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1 Introduction

This paper establishes abstract results, which extend those of Potier–Ferry
and Sobolevskii, on global existence and stability of solutions to quasilinear
equations near an equilibrium point whose spectrum lies in the strict left
half plane. The result may be regarded as a version of the linearization

∗Research supported in part by the National Science Foundation under Grant DMS-
9302992.
†Research supported in part by the the National Science Foundation under Grant

DMS-9302992 and the Department of Energy under Contract DE-FG0395-ER25251.

1



2

principle for quasilinear systems in a context where the main difficulty is
to show that near the equilibrium shocks are suppressed by small damping.
In the second part to this work, applications are be made to the dynamics of
rods undergoing uniform rotation and satisfying the formal stability criteria
based on the energy-momentum method of Simo, Posbergh, and Marsden.

The stability of relative equilibria of dissipationless geometrically exact
rods moving in space was analyzed by Simo, Posbergh, and Marsden [1990].
Applying the energy-momentum method, they obtained sufficient condi-
tions for the formal stability of these relative equilibria. For these partial
differential equations the theory only gives conditional stability since basic
existence and uniqueness questions remain a difficulty due to the quasilin-
ear nature of the equations and the associated problem of shock formation.

In this paper we prove that in the presence of dissipation (viscoelastic dis-
sipation, for instance), formal stability also ensures the global existence of
smooth solutions and nonlinear asymptotic dynamical stability for relative
equilibria of geometrically exact rods (shells, etc.) moving in space. Since
the system is free to rotate, the stability results are modulo appropriate
rotations.

Early work in this direction was done by Browne [1978], who considered
the problem of existence, uniqueness and stability for the quasilinear partial
differential equations governing the motion of nonlinearly viscoelastic one-
dimensional bodies.

Results Obtained. This study will consist of two parts. In the first part,
we shall look at the fixed points of semiflows in a Banach space. We will
prove an abstract version of the linearization principle type which states
that

if some modest continuity conditions are satisfied and if the
linearized systems have eigenvalues all with negative real parts,
then these fixed points are locally asymptotically stable in their
neighborhoods, and we have global existence for solutions in
these neighborhoods.

Our result generalizes the linearization principle of Potier–Ferry [1981]
and is more convenient for the kind of applications we intend, which adopt
the geometrical formulation developed in Simo, Marsden, and Krishnaprasad
[1988].

The above result will be applied to the fixed points of evolution equations
in a Banach space. Sobolevskii [1966] established some basic results about
the existence and continuity of solutions to Cauchy problems for equations
of parabolic type in a Banach space. We will make use of these results to
find conditions on the evolution equation that guarantee the asymptotic
stability of fixed points and global existence of solutions in the neighbor-
hood of fixed points.
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In Part II, we shall analyze some relative equilibria of viscoelastic rods
moving in space, using the two director Cosserat rod model. This model
satisfies the invariance requirements under superposed rigid body motions
and imposes no restrictions on the degree of allowable deformations. By
a relative equilibrium we mean a dynamical solution z(t) which is also
a group orbit: z(t) = exp(tξ) · ze for some Lie algebra element ξ. In our
situation relative equilibria are uniformly rotating solutions. Stability itself
is, as we have already stated, taken relative to group orbits, and in our
case taken modulo rotations about the axis of rotation of the equilibrium
solution.

Part II will prove that

the equations of motion for geometrically exact rods with dis-
sipation and linearized at a relative equilibrium generate an
exponentially decaying holomorphic semigroup.

We do this by modifying the techniques of Potier–Ferry [1982], which in
turn are essentially based on Sobolevskii’s theory of equations of parabolic
type in a Banach space and are used to prove the stability of static equilibria
of elastic bodies moving freely in space.

Finally, we write the equations of motion for hyperelastic geometrically
exact rods moving with a viscoelastic dynamical response in the abstract
form

du

dt
= G(u).

These equations have the form of Hamiltonian equations with dissipation
and the potential energy used is the augmented stored energy potential.
Applying our abstract result on the fixed points of semiflows in a Banach
space to this evolution system, we prove that

the relative equilibria of hyperelastic rods in the presence of
viscoelastic dissipation are asymptotically stable if they are for-
mally stable, and that the solutions to the equations of mo-
tion in the neighborhood of a relative equilibrium exist and
are smooth for all time and decay exponentially to the relative
equilibrium.

We believe the approach in this work also applies to the case of thermo-
elasticity as well as elastic shells and three-dimensional elastic bodies.

2 Stability of Fixed Points of Semiflows

In this section we consider the stability of the equilibria of semiflows (and
flows) in a Banach space.
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2.1 Notation

Let E be a Banach space and U an open subset of E. Let V be a neigh-
borhood of U × {0} in U × R (or U × R+) such that for each x ∈ V, we
have

1. ({x} ×R) ∩V = {x} × (a, b) for some open interval (a, b) containing
0.

2. In the case of U×R+, ({x} ×R)∩V = {x} × [0, a) for some a > 0.

We will write Ft ≡ F (·, t) for any map F : V → E. We call a map F :
V→ E or Ft a flow or semiflow if Ft satisfies

1. F0 = Id (the identity map), and

2. Ft ◦ Fs = Ft+s whenever Ft, Fs and Ft+s are all defined.

A point u0 ∈ U is said to be a fixed point of the flow or semiflow Ft if
Ft(u0) = u0, for all t (for which Ft is defined). The time for which Ft(u)
exists will be called the lifetime of u.

We shall denote the space derivative by Du, or by D.

2.2 Boundedness and Joint Continuity of Space
Derivatives

Let Ft be a semiflow on a Banach space E. Assume that

A–I u0 is a fixed point of the semiflow;

A–II there exist T0 > 0 and a neighborhood U0 of u0 such that each
u ∈ U has a positive lifetime Tu ≥ T0;

A–III Ft(u) is continuous in t for t > 0 and fixed u over U0 × [0, T0];

A–IV DuFt(u) is norm-continuous in u for fixed t ∈ (0, T0];

A–V DuFt(u) is strongly continuous in t for fixed u ∈ U0.

The following lemma is a modification of Lemma 8A.4, p.260 of Marsden
and McCracken [1976], which in turn is based on Chernoff and Marsden
[1972].

Lemma 2.1. Let un → u0 in E and δ > 0. There exists a dense subset
G of [δ, T ] such that if tm → t0 ∈ G, then
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(a) lim
m,n→∞

‖DFtm(un)−DFtm(u0)‖ = 0;

(b) lim
m,n→∞

DFtm(un)x = DFt0(u0)x,

for fixed x ∈ E.

Proof. For ε > 0, set

Gn,ε = {t ∈ [δ, T ] | ‖DFt(ul)−DFt(ul)‖ ≤ ε for all l ≥ n}.

The set Gn,ε is closed because DFt(u) is strongly continuous in t. Assume
t̃n ∈ Gn,ε and t̃n → t̃. Let x be an arbitrary unit vector and l ≥ n and x.
It is obvious that

‖DFt̃(ul)x−DFt̃(u0)x‖ = lim
n→∞

‖DFt̃n(ul)x−DFt̃n(u0)x‖ ≤ ε.

Hence, ‖DFt̃(ul)−DFt̃(u0)‖ ≤ ε since x is arbitrary. Thus, t̃ ∈ Gn,ε.
Also, we have

∞⋃
n=1

Gn,ε = [δ, T ],

since DFt(u) is norm-continuous in u for fixed t. It now follows from the
Baire Category Theorem that some of the Gn,ε’s have nonempty interiors.
Thus,

Gε =
∞⋃
n=1

Int(Gn,ε)

is nonempty. We claim that Gε is dense in [δ, T ].
Otherwise, there would be at least one closed interval [a, b] ⊂ [δ, T ] with

the property that [a, b] ∩ Gε = ∅. Applying the same argument to [a, b],
one gets a nonempty open subset G[a,b]

ε of [a, b] contained in Gε, which is
a contradiction.

Next, we set

G =
∞⋂
k=1

G1/k,

where G1/k is constructed like Gε. Since it is a countable intersection of
open dense subsets of [δ, T ], G is itself dense in [δ, T ]. Pick any t0 ∈ G. Since
each G1/k is open, there is a neighborhood Uk of t0 contained in Gnk,k for
some nk. For n ≥ nk and large m such that tm ∈ Uk,

‖DFtm(un)−DFtm(u0)‖ ≤
1
k
.
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Therefore, (a) is true. As for (b), for any fixed x ∈ E, we can find M > 0
such that

‖DFtm(u0)x−DFt0(u0)x‖ ≤ 1/k

and tm ∈ Uk for m ≥M . Hence,

‖DFtm(un)x−DFt0(u0)x‖
≤ ‖DFtm(un)−DFtm(u0)‖ · ‖x‖+ ‖DFtm(u0)−DFt0(u0)‖ · ‖x‖

≤ 1
k

(‖x‖+ 1),

for all n ≥ nk and m ≥M . ¥

Another basic property we will need is:

A–VI DFt(u0) is norm-continuous in t for t ∈ (0, T0], i.e.,

lim
t→t0
‖DFt(u0)−DFt0(u0)‖ = 0

for any t0 ∈ (0, T0].

Proposition 2.2. If the semiflow also satisfies A–VI, and if un → u0

and tn → t0 > 0, then the limit

Tx = lim
n→∞

DFtn(un)x

defines a bounded operator T on E and

lim
n→∞

‖T −DFtn(un)‖ = 0.

Proof. The assertion follows if we can show that DFtn(un) is a Cauchy
sequence (by the Banach-Steinhaus Theorem, see e.g., Theorem I.1.8 p.55
of Dunford and Schwarz [1953]).

Let G be constructed as in Lemma 2.1. Pick t̃ ∈ G such that 0 < t̃ < t0
and let τn := tn − t0 + t̃. We write

ϕt(u) ≡ DFt(u), ut ≡ Ft(u).

By (a) of Lemma 2.1,

lim
m,n→∞

‖ϕτm(un)− ϕτm(u0)‖ = 0. (2.2.1)

Now

‖ϕtm(um)− ϕtn(un)‖
≤ ‖ϕtm(um)− ϕtm(u0)‖+ ‖ϕtm(u0)− ϕtn(u0)‖+ ‖ϕtn(u0)− ϕtn(un)‖
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and

‖ϕtm(um)− ϕtm(u0)‖ ≤ ‖ϕt0−t̃(u
τm
m ) ◦ (ϕτm(um)− ϕτm(u0))‖

+ ‖[ϕt0−t̃(u
τm
m )− ϕt0−t̃(u0)] ◦ ϕτm(u0)‖.

Assumptions A–III and A–IV on Ft(u) ensure that Ft(u) is separately
continuous in u ∈ U0 and t > 0, hence also jointly continuous in u and t for
(u, t) ∈ U × (0, T0]. (See Marsden and McCracken [1976], Theorem 8A.3,
p.260.) We thus have

uτmm → u0

and hence

‖ϕt0−t̃(u
τm
m )− ϕt0−t̃(u0)‖ → 0.

Also ‖ϕtm(u0)‖ → ‖ϕt0(u0)‖ by A–VI. Therefore, noting (2.2.1), we can
find N1 > 0 such that

‖ϕtm(um)− ϕtm(u0)‖ < ε/3,

for all m > N1, where ε > 0 is given.
Similarly, we find N2 > N1 such that

‖ϕtn(u0)− ϕtn(un)‖ < ε/3,

for all n > N2.
Finally, by A–VI one finds N > N2 such that if m,n > N ,

‖ϕtm(u0)− ϕtn(u0)‖ < ε/3,

for all m,n > N . It follows from the above inequalities that for m,n > N ,

‖ϕtm(um)− ϕtn(un)‖ < ε,

and hence, ϕtn(un) is a Cauchy sequence. ¥

The next basic property we need is,

A–VII Given any x ∈ E, there exists Mx > 0, ε > 0, and a neighbor-
hood Ux of u0 such that

‖DFt(u)x−DF0(u)x‖ ≡ ‖DFt(u)x− x‖ ≤Mx,

for all 0 ≤ t < ε and u ∈ Ux.

Proposition 2.3. Assume in addition that Ft(·) satisfies A–VII. Then,
there exist δ > 0, M > 0, and a neighborhood Ũ of u0 such that

‖DFt(u)‖ ≤M,

for all u ∈ Ũ and t ∈ [0, δ].
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Proof. This is a consequence of A–VII and the Uniform Boundedness
Principle. For the purpose of contradiction, suppose that ‖Ft(u)‖ is un-
bounded over any U × [0, δ], where U is a neighborhood of u0. Thus, for
any n ∈ N, there exist u(n)

k , k = 1, 2, . . . and t(n)
k,m,m = 1, 2, . . . satisfying

lim
m→∞

t
(n)
k,m = 0, r

(n)
k ≡ ‖u(n)

k − u0‖ ↘ 0, and ‖DF
t
(n)
k,m

(u(n)
k )‖ ≥ n.

Taking subsequences, one gets sequences un and tn that satisfy

rn ≡ ‖un − u0‖ ↘ 0, tn ↘ 0,

and
‖DFtn(un)‖ ≥ n.

It is obvious from A–VII that ‖DFtn(un)x − x‖ → 0 as n → ∞. Hence,
{DFtn(un)x} is bounded for any given x ∈ E, and by the Uniform Bound-
edness Principle, there is some M > 0 such that, for all n,

‖DFtn(un)‖ < M,

contradicting what we deduced from our supposition. ¥

2.3 Exponential Decay of the Spatial Derivative

Proposition 2.4. Let Ft(·) be a semiflow satisfying A–I through A–VI.
If

‖DFt(u0)‖ ≤ exp(−σt)

for t > 0, and for some σ > 0, then for any given δ ∈ (0, T0] and 0 < σ′ < σ
one can find a neighborhood U of u0, where

‖DFt(u)‖ ≤ exp(−σ′t),

for all u ∈ U0 and t ∈ (δ, T0].

Proof. First we observe the following three points:

(i) Since exp(−σ′t) > exp(−σt) for t > 0 and DFt(u) is norm-continuous
in u when t is fixed, there exists rt ∈ (0,∞) or rt = ∞ such that
‖u − u0‖ < rt implies ‖DFt(u)‖ < exp(−σ′t) and for finite rt, one
can find at least one ut satisfying

‖ut − u0‖ = rt, and ‖DFt(ut)‖ ≥ exp(−σ′t).

(ii) The existence of U in this proposition is equivalent to
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r̃ = inf
t∈[δ,T0]

{rt} > 0 (2.2.2)

(iii) Suppose r̃ = 0. Then, one would be able to find a sequence tn ∈ [δ, T0]
with corresponding

rn ≡ rtn ↘ 0,

and {un} ⊂ U0 satisfying

‖un − u0‖ = rn, ‖DFtn(un)‖ ≥ exp(−σ′tn).

Here, without loss of generality, by passing to a subsequence if necessary,
we can assume tn → t0 ∈ [δ, T0].

We will prove that r̃ = 0 leads to a contradiction. Let tn, un, rn be as in
(iii). By Proposition 2.2,

T = lim
n→∞

DFtn(un) ∈ B(E)

(the space of bounded operators on E) and

‖T‖ > exp(−σt0),

since ‖DFtn(un)‖ ≥ exp(−σ′tn), tn → t0 > 0, and exp(−σt0) > exp(−σ′t0).
Hence, for large n one can find some ε0 > 0 such that ‖Ftn(un)‖ ≥
exp(−σt0) + ε0. On the other hand, starting with [δ′, T ], 0 < δ′ < δ,
we obtain a dense subset G of [δ′, T ] as in Lemma 2.1. Pick t̃ ∈ G such that
δ′ < t̃ < t0 and set

τn ≡ tn − t0 + t̃.

Then, τn ∈ [δ′, T0] for large n and τn → t̃ ∈ G.
The assumptions A–III and A–IV on Ft(u) guarantee the joint continuity

of Ft(u) at (u, t) ∈ U0 × (0, T0]. Hence

lim
n→∞

Fτn(un) = Ft̃(u0) = u0

Therefore,

DFt0−t̃(Fτn(un))→ DFt0−t̃(u0)

in norm as n→∞. Now pick any x in E. Then,

DFτn(un)x→ DFt̃(u0)x

in norm by virtue of part (b) of Lemma 2.1. It follows that

lim
n→∞

‖DFtn(un)x‖ = lim
n→∞

‖DFt0−t̃(Fτn(u0)) ◦DFτn(un) · x‖

= ‖DFt0−t̃(u0) ◦DFt̃(u0) · x‖
= ‖DFt0(u0) · x‖ ≤ ‖DFt0(u0)‖ · ‖x‖
≤ exp(−σt0)‖x‖.
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Thus, since x is arbitrary,

‖T‖ = ‖ lim
n→∞

DFtn(un)‖ ≤ exp(−σt0),

a contradiction. ¥

For the next proposition, we need the following lemma on the upper-
continuity of the spectrum of a bounded operator on a Banach space. (see
Theorem 3.1 and Remark 3.3 of p.208 of Kato [1977]).

Lemma 2.5. The spectrum σ(T ) is an upper semicontinuous function of
T ∈ B(E), that is, for any T ∈ B(E) and ε > 0, there exists a δ > o such
that

dist(σ(S), σ(T )) ≡ sup
λ∈σ(S)

(λ, σ(T )) < ε

if ‖S − T‖ < δ.

Proposition 2.6. Let Ft be a semiflow on E satisfying A–I through A–
VI. Assume also that the spectrum of DFt(u0) lies inside and at a positive
distance away from the unit circle for any t ∈ (0, T0]. Then, given any
0 < δ < T0, there is an equivalent norm | · | on E and σ > 0 such that

|DFt(u0)| < exp(−σt),

for all t ∈ [δ, T0].

Proof. Since Ft is a semiflow and u0 is a fixed point, denoting DFt(u0)
by ϕt, we get from the Chain Rule

ϕt+s(x) = ϕt ◦ ϕs(x),
ϕ0 = Id,

for all x ∈ E and t, s such that ϕ is defined. Also, by assumption

s- lim
t↘0

ϕt = ϕ0 = Id .

Let t1 + t2 = t′1 + t′2, ti, t
′
i ∈ [0, T0], i = 1, 2. It is easy to verify that

ϕt1 ◦ ϕt2 = ϕt′1 ◦ ϕt′2 .

Moreover, both ϕt1 ◦ · · · ◦ ϕtn and ϕt′1 ◦ · · · ◦ ϕt′n are well-defined if

n∑
i=1

ti =
n∑
i=1

t′i for ti, t′i ∈ [0, T0],

where i = 1, 2, · · · , n and

ϕt1 ◦ · · · ◦ ϕtn = ϕt′1 ◦ · · · ◦ ϕt′n .
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Therefore, we can extend ϕt to [0,∞) by defining

ϕt = ϕt1 ◦ · · · ◦ ϕtn ,

where ti ∈ [0, T0] and t1 + t2 + · · ·+ tn = t. Thus, ϕt is a C0-semigroup of
linear operators on E.

Let δ ∈ (0, T0) be given. Choose δ0 > 0 such that δ0 < δ and mδ0 = T0

for some positive integer m. If t′ ∈ [δ0, T0], then

r(ϕt′) ≤ exp(−εt)

for some positive εt by our assumption on the spectrum of DFt(u0). Pick
0 < σ′t′ < σt′ , where σt′ ·t′ = εt. In view of hypothesis A–VI and Lemma 2.5,
there exists a δt′ such that

r(ϕt) ≤ exp(−δt′ · t),

for all t ∈ (t′ − δt′ , t′ + δt′). Hence, we have a cover of [δ0, T0] of the form

{(t− δt, t+ δt) | t ∈ [δ0, T0]}

with the δt’s chosen in a manner similar to the above δt′ . Furthermore,
[δ0, T0] being compact, a finite subcover exists, say,

(t1 − δt1 , t1 + δt1), · · · , (tn − δtn , tn + δtn)

with corresponding σ′1, · · · , σ′n > 0. Setting σ = min{σ′1, · · · , σ′n}, we now
have

r(ϕt) ≤ exp(−σt),

for all t ∈ [δ0, T0].
If, in choosing δ0 = T0/m, we always pick an even m > 2, any t ∈ [δ0,∞)

can be written as t = 2n0δ0 + t′ with t′ ∈ [δ0, T0], and n0 ∈ N, the natural
numbers. It follows that

r(ϕt) = lim
n→∞

‖ϕn2n0δ0+t′‖1/n

≤ lim
n→∞

‖ϕn2δ0‖
1/n · · · ‖ϕn2δ0‖

1/n · ‖ϕnt′‖1/n

≤ e−σt.

Thus, r(ϕt) ≤ e−σt holds for t ∈ [δ0,∞), and

‖ϕnt ‖/e−nσt,

is uniformly bounded from above for all t ≥ δ and for all n ∈ N,. This
allows us to define a new norm on E as follows (cf. Abraham, Marsden,
and Ratiu [1988], Lemma 4.3.8, p.301):

|x| = sup
n≥0,t≥δ

(
‖ϕnt (x)‖
e−nσt

)
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for x ∈ E. Clearly this defines a norm, and the two norms ‖ · ‖ and | · | are
equivalent because

‖x‖ ≤ |x| ≤
(

sup
n≥0,t≥δ

(‖ϕnt ‖/e−nσt
)
· ‖x‖

for any x ∈ E. When estimating |ϕt0(x)| we need to consider two cases. If
the supremum is assumed at n = 0,

sup
n≥0,t≥δ

( ‖ϕnt (ϕt0(x) ) ‖/e−nσt) = ‖ϕt0(x)‖

we get

|ϕt0(x)| = ‖ϕt0(x)‖

≤ e−σt0
(

sup
n≥0,t≥δ

(‖ϕnt (x)‖/e−nσt
)

= e−σt0 |x|

Otherwise, we have

|ϕt0(x)| = sup
n≥0,t≥δ

(
‖ϕnt (ϕt0(x))‖/e−nσt

)
≤ e−σt0

(
sup

n≥0,t′≥δ
(‖ϕnt′(x)‖/e−nσt

′

)
= e−σt0 |x|

Thus, under this new norm

|ϕt| < e−σt,

for all x ∈ [δ,∞). ¥

2.4 The Main Theorem

There are two versions of the main result. We begin with the following
preparatory case.

Proposition 2.7. Assume that the semiflow Ft(·) satisfies A–I through
A–VII, and ‖DFt(u0)‖ ≤ exp(−σt), for all t ∈ R+ and some σ > 0. We
have

(a) Global existence of integral curves in a neighborhood of u0; that is,
there exists a neighborhood U of u0 such that every u ∈ U has infinite
positive lifetime.
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(b) Asymptotic stability at u0:

lim
t→∞

‖Ft(u)− u0‖ = 0,

for all u ∈ U .

Proof. By Proposition 2.3, there are δ > 0, M > 0 and a neighborhood
U1 of u0 such that

‖DFt(u)‖ ≤M,

for all u ∈ U1 and t ∈ [0, δ]. Fix δ < T0/2 and U1. We find a neighborhood
U2 of u0 as in Proposition 2.4 such that

‖DFt(u)‖ ≤ exp(−δ′t),

for all t ∈ [δ, T0], and u ∈ U2 for some δ′. Both U1 and U2 are chosen
to be subsets of some U0, where A–II is satisfied. Now let U ⊂ U1 be a
neighborhood of u0 such that

M(u− u0) ∈ U2,

for all u ∈ U0. Taking note of the estimate

‖Ft(u)− u0‖ = ‖Ft(u)− Ft(u0)‖

=
∥∥∥∥∫ 1

0

DFt(su+ (1− s)u0) · (u− u0) ds
∥∥∥∥

≤
{
M‖u− u0‖ for 0 ≤ δ,
exp(−σ′t)‖u− u0‖ for t ∈ [δ, T0],

we know Ft(u) ∈ U1 ∩ U2, hence can be extended in time by at least T0.
For t > 0, write

t = n(t)T0 + t′,

where T0 > t′ ≥ 0, and n(t) ∈ N. By induction, one gets the estimate

‖Ft(u)− u0‖ = ‖Fn(t)T0 ◦ Ft(u)− Fn(t)T0 ◦ Ft′(u0)‖

=
∥∥∥∥∫ 1

0

DF(n(t)−1)T0(· · · ) ◦DFT0(Ft′(u)− u0) ds
∥∥∥∥

≤M exp(−n(t)σ′T0) · ‖u− u0‖.

Without loss of generality M ≥ 1 is assumed here. Thus, the semiflow can
be extended infinitely in time for every u in U and

lim
t→∞

‖Ft(u)− u0‖ = 0,

since n(t)→∞ as t→∞. ¥
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Combining Propositions 2.2 through 2.7, we obtain the following theo-
rem on the asymptotic stability of the fixed points of flows (semiflows) in
a Banach space and the global existence of (semi-)flows in their neighbor-
hood.

Theorem 2.8. Let Ft be a semiflow (flow) in a Banach space E. Assume
that Ft satisfies the hypotheses A–I through A–VII. Assume also that the
spectrum σ(DFt(u0)) lies uniformly inside the unit circle for t ∈ (0, T0].
Then, there exists a neighborhood U of u0 such that

I Global existence: each u ∈ U has infinite lifetime,

II Asymptotic stability at u0:

lim
t→∞

‖Ft(u)− u0‖ = 0,

for all u ∈ U .

3 The Evolution Equation

3.1 Introduction

Now we investigate the semiflows generated by evolution equations in a
Banach space. We shall apply the results we obtained in Section 2 to flows
of evolution equations. More specifically, we shall find conditions on the
evolution

du

dt
= G(u), (3.3.1)

which, when satisfied, will guarantee that the equilibrium u0 is asymptot-
ically stable. In (3.3.1), G is a map from Y to X , Y and X are Banach
spaces and Y is continuously and densely included in X . Consistent with
our applications, we shall assume that G has the form

G(u) = A(u)u+ g(u),

where A(u) is a closed linear operator, and g(u) a C1 nonlinear mapping.
Taylor-expanding g(u) at u0 and combining DuG(u0) with T (u), we can
assume that G(u) is in the form

G(u) = A(u)u+ g(u),

where A : Y → X is a closed linear operator and g is a nonlinear map from
Y to X having the property ‖g(u)‖X = o(‖u − u0‖X ), when we consider
the equation in a neighborhood of u0.
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3.2 Notation and Terminology

Let us recall some definitions and notation to be used. A continuous local
semiflow on a Banach space Y is a continuous map F : D ⊂ Y×R+ → Y,
where D is an open subset, satisfying

• Y × {0} ⊂ D,

• F (x, 0) = x,

• if F (x, t) ∈ D and (F (x, t), s) ∈ D, then F (x, t+ s) ∈ D and

F (x, t+ s) = F (F (x, t), s).

We say G generates the semiflow F (x, t) if F (x, t) is t-differentiable for
t ≥ 0 and x ∈ Y, and

d

dt
F (x, t) = G(F (x, t)).

When G depends explicitly on time, we replace local semiflow F (x, t) by
an evolution operator Ft,s : Y → Y, satisfying

• Ft,t = Id;

• Ft,s ◦ Fs,r = Ft,r, when 0 ≤ r ≤ s ≤ t ≤ T , for some T ;

• d

dt
Ft,s(x) = G(Ft,s(x), t).

Let {U(t) | t ≥ 0} be a (C0) semigroup on a Banach space X , A its
infinitesimal generator defined by

Ax = lim
t↘0

U(t)x− x
t

,

on the domain D(A), that is, the set of those x ∈ X for which the above
limit exists. We say A ∈ G(X ,M, β) if ‖U(t)‖ ≤ Me−tβ . We will also use
the following notation,

Σ(ω, β) = {λ ∈ C | |Arg λ| ≤ π/2 + ω or Reλ ≥ −β}.

Note that the following two conditions are equivalent;

• the spectrum of a linear operator lies uniformly to the left of of the
imaginary axis.

• there are positive ω and β such that Σ(ω, β) is contained in the re-
solvent set of the operator.
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3.3 Sobolevskii’s Results on Parabolic Equations in
Banach Spaces

We will make use of the following results Sobolevskii [1966] obtained for
equations of parabolic type in a Banach space.

Theorem 3.1. Let the operator A(t), t ∈ [0, T ], act in E and have an
everywhere dense domain of definition D not depending on t. For any
t, r, s ∈ [0, T ] suppose

‖[A(t)−A(τ)]A−1(s)‖ ≤ C|t− τ |ε

for some ε ∈ (0, 1].
For any λ with Reλ ≥ 0, assume the operator A(t) + λI has a bounded

inverse and

‖[A(t) + λI]−1‖ ≤ C[|λ|+ 1]−1.

Then, there exists an evolution operator U(t, τ) which is defined and strongly
continuous, for all t and τ such that 0 ≤ τ ≤ t ≤ T . Also, U(t, τ) is uni-
formly differentiable in t for t > τ , and

∂U(t, τ)
∂t

+A(t)U(t, τ) = 0.

For v0 ∈ E,

v(t) = U(t, 0) v0

defines a unique solution to the Cauchy problem

dv

dt
+A(t) v = 0, (0 < t < T )

v(0) = v0,

which is continuous for all t ∈ [0, T ] and continuously differentiable for
t > 0. If v0 ∈ D, then v(t) is continuously differentiable for t = 0.

Theorem 3.2. Assume f(t) satisfies the Hölder condition

‖f(t)− f(s)‖ ≤ C|t− s|δ

for some δ ∈ (0, 1]. Then, the variation of constants formula

v(t) = U(t, 0) v0 +
∫ t

0

U(t, s) f(s) ds

gives a unique solution to the nonhomogeneous equation

dv

dt
+A(t) v = f(t),
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which is continuous for all t ∈ [0, T ] and continuously differentiable for
t > 0. If v0 ∈ D, then v(t) is continuously differentiable for t = 0.

If f(t) is an operator function, then the formula defines a uniformly
continuously differentiable solution.

Finally we shall need:

Theorem 3.3. Let A0 = A(0, v0) be a linear operator whose domain of
definition D is dense in E. Let the operator A−1

0 be completely continuous
in E and A0 + λI have a bounded inverse satisfying

‖[A0 + λI]−1‖ ≤ C[ |λ|+ 1]−1,

for any λ with Reλ ≥ 0. For some α ∈ [0, 1) and for any v ∈ E, ‖v‖ ≤ R,
assume the operator A(t, A−α0 v) is defined in D and satisfy

‖[A(t, A−α0 v)−A(τ, A−α0 w)]A−1
0 ‖ ≤ C(R)[|t− τ |ε + ‖v − w‖ρ]

with ε, ρ ∈ (0, 1], for any 0 ≤ t, τ ≤ T, ‖v‖ ≤ R, ‖w‖ ≤ R. In this region,
suppose

‖[f(t, A−α0 v)− f(τ, A−α0 w)]A−1
0 ‖ ≤ C(R)[|t− τ |ε + ‖v − w‖ρ].

Lastly, for some β > α, let v0 ∈ D(Aβ0 ), and let ‖Aα0 v0‖ < R. Then, there
exists at least one solution of the Cauchy problem

dv

dt
+A(t, v)v = f(t, v), (3.3.2)

v(0) = v0. (3.3.3)

which is defined on a segment [0, t0), is continuous for t ∈ [0, t0), and
continuously differentiable for t > 0.

If ρ = 1, the solution is unique, and we can omit the assumption on the
complete continuity of A−1

0 . The solution can be obtained by the method of
successive approximation in this case.

3.4 Continuity of Solutions and Evolution Systems

Proposition 3.4. Let Ft(u) be the solution of (3.3.2) corresponding to
the initial condition

F0(u) = u ∈ D.

Then, under the conditions of Theorem 3.2 and
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B–I (A′(u) · v)x is Lipschitz continuous in u, i.e.,

‖(A′(u1)−A′(u2)) · v)x‖ ≤ C‖u1 − u2‖ ‖v‖ ‖x‖D,

and the Lipschitz estimate

B–II

‖f(u1)− f(u2)‖ ≤ C‖u1 − u2‖,

the solution Ft(u) is continuous in u, uniformly in t ∈ [0, t1] for some
t1 < t0.

Proof. Let u(t) = Ft(u0), ũ(t) = Ft(ũ0), ∆(t) = u(t)− ũ(t). Then

‖(A(u(t))−A(ũ(t))) · x‖

=
∥∥∥∥∫ 1

0

[A′(λu(t) + (1− λ)ũ(t)) · (u(t)− ũ(t)) · x] dλ
∥∥∥∥

≤ ‖A′(λu(t) + (1− λ)ũ(t))‖ ‖u(t)− ũ(t)‖ ‖x‖D.
Now

d∆(t)
dt

= −A(u(t)) · (u(t)− ũ(t)) +

(A(u(t))−A(ũ(t))) · ũ(t) + (f(u(t)− f(ũ(t))). (3.3.4)

It follows that
d

dt
‖∆(t)‖ ≤ ‖A(u(t))‖ ‖∆(t)‖+

‖A′(λu(t) + (1− λ)ũ(t))‖ ‖∆(t)‖ ‖ũ(t)‖D + C(‖∆(t)‖)
≤ C̃‖∆(t)‖

(3.3.5)

where C̃ is a positive constant dependent on u0, ũ0, and t0. To get this
estimate, we have used the fact that u(t) and ũ(t) are continuous in t, and
A′(u) is continuous in u. Moreover, the constant in the estimate can be
chosen to depend only on t0 and ũ0. Since [0, t1], [0, 1], and {(t, λ) | 0 ≤
t ≤ t1, 0 ≤ λ ≤ 1} are compact, λu(t) + (1 − λ)ũ(t), ũ(t), and u(t) are
continuous, there exists a connected finite subcover of

{λu(t) + (1− λ)ũ(t) | 0 ≤ t ≤ t1, 0 ≤ λ ≤ 1}
consisting of open balls contained in D. Also recall that the solution to
(3.3.2) and (3.3.3) is the fixed point of the map u(t) 7→ v(t) given by

v(t) = U(t, 0)u0 +
∫ t

0

U(t, s)f(u(s)) ds.
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Hence,

‖un+1(t)− u0‖ =
∥∥∥∥(U(t, 0)− U(0, 0))u0 +

∫ t

0

U(t, s)f(un(s)) ds
∥∥∥∥

≤ (1 + e−βt)‖u0‖

+
(

max
0≤t≤t0

‖u(t)− u0‖+ ‖f(u0)‖
)
· 1
β

(
1− e−βt

)
and

max
0≤t≤t0

(‖un+1(t)− u0‖) ≤ B(u0, t0) + max
0≤t≤t0

(‖un(t)− u0‖) ·
[

1
β

(1− e−βt)
]
.

where B(u0, t0) is continuous in u0 and t0. It follows that

max
0≤t≤t0

(‖un(t)− u0‖) ≤ eBt0 + ‖u0‖ ·
[

1
β

(1− e−βt)
]n
.

and the solution u(t) satisfies

max
0≤t≤t0

(‖u(t)− u0‖) ≤ C(u0, t0).

Thus, if we start with v0 close to u0, for the constant in (3.3.5) we can find
a constant C̃ dependent on ũ0 and t0 only, such that

d

dt
‖∆(t)‖ ≤ C̃‖∆(t)‖.

Therefore, by Gronwall’s inequality,

max
0<t<t1

‖u(t)− ũ(t)‖ → 0

when ‖u0 − ũ0‖ → 0, as claimed in the proposition. ¥

The above proof gives the following estimate which will be used later.

Corollary 3.5. Under the same conditions as in Proposition 2.4,

‖∆(t)‖ ≤ C(ũ0, t0) ‖∆(0)‖ ,

for all t ∈ [0, t1].

Proposition 3.6. Let Ft(u) be the solution to (3.3.2) satisfying the initial
condition F0(u) = u. Let u(t) = Ft(u0), v(t) = Ft(v0), A1(t) = A(u(t)),
and A2(t) = A(v(t)). Assume ‖u0−v0‖ = δ, then under the same conditions
as in Proposition 2.2 there exist t1, a constant C and some θ ∈ (0, 1) such
that

‖(A1(t)−A2(t))x‖ ≤ Cδ‖x‖D, (3.3.6)
‖(A1(t)−A2(t) +A1(s)−A2(s))x‖ ≤ Cδ|t− s|‖x||D, (3.3.7)

for all 0 ≤ s ≤ t ≤ t1.
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Proof. Let T (λ, t) = A(λu(t) + (1 − λ)v(t)), ∆(t) = u(t) − v(t). The
first inequality is obvious from the proof of Proposition 3.6. As for (3.3.7),
rewrite

(A1(t)−A2(t)−A1(s) +A2(s))x

=
∫ 1

0

∂

∂λ
[T (λ, t)− T (λ, s)]x dλ

=
∫ 1

0

{[Tλ(λ, t)− Tλ(λ, s)] ·∆(t) + Tλ(λ, s) · [∆(t)−∆(s)]}x dλ .

and we have the estimate

‖[Tλ(λ, t)− Tλ(λ, s)] ·∆(t)x‖
= ‖[A′(λu(t) + (1− λ)v(t))−A′(λu(s) + (1− λ)v(s))] ·∆(t)x‖
≤ C1‖λ(u(t)− u(s)) + (1− λ)(v(t)− v(s))‖‖∆(t)‖ ‖x‖D

≤ C max
0≤t≤t1

(∥∥∥∥∥du(t)dt

∥∥∥∥∥,
∥∥∥∥∥dv(t)dt

∥∥∥∥∥
)
|t− s|‖∆(t)‖ ‖x‖D

≤ Cδ|t− s|‖x‖D

by the Corollary, where C is some generic constant. Similarly we get the
estimates

‖∆(t)−∆(s)‖ ≤ max
0≤t≤t1

(∥∥∥∥d∆(t)
dt

∥∥∥∥) |t− s| ≤ C1δ|t− s|

and

‖Tλ(λ, s) · (∆(t)−∆(s))x‖ ≤ C2C3|t− s|‖x‖D,

where the bound C2 on ‖Tλ(λ, s)‖ results from (A′(u)·v)x being continuous
in u. Combining these estimates, we get (3.3.7). ¥

With the above inequalities established, we can now estimate how close
Ux(t, s) and Uy(t, s), the evolution operators corresponding to the solutions
Ft(x) and Ft(y), are to each other. For this end we need the following
lemma. The proof given below follows Sobolevskii [1966] and Potier–Ferry
[1982].

Lemma 3.7. Under the same conditions as in Proposition 3.4,

‖[A(Ft(x))Ux(t, s)A−1(Fs(x))−A(Ft(y))Uy(t, s)A−1(Fs(y))‖ ≤ Cδ .

Proof. Let

Q(t, s) = A(Ft(x))Ux(t, s)A−1(Fs(x)) =: A(t)U(t, s)A−1(s),

δQ(t, s) = A(Ft(x))Ux(t, s)A−1(Fs(x))−A(Ft(y))Uy(t, s)A−1(Fs(y)),
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where we have abbreviated the notation for convenience, and adopted the
convention that δ in front of a quantity denotes the variation of that quan-
tity brought about when x is perturbed to y. Then, the operator

φ(r) = e−(t−r)A(t)U(r, s)A−1(s)

is strongly differentiable, and integration of φ′(r) from s to t shows that
W (t, s) is the solution to the Volterra integral equation

Q(t, s) = A(t)e−(t−s)A(t)A−1(s)

+
∫ t

s

A(t)e−(t−r)A(t)[A(t)−A(r)]A−1(r)Q(r, s) dr . (3.3.8)

It follows that

δQ(t, s) = δA(t)e−(t−s)A(t)A−1(s)

+
∫ t

s

δ{A(t)e−(t−r)A(t)}[A(t)−A(r)]A−1(r)Q(r, s) dr

+
∫ t

s

A(t)e−(t−r)A(t)δ{[A(t)−A(r)]}A−1(r)Q(r, s) dr

+
∫ t

s

A(t)e−(t−r)A(t)[A(t)−A(r)]δ{A−1(r)}Q(r, s) dr

+
∫ t

s

A(t)e−(t−r)A(t)[A(t)−A(r)]A−1(r)δQ(r, s) dr .

(3.3.9)

Since the semigroup generated by A(t) is holomorphic, we have the esti-
mates

‖δA−1(s)x‖ ≤ C1δ‖x‖D, (3.3.10)

‖δ{A(t)e−(t−s)A(t)}‖ ≤ C2δ/(t− s), (3.3.11)

‖δ{A(t)e−(t−s)A(t)A−1(s)}‖ ≤ C3δ. (3.3.12)

and the resulting inequality

‖δQ(t, s)‖ ≤ C3δ + C2δ

∫ t

s

‖[A(t)−A(r)]A−1(r)Q(r, s)‖ dr

+ Cδ

∫ t

s

‖A(t)e−(t−r)A(t)A−1(r)q(r, s)‖ dr

+ C1δ

∫ t

s

‖A(t)e−(t−r)A(t)[A(t)−A(r)]Q(r, s)‖ dr

+
∫ t

s

‖A(t)e−(t−r)A(t)[A(t)−A(r)]A−1(r)‖‖δQ(r, s)‖ dr.
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Since the relevant functions inside the integrals are continuous, we obtain

‖δQ(t, s)‖ ≤ Cδ +B

∫ t

s

sup
s≤r≤t

‖δQ(t, r)‖.

Hence,

‖δQ(t, s)‖ ≤ C̃δ. ¥

Proposition 3.8. Assume B–I and B–II. Then, Uu(t, s), the evolution
systems for the Cauchy problem (3.3.2) and (3.3.3), is norm-continuous in
u, where u is the initial condition in (3.3.3).

Proof. From Theorem 3.3 it follows that

∂

∂r
(Ux(r, s)− Uy(r, s)) = −[A(Fr(x))Ux(r, s) +A(Fr(y))Uy(r, s)].

Integration from s to t yields

Ux(t, s)− Uy(t, s) = −
∫ t

s

[A(Fr(x))Ux(r, s)A−1(Fs(x))A(Fs(x))

−A(Fr(y))Uy(r, s)A−1(Fs(y))A(Fs(y))]dr

Hence,

‖[Ux(t, s)− Uy(t, s)]v‖ ≤
∫ t

s

‖δQ(r, s)A(Fs(x)) v‖

+ ‖Q(r, s)[A(Fs(x))−A(Fs(y))] v‖ dr

The first term has the estimate,

‖δQ(r, s)A(Fs(x)) v‖ ≤ Cδ‖A(Fs(x)) v‖,

for some constant C by Lemma 2.1, and from Proposition 3.6 (inequality
(3.3.6)) we get

‖A(Fr(x))Ux(r, s)A−1(Fs(y))[A(Fs(x))−A(Fs(y))] v‖ ≤ C1δ‖v‖D ,

where Q(r, s) and δQ(r, s) are as in Lemma 3.7, and δ = ‖x−y‖. Therefore,

lim‖x−y‖→0 ‖Ux(t, s)− Uy(t, s)‖ = 0 . ¥
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3.5 Spatial Differentiability of Solutions

Returning to the evolution equation (3.3.1),

du

dt
= G(u, t) = A(u, t)u+ g(u, t),

we examine the spatial derivatives of its solutions. The following results
will be used in the proof:

Bounded Perturbation Theorem. If A ∈ G(X ,M, β) (the space of
generators on X with bounds M and β, as defined in Section 3.2) and
B ∈ B(X ), then A+B ∈ G(X ,M, β + ‖B‖M). (See Kato [1977], p.495.)

Trotter–Kato Theorem. If An ∈ G(X ,M, β) (n = 1, 2, · · · ), A ∈
G(X ,M, β) and for λ sufficiently large, (λ−An)−1 → (λ−A)−1 strongly,
then etAn → etA strongly, uniform on bounded t-intervals (See Kato [1977],
p.502.)

Theorem 3.9. Assume conditions of Theorem 3.2 are satisfied. Assume
also that B–I and B–II are satisfied. If Dg(u0) = 0 and Dg is continuous
at u0, then in some neighborhood U of u0 the solution to (3.3.1), Ft,s(x),
is differentiable with respect to x, with DFt,s(x) being the solution to

∂w

∂t
= [A(Ft(x)) +Dg(Ft(x))]w +A′(Ft(x))w (Ft(x) + w) . (3.3.13)

Proof. Let ∆(t, s) = Ft,s(x)− Ft,s(y). We have, by construction,

∆(t, s) = Uxx− Uyy +
∫ t

s

[Uxg(F (x))− Uyg(F (y))] ds

∂∆(t, s)
∂t

= −[A(t, F (x))F (x)−A(t, F (y))F (y)] + g(F (x))− g(F (y)),

∂Ux(t, s)
∂t

= −A(t, Ft,s(x))Ux(t, s) ,

∂Ux(t, r)
∂r

= Ux(t, r)A(r, Fr,s(x)) ,

where we have dropped subscripts or arguments in Ft,s(x), Ft,s(y), Ux(t, s)
and Uy(t, s) respectively in the first two equations.

Let ∆t(h) := Ft(x+h)−Ft(x). From Proposition 3.6, and Proposition 3.8,
it follows that
∂

∂t
(Ft(x+ h)− Ft(x))

= A(Ft(x+ h))Ft(x+ h) + g(Ft(x+ h))−A(Ft(x))Ft(x)− g(Ft(x))
= A(Ft(x))(∆t(h)) +Dg(Ft(x))(∆t(h)) + o(∆t(h)) + [A′(Ft(x))∆t(h)

+ o(∆t(h))]Ft(x) + [A′(Ft(x))∆t(h) + +o(∆t(h))]∆t(h)
= [A(Ft(x)) +Dg(Ft(x)) + ρ(x, h)]∆t(h) + [A′(Ft(x))∆t(h)

+ ρ̃(x, h)]Ft(x) + [A′(Ft(x))∆t(h) + ρ̃(x, h)]∆t(h) ,
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where ρ(x, h) and ρ̃(x, h) are operators continuous in x and h, whose norms
satisfy

lim
‖h‖→0

‖ρ(x, h)‖
‖h‖ = 0 , (3.3.14)

lim
‖h‖→0

‖ρ̃(x, h)‖
‖h‖ = 0 ,

since ‖Ft(x + h) − Ft(x)‖ → 0 as ‖h‖ → 0. Fix x and h. Let ζt(h) be the
solution to

∂ζt(h)
∂t

= [A(Ft(x)) +Dg(Ft(x)) + ρ(x, h)]ζt(h) + g̃(ζt(h)) , (3.3.15)

ζ0(h) = I, (3.3.16)

where

g̃(w) = [A′(Ft(x))w + ρ̃(x, h)]Ft(x) + [A′(Ft(x))w + ρ̃(x, h)]w.

Since Dg is continuous at u0 with Dg(u0) = 0, Ft(x) is strongly contin-
uous in t and ‖eA(Ft(x))‖ ≤ e−tδ for some δ > 0, there exists [0, t0] such
that for t ∈ [0, t0]

‖eA(Ft(x))+Dg(Ft(x))‖ ≤ e−tδ̃ (3.3.17)

for some δ̃ > 0, by the Bounded Perturbations Theorem. By the same
argument, we know that there exist [0, t0] and ε > 0, such that for t ∈ [0, t0]
and h ≤ ε,

‖e[A(Ft(x))+Dg(Ft(x))+ρ(x,h)]‖ ≤ e−tδ̃. (3.3.18)

Therefore, ζt(h) exists over [0, t0], for all h ≤ ε, by Theorem 3.2.
Thus, letting θt(h) := ∆(x, h, t)− ζt(h) · h, we have

∂θt(h)
∂t

= [A(Ft(x)) +Dg(Ft(x)) + ρ(x, h)]θt(h) + g̃(θt(h)) , (3.3.19)

θ0(h) = 0 . (3.3.20)

We now show that ‖θt(h)‖/‖h‖ → 0 as ‖h‖ → 0. From the preceding two
equalities, we get

∂‖θt(h)‖
∂t

≤ ‖ρ(x, h)‖ ‖θt(h)‖+M‖θ(h)‖

where M > 0 is a constant independent of h. Hence, by (3.3.14)

∂

∂t

(‖θ(h)‖
‖h‖

)
≤ ε(‖h‖) +M

(‖θ(h)‖
‖h‖

)
(3.3.21)
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where ε(‖h‖)→ 0 as ‖h‖ → 0. Thus,

lim
‖h‖→0

‖Ft(x+ h)− Ft(x)− ζt(h) · h‖
‖h‖ = 0 . (3.3.22)

by Gronwall’s inequality. Therefore, DxFt(x) = limh→0 ζt(h), if the limit
exists.

Next, we show that limh→0 ζt(h) exists as a result of the Trotter-Kato
Theorem. First, we need to prove that ζt(hn) is a Cauchy sequence for
hn → 0, which is equivalent to showing that, for any two h1, h2 < ε,
‖ζt(h1)− ζt(h2)‖ can be made arbitrarily small if h1, h2 are small enough.

Since

∂ζt(h1)
∂t

= [A(Ft(x)) +Dg(Ft(x)) + ρ(x, h1)]ζt(h1) + g̃(ζt(h1))

and

∂ζt(h2)
∂t

= [A(Ft(x)) +Dg(Ft(x)) + ρ(x, h2)]ζt(h2) + g̃(ζt(h1)) ,

we have

∂‖ζt(h1)− ζt(h2)‖
∂t
≤M‖ζt(h1)− ζt(h2)‖+ ‖ρ(x, h1)ζt(h1)− ρ(x, h2)]ζt(h2)‖ .

By (3.3.14), for any ε > 0 we can find δ > 0 such that

‖ρ(x, h1)ζt(h1)− ρ(x, h2)]ζt(h2)‖ < ε

if h1, h2 < δ. Thus,

‖ζt(h1)− ζt(h2)‖ ≤ ε t0 eMt0 → 0 for any t ∈ [0, t0], (3.3.23)

as h1, h2 → 0.
Before we can apply Trotter-Kato Theorem, we have to verify that for λ

sufficiently large, (λ−An)−1 → (λ−A)−1 strongly, where An stands for

A(Ft(x)) +Dg(Ft(x)) + ρ(x, hn),

and A stands for A(Ft(x))+Dg(Ft(x)). Since An → A strongly by (3.3.14),
this is a consequence of the resolvent identity:

Rλ −Rµ = (µ− λ)RλRµ ,

whereRλ = (λ−A)−1, Rµ = (µ−A)−1 are the resolvents ofA ∈ G(X ,M, β)
for λ > β and µ > β.
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Let Ũh(t, s) be the evolution system associated with

A(Ft(x)) +Dg(Ft(x)) + ρ(x, h),

and Ũ(t, s) be the evolution system associated with

A(Ft(x)) +Dg(Ft(x)).

Then, limh→0 Ũ
h(t, s) = Ũ(t, s), as a result of the Trotter-Kato Theorem.

Taking the limit of

ζt(h) = Ũh(t, 0)I +
∫ t

s

Ũh(t, s)g̃(ζs(h)) ds (3.3.24)

as h→ 0 produces

DxFt(x) = Ũ(t, 0)I +
∫ t

s

Ũ(t, s)A′(Ft(x))DxFs(x)[Ft(x) +DxFs(x)] ds.

(3.3.25)

¥

3.6 Main Results

With the preceding preparations we are ready to verify that under the
conditions given below, conditions A–I through A–VII from Section 2 are
satisfied.

Theorem 3.10. (Existence and Continuity of Solutions with respect to
Initial Data) Let D and E be two Banach spaces, with D continuously and
densely included in E. Let G(u) = A(u)u+ g(u), where g(u) is a nonlinear
map from a neighborhood U of u0 in D into E, A(u) is a closed linear
operator from D into E for each u ∈ U . Assume B–I, B–II, and

B–0 u0 is a fixed point of G(u), g(u0) = 0, Dg(u0) = 0, and Dg is
continuous at u0.

B–III There are positive numbers ω and β such that Σ(ω, β) (defined
in Section 3.2) is contained in the resolvent set of the operator
A(u0). Moreover, there exists C > 0 such that

‖[A0 + λI]−1‖ ≤ C[|λ|+ 1]−1,

for all λ ∈ Σ(ω, β).

Then, there exists a neighborhood U0 of u0 and T0, such that for any u ∈ U0,
the Cauchy problem

dv

dt
= A(t, v)v + g(t, v),

v(0) = u ∈ U0.
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has a unique solution Ft(u) ∈ D, with lifetime at least T0. Furthermore,
Ft(u) is continuous in t ∈ [0, T0] and u ∈ U0.

Proof. Recall that the spectrum of a bounded operator on a Banach
space is upper-continuous (cf. Lemma 2.5). Since A(u) is continuous in u,
we can find a neighborhood U0 of u0 and β′ such that for any u ∈ U0,
Σ(ω, β′) is contained in the resolvent set of the operator A(u), and there
exists C ′ > 0 such that

‖[A(u) + λI]−1‖ ≤ C ′[|λ|+ 1]−1,

for all λ ∈ Σ(ω, β′). The assertion now follows from Theorem 3.2 and
Proposition 3.4. ¥

Thus, the conditions A–I, A–II and A–III from Section 2 are satisfied.

Theorem 3.11. (Existence, Norm-continuity in x, and Strong Contin-
uity in t of DxFt(x)) Under the same notation and conditions as in The-
orem 3.10, the solution Ft(u) to the Cauchy problem

dv

dt
+A(t, v)v = g(t, v),

v(0) = u ∈ U0.

is differentiable with respect to u with

DuFt(u) = Ũ(t, 0)I +
∫ t

s

Ũ(t, s)A′(Ft(u))DuFs(u)[Ft(u) +DuFs(u)] ds ,

where Ũ(t, s) is the evolution system associated with A(Ft(u))+Dg(Ft(u)).
Furthermore,

A–IV DuFt(u) is norm-continuous in u for fixed t ∈ (0, T0] for some
T0.

A–V DuFt(u) is strongly continuous in t for fixed u in some neigh-
borhood of u0.

Proof. By the same argument as in Theorem 3.10, it follows from The-
orem 3.9 that there exists a t0 > 0 such that

DuFt(u) = Ũ(t, 0)I +
∫ t

s

Ũ(t, s)A′(Fs(u))DuFs(u)[Fs(u) +DuFs(u)] ds ,

exists in a neighborhood U0 of u0 for 0 ≤ t ≤ t0. By Proposition 3.4,
for fixed t ∈ [0, t0] DuFt(u) is norm-continuous in u. A–V follows because
DuFt(u) is continuous in t, as a solution to equation (3.3.13). ¥
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Theorem 3.12. Under the same notation and conditions as in Theo-
rem 3.10, the solution Ft(u) to the Cauchy problem

dv

dt
+A(t, v)v = g(t, v),

v(0) = u ∈ U0.

also satisfies the following properties,

A–VI DFt(u0) is norm-continuous in t for t ∈ (0, T0], i.e.,

lim
t→t0
‖DFt(u0)−DFt0(u0)‖ = 0

for any t0 ∈ (0, T0].

A–VII Strong continuity of DuFt(u) in t at t = 0 is uniformly bounded
in u locally at u = u0, that is, given any x ∈ E, there exist
Mx > 0, ε > 0, and a neighborhood Ux of u0 such that

‖DFt(u)x−DF0(u)x‖ ≡ ‖DFt(u)x− x‖ ≤Mx,

for all 0 ≤ t < ε and u ∈ Ux.

A–VIII the spectrum σ(DFt(u0)) lies uniformly inside the unit circle for
t ∈ (0, T0].

Proof. Recall that by Theorem 3.9 there exists a t0 > 0 such that

DuFt(u) = Ũ(t, 0)I +
∫ t

0

Ũ(s, 0)A′(Fs(u))DuFs(u)[Fs(u) +DuFs(u)] ds ,

in a neighborhood U of u0 and Ũ(t, s) is the evolution system associated
with A(Ft(u))+Dg(Ft(u)). Hence, at u0, Ũ(t, 0) = eA(u0)t with ‖Ũ(t, 0)‖ ≤
e−βt in view of B-III. Noting that the integrand in the second term is
continuous in s, we see that there exist T0 > 0 and β′ > 0 such that
the resolvent set of DuFt(u) is contained in Σ(ω, β′), for all t ∈ [0, T0] by
Lemma 2.5, which is equivalent to A–VIII. To show that A–VI is satisfied,
we note first that at u0,

DuFt(u0) = Ũ(t, 0) +
∫ t

0

Ũ(s, 0)A′(u0)DuFs(u0)[u0 +DuFs(u0)] ds ,

and

∂Ũ(t, 0)
∂t

= A(u0)Ũ(t, 0).
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Pick an arbitrary unit vector x ∈ Y, and t0 ∈ (0, T0]. Then

(DuFt(u0)−DuFt0(u0))x = (Ũ(t, 0)− Ũ(t0, 0))x+(∫ t

t0

Ũ(s, 0)A′(u0)DuFs(u0)[u0 +DuFs(u0)] ds
)
x. (3.3.26)

By the basic properties of semigroups, ‖(Ũ(t)−Ũ(t0))x‖ → 0, when t tends
to t0. Note also that the integrand in second term is bounded in norm and
continuous in s. It is obvious that

lim
t→t0

sup ‖(DuFt(u0)−DuFt0(u0))x‖ = 0.

Let t0 = 0 in (3.3.26). Condition A–VII follows by the same argument. ¥

Finally, as a consequence of Theorem 2.8 in Section 1 and the preced-
ing theorems, we have the following result about asymptotic stability and
global existence of solutions to (3.3.1) in a neighborhood of a fixed point.

Theorem 3.13. Let D and E be two Banach spaces, with D continuously
and densely included in E. Let G(u) = A(u)u + g(u), where g(u) is a
nonlinear map from a neighborhood U of u0 in D into E, A(u) is a closed
linear operator from D into E for each u ∈ U . Assume

B–0 u0 is a fixed point of G(u), g(u0) = 0, Dg(u0) = 0, and Dg is
continuous at u0;

B–I (A′(u) · v)x is Lipschitz continuous in u, i.e.,

‖(A′(u1)−A′(u2)) · v)x‖ ≤ C ‖u1 − u2‖ · ‖v‖ · ‖x‖D,

where u1, u2 ∈ U ;

B–II for all u1, u2 ∈ U , we have

‖g(u1)− g(u2)‖ ≤ C‖u1 − u2‖;

B–III There are positive ω and β such that Σ(ω, β) is contained in the
resolvent set of the operator A(u0), and there exists C > 0 such
that

‖[A0 + λI]−1‖ ≤ C[|λ|+ 1]−1,

for all λ ∈ Σ(ω, β).
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Then, there exists a neighborhood U of u0 such that G(u) = A(u)u+ g(u)
generates a semiflow Ft(u) in U , and

I Global Existence in U : each u ∈ U has infinite lifetime;

II Asymptotic Stability at u0:

lim
t→∞

‖Ft(u)− u0‖ = 0 for all u ∈ U.

Future Directions

It is our belief that the present context also allows one to prove invari-
ant manifold theorems. Some progress in this direction was already made
by, for example, Renardy [1992]. For example, it would be interesting to
be able to apply some of the work on dissipation induced instabilities of
Bloch, Marsden, Krishnaprasad, and Marsden [1994, 1995] to the present
context. This should also allow one to prove theorems on, for example, the
Hopf bifurcation for quasilinear pde’s of the sort that occur in nonlinear
elasticity. Remarkably little has been done in this area despite all of the
activity in infinite dimensional dynamical systems.

Acknowledgments

We thank Stuart Antman, John Ball, and Juan Simo for helpful comments.

REFERENCES

Abraham, R., J. E. Marsden, and T. S. Ratiu [1988] Manifolds, Tensor Analysis, and
Applications. Second Edition, Appl. Math. Sci. 75, Springer, New York

Bloch, A. M., P. S. Krishnaprasad, J. E. Marsden, and T. S. Ratiu [1994] Dissipation
Induced Instabilities, Ann. Inst. H. Poincaré, Analyse Nonlineare 11, 37–90.
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