

j=1

q′j
2
+ u




n+1∑

j=1

qj
2 − 1


−

n+1∑

j=1

ljqj
2 .

Notice that the Euler-Lagrange equations and constraint
∑n+1

j=1 qj
2 = 1 yield the following

expression for u:

u(x) =
n+1∑

j=1

ljqj
2 −

n+1∑

j=1

q′j
2
.

The function u plays the role of Lagrange multiplier.
For the Jacobi problem of geodesics on n-dimensional quadrics (free motion on quadrics),

one takes

V =
u(x)

λ
,

and the Euler-Lagrange equations are

q′′j − qj
u

lj
= 0 ,
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where lj are semiaxis of the ellipsoid. Here the Lagrangian and u are as follows

L =
n+1∑

j=1

ljq
′
j
2
+ u




n+1∑

j=1

qj
2 − 1


 , u(x) =

∑n+1
j=1 q

′
j
2

∑n+1
j=1

q2

j

lj

.

Next we consider a linear combination of the potentials for the C. Neumann and Jacobi
problems. (Mechanical systems associated with this potential were discussed in Braden
[1982]). Here we are interested in the connection between this problem and the spatial flow
for a particular class of solutions of the system of coupled pde’s (??).
Here, V = u(x) + λ+ v(x)/λ and the Euler-Lagrange equations are

q′′j − qj

(
u+ lj +

v

lj

)
= 0 ,

with the constraint
∑n+1

j=1 qj
2 = 1. The Lagrangian and the potential are as follows:

L =

n+1∑

j=1

q′j
2
+ u




n+1∑

j=1

qj
2 − 1


+

n+1∑

j=1

ljqj
2 − 1

∑n+1
j=1

q2

j

lj

,

u(x) = −
n+1∑

j=1

q′j
2 −

n+1∑

j=1

ljqj
2 +

1
∑n+1

j=1

q2

j

lj

.

Here we are using

v(x) =
1

(∑n+1
j=1

q2

j

lj

)2 ,

which is obtained from a recurrence chain generated by (??).
Now consider the flow for the Camassa-Holm shallow water equation (see Alber et al .

[1994]). Here

V = 1 +
u(x)

λ

and

q′′j − qj

(
u

lj
+ 1

)
= 0 .

The Lagrangian and potential are as follows

L =
n+1∑

j=1

q′j
2
+ u




n+1∑

j=1

qj
2 − 1


− 1

∑n+1
j=1

q2

j

lj

, u(x) = −
n+1∑

j=1

q′j
2
+

1
∑n+1

j=1

q2

j

lj

.

The next example is provided by the spatial flow for a generalization of the shallow water
equation. Calogero and Degasperis [1982] studied an interesting new class of integrable
mechanical systems. We generalize this class by considering a 2-component case whose
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associated system of coupled pde’s has the form of a coupled system of equations of shallow
water type. Here,

V = u(x) +
v(x)

λ
,

and

q′′j − qj

(
u+

v

lj

)
= 0 .

The Lagrangian and potential are as follows

L =

n+1∑

j=1

ljq
′
j
2
+ v




n+1∑

j=1

qj
2 − 1


− u

∑n+1
j=1

q2

j

lj

, u(x) = −
n+1∑

j=1

q′j
2
+

1
∑n+1

j=1

q2

j

lj

.

See Appendix 1 for the mechanical system associated with the 2-component KdV system.

6 Complex Semiclassical Solutions

Recall that solutions of integrable systems can be reduced to finite-dimensional Hamiltonian
systems with the commuting x and t flows as outlined in §2. Hamiltonian flows for a variety
of important integrable mechanical systems are constructed using the same techniques and
are linked to the spatial flows for particular classes of solutions of the nonlinear pde’s.

Each of these flows can be characterized by a Hamiltonian of the form (??). Here
we discuss the semiclassical limits of the associated Laplace-Beltrami operators for these
systems. In what follows, we recall from Alber [1989, 1991] and Alber and Marsden [1992],
a method of complex geometric asymptotics for integrable Hamiltonian flows on Riemann
surfaces. We will use geometric asymptotics to describe the quantization conditions of
Bohr-Sommerfeld-Keller (BSK) type. Then we will investigate the dependence of these
conditions on the parameters (i.e., the first integrals) of the system. This dependence near
singularities produces effects caused by the classical and semiclassical monodromy.

Let us consider quadratic complex Hamiltonians of the form (??) defined on C
2n. We

think of C
2n as being the cotangent bundle of C

n, with configuration variables µ1, . . . , µn

and with canonically conjugate momenta P1, . . . , Pn.
Notice that the Hamiltonians for quasi-periodic solutions of the systems considered in

the previous sections are indeed of this form. We consider the functions gjj as components
of a (diagonal) Riemannian metric, construct the associated Laplace-Beltrami operator, and
then the stationary Schrödinger equation

∇j∇jU + w2(E − V )U = 0 , (1)

defined on the n-dimensional complex Riemannian manifold C
n. Here ∇j and ∇j are

covariant and contravariant derivatives defined by the tensor gjj and w (which is the inverse
of Planck’s constant ~) and E (the energy eigenvalue) are parameters. Note also that in
general, the metric tensor is not constant, and even may have singularities, so that the
kinetic term in the expression for H is not purely quadratic.
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Now we establish a link between (??) and the Hamiltonian system (??) by means of
geometric asymptotics; namely, we consider the following function that is similar to the well
known Ansatz from WKB theory:

U(z1, . . . , zn) =
∑

k

Ak(µ1, ..., µn) exp[iwSk(µ1, ..., µn)] ,

=
∑

k

n∏

j=1

Ukj(µj) =
∑

k

n∏

j=1

(Akj(µj) exp[iwSkj(µj)]) , (2)

which is a multivalued function of several complex variables defined on C
n. If, instead, one

considers U to be defined on the covering space of the Jacobi variety of the problem, then
U becomes single valued. The functions present in this expression together with r, which
denotes a vector of Maslov indices, will be determined below. Note that k also labels the
classical paths between initial and current points in the configuration space.

Substituting (??) in (??), equating coefficients for w and w2 and integrating, we obtain
the amplitude function A, which is a solution of the transport equation, in the form

A =
A0√

(D detJ)
, (3)

where D =
√∏n

l=1 gll is the volume element of the metric and J is the Jacobian of the
change of coordinates from the µ-representation to the angle θ-representation. We also find
that the phase function S is a solution of the Hamilton-Jacobi equation

∆jS∆jS − V = E , (4)

so that it coincides with the action function. Finally, we describe the dependence of the
WKB modes (??) on t as a parameter, by introducing commuting t-flow for the µ variables
described by (??).

7 Semiclassical Monodromy

Now we can apply the constructions that have been developed above to the case of the special
class of solutions of the 2-potential Dym system for n = 2 (see §4). The Hamiltonian and
complex geometric asymptotic solution in this case have the form:

H =
1

2

P 2
1 − C5(µ1)

µ1 − b

µ1 − µ2
+

1

2

P 2
2 − C5(µ2)

µ2 − b

µ2 − µ1
. (1)

and

U =
∑

k=(k1,k2)

A0

√
µ1µ2

((µ1 − b)(µ2 − b))
1

2 (C5(µ1)(C5(µ1))
1

4

exp [iwSk1(µ1) + Sk2(µ2)] , (2)
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where

Sk1(z1) =

∫ µ1

µ0

1

√
C5(µ1)dµ1

µ1 − b
+ k1T1 +

r1π

4
, (3)

Sk2(z2) =

∫ µ2

µ0

2

√
C5(µ2)dµ2

µ2 − b
+ k2T2 +

r2π

2
, (4)

and where r = (r1, r2) is a vector of Maslov indices and

T1 =

∮

a1

√
C5(µ2) dµ2

µ2 − b
,

T2 =

∮

a2

√
C5(µ2) dµ2

µ2 − b
.





(5)

The amplitude A has singularities at the branch points µ1 = m1,m2, µ2 = m3,m4 and at
an additional singular point b on the associated Riemann surface. Each time a trajectory
approaches one of these singularities, we continue it to complex x and go around a small
circle in the complex plane enclosing the singularity. This results in a phase shift (±iπ/2)
of the phase function S, which is common in geometric asymptotics. The indices k1 and k2

keep track of the number of oriented circuits for µ1 and µ2 around a1 and a2. The complex
mode (??) is defined on the covering space of the complex Jacobi variety. Note that in the
real case, this complex mode is defined on the covering space of a real subtorus. Keeping
this in mind, quantum conditions of BSK type can be imposed as conditions on the number
of sheets of the covering space of the corresponding Riemann surface for each coordinate µ1

and µ2:
π

2
r1 + wk1T1 = 2πN1 ,

π

2
r2 + wk2T2 = 2πN2 .





(6)

Here N1, N2 are integer quantum numbers related to each other and to integer indices k1, k2

and r1, r2 as follows

w =
2πN1

k1T1
=

1

k2T2

(
2πN2 −

πr2
2

)
, (7)

which is an asymptotic formulae for the eigenvalues of the stationary Schrödinger equation
(??). (For details about Maslov-Keller indices and quantum conditions see amongst others
Robbins [1991] and Alber [1989, 1991].) Maslov-Keller indices play an important role in
numerical study of the semiclassical limit of the NLS equations presented in Jin, Levermore
and McLaughlin [1994].

Notice that the quantum conditions (??) include a monodromy part after transport
along a closed loop in the space of parameters.
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8 The Stationary Schrödinger Equation, Bloch functions and

Complex WKB Solutions

Lastly we contrast semiclassical approximations for the Bloch eigenfunctions to the approach
of §6 which uses a Riemannian metric associated with the complex Hamiltonian system
associated with finite-dimensional solution space.

Namely we show how to obtain semiclassical approximations for the Bloch eigenfunctions
of the operators defined in (??) and (??) and used in the inverse scattering transform theory
(see Ablowitz and Segur [1981]). The equation (??) is a natural generalization of a one-
dimensional stationary Schrödinger equation

− ~
2

2m

∂2ψ

∂x2
+ (V (x) − λ)ψ = 0 , (1)

which we rewrite

−∂
2ψ

∂x2
+ V (x, λ, ε)ψ = 0 , (2)

where

V (x, λ,E) =
U(x, λ)

ε
, U(x, λ) = 2m(u(x) − λ) , (3)

and ε = ~
2. In our notation ε will be the complex parameter, and we will treat it indepen-

dently from the energy λ. As usual, the WKB method is used to approximate ψ for small
values of the parameter ε. In what follows we will use (??) to demonstrate semiclassical
theory for the operators defined in (??).

We look for a solution of (??) in the form of a Bloch function

ψ =

√
B

B0
exp

(
±
∫ x

x0

√
C

B
dx

)
, (4)

where B = B(x, ε) is a function of x and ε, C = C(ε) is a function of ε, and B0 is a constant
defined by the initial data. This gives a solution of (??) if and only if

−B′′B +
B′2

2
+ 2B2V = C , (5)

as can be checked by direct substitution. This equation was first obtained in connection with
the KdV equation in Gelfand and Dikey [1975] by investigating asymptotics of resolvents
of the Sturm-Liouville equations.

Notice that (??) is just the stationary generating equation (??). We choose B(x, ε) in
the form of a polynomial of ε and C(ε) to be a rational function with constant coefficients:

B(x, ε) =
n∑

l=0

bl(x)ε
n−l , C(ε) =

1

ε

2n∑

k=0

ckε
2n−k. (6)

The equation (??) with potential (??) coincides with the generating equation for the
geodesic flow on an n-dimensional quadric. It was shown (see Cewen [1990] and Alber
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et al . [1994, 1995]) to provide an x-flow for a partial differential equation of Dym type. The
equation (??) yields a chain of recurrence relations between the coefficients bl and ck. (for
details see Alber et al . [1994, 1995]). In particular we have

V =
c2n

b2n
,

and therefore

bn =

√
c2n

2m(V − E)
.

As ε → 0, the functions C(ε) and B(ε) are asymptotic to
c2n

ε
and bn. This yields the

following asymptotics for the Bloch function

ψ =
ψ0

(u− E)
1

4

exp

(
± i√

ε

∫ x

x0

√
2m(u−E)dx

)
, (7)

which is precisely a well-known WKB solution of the one-dimensional Schrödinger equation
(??). A similar procedure produces asymptotics for Bloch functions corresponding to po-
tentials with poles can be carried out using recurrence relations and geodesic flows on the
associated Riemann surfaces. For example, a WKB solution in the case of the 2-potential
Dym system described above has the form

ψ =
ψ0

v
1

4

exp

(
± i√

ε

∫ x

x0

√
2mv dx

)
. (8)

The Bloch function contains all necessary information about the finite gap spectrum and the
associated Riemann surfaces. It is an ideal object for applying zero-dispersion limit theory.
In the future, we intend to apply this approach to the semiclassical theory of (d)NLS and
(f)NLS equations.

9 Conclusions

In this paper we have used so-called energy dependent Schrödinger operators to establish
a link between special classes of solutions of N -component systems of evolution equations
and finite dimensional Hamiltonian systems on moduli spaces of Riemann surfaces. This
yields in particular, a new class of solutions with monodromy for N -component systems of
pde’s.

We also have used a connection between classes of solutions of nonlinear equations and
finite dimensional mechanical systems to investigate the semiclassical theory of nonlinear
equations. In the future, we intend to apply this approach for WKB-theory for the equations
(??) and (??) in connection with the the zero-dispersion limit of N -component systems such
as the coupled NLS equations.
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10 Appendix 1

1. (The spatial flow for the 2-component KdV system.) The discrete version of this
system corresponds to the Toda and relativistic Toda lattices. (For details see Alber
[1987].) Here

V = λ2 + v(x)λ + u(x) ,

and the Euler-Lagrange equations are

q′′j − qj
(
u+ vlj + l2j

)
= 0 .

The Lagrangian and potential are as follows

L =

n+1∑

j=1

q′j
2
+ u




n+1∑

j=1

qj
2 − 1


−




n+1∑

j=1

ljqj
2




2

−
n+1∑

j=1

l2j qj
2 ,

u(x) = −
n+1∑

j=1

q′j
2
+

n+1∑

j=1

ljqj
2 +




n+1∑

j=1

ljqj
2




2

+

n+1∑

j=1

l2j qj
2 .

Here we are using the expression

v(x) = 2
n+1∑

j=1

ljq
2
j ,

which is obtained from the recurrence chain generated by (??) with K = 0. Using
the recurrence chain generated by the dynamical generating equation (??) and setting
B(x, λ) = bo(x)λ+ b1(x) one obtains the following integrable system of coupled pde’s
of KdV type:

∂u

∂t
=

1

4
v′′′ − v′u− 1

2
vu′ ,

∂v

∂t
= u′ − 3

2
vv′ .





(1)
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