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Abstract

This work develops the geometry and dynamics of mechanical systems with
nonholonomic constraints and symmetry from the perspective of Lagrangian me-
chanics and with a view to control-theoretical applications. The basic methodology
is that of geometric mechanics applied to the Lagrange-d’Alembert formulation,
generalizing the use of connections and momentum maps associated with a given
symmetry group to this case. We begin by formulating the mechanics of nonholo-
nomic systems using an Ehresmann connection to model the constraints, and show
how the curvature of this connection enters into Lagrange’s equations. Unlike the
situationwith standard configuration-space constraints, the presence of symmetries
in the nonholonomic case may or may not lead to conservation laws. However, the
momentum map determined by the symmetry group still satisfies a useful differ-
ential equation that decouples from the group variables. This momentum equation,
which plays an important role in control problems, involves parallel transport op-
erators and is computed explicitly in coordinates. An alternative description using
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a “body reference frame” relates part of the momentum equation to the compo-
nents of the Euler-Poincaré equations along those symmetry directions consistent
with the constraints. One of the purposes of this paper is to derive this evolution
equation for the momentum and to distinguish geometrically and mechanically the
cases where it is conserved and those where it is not. An example of the former
is a ball or vertical disk rolling on a flat plane and an example of the latter is the
snakeboard, a modified version of the skateboard which uses momentum coupling
for locomotion generation. We construct a synthesis of the mechanical connection
and the Ehresmann connection defining the constraints, obtainingan important new
object we call the nonholonomic connection. When the nonholonomic connection
is a principal connection for the given symmetry group, we show how to perform
Lagrangian reduction in the presence of nonholonomic constraints, generalizing
previous results which only held in special cases. Several detailed examples are
given to illustrate the theory.

1. Introduction

Problems of nonholonomic mechanics, including many problems in robotics,
wheeled vehicular dynamics and motion generation, have attracted considerable
attention. These problems are intimately connected with important engineering
issues such as path planning, dynamic stability, and control. Thus, the investigation
of many basic issues, and in particular, the role of symmetry in such problems,
remains an important subject today.

Despite the long history of nonholonomic mechanics, the establishment of pro-
ductive links with corresponding problems in the geometric mechanics of systems
with configuration-space constraints (i.e., holonomic systems) still requires much
development. The purpose of this work is to bring these topics closer together
with a focus on nonholonomic systems with symmetry. Many of our results are
motivated by recent techniques in nonlinear control theory. For example, problems
in both mobile robot path planning and satellite reorientation involve geometric
phases, and the context of this paper allows one to exploit the commonalities and to
understand the differences. To realize these goals we make use of connections, both
in the sense of Ehresmann and in the sense of principal connections, to establish a
general geometric context for systems with nonholonomic constraints.

A broad overview of the paper is as follows. We begin by recalling the the
Lagrange-d’Alembert equations of motion for a nonholonomic system. We realize
the constraints as the horizontal space of an Ehresmann connection and show
how the equations can be written in terms of the usual Euler-Lagrange operator
with a “forcing” term depending on the curvature of the connection. Following
this, we add the hypothesis of symmetry and develop an evolution equation for the
momentum that generalizes the usual conservation laws associated with a symmetry
group. The final part of the paper is devoted to extending the Lagrangian reduction
theory of MARSDEN & SCHEURLE [1993a, 1993b] to the context of nonholonomic
systems. In doing so, we must modify the Ehresmann connection associated with
the constraints to a new connection that also takes into account the symmetries;
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this new connection, which is a principal connection, is called the nonholonomic
connection.

The context developed in this paper should enable one to further develop the
powerful machinery of geometric mechanics for systems with holonomic con-
straints; for example, ideas such as the energy-momentum method for stability
and results on Hamiltonian bifurcation theory require further general development,
although of course many specific problems have been successfully tackled.

Previous progress in realizing the goals of this paper has been made by,
amongst others, CHAPLYGIN [1897a, 1897b, 1903, 1911, 1949, 1954], CARTAN

[1928], NEIMARK & FUFAEV [1972], ROSENBERG [1977], WEBER [1986], KOILLER

[1992], BLOCH & CROUCH [1992], KRISHNAPRASAD, DAYAWANSA & YANG [1992],
YANG [1992], YANG, KRISHNAPRASAD & DAYAWANSA [1993], BATES & SNIATYCKI

[1993] (see also CUSHMAN, KEMPPAINEN, ŚNIATYCKI, & BATES [1995]), MARLE

[1995], and VAN DER SCHAFT & MASCHKE [1994].
Nonholonomic systems come in two varieties. First of all, there are those with

dynamic nonholonomic constraints, i.e., constraints preserved by the basic Euler-
Lagrange or Hamilton equations, such as angular momentum, or more generally
momentum maps. Of course, these “constraints” are not externally imposed on
the system, but rather are consequences of the equations of motion, and so it is
sometimes convenient to treat them as conservation laws rather than constraints
per se. On the other hand, kinematic nonholonomic constraints are those imposed
by the kinematics, such as rolling constraints, which are constraints linear in the
velocity.

There have, of course, been many classical examples of nonholonomic systems
studied (we thank HANS DUISTERMAAT for informing us of much of this history).
For example, ROUTH [1860] showed that a uniform sphere rolling on a surface
of revolution is an integrable system (in the classical sense). Another example
is the rolling disk (not necessarily vertical), which was treated in VIERKANDT

[1892]; this paper shows that the solutions of the equations on what we would
call the reduced space (denoted D=G in the present paper) are all periodic. (For
this example from a more modern point of view, see, for example, HERMANS

[1995], O’REILLY [1996] and GETZ & MARSDEN [1994].) A related example is
the bicycle; see GETZ & MARSDEN [1995] and KOON & MARSDEN [1996b]. The
work of CHAPLYGIN [1897a] is a very interesting study of the rolling of a solid
of revolution on a horizontal plane. In this case, it is also true that the orbits are
periodic on the reduced space (this is proved by a nice technique of BIRKHOFF

utilizing the reversible symmetry in HERMANS [1995]). One should note that a
limiting case of this result (when the body of revolution limits to a disk) is that of
VIERKANDT. CHAPLYGIN [1897b, 1903] also studied the case of a rolling sphere on
a horizontal plane that additionally allowed for the possibility of spheres with an
inhomogeneous mass distribution.

Another classical example is the wobblestone, studied in a variety of papers and
books such as WALKER [1896], CRABTREE [1909], BONDI [1986]. See HERMANS

[1995] and BURDICK, GOODWINE & OSTROWSKI [1994] for additional information
and references. In particular, the paper of WALKER establishes important stability
properties of relative equilibria by a spectral analysis; he shows, under rather
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general conditions (including the crucial one that the axes of principal curvature
do not align with the inertia axes) that rotation in one direction is spectrally stable
(and hence linearly and nonlinearly asymptotically stable). By time reversibility,
rotation in the other direction is unstable. On the other hand, one can have a relative
equilibriumwith eigenvalues in both half planes, so that rotations in opposite senses
about it can both be unstable, as WALKER has shown. Presumably this is consistent
with the fact that some wobblestones execute multiple reversals. However, the
global geometry of this mechanism is still not fully understood analytically.

In this paper we give several examples to illustrate our approach. Some of them
are rather simple and are only intended to clarify the theory. For example the vertical
rolling disk and the spherical ball rolling on a rotating table are used as examples
of systems with both dynamic and kinematic nonholonomic constraints. In either
case, the angular momentum about the vertical axis is conserved; see BLOCH,
REYHANOGLU & MCCLAMROCH [1992], BLOCH & CROUCH [1994], BROCKETT &
DAI [1992] and YANG [1992].

A related modern example is the snakeboard (see LEWIS, OSTROWSKI, MURRAY

& BURDICK [1994]), which shares some of the features of these examples but which
has a crucial difference as well. This example, like many of the others, has the sym-
metry group SE(2) of Euclidean motions of the plane but, now, the corresponding
momentum is not conserved. However, the equation satisfied by the momentum
associated with the symmetry is useful for understanding the dynamics of the prob-
lem and how group motion can be generated. The nonconservation of momentum
occurs even with no forces applied (besides the forces of constraint) and is consis-
tent with the conservation of energy for these systems. In fact, nonconservation is
crucial to the generation of movement in a control-theoretic context.

One of the important tools of geometric mechanics is reduction theory (either
Lagrangian or Hamiltonian), which provides a well-developed method for dealing
with dynamic constraints. In this theory the dynamic constraints and the sym-
metry group are used to lower the dimension of the system by constructing an
associated reduced system. We develop the Lagrangian version of this theory for
nonholonomic systems in this paper. We have focussed on Lagrangian systems
because this is a convenient context for applications to control theory. Reduction
theory is important for many reasons, among which is that it provides a context
for understanding the theory of geometric phases (see KRISHNAPRASAD [1989],
MARSDEN, MONTGOMERY & RATIU [1990], BLOCH, KRISHNAPRASAD, MARSDEN

& SÁNCHEZ DE ALVAREZ [1992] and references therein) which, as we discuss
below, is important for understanding locomotion generation.

1.1. The Utility of the Present Work

The main difference between classical work on nonholonomic systems and the
present work is that this paper develops the geometry of mechanical systems with
nonholonomicconstraints and thereby provides a framework for additional control-
theoretic development of such systems. This paper is not a shortcut to the equations
themselves; traditional approaches (such as those in ROSENBERG [1977]) yield the
equations of motion perfectly adequately. Rather, by exploring the geometry of
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mechanical systems with nonholonomic constraints, we seek to understand the
structure of the equations of motion in a way that aids the analysis and helps to
isolate the important geometric objects which govern the motion of the system.

One example of the application of this new theory is in the context of robotic
locomotion. For a large class of land-based locomotion systems — included legged
robots, snake-like robots, and wheeled mobile robots — it is possible to model the
motion of the system using the geometric phase associated with a connection on
a principal bundle (see KRISHNAPRASAD [1990], KELLY & MURRAY [1995] and
references therein). By modeling the locomotion process using connections, it is
possible to more fully understand the behavior of the system and in a variety of
instances the analysis of the system is considerably simplified. In particular, this
point of view seems to be well suited for studying issues of controllability and
choice of gait. Analysis of more complicated systems, where the coupling between
symmetries and the kinematic constraints is crucial to understanding locomotion,
is made possible through the basic developments in the present paper.

A specific example in which the theory developed here is quite crucial is
the analysis of locomotion for the snakeboard, which we study in some detail
in Section 8.4. The snakeboard is a modified version of a skateboard in which
locomotion is achieved by using a coupling of the nonholonomic constraints with
the symmetry properties of the system. For that system, traditional analysis of
the complete dynamics of the system does not readily explain the mechanism of
locomotion. By means of the momentum equation which we derive in this paper,
the interaction between the constraints and the symmetries becomes quite clear
and the basic mechanics underlying locomotion is clarified. Indeed, even if one
guessed how to add in the extra “constraint” associated with the nonholonomic
momentum, without writing everything in the language of connections, then things
in fact appear to be much more complicated than they really are.

The locomotion properties of the snakeboard were originally studied by LEWIS,
OSTROWSKI, BURDICK & MURRAY [1994]using simulationsand experiments. They
showed that several different gaits are achievable for the system and that these gaits
involve periodic inputs to the system at integrally related frequencies. In particular,
a 1:1 gait generates forward motion, a 1:2 gait generates rotation about a fixed point
and and 2:3 gait generates sideways motion. Recently, using motivation based on
the present approach, it has been possible to gain deeper insight into why the 2:1
and 3:2 gaits in the snakeboard generate movement that was first observed only
numerically and experimentally. In the traditional framework, without the special
structure that the momentum equation provides, this and similar issues would have
been quite difficult. In the next subsection we will exhibit the general form of the
control systems that result from the present work so that the reader can see these
points a little more clearly.

Another instance where the geometry associated with nonholonomicmechanics
has been useful is in analyzing controllability properties. For example, in BLOCH

& CROUCH [1994] it is shown that for a nonabelian CHAPLYGIN control system,
the principal bundle structure of the system can be used to prove that if the full
system is accessible and the system is controllable on the base, the full system
is controllable. This result uses earlier work of SAN MARTIN & CROUCH [1984]
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and is nontrivial in the sense that proving controllability is generally much harder
than proving accessibility. In BLOCH, REYHANOGLU & MCCLAMROCH [1992], the
nonholonomic structure is used to prove accessibility results as well as small-
time local controllability. Further, the holonomy of the connection given by the
constraints is used to design both open loop and feedback controls.

A long-term goal of our work is to develop the basic control theory for me-
chanical systems, and Lagrangian systems in particular. There are several reasons
why mechanical systems are good candidates for new results in nonlinear control.
On the practical end, mechanical systems are often quite well identified, and ac-
curate models exist for specific systems, such as robots, airplanes, and spacecraft.
Furthermore, instrumentation of mechanical systems is relatively easy to achieve
and hence modern nonlinear techniques (which often rely on full state feedback)
can be readily applied. We also note that the present setup suggests that some of
the traditional concepts such as controllability itself may require modification. For
example, one may not always require full state space controllability (in parking a
car, you may not care about the orientation of your tire stems). For ideas in this
direction, see KELLY & MURRAY [1995]. These and other results in Lagrangian me-
chanics, including those described in this paper, have generated new insights into
the control problem and are proving to be useful in specific engineering systems.

Despite being motivated by problems in robotics and control theory, the present
paper does not discuss the effect of general forces. The control theory we have used
as motivation deals largely with “internal forces” such as those that naturally enter
into the snakeboard. While we do not systematically deal with general external
forces in this paper, we do have them in mind and plan to include them in future
publications. As LAM [1994] and JALNAPURKAR [1995] have pointed out, external
forces acting on the system have to be treated carefully in the context of the
Lagrange-d’Alembert principle. Our framework is that of the traditional setup for
constraint forces as described in ROSENBERG [1977]. In this framework the forces
of constraint do no work and in certain cases (such as for point particles and
particles and rigid bodies) the Lagrange-d’Alembert equations can be derived from
Newton’s laws, as the preceding references show.

1.2. Control Systems in Momentum Equation Form1

To help clarify the link with control systems, we now discuss the general form
of nonholonomic mechanical control systems with symmetry that have a nontrivial
evolution of their nonholonomic momentum. The group elements for such systems
generally are used to describe the overall position and attitude of the system. The
dynamics are described by a system of equations having the form of a reconstruction
equation for a group element g, an equation for the nonholonomic momentum p (no
longer conserved in the general case), and the equations of motion for the reduced
variables r which describe the “shape” of the system. In terms of these variables,
the equations of motion (to be derived later) have the functional form

1 We thank JIM OSTROWSKI for his notes on this material, which served as a first draft of
this section.
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g�1ġ = �A(r)ṙ + B(r)p; (1.2.1)

ṗ = ṙT�(r)ṙ + ṙT�(r)p + pT
(r)p; (1.2.2)

M(r)r̈ = �C(r; ṙ) + N(r; ṙ; p) + � : (1.2.3)

The first equation describes the motion in the group variables as the flow of a
left-invariant vector field determined by the internal shape r, the velocity ṙ, as well
as the generalized momentum p. The term g�1ġ is related to the body angular
velocity in the case that the symmetry group is the group of rigid transformations.
(As we shall see later, this interpretation is not literally correct; the body angular
velocity is actually the vertical part of the vector (ṙ; ġ).) The momentum equation
describes the evolutionof p and will be shown to be bilinear in (ṙ; p). Finally, the last
(second-order) equation describes the motion of the variables r which describe the
configuration up to a symmetry (i.e., the shape). The term M(r) is the mass matrix
of the system, C is the Coriolis term which is quadratic in ṙ, and N is quadratic in ṙ
and p. The variable � represents the potential forces and the external forces applied
to the system, which we assume here only affect the shape variables. Note that the
evolution of the momentum p and the shape r decouple from the group variables.
In this paper we shall derive a general form of the reduced Lagrange-d’Alembert
equations for systems with nonholonomic constraints, which the above equations
illustrate. In this form of the equations, the constraints are implicit in the structure
of the first equation.

The utility of this form of the equations is that it separates the dynamics
into pieces consistent with the overall geometry of the system. This can be quite
powerful in the context of control theory. In some locomotion systems one has
full control of the shape variables r. Thus, certain questions in locomotion can be
reduced to the case where r(t) is specified and the properties of the system are
described only by the group and momentum equations. This significantly reduces
the complexity of locomotion systems with many internal degrees of freedom (such
as snake-like systems).

More specifically, consider the problem of determining the controllability of a
locomotion system. That is, we would like to determine if it is possible for a given
system to move between two specified equilibrium configurations. To understand
local controllabilityof a locomotion system, one computes the Lie algebra of vector
fields associated with the control problem. For the full problem represented by the
above equations this can be an extremely detailed calculation and is often intractable
except in simple examples. However, by exploiting the particular structure of the
equations above, one sees that it is sufficient to ignore the details of the dynamics
of the shape variables: it is enough to assume that r(t) can be specified arbitrarily,
for example by assuming that r̈ = u. Using this simplification, one can show, for
example, that the Lie bracket [ [f ; gi]; gj] is given by

[ [f ; gi]; gj] =

2
664

0
�ij

0
0

3
775
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where the four slots correspond to the variables g; p; r; ṙ; f is the drift vector
field defined by setting the inputs to zero; gi and gj represent input vector fields;
and �ij is the ij component of the matrix �. Thus the term � that appears in
the momentum equation is directly related to controllability of the system in the
momentum direction. That the Lie bracket between two of the input vector fields
lies in the p direction helps explain the use of the 1:1 gait in the snakeboard example
for achieving forward motion, which corresponds to building up momentum.

This point of view is described in KELLY & MURRAY [1995] for the case where
no momentum equation is present and in OSTROWSKI [1995] for the more general
case, including the snakeboard. In fact, it was precisely this form of the equations
which was used to understand some of the gait behavior present in the snakeboard
example.

1.3. Outline of the Paper

In Section 2 we develop some of the basic features of nonholonomic systems.
In particular, we show how to describe constraints using Ehresmann connections
and we show how to write the equations of motion using the curvature of this
connection. Moreover, a basic geometric setup is laid out that enables one to use
the ideas of holonomy and geometric phases in the context of the dynamics of
nonholonomic systems for the first time. Our overall philosophy is to start with the
general case of Ehresmann connections, then add the symmetry group structure, and
later specialize, for example, to purely kinematic (Chaplygin) systems or systems
where the nonholonomic connection is a principal connection, when appropriate.

In Section 3 we begin by recalling some basic notions about symmetry of me-
chanical systems, and show that the Lagrangian and the dynamics drop to quotient
spaces, providing the reduced dynamics. Later on, in Section 7 the reduced equa-
tions are explicitly computed. We also review principal connections in Section 3
and relate them to Ehresmann connections.

The equations for the momentum map that replace the usual conservation laws
are derived in Section 4. We distinguish the cases in which one gets conservation
and those in which one gets a nontrivial evolution equation for the momentum.
For example, for the vertical rolling disk, one has invariance (of the Lagrangian
and constraints) under rotation about the disk’s vertical axis and this leads to a
conservation law for the disk that, in addition to the conservation of energy, shows
that the system is completely integrable. This example, a constrained particle
moving in three space and the snakeboard example are studied in Section 8. Various
representations of the momentum equation are given as well and, in particular, the
form (1.2.2).

In Section 5 we review some of the basic ideas from Lagrangian reduction that
will provide important motivation and ideas for the nonholonomic case. In rough
outline, Lagrangian reduction means dropping the Euler-Lagrange equations and
the associated variational principles to the quotient of the velocity phase space
by the given symmetry group, which generalizes the classical Routh procedure
for cyclic variables. On the other hand, in Hamiltonian reduction one drops the
symplectic form or the Poisson brackets along with the dynamical equations to a
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quotient space. The reduced Euler-Lagrange equations may be derived by breaking
up the Euler-Lagrange equations into two sets that correspond to splitting vari-
ations into horizontal and vertical parts relative to the mechanical connection, a
fundamental principal connection associated with the given symmetry group.

In Section 6, the first of two sections on nonholonomic reduction from the
Lagrangian point of view, we study reconstruction and combine the connection
determined by the constraints (the “kinematic connection”) and that associated
with the kinetic energy and the group action (the “mechanical connection”). This
results in a new connection called the nonholonomic connection that encodes both
sorts of information. This process gives equation (1.2.1).

In Section 7 we develop the reduced Lagrange-d’Alembert equations (Theorem
7.5) which gives the equation (1.2.3). For systems with nonholonomic constraints,
the equations of motion are associated with the horizontal variations relative to the
Ehresmann connection associated with the constraints. This shows why there is
such a similarity between the equations of a nonholonomic system and the first set
of reduced Euler-Lagrange equations, as we shall see explicitly. In the general case
with both symmetries and nonholonomic constraints, we use the nonholonomic
connection and relative to it, the reduced equations will break up into two sets:
a set of reduced Euler-Lagrange equations (1.2.3) (which have curvature terms
appearing as “forcing”), and a momentum equation (1.2.2), which have a form
generalizing the components of the Euler-Poincaré equations along the symmetry
directions consistent with the constraints. When one supplements these equations
with the reconstruction equations (1.2.1) and the constraint equations, one recovers
the full set of equations of motion for the system.

In Section 8 we consider some examples that illustrate the theory, namely,
the vertical rolling disk, a nonholonomically constrained particle in 3-space, a
homogeneous sphere on a rotating table, and the snakeboard. The conclusions give
some suggestions for future work in this area.

1.4. Summary of the Main Results

� The development of a general setting for nonholonomic systems using the theory
of Ehresmann connections and the derivation of the Lagrange-d’Alembert equa-
tions as Euler-Lagrange equations on the base space in the presence of curvature
forces. The constraints are viewed as a distributionD � TQ and the distribution
is regarded as the horizontal space for an Ehresmann connection, which we call
the kinematic connection. Both linear and affine constraints are studied.

� Furthering the basic framework for the theory of nonholonomic systems with
symmetry with control-theoretic goals in mind. In particular, a symmetry group
G that acts on the configuration-space and for which the Lagrangian is invariant
is systematically studied.

� The derivation of a momentum equation for nonholonomicsystems with symme-
try. We show that this equation implies, in particular, the standard conservation
laws for nonholonomic systems. However, the general momentum equation al-
lows for important cases in which the momentum equation is not conserved.
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This case is well illustrated by the snakeboard example. The nonconservation of
momentum plays an important role in locomotion generation.

� The momentum equation is written in a variety of forms that bring out different
geometric and dynamic features. For example, some forms involve the covari-
ant derivative (relative to a certain natural connection) of the momentum. The
momentum equations are also closely related to the Euler-Poincaré equations.

� A connection, called the nonholonomic connection, which synthesizes the me-
chanical connection and the kinematic connection, is introduced. In many cases
of control-theoretic interest, even though the kinematic connection is not princi-
pal (i.e., the system is not Chaplygin), the nonholonomic connection is principal
and this is the case we concentrate on.

� The reduced equations on the space D=G are calculated and a comparison with
the theory of Lagrangian reduction is made.

� Several examples, including the vertical rolling disk, a constrained particle, the
rolling ball on a rotating turntable, and the snakeboard are all treated in some
detail to illustrate the theory.

2. Constraint Distributions and Ehresmann Connections

We first consider mechanics in the presence of (linear and affine) nonholonomic
velocity constraints and develop its geometry. For the moment, no assumptions on
any symmetry are made; rather we prefer to add such assumptions separately and
will do so in the following sections.

2.1. The Lagrange-d’Alembert Principle

The starting point is a configuration-space Q and a distributionD that describes
the kinematic constraints of interest. Here, D is a collection of linear subspaces
denoted Dq � TqQ, one for each q 2 Q. A curve q(t) 2 Q is said to satisfy the
constraints if q̇(t) 2 Dq(t) for all t. This distribution is, in general, nonintegrable;
i.e., the constraints are, in general, nonholonomic. One of our goals is to model the
constraints in terms of Ehresmann connections (see CARDIN & FAVRETTI [1996]
and MARLE [1995] for some related ideas).

The above setup describes linear constraints; for affine constraints, for example,
a ball on a rotating turntable (where the rotational velocity of the turntable represents
the affine part of the constraints), we assume that there is a given vector field V0

on Q and the constraints are written q̇(t) � V0(q(t)) 2 Dq(t). We will explicitly
discuss the affine case at various points in the paper and the example of the ball on
a rotating table will be treated in detail.

Consider a Lagrangian L : TQ ! R. In coordinates qi; i = 1; : : : ; n; on Q with
induced coordinates (qi; q̇i) for the tangent bundle, we write L(qi; q̇i). The equations
of motion are given by the by the Lagrange-d’Alembert principle (see, for example,
ROSENBERG [1977] for a discussion).

Definition 2.1. The Lagrange-d'Alembert equations of motion for the
system are those determined by
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�

bZ
a

L(qi; q̇i) dt = 0; (2.1.1)

where we choose variations �q(t) of the curve q(t) that satisfy �q(t) 2 Dq(t) for
each t; a 5 t 5 b.

This principle is supplemented by the condition that the curve itself satisfies the
constraints. In such a principle, we follow standard procedure and take the variation
before imposing the constraints, that is, we do not impose the constraints on
the family of curves defining the variation. The usual arguments in the calculus
of variations show that this constrained variational principle is equivalent to the
equations

� �L =
�

d
dt
@L
@q̇i

�
@L
@qi

�
�qi = 0; (2.1.2)

for all variations �q such that �q 2 Dq at each point of the underlying curve q(t).
To explore the structure of these equations in more detail, consider a mechanical

system evolving on a configuration-space Q with a given Lagrangian L : TQ ! R

and let f!ag be a set of p independent one-forms whose vanishing describes the
constraints on the system. The constraints in general are nonintegrable. Choose a
local coordinate chart and a local basis for the constraints such that

!a(q) = dsa + Aa
�(r; s) dr�; a = 1; : : : ; p; (2.1.3)

where q = (r; s) 2 Rn�p �Rp.
The equations of motion for the system are given by (2.1.2) where we choose

variations �q(t) that satisfy the condition !a(q) � �q = 0, i.e., where the variation
�q = (�r; �s) satisfies �sa + Aa

��r� = 0. Substitution into (2.1.2) gives�
d
dt
@L
@ṙ�

�
@L
@r�

�
= Aa

�

�
d
dt
@L
@ṡa �

@L
@sa

�
; � = 1; : : : ; n� p: (2.1.4)

Equations (2.1.4) combined with the constraint equations

ṡa = �Aa
� ṙ�; a = 1; : : : ; p; (2.1.5)

gives a complete description of the equations of motion of the system.
We now define the “constrained” Lagrangian by substituting the constraints

(2.1.5) into the Lagrangian:

Lc(r�; sa; ṙ�) = L(r�; sa; ṙ�;�Aa
�(r; s)ṙ�):

The equations of motion can be written in terms of the constrained Lagrangian in
the following way, as a direct coordinate calculation (given in Remark 3 below)
shows:

d
dt
@Lc

@ṙ�
�
@Lc

@r�
+ Aa

�

@Lc

@sa = �
@L
@ṡb Bb

�� ṙ�; (2.1.6)

where
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Bb
�� =

 
@Ab

�

@r�
�
@Ab

�

@r�
+ Aa

�

@Ab
�

@sa � Aa
�

@Ab
�

@sa

!
: (2.1.7)

Let d!b be the exterior derivative of !b; another computation (see Remark 4 below)
shows that

d!b(q̇; �) = Bb
�� ṙ�dr�

and hence the equations of motion have the form

��Lc =
�

d
dt
@Lc

@ṙ�
�
@Lc

@r�
+ Aa

�

@Lc

@sa

�
�ra = �

@L
@ṡb

d!b(q̇; �r):

This form of the equations isolates the effects of the constraints, and shows that
in the case where the constraints are integrable (d! = 0) the correct equations of
motion are obtained by substituting the constraints into the Lagrangian and setting
the variation of Lc to zero. However, in the non-integrable case the constraints
generate extra (curvature) forces, which must be taken into account.

2.2. Ehresmann Connections

The above coordinate results can be put into an interesting and useful geometric
framework. To carry this out, we first develop the notion of an Ehresmann connec-
tion. A general reference for Ehresmann connections is MARSDEN, MONTGOMERY

& RATIU [1990], where many additional references may be found.
First of all, we assume that there is a bundle structure �Q;R : Q ! R for our

space Q, that is, there is another manifold R called the base and a map �Q;R which
is a submersion (its derivative Tq�Q;R is onto at each point q 2 Q). We call the
kernel of Tq�Q;R at any point the vertical space and denote it by Vq.

Definition 2.2. An Ehresmann connection A is a vertical-valued one-form
on Q that satisfies

1. Aq : TqQ ! Vq is a linear map for each point q 2 Q,
2. A is a projection: A(vq) = vq for all vq 2 Vq.

Note that these conditions imply that TqQ = Vq � Hq where Hq = kerAq is the
horizontal space at q. We will sometimes write horq for the horizontal space.
Thus, an Ehresmann connection gives us a way to split the tangent space to Q at
each point into a horizontal and vertical part; for example, we can speak about
projecting a tangent vector onto its vertical part using the connection. Notice also
that the vertical space at q, namely Vq, is tangent to the vertical �ber Vq, which
consists of all points that get sent by the projection �Q;R, to the same point as q.
This situation is illustrated in Figure 2.1.

We now assume that we choose the Ehresmann connection in such a way that
the given constraint distributionD is the horizontal space of the connection, that is,
Hq = Dq. We emphasize that the choice of the bundle�Q;R is not unique and that the
formulation of the Lagrange-d’Alembert principle does not depend on this choice.
However, it is clear that once the bundle structure �Q;R is chosen (i.e., once the base
and fiber variables are specified), the constraint distribution uniquely determines
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Hq

Vq

q

Q


 πQ,R

R

Vq

Fig. 2.1. An Ehresmann connection specifies a horizontal subspace at each point

the connection. We also caution the reader that later on, when the assumption
of symmetry is added to this context, it may affect the choice of bundle and the
connection will get modified.

We have chosen a bundle structure simply for convenience so that the formalism
does not get too abstract and we have a convenient coordinatization for our calcu-
lations. In fact, the basic notion of curvature, defined below and which is a central
object in our investigation, can be defined for a general distribution D, as long as
one regards the curvature as TqQ=Dq-valued rather than vertical valued. This re-
flects the important point we have already made, namely that the basic theory does
not depend on the choice of bundle �Q;R. Later on, when we introduce symmetry
into the problem, we will have a natural bundle and this issue will disappear.

When the bundle coordinates qi = (r�; sa) described earlier are used, the coor-
dinate representation of the projection �Q;R is just projection onto the factor r and
the connection A can be represented locally by a vector-valued differential form
which we denote !a:

A = !a @

@sa ; !a(q) = dsa + Aa
�(r; s)dr�:

The exterior derivative of A is not defined (since it is a vertical-valued form,
not a differential form), but we can, at least locally in coordinates, take the exterior
derivative of !a. In fact, this will give an easy way to compute the curvature of the
connection A, as we see shortly.

Given an Ehresmann connection A, a point q 2 Q and a vector vr 2 TrR tangent
to the base at a point r = �Q;R(q) 2 R, we can define the horizontal lift of vr to
be the unique vector vh

r in Hq that projects to vr under Tq�Q;R. If we have a vector
Xq 2 TqQ, we also write its horizontal part as

hor Xq = Xq � A(q) � Xq:
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In coordinates, the vertical projection is the map

(ṙ�; ṡa) 7! (0; ṡa + Aa
�(r; s)ṙ�) (2.2.1)

while the horizontal projection is the map

(ṙ�; ṡa) 7! (ṙ�;�Aa
�(r; s)ṙ�): (2.2.2)

Next, we recall the basic notion of curvature.

Definition 2.3. The curvature of A is the vertical-valued two-form B on Q
defined by its action on two vector fields X and Y on Q by

B(X; Y) = �A([hor X; hor Y])

where the bracket on the right-hand side is the Jacobi-Lie bracket of vector fields
obtained by extending the stated vectors to vector fields.

Notice that this definition shows that the curvature exactly measures the failure of
the constraint distribution to be an integrable bundle.

A useful standard identity for the exterior derivative d� of a one-form� (which
could be vector-space-valued) on a manifold M acting on two vector fields X; Y is

(d�)(X; Y) = X[�(Y)]� Y[�(X)] � �([X; Y]):

This identity shows that in coordinates, one can evaluate the curvature by writing
the connection as a form !a in coordinates, computing its exterior derivative (com-
ponent by component) and restricting the result to horizontal vectors, that is, to the
constraint distribution. In other words,

B(X; Y) = d!a(hor X; hor Y)
@

@sa
;

so that the local expression for curvature is given by

B(X; Y)a = Ba
��X�Y� (2.2.3)

where the coefficients Ba
�� are given by (2.1.7).

2.3. Intrinsic Formulation of the Equations

We can now rephrase our coordinate computations from Section 2.1 in the
language of Ehresmann connections. We shall do this first for systems with homo-
geneous constraints and then treat the affine case.
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Homogeneous Constraints. Let A be an Ehresmann connection on a given bun-
dle such that the constraint distribution D is given by the horizontal subbundle
associated with A. The constrained Lagrangian can be written as

Lc(q; q̇) = L(q; hor q̇);

and we have the following theorem.

Theorem 2.4. The Lagrange-d’Alembert equations may be written as the equa-
tions

�Lc = hFL;B(q̇; �q)i;

where h ; i denotes the pairing between a vector and a dual vector and where

�Lc =
�
�qi;

@Lc

@qi
�

d
dt
@Lc

@q̇i

�
;

in which �q is a horizontal variation (i.e., it takes values in the horizontal space)
and B is the curvature regarded as a vertical-valued two-form, in addition to the
constraint equations

A(q) � q̇ = 0:

This theorem follows from the way that the constraints restrict q̇ and the fact that
the Lagrange-d’Alembert principle requires �q to be horizontal. This formulation
depends on a specific choice of connection, and there is some freedom in this
choice. However, as we will see later, the freedom can be removed in many cases
for systems with symmetry.

Affine Constraints. We next consider the modifications necessary to allow affine
constraints of the form

A(q) � q̇ = 
(q; t)

where A is an Ehresmann connection as described above and 
(q; t) is vertical-
valued. The expression 
 here is related to the vector field V0 given above by

(q) = A(q) � V0(q). Affine constraints arise, for example, in studying the motion
of a ball on a spinning turntable. Since the turntable is moving underneath the ball,
the velocity in the constraint directions is not zero, but is instead determined by the
position of the ball on the turntable and the angular velocity of the turntable.

Since 
(q; t) is vertical, we can define the covariant derivative of 
 as

D
(X) = ver [hor X; 
]

(see MARSDEN, MONTGOMERY & RATIU [1990]). Relative to bundle coordinates
q = (r; s), we write 
 as


(q; t) = 
a(q; t)
@

@sa

and the covariant derivative along a horizontal vector field

X = X�

�
@

@r�
� Aa

�

@

@sa

�
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is given by

D
(X) = X�

�
@
a

@r�
� Ab

�

@
a

@sb
+ 
b @Aa

�

@sb

�
@

@sa
=: 
a

�X� @

@sa
;

which defines the symbols 
a
�.

We now define the constrained Lagrangian as

Lc(q; q̇; t) = L (q; hor q̇ + 
(q; t)) :

A long calculation, similar to what we have already carried out in the case of linear
constraints, shows that the dynamics have the form

�Lc = hFL;B(q̇; �q)i + hFL;D
(�q)i;
A(q) � q̇ = 
(q; t)

(2.3.1)

where the �q are restricted to satisfy A(q) � �q = 0: In coordinates, the first of these
equations reads as

d
dt
@Lc

@ṙ�
�
@Lc

@r�
+ Aa

�

@Lc

@sa = �
@L
@ṡb Bb

�� ṙ� �
@L
@ṡa 


a
�; (2.3.2)

while the second reads as ṡa + Aa
�ṙ� = 
a. Notice that these equations show how,

in the affine case, the covariant derivative of the affine part 
 enters into the
description of the system; in particular, note that the covariant derivative in (2.3.1)
is with respect to the configuration variables and not with respect to the time.

Remarks. 1. For a mechanical system with homogeneous nonholonomic con-
straints, conservation of energy holds: along a solution, the energy function

Ec(r�; ṙ�; sa) =
@Lc

@ṙ�
ṙ� � Lc(r�; ṙ�; sa)

is constant in time, as is readily verified. (In the affine case, one requires the con-
dition (@L=@ṡa)
a

�ṙ� = 0.) On the other hand, unlike the usual Euler-Lagrange
equations for systems with holonomic constraints, the Lagrange-d’Alembert equa-
tions need not preserve the symplectic form along orbits; its rate of change involves
the curvature terms. This phenomenon is related to Hamiltonian formulations of
the problem and the failure of the Jacobi identity (see BATES & SNIATYCKI [1993]);
this aspect is not discussed further in the present paper. See KOON & MARSDEN

[1996b] for some additional information on the links between the Lagrangian and
Hamiltonian approaches.

2. Dynamics in the presence of external forces, which of course is important for
control-theoretic purposes, will be treated more fully in a forthcoming article; see
also YANG [1992], YANG, KRISHNAPRASAD & DAYAWANSA [1993] and BLOCH,
KRISHNAPRASAD, MARSDEN & RATIU [1994]. Briefly, we represent forces as map-
pings which take values in T�Q and can depend on configuration, velocity, and
time, that is, forces are maps F : TQ � R! T�Q, which are bundle maps (take
tangent vectors to q to covectors also at q). Let F(q; q̇; t) 2 T�Q represent the
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external forces on the system, and take all other quantities as described above.
From the Lagrange-d’Alembert equations, the motion of the system is given by

�Lc = hFL;B(q̇; �q)i � hF; �qi:

Systems with forces can be extended to the case of affine constraints case by adding
exactly the extra term in equation (2.3.1).

3. The derivationof the equations of motion in terms of the constrained Lagrangian
proceeds as follows: using the relationships

@Lc

@ṙ�
=
@L
@ṙ�

� Ab
�

@L
@ṡb ;

@Lc

@r�
=
@L
@r�

�
@L
@ṡb

 
@Ab

�

@r�
ṙ�
!
;

@Lc

@sa
=
@L
@sa

�
@L
@ṡb

 
@Ab

�

@sa
ṙ�
!
;

and substituting Lc into Lagrange’s equations (2.1.2) yields

d
dt
@Lc

@ṙ�
�
@Lc

@r�
+ Aa

�

@Lc

@sa
=
�

d
dt
@L
@ṙ�

�
@L
@r�

�
� Aa

�

�
d
dt
@L
@ṡa

�
@L
@sa

�

�
@L
@ṡb

d
dt

Ab
� +

@L
@ṡb

@Ab
�

@r�
ṙ� � Aa

�

@L
@ṡb

@Ab
�

@sa ṙ�

=

�
d
dt
@L
@ṙ�

�
@L
@r�

�
� Aa

�

�
d
dt
@L
@ṡa �

@L
@sa

�

+
@L
@ṡb

 
@Ab

�

@r�
�
@Ab

�

@r�
� Aa

�

@Ab
�

@sa
� Aa

�

@Ab
�

@sa

!
ṙ� :

Hence the equations of motion can be written as (2.1.6).
Note that Lc is a degenerate Lagrangian in the sense that it does not depend on

ṡ. Also note that thinking of s as a cyclic variable does not lead to conservation
laws in the usual way because of the constraints.

4. To see how the right-hand side of the constrained Lagrange-d’Alembert equation
(2.1.6) is related to the curvature of the Ehresmann connection of A = !a(@=@sa),
let d!b be the exterior derivative of !b:

d!b = d(dsb � Ab
�dr�)

=
@Ab

�

@r�
dr� ^ dr� �

@Ab
�

@sa Aa
�dr� ^ dr�: (2.3.3)

Contracting d!b with q̇ yields



38 A. BLOCH ET AL.

d!b(q̇; �) =
@Ab

�

@r�
ṙ�dr� �

@Ab
�

@sa Aa
� ṙ�dr� �

@Ab
�

@r�
ṙ�dr� +

@Ab
�

@sa Aa
� ṙ�dr�

=

 
@Ab

�

@r�
+
@Ab

�

@sa
Aa
� �

@Ab
�

@r�
�
@Ab

�

@sa
Aa
�

!
ṙ�dr�

= Bb
�� ṙ�dr�: (2.3.4)

Combining all of these calculations, we can write the equations of motion for the
constrained system as

d
dt
@Lc

@ṙ�
�
@Lc

@r�
+ Aa

�

@Lc

@sa
= �

@L
@ṡa

d!a

�
q̇;

@

@r�

�
: (2.3.5)

The left-hand side of (2.3.5) may be checked to be the variational derivative of the
constrained Lagrangian. The right-handside consists of the forces that maintain the
constraints. In the special case that the constraints are holonomic, d!a = 0 since d!a

represents the curvature and the curvature measures the lack of integrability of the
constraints; when they are integrable, we have, by definition, the holonomic case.
In this case, equation (2.3.5) reduces to the usual form of Lagrange’s equations.
This verifies that for holonomic systems it is appropriate to “plug in the constraints”
before applying Lagrange’s equations.

Specific examples of the computation of the dynamics using the formulation in
this section are given in Section 8.

3. Systems with Symmetry

We now add symmetry to our nonholonomic system. We begin with some
general remarks about symmetry, review some facts about principal connections
and then treat a special case that we call the principal kinematic case (sometimes
called the CHAPLYGIN case) both for completeness and to set the stage for the more
general main results to follow.

3.1. Group Actions and Invariance

We refer the reader to MARSDEN & RATIU [1994], Chapter 9 for the basic
definitions and examples of Lie groups and group actions for what follows. Assume
that we are given a Lie group G and an action of G on Q. The action of G is denoted
q 7! gq = �g(q). The group orbit through a point q, which is always an (immersed)
submanifold, is denoted

Orb(q) := fgq j g 2 Gg:

When there is danger of confusion about which group is meant, we write the orbit
as OrbG(q).

Let g denote the Lie algebra of the Lie group G. For an element � 2 g, we write
�Q, a vector field on Q for the corresponding infinitesimal generator; recall that
this is obtained by differentiating the flow �exp(t�) with respect to t at t = 0. The
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tangent space to the group orbit through a point q is given by the set of infinitesimal
generators at that point:

Tq(Orb(q)) = f�Q(q) j � 2 gg:

Throughout this paper we make the assumption that the action of G on Q is
free (none of the maps �g has any fixed points) and proper (the map (q; g) 7! gq is
proper, that is, the inverse images of compact sets are compact). The case of nonfree
actions is very important and the investigation of the associated singularities needs
to be carried out, but that topic is not the subject of the present paper.

The quotient space M = Q=G, whose points are the group orbits, is called shape
space . It is known that if the group action is free and proper then shape space is
a smooth manifold and the projection map � : Q ! Q=G is a smooth surjective
map with a surjective derivative Tq� at each point. We denote the projection map
by �Q;G if there is any danger of confusion. The kernel of the linear map Tq� is the
set of infinitesimal generators of the group action at the point q, i.e.,

ker Tq� = f�Q(q) j � 2 gg ;

so these are also the tangent spaces to the group orbits. We now introduce some
assumptions concerning the relation between the given group action, the Lagran-
gian, and the constraint distribution.

Definition 3.1.
(L1) We say that the Lagrangian is invariant under the group action if L is
invariant under the induced action of G on TQ.
(L2) We say that the Lagrangian is in�nitesimally invariant if for any Lie
algebra element � 2 g we have dL � �̇Q = 0 where, for a vector field X on Q, Ẋ
denotes the vector field on TQ naturally induced by it (if Ft is the flow of X then
the flow of Ẋ is TFt).
(S1) We say that the distribution D is invariant if the subspace Dq � TqQ is
mapped by the tangent of the group action to the subspace Dgq � TgqQ. (S2) An
Ehresmann connection A on Q (that hasD as its horizontal distribution) is invari-
ant under G if the group action preserves the bundle structure associated with the
connection (in particular, it maps vertical spaces to vertical spaces) and if, as a map
from TQ to the vertical bundle, A is G-equivariant.
(S3) A Lie algebra element � is said to act horizontally if �Q(q) 2 Dq for all
q 2 Q.

Some relationships between these conditions are as follows: Condition (L1)
implies (L2), as is obtained by differentiating the invariance condition. It is also
clear that condition (S2) implies the condition (S1) since the invariance of the
connection A implies that the group action maps its kernel to itself. Condition (S1)
may be stated as

Tq�g � Dq = Dgq: (3.1.1)

In the case of affine constraints, we explicitly state when we need the assumption
that the vector field 
 be invariant under the action.
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To help explain condition (S1), we rewrite it in infinitesimal form. Let XD be
the space of sections X of the distribution D, that is, the space of vector fields X
that take values in D. The condition (S1) implies that for each X 2 XD, we have
��gX 2 XD. Here, ��gX denotes the pull-back of the vector field X under the map
�g. Differentiation of this condition with respect to g proves the following result.

Proposition 3.2. Assume that condition (S1) holds and let X be a section of D.
Then, for each Lie algebra element �,

[�Q;X] 2 XD; (3.1.2)

which is also written as
[�Q;XD] � XD:

3.2. Reduced Lagrange-d’Alembert Systems

We now explain in general terms how reduced systems are formed by elimi-
nating the group variables. Later on, we compute the associated reduced equations
explicitly and also show how to reconstruct the group variables. We confine our-
selves to linear constraints for the moment.

Proposition 3.3. Assumptions (L1) and (S1) allow the formation of the reduced
velocity phase space TQ=G and theconstrained reduced velocity phase

space D=G. The Lagrangian L induces well-defined functions, the reduced La-

grangian

l : TQ=G ! R

satisfying L = l � �TQ where �TQ : TQ ! TQ=G is the projection, and the
constrained reduced Lagrangian

lc : D=G ! R;

which satisfies LjD = lc � �D where �D : D ! D=G is the projection. Also,
the Lagrange-d’Alembert equations induce well-defined reduced Lagrange-

d'Alembert equations on D=G. That is, the vector field on the manifold D
determined by the Lagrange-d’Alembert equations (including the constraints) is
G-invariant, and so defines a reduced vector field on the quotient manifoldD=G.

This proposition follows from general symmetry considerations. For example,
to get the constrained reduced Lagrangian lc we restrict the given Lagrangian to
the distributionD and then use its invariance to pass to the quotient. The problem
of constrained Lagrangian reduction is the detailed determination of these reduced
structures and is dealt with later. The special case in which there are no constraints
(that is, the case in which D = TQ) is reviewed in Section 5.

We make a few more general remarks and constructions before proceeding.
In studying the reduced Lagrangian l, the space TQ=G (which was studied in
MARSDEN & SCHEURLE [1993b]) is itself important. As explained above, we let the
natural projection map associated with the action of G be denoted � : Q ! Q=G.
We let bundle coordinates be denoted (r; g) where r is a coordinate in the base, or
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shape space Q=G, and where g is a group coordinate. Such a local trivialization
is characterized by the fact that in such coordinates, the group does not act on
the factor r but acts on the group coordinate by left translations. Thus, locally in
the base, the space Q is isomorphic to the product Q=G � G and in this local
trivialization, the map � becomes the projection onto the first factor.

The space (TQ)=G, is a vector bundle over T(Q=G) with fiber isomorphic to
g, with the projection from (TQ)=G to T(Q=G) being the map induced by T�, the
tangent of the projection. In other words, for vq 2 TqQ, the map [vq] 7! T�(vq)
is well-defined, independent of the chosen representative vq of the equivalence
class, as is easily checked. In a local trivialization of the bundle � with coordinates
q = (r; g), induced coordinates for the bundle (TQ)=G ! T(Q=G) are given by
(r; ṙ; �), where � = g�1ġ. The bundle projection in these coordinates is simply the
projection onto the first two factors.

In these coordinates, the reduced Lagrangian l is easy to understand. Namely,
the Lagrangian L as a function L(r; g; ṙ; ġ) is invariant under the left action of G
and so it depends on g and ġ only through the combination � = g�1ġ. Thus, the
induced function l is given in this local trivialization by

l(r; ṙ; �) = L(r; g; ṙ; ġ): (3.2.1)

To write out the constrained reduced Lagrangian lc in coordinates requires
a coordinate description of the constraints, using, for example, an Ehresmann
connection, including a choice of bundle �Q;R : Q ! R. This bundle and the
bundle � : Q ! Q=G need not coincide in general. As we shall see in the next
subsection, there is a well-developed theory dealing with the bundle � : Q ! Q=G
with a point of view that is rather different from that we have already presented
utilizingEhresmann connections. One of our goals is to eventually synthesize these
two points of view. In the special case in which these two bundles coincide, which
we call the principal kinematic case, there is no ambiguity. To describe it in more
detail we need the notion of a principle connection.

3.3. Principal Connections

We now recall, for the convenience of the reader and to set notation and conven-
tions, the notionof a principal connection. The reader who is consultingKOBAYASHI

& NOMIZU [1963] notices that there are various factors of 2 and minus signs that
are different from what we have here. These are due to the different conventions
that various authors use for the wedge product and the exterior derivative and the
fact that we use left actions for our default, whereas much of the literature assumes
one has right actions. We follow the most common “Bourbaki” conventions for the
wedge product, as in ABRAHAM, MARSDEN & RATIU [1988].

As above, we start with a free and proper group action of a Lie group on a
manifold Q and construct the projection map � : Q ! Q=G; this setup is also
referred to as a principal bundle . The kernel ker Tq� (the tangent space to the
group orbit through q) is called the vertical space of the bundle at the point q and
is denoted by verq.
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Definition 3.4. A principal connection on the principal bundle� : Q ! Q=G
is a map (referred to as the connection form) A : TQ ! g that is linear on each
tangent space (i.e., A is a g-valued one-form) and is such that

1. A(�Q(q)) = � for all � 2 g and q 2 Q, and

2. A is equivariant:
A(Tq�g(vq)) = AdgA(vq)

for all vq 2 TqQ and g 2 G, where �g denotes the given action of G on Q and
where Ad denotes the adjoint action of G on g.

The horizontal space of the connection at a point q 2 Q is the linear space

horq = fvq 2 TqQ j A(vq) = 0g :

Thus, at any point, we have the decomposition

TqQ = horq � verq:

Often one finds connections defined by specifying the horizontal spaces (com-
plementary to the vertical spaces) at each point and requiring that they transform
correctly under the group action. In particular, notice that a connection is uniquely
determined by the specification of its horizontal spaces, a fact that we will use later
on. We will denote the projections onto the horizontal and vertical spaces relative
to the above decomposition using the same notation; thus, for vq 2 TqQ, we write

vq = horqvq + verqvq:

The projection onto the vertical part is given by

verqvq = (A(vq))Q(q)

and the projection to the horizontal part is thus

horqvq = vq � (A(vq))Q(q):

The projection map at each point defines an isomorphism from the horizontal space
to the tangent space to the base; its inverse is called the horizontal lift. Using
the uniqueness theory of ordinary differential equations one finds that a curve in
the base passing through a point �(q) can be lifted uniquely to a horizontal curve
through q in Q (i.e., a curve whose tangent vector at any point is a horizontal
vector).

Since we have a splitting, we can also regard a principal connection as a special
type of Ehresmann connection. However, Ehresmann connections are regarded as
vertical-valued forms whereas principal connections are regarded as Lie-algebra-
valued. Thus, the Ehresmann connection A and the connection one-form A are
different and we will distinguish them; they are related in this case by

A(vq) = (A(vq))Q(q):

The general notions of curvature and other properties which hold for general
Ehresmann connections specialize to the case of principal connections. As in the
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general case, given any vector field X on the base space (in this case, the shape
space), using the horizontal lift, there is a unique vector field Xh that is horizontal
and that is �-related to X, that is, at each point q, we have

Tq� � Xh(q) = X(�(q))

and the vertical part is zero:

(A(Xh
q))Q(q) = 0:

It is well known (see, for example, ABRAHAM, MARSDEN & RATIU [1988]) that the
relation of being �-related is bracket preserving; in our case, this means that

hor [Xh; Yh] = [X; Y]h;

where X and Y are vector fields on the base.

Definition 3.5. The covariant exterior derivativeD of a Lie-algebra-valued
one-form� is defined by applying the ordinary exterior derivative d to the horizontal
parts of vectors:

D�(X; Y) = d�(hor X; hor Y):

The curvature of a connection A is its covariant exterior derivative and it is
denoted by B.

Thus, B is the Lie-algebra-valued two-form given by

B(X; Y) = dA(hor X; hor Y):

Using the identity

(d�)(X; Y) = X[�(Y)] � Y[�(X)] � �([X; Y]);

together with the definition of horizontal, shows that for two vector fields X and Y
on Q, we have

B(X; Y) = �A([hor X; hor Y]);

where the bracket on the right-hand side is the Jacobi-Lie bracket of vector fields.
The Cartan structure equations say that if X and Y are vector fields that are invariant
under the group action, then

B(X; Y) = dA(X; Y) � [A(X);A(Y)]

where the bracket on the right-hand side is the Lie-algebra bracket. This follows
readily from the definitions, the fact that [�Q; �Q] = �[�; �]Q, the first property in
the definition of a connection, and writing hor X = X � ver X and similarly for Y,
in the preceding formula for the curvature.

Next, we give some useful local formulas for the curvature. To do this, we pick a
local trivialization of the bundle, that is, locally in the base, we write Q = Q=G�G
where the action of G is given by left translation on the second factor. We choose
coordinates r� on the first factor and a basis ea of the Lie algebra g of G. We write
coordinates of an element � relative to this basis as �a. Let tangent vectors in this
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local trivialization at the point (r; g) be denoted (u; w). We write the action of A
on this vector simply as A(u; w). Using this notation, we can write the connection
form in this local trivialization as

A(u; w) = Adg(wb + Aloc(r) � u); (3.3.1)

where wb is the left translation of w to the identity (that is, the expression of w
in “body coordinates”). The preceding equation defines the expression Aloc(r). We
define the connection components by writing

Aloc(r) � u = Aa
�u�ea:

Similarly, the curvature can be written in a local representation as

B((u1; w1); (u2; w2)) = Adg(Bloc(r) � (u1; u2));

which again serves to define the expression Bloc(r). We can also define the coordi-
nate form for the local expression of the curvature by writing

Bloc(r) � (u1; u2) = Ba
��u�1 u�2 ea:

Then one has the formula

Bb
�� =

 
@Ab

�

@r�
�
@Ab

�

@r�
� Cb

acA
a
�A

c
�

!
;

where Cb
ac are the structure constants of the Lie algebra defined by

[ea; ec] = Cb
aceb:

3.4. The Principal or Purely Kinematic Case

To illustrate how symmetries affect the equations of motion, we start with one
of the simplest cases in which the group orbits exactly complement the constraints,
which we call the principal or the purely kinematic case, sometimes called the
Chaplygin, or the nonabelian Chaplygin case. This case goes back to CHAPLYGIN

[1897], HAMEL [1904], and was put into a geometric context by KOILLER [1992].
An example of the purely kinematic case is the vertical rolling disk discussed in

the examples section below. However, in other examples, such as the snakeboard,
this condition is not valid and its failure is crucial to understanding the dynamic
behavior of this system, and thus below we will consider the more general case.

Definition 3.6. The principal kinematic case is the case in which (L1) and
(S1) hold and where at each point q 2 Q, the tangent space TqQ is the direct sum of
the tangent to the group orbit and to the constraint distribution, that is, we require
that, at each point, Sq = f0g and that

TqQ = TqOrb(q)� Dq =: Vq �Dq:
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In other words, we require that the group directions provide a vertical space
for the Ehresmann connection introduced earlier; thus, in this situation there is
a preferred vertical space and so there is no freedom in choosing the associated
Ehresmann connection whose horizontal space is the given constraint distribution.
In other words, the nonholonomic kinematic constraints provide a connection on
the principal bundle � : Q ! Q=G, so that we can choose this bundle to be
coincident with the bundle �Q;R : Q ! R introduced earlier. If the Lagrangian and
the constraints are invariant with respect to the group action (assumptions (L1) and
(S1)), then as we explained above, the equations of motion in Theorem 2.4 drop
to the reduced space D=G. As we shall see, in the principal kinematic case, these
reduced equations may be regarded as second-order equations on Q=G together with
the constraint equations. The connection that describes the constraints provides the
information necessary to reconstruct the trajectory on the full space. In essence, the
constraints provide a connection that replaces the mechanical connection which is
used in the reduction theory of unconstrained systems with symmetry. The general
case, described later, requires a synthesis of the two approaches.

From the well-known fact that a principal connection is uniquely determined by
the specification of its horizontal spaces as an invariant complement to the group
orbits, we get the following.

Proposition 3.7. In the principal kinematic case, there is a unique principal con-
nection on Q ! Q=G whose horizontal space is the given distributionD.

We now make these considerations more explicit. The vertical space for the
principal bundle � : Q ! Q=G is Vq = ker Tq�, which is the tangent space to the
group orbit through q. Thus, each vertical fiber at a point q is isomorphic to the Lie
algebra g by means of the map � 2 g 7! �Q(q). In the principal kinematic case,
the splitting of the tangent space to Q given in the preceding definition defines
a projection onto the vertical space and hence defines an Ehresmann connection,
which, as before, we denote by A. If condition (S1) holds, then A : TQ ! V is
group invariant (assumption (S2)), and there exists a Lie-algebra-valued one-form
A : TQ ! g such that

A(q) � q̇ = (A(q) � q̇)Q (q) or A = AQ:

Thus on a principal bundle we can express our results in terms of A instead of A.
In bundle coordinates, A can be written as

A(r; g) � (ṙ; ġ) = Adg(g�1ġ + Aloc(r)ṙ);

as in equation (3.3.1).
We gave the expression (3.2.1) for the reduced Lagrangian in a local trivial-

ization. We now turn to the expression in a local trivialization for the constrained
reduced Lagrangian lc. This is obtained by substituting the constraintsA(q) � q̇ = 0
into the reduced Lagrangian. Thus lc : T(Q=G) ! R is given by

lc(r; ṙ) = l(r; ṙ;�Aloc(r)ṙ): (3.4.1)

Alternatively, note that we can write
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lc(r; ṙ) = L(q; hor q̇);

where r = �(q) and ṙ = Tq�(q̇).
In this notation, the equations of motion can be read off of Theorem 2.4 to give

the following theorem.

Theorem 3.8. In the principal kinematic case, the equations of motion are

�lc =
�
@l
@�
;Bloc(ṙ; �r)

�
; ġ = �gAloc(r)ṙ; (3.4.2)

where �r 2 T(Q=G), Bloc is the curvature of Aloc, and � = �Aloc(r)ṙ.

This theorem goes back to the works of CHAPLYGIN starting in 1897 (see the
references) for the abelian principal case and was extended to the nonabelian case by
KOILLER. This result is also a consequence of the results of MARSDEN & SCHEURLE

[1993b]; indeed, they show that the first of these equations is a consequence of the
horizontal variations in the action (i.e., the Lagrange-d’Alembert principle) and
that in this calculation one can choose any connection, in particular, the principal
kinematic connection in this case. Of course the second of the equations is just the
condition of horizontality, that is, the kinematic constraints themselves.

We see in local coordinates that the dynamics of the system can be completely
written in terms of the dynamics in base coordinates r 2 Q=G and the full dynamics
are given by reconstruction of ġ using the constraints. Thus, in the purely kinematic
case, we recover the process of reduction and reconstruction with the kinematic
connection A replacing the mechanical connection. We stress, in particular, that
in the principal kinematic case, something special happens, namely, there is no
dynamical equation for � = g�1ġ but rather � can be expressed directly in terms
of r and ṙ by using the constraints, and when this expression is substituted into
the first equation, they become second-order equations for r. Thus, in this case,
the equations actually reduce from equations on D=G to equations on Q=G. The
dynamics of g itself is then recovered by the constraint equation, which may
be regarded as similar to the problem of calculating holonomy, as in MARSDEN,
MONTGOMERY & RATIU [1990]. In particular, for abelian groups, the dynamics of
g can be written in terms of that of r by an explicit quadrature.

The purely kinematic case can easily be extended to allow affine constraints
(see YANG [1992] and YANG, KRISHNAPRASAD & DAYAWANSA [1993]). If the
constraints are of the form A(q) � q̇ = 
(q; t) where 
 is a vertical-valued vector
field on Q and is G-invariant, then in the principal kinematic case the constraints
can be regarded as being Lie-algebra-valued and written

A(q) � q̇ = � (q; t) = Adg�loc(r; t)

where � : Q � R! g is defined by (� (q; t))Q = 
(q; t) and �loc(r; t) 2 g is the
version of � in a local trivialization. The Lagrangian is modified as before and the
equations of motion become

�lc =

�
@l
@�
;B(q̇; �q)

�
+

�
@l
@�
;D� (�q)

�
; A(q) � q̇ = � (q; t); (3.4.3)
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where the variations in r are free, that is, �r = Tq� � �q is free and where D� (X) =
d� (horX) is the covariant derivative of � . The proof is via a direct coordinate
calculation and uses the fact that � depends equivariantly on the group variable.
As before, relative to a local trivialization, these equations can be written as

�lc =

�
@l
@�
;Bloc(ṙ; �r)

�
+

�
@l
@�
; d�loc(�r)

�
;

(3.4.4)

ġ = g(�Aloc(r)ṙ + �loc(r; t))

which again determines a second-order dynamical system on shape space Q=G and
where � = �Aloc(r)ṙ + �loc(r; t).

4. The Momentum Equation

In this section we use the Lagrange-d’Alembert principle to derive an equation
for a generalized momentum as a consequence of the symmetries. Under the
hypotheses that the action of some Lie algebra element is horizontal (that is, the
infinitesimal generator is automatically in the constraint distribution), this yields
a conservation law in the usual sense. As we shall see, the momentum equation
does not directly involve the choice of an Ehresmann connection to describe the
distribution D, but the choice of such a connection is useful for the coordinate
versions.

We have already mentioned in the Introduction that some simple physical
systems that have symmetries do not have associated conservation laws, namely,
the wobblestone and the snakeboard. It is also easy to see why this is not generally
the case from the equations of motion. The simplest situation would be the case of
cyclic variables. Recall that the equations of motion have the form

d
dt
@Lc

@ṙ�
�
@Lc

@r�
+ Aa

�

@Lc

@sa
= �

@L
@ṡb

Bb
�� ṙ� :

If this has a cyclic variable, say r1, this would mean that all the quantities Lc; L;Bb
��

would be independent of r1. This is equivalent to saying that there is a translational
symmetry in the r1 direction. Let us also suppose, as is often the case, that the s
variables are also cyclic. Then the above equation for the momentum p1 = @Lc=@ṙ1

becomes
d
dt

p1 = �
@L
@ṡb

Bb
1� ṙ�:

This fails to be a conservation law in general. Note that the right-hand side is linear
in ṙ (the first term is linear in pr) and the equation does not depend on r1 itself.
This is a very special case of the momentum equation that we shall develop in this
chapter. Even for systems like the snakeboard, the symmetry group is not abelian,
so the above analysis for cyclic variables fails to capture the full story. In particular,
the momentum equation is not of the preceding form in that example and thus it
must be generalized.
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4.1. The Classical Noether Theorem

To derive the momentum equation, it is useful to first recall Noether’s original
derivation of the conservation laws directly from Hamilton’s variational principle.
Consider a Lie group G acting on a configuration manifold Q and lift this action to
the tangent bundle TQ using the tangent operation. Given a G-invariant Lagrangian
L : TQ ! R, the corresponding momentum map is the mapping J : TQ ! g�

defined by
hJ(vq); �i = hFL(vq); �Q(q)i (4.1.1)

or, in coordinates,

Ja =
@L
@q̇i

Ki
a; (4.1.2)

where we define the action coefficients Ki
a relative to a basis ea; a = 1; : : : ; k of g by

writing �Q(q) = Ki
a�

a@=@qi with � = �aea, and a sum on the index a is understood.

Theorem 4.1 (Classical Noether Theorem). For a solution of the Euler-Lagrange
equations, the quantity J is a constant in time.

We remark in passing, although we shall not use it, that this result holds even
if the Lagrangian is degenerate, that is, the fiber derivative defined by pi = @L=@q̇i

is not invertible.

Proof. Choose any function �(t; s) of two variables such that the conditions
�(a; s) = �(b; s) = �(t; 0) = 0 hold, where a and b are the temporal endpoints
of the given solution to the Euler-Lagrange equations. Since L is G-invariant, for
each Lie algebra element � 2 g, the expression

bZ
a

L(exp(�(t; s)�) � q; exp(�(t; s)�) � q̇) dt (4.1.3)

is independent of s. Differentiating this expression with respect to s at s = 0 and
setting �0 = @�=@s taken at s = 0 gives infinitesimal invariance:

0 =

bZ
a

�
@L
@qi �

i
Q�

0 +
@L
@q̇i (T�Q � q̇)i�0

�
dt: (4.1.4)

Now we consider the variation q(t; s) = exp(�(t; s)�) � q(t). The corresponding
infinitesimal variation is given by �q(t) = �0(t)�Q(q(t)): Since these variations
vanish at the endpoints, Hamilton’s principle gives

0 =

bZ
a

�
@L
@qi

�qi +
@L
@q̇i

�̇qi

�
dt: (4.1.5)

Note that
�̇q = �̇0�Q + �0(T�Q � q̇)

and subtract (4.1.5) from (4.1.4) to give
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0 =

bZ
a

@L
@q̇i (�Q)i�̇0 dt = �

bZ
a

d
dt

�
@L
@q̇i �

i
Q

�
�0 dt: (4.1.6)

Since �0 is arbitrary, except for endpoint conditions, it follows that the integrand
vanishes, and so the time derivative of the momentum map is zero. ut

The reader will find that this notion of momentum map coincides with the clas-
sical notion for Lagrangian systems with symmetry; see, for example, MARSDEN

& RATIU [1994].

4.2. The Derivation of the Momentum Equation

We now adapt this approach to derive an equation for a generalized momentum
map for nonholonomic systems. The number of equations obtained will equal the
dimension of the intersection of the orbit with the given constraints. As we will
see, this result will give conservation laws as a particular case.

To formulate our result, some additional ideas and notation are useful. As the
examples show, in general the tangent space to the group orbit through q intersects
the constraint distribution at q nontrivially. It is helpful to give this intersection a
name.

Definition 4.2. The intersection of the tangent space to the group orbit through the
point q 2 Q and the constraint distribution at this point is denoted Sq, as in Figure
4.1, and we let the union of these spaces over q 2 Q be denoted S. Thus,

Sq = Dq \ Tq(Orb(q)):

Definition 4.3. Define, for each q 2 Q, the vector subspace gq to be the set of Lie
algebra elements in g whose infinitesimal generators evaluated at q lie in Sq:

gq = f� 2 g j �Q(q) 2 Sqg:

The corresponding bundle over Q whose fiber at the point q is given by gq is
denoted gD.

Consider a section of the vector bundle S over Q; i.e., a mapping that takes
q to an element of Sq = Dq \ Tq(Orb(q)). Whenever the action is free, a section
of S can be uniquely represented as �q

Q and defines a section �q of the bundle gD.
For example, one can construct the section by orthogonally projecting (using the
kinetic energy metric) �Q(q) to the subspace Sq. However, as we shall see in later
examples, it is often easy to choose a section by inspection.

Next, we choose the variation analogously to what we chose in the case of
the standard Noether theorem above, namely, q(t; s) = exp(�(t; s)�q(t)) � q(t): The
corresponding infinitesimal variation is given by

�q(t) = �0(t)�q
Q(q(t)):

Letting @�q denote the derivative of �q with respect to q, we have
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Q

Orb(q)

q

Dq = distribution through q
TqOrb(q) = Vq

S
q

Q

Fig. 4.1. The intersection of the tangent space to the group orbit with the constraint distrib-
ution; here the tangent spaces are superimposed on the spaces themselves

�̇q = �̇0�q(t)
Q + �0

h
(T�q(t)

Q � q̇) + (@�q(t) � q̇)Q

i
:

In this equation, the term T�q(t)
Q is computed by taking the derivative of the vector

field �q(t)
Q with q(t) held fixed. By construction, the variation �q satisfies the con-

straints and the curve q(t) satisfies the Lagrange-d’Alembert equations, so that the
following variational equation holds:

0 =

bZ
a

�
@L
@qi �qi +

@L
@q̇i �̇q

i
�

dt: (4.2.1)

In addition, the invariance identity (4.1.4) holds with �q:

0 =

bZ
a

�
@L
@qi (�q(t)

Q )i�0 +
@L
@q̇i (T�q(t)

Q � q̇)i�0
�

dt: (4.2.2)

Subtracting equations (4.2.1) and (4.2.2) and using the arbitrariness of �0 and
integration by parts shows that

d
dt
@L
@q̇i

(�q(t))i
Q =

@L
@q̇i

�
d
dt

(�q(t))
�i

Q

:

The quantity whose rate of change is involved here is the nonholonomic version of
the momentum map in geometric mechanics.
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Definition 4.4. The nonholonomic momentum map Jnhc is the bundle map
taking TQ to the bundle (gD)� whose fiber over the point q is the dual of the vector
space gq that is defined by

hJnhc(vq); �i =
@L
@q̇i

(�Q)i;

where � 2 gq. Intrinsically, this reads

hJnhc(vq); �i = hFL(vq); �Qi ;

where FL is the fiber derivative of L and where � 2 gq: For notational convenience,
especially when the variable vq is suppressed, we will often write the left-hand side
of this equation as Jnhc(�).

Notice that the nonholonomic momentum map may be viewed as giving just
some of the components of the ordinary momentum map, namely, along those
symmetry directions that are consistent with the constraints.

We summarize these results in

Theorem 4.5. Assume that condition (L2) of Definition 3.1 holds (which is implied
by (L1)) and that �q is a section of the bundle gD. Then any solution of the La-
grange-d’Alembert equations for a nonholonomic system must satisfy, in addition
to the given kinematic constraints, the momentum equation:

d
dt

�
Jnhc(�q(t))

�
=
@L
@q̇i

�
d
dt

(�q(t))

�i

Q

: (4.2.3)

When the momentum map is paired with a section in this way, we will just refer
to it as the momentum. The following is a direct corollary of this result.

Corollary 4.6. If � is a horizontal symmetry (see (S3) above), then the following
conservation law holds:

d
dt

Jnhc(�) = 0: (4.2.4)

A somewhat restricted version of the momentum equation was given by KOSLOV

& KOLESNIKOV [1978] and the corollary was given by ARNOLD [1988, page 82]
(see BLOCH & CROUCH [1992, 1994] for the controlled case).

Remarks. 1. The right-hand side of the momentum equation (4.2.3) can be written
in more intrinsic notation as*

FL(q̇(t));
�

d
dt
�q(t)

�
Q

+
:

2. In the theorem and the corollary, we do not need to assume that the distribution
itself is G-invariant, that is, we do not need to assume condition (S1). In particular,
as we shall see in the examples, one can get conservation laws in some cases in
which the distribution is not invariant.
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3. The validity of the form of the momentum equation is not affected by any
“internal forces”, that is, any control forces on shape space. Indeed, such forces
would be invariant under the action of the Lie group G and so would be annihilated
by the variations taken to prove Theorem 4.5.

4. The momentum equation still holds in the presence of affine constraints. We
do not need to assume that the affine vector field defining the affine constraints
is invariant under the group. However, this vector field may appear in the final
momentum equation (or conservation law) because the constraints may be used to
rewrite the resulting equation. We will see this explicitly in the example of the ball
on a rotating table.

5. Assuming that the distribution is invariant (Hypothesis (S1)), the nonholonomic
momentum map as a bundle map is equivariant with respect to the action of the
group G on the tangent bundle TQ and on the bundle (gD)�. In fact, since the
distribution is invariant and using the general identity (Adg�)Q = ��

g�1�Q, valid for
any group action, we see that the space gg is mapped to ggq by the map Adg, and
so in this sense, the adjoint action acts in a well-defined manner on the bundle gD.
By taking its dual, we see that the coadjoint action is well-defined on (gD)�. In this
setting, equivariance of the nonholonomic momentum map follows as in the usual
proof (see, for example, MARSDEN & RATIU [1994], Chapter 11).

6. One can find an invariant momentum if the section is chosen such that

(Adg�1�g�q)Q = �q
Q:

This can always be done in the case of trivial bundles; one chooses any �q at the
identity in the group variable and translates it around by using the action to get a
�q at all points. This direction of reasoning (initiated by remarks of OSTROWSKI,
LEWIS, BURDICK & MURRAY) is discussed in Section 4.4. As we will see later, this
point of view is useful in the case of the snakeboard.

7. The form of the momentum equation in this section is valid for any curve
q(t) that satisfies the Lagrange-d’Alembert principle; we do not require that the
constraints be satisfied for this curve. The version of the momentum equation given
in the next section and later in Section 7 will explicitly require that the constraints
are satisfied. Of course, in examples we always will impose the constraints, so
this is really a comment about the logical structure of the various versions of the
equation.

8. In some interesting cases, one can get conservation laws without having hor-
izontal symmetries, as required in the preceding corollary. These are cases in
which, for reasons other than horizontality, the right-hand side of the momentum
equation vanishes. This may be an important observation for the investigation of
completely integrable nonholonomic systems. A specific case in which this occurs
is the vertical rolling disk discussed below.
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4.3. The Momentum Equation in a Moving Basis

There are several ways of rewriting the momentum equation that are useful;
the examples will show that each of them can reveal interesting aspects of the
system under consideration. This subsection develops the first of these coordinate
formulas, which is in some sense the most naive, but also the most direct. The next
subsection will develop a form that is suitable for a local trivializationof the bundle
Q ! Q=G. Later on, when the nonholonomic connection is introduced, we shall
come back to both of these forms and rewrite them in a more sophisticated but also
more revealing way.

Introduce coordinates q1; : : : ; qn in the neighborhood of a given point q0 in Q.
At the point q0, introduce a basis

fe1; e2; : : : ; em; em+1; : : : ; ekg

of the Lie algebra such that the first m elements form a basis of gq0 . Thus, k = dimg

and m = dimgq, which, by assumption, is locally constant. We can introduce a
similar basis

fe1(q); e2(q); : : : ; em(q); em+1(q); : : : ; ek(q)g

at neighboring points q. For example, one can choose an orthonormal basis (in
either the locked inertia metric or relative to a Killing form) that varies smoothly
with q. We introduce a change of basis matrix by writing

eb(q) =
kX

a=1

 a
b(q)ea

for b = 1; : : : ; k. Here, the change of basis matrix  a
b(q) is an invertible k � k

matrix. Relative to the dual basis, we write the components of the nonholonomic
momentum map as Jb. By definition,

Jb =
nX

i=1

@L
@q̇i [eb(q)]i

Q:

Using this notation, the momentum equation, with the choice of section given
by

�q(t) = eb(q(t)); 1 5 b 5 m

reads
d
dt

Jb =
nX

i=1

 
@L
@q̇i

�
d
dt

eb(q(t))

�i

Q

!
: (4.3.1)

Next, we define Christoffel-like symbols by

� c
bl =

kX
a=1

( �1)c
a
@ a

b

@ql (4.3.2)

where the matrix ( �1)d
a denotes the inverse of the matrix  a

b . Observe that
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d
dt

eb(q(t)) =
kX

c=1

nX
l=1

� c
blq̇

lec(q(t)); (4.3.3)

which implies that

�
d
dt

eb(q(t))

�i

Q

=
kX

c=1

nX
l=1

� c
blq̇

l[ec(q(t))]i
Q: (4.3.4)

Thus, we can write the momentum equation as

d
dt

Jb =
kX

c=1

nX
i;l=1

@L
@q̇i�

c
blq̇

l[ec(q(t))]i
Q: (4.3.5)

In the shorthand notation ei
c := [ec(q(t))]i

Q, the momentum equation reads

d
dt

Jb =
kX

c=1

nX
i;l=1

@L
@q̇i

� c
blq̇

lei
c: (4.3.6)

Breaking the summation over c into two ranges and using the definition

Jc =
@L
@q̇i

ei
c; 1 5 c 5 m;

gives the following form of the momentum equation:

Proposition 4.7 (Momentum equation in a moving basis). The momentum equa-
tion in the above coordinate notation reads

d
dt

Jb =
mX

c=1

nX
l=1

� c
blJcq̇l +

kX
c=m+1

nX
i;l=1

@L
@q̇i

� c
blq̇

lei
c: (4.3.7)

Assuming that the Lagrangian is of the form kinetic minus potential energy,
the second term on the right-hand side of this equation vanishes if the orbit and the
constraint distribution are orthogonal, that is, if we can choose the basis so that the
vectors [ec(q(t))]Q for c = m + 1 are orthogonal to the constraint distribution. In
this case, the momentum equation has the form of an equation of parallel transport
along the curve q(t). The connection involved is the natural one associated with
the the bundle (gD)� over Q, using a chosen decomposition of g, such as the
orthogonal one. In the general case, the momentum equation is an equality between
the covariant derivative of the nonholonomic momentum and the last term on the
right-hand side of the preceding equation. In the next section, we shall write the
momentum equation in a body frame, which will be important for understanding
how to decouple the momentum equation from the group variables. This will be
important for the reduction theory in Section 7.
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4.4. The Momentum Equation in Body Representation

Next, we develop an alternative coordinate formula for the momentum equation
that is adapted to a choice of local trivialization. Thus, let a local trivialization be
chosen on the principal bundle � : Q ! Q=G, with the local representation having
coordinates denoted (r; g). Let r have components denoted r� as before, being
coordinates on the base Q=G and let g be group variables for the fiber, G. In
such a representation, the action of G is the left action of G on the second factor.
We calculate the nonholonomic momentum map using well-known ideas (see, for
example, MARSDEN & RATIU [1994], Chapter 12), as follows. Let vq = (r; g; ṙ; ġ)
be a tangent vector at the point q = (r; g), � 2 gq and let � = g�1ġ, i.e., � = TgLg�1 ġ.
Since L is G-invariant, we can define a new function l by writing

L(r; g; ṙ; ġ) = l(r; ṙ; �):

Use of the chain rule shows that

@L
@ġ

= T�gLg�1
@l
@�
;

and so 

Jnhc(vq); �

�
= hFL(r; g; ṙ; ġ); �Q(r; g)i

=

�
@L
@ġ
; (0; TRg � �)

�
=

�
@l
@�
;Adg�1 �

�
:

The preceding equation shows that we can write the momentum map in a local
trivialization by making use of the Ad mapping in much the same way as we did
with the connection and the local formulas in the principal kinematic case. We
define Jnhc

loc : TQ=G ! (gD)� in a local trivialization by



Jnhc

loc (r; ṙ; �); �
�

=
�
@l
@�
; �

�
:

Thus, as with the previous local forms, Jnhc and its version in a local trivialization
are related by the Ad map; precisely,

Jnhc(r; g; ṙ; ġ) = Ad�g�1 Jnhc
loc (r; ṙ; �):

Secondly, choose a q-dependent basis ea(q) for the Lie algebra such that the
first m elements span the subspace gq. In a local trivialization, this is done in a
very simple way. First, one chooses, for each r, such a basis at the identity element
g = Id, say

e1(r); e2(r); : : : ; em(r); em+1(r); : : : ; ek(r):

For example, this could be a basis such that the corresponding generators are
orthonormal in the kinetic energy metric. (Keep in mind that the subspaces Dq and
TqOrb need not be orthogonal but here we are choosing a basis corresponding only
to the subspace TqOrb.) Define the body �xed basis by
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ea(r; g) = Adg � ea(r);

then the first m elements indeed span the subspace gq provided the distribution is
invariant (condition (S1)). Thus, in this basis we have



Jnhc(r; g; ṙ; ġ); eb(r; g)

�
=
�
@l
@�
; eb(r)

�
:= pb; (4.4.1)

which defines pb, a function of r, ṙ and �. We are deliberately introducing the
new notation p for the momentum in body representation to signal its special role.
Note that in this body representation, the functions pb are invariant rather than
equivariant, as is usually the case with the momentum map. The time derivative of
pb may be evaluated using the momentum equation (4.2.3). This gives

d
dt

pb =
@L
@q̇i

�
d
dt

eb(r; g)
�i

Q

=

*
(TgLg�1 )�

@l
@�
;

�
d
dt

�
Adg � eb(r)

��
Q

+

=

�
@l
@�
; [�; eb] +

@eb

@r�
ṙ�
�
:

We summarize the conclusion drawn from this calculation:

Proposition 4.8. (Momentum equation in body representation.) The momentum
equation in body representation on the principal bundle Q ! Q=G is given by

d
dt

pb =

�
@l
@�
; [�; eb] +

@eb

@r�
ṙ�
�
: (4.4.2)

Moreover, the momentum equation in this representation is independent of, that is,
decouples from, the group variables g.

In this representation, the variable � is related to the group variable g by
� = g�1ġ. In particular, in this representation, reconstruction of the group variable
g can be done by means of the equation

ġ = g�: (4.4.3)

On the other hand, this variable � = g�1ġ, as in the case of the reduced Euler-
Poincaré equations, is not the vertical part of the velocity vector q̇ relative to the
nonholonomic connection to be constructed in the next section. The vertical part
is related to the variable � by a velocity shift and this velocity shift will make the
reconstruction equation look affine, as in the case of the snakeboard (see LEWIS,
OSTROWSKI, MURRAY & BURDICK [1994]). In that example, the decoupling of the
momentum equation from the group variables played a useful role. We also recall
(as in the example of the rigid body with rotors discussed in MARSDEN & SCHEURLE

[1993b]) that it is often the shifted velocity and not � that diagonalizes the kinetic
energy, so this shift is fundamental for a number of reasons. As we shall see later,
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the same ideas in this section, combined with the calculations of MARSDEN &
SCHEURLE [1993b] will show how to calculate the fully reduced equations.

In the local trivialization form (4.4.2) of the momentum equation, we may
write the terms (@eb=@r�)ṙ� in terms of a connection, as we did in deriving the
momentum equation in a moving basis. We will carry this out later in Section 6.

Other noteworthy features of this form of the momentum equation are the
following direct consequences of the preceding proposition.

Corollary 4.9. 1. If eb, b = 1; : : : ;m are independent of r, then the momentum
equation in body representation is equivalent to the Euler-Poincaré equations
projected to the subspace gq.

2. If g is abelian, then the momentum equations reduce to

d
dt

pb =

�
@l
@�
;
@eb

@r�
ṙ�
�
: (4.4.4)

3. If g is abelian, or more generally, if the bracket of an element of gq with one in
g is annihilated by @l=@�, and if eb; b = 1; : : : ;m, are independent of r, then the
quantities pb; b = 1; : : : ;m are constants of motion.

Regarding the first item, see MARSDEN & RATIU [1994] for a discussion of the
Euler-Poincaré equations; these are also briefly reviewed in the following section.
In this case, the spatial form of the momentum is conserved, just as in the case
of systems with holonomic constraints. For the snakeboard, gq is abelian, but g is
not and the second item above does not apply. We shall develop the geometry and
notation to study this situation more thoroughly in Section 7. As we shall see later
in the examples section, the last case occurs for the vertical rolling penny.

5. A Review of Lagrangian Reduction

Lagrangian reduction theory for systems with holonomic constraints was devel-
oped by MARSDEN & SCHEURLE [1993a,b].2 We summarize some of the features of
that theory, not only for purposes of comparison, but to exploit areas of common-
ality. The ultimate picture of a nonholonomic mechanical system with symmetry
will involve a synthesis of the reduced Euler-Lagrange equations and the equations
for a nonholonomic system, as we mentioned in the Introduction.

5.1. Rigid-Body Reduction

We begin by recalling a simple case, namely, the rotational motion of a free
rigid body. Let R 2 SO(3) denote the time-dependent rotation that gives the current
configuration of the rigid body. The body angular velocity
 is defined in terms of
R by

2 Sign conventions for the curvature in this reference differ from those in the present
paper. We have consistently used the conventions in the current paper to avoid confusion.
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R�1Ṙ = 
̂;

where 
̂ is the 3 � 3 skew matrix defined by 
̂v := 
 � v. Denoting by I the
(time independent) moment of inertia tensor, the Lagrangian when thought of as
a function of R and Ṙ is given by L(R; Ṙ) = hI
;
i=2 and when thought of as a
function of 
 alone is given by l(
) = hI
;
i=2:

A basic fact about rigid-body dynamics and reduction is that the following
statements are equivalent:
1. (R; Ṙ) satisfies the Euler-Lagrange equations on SO(3) for L. 2. Hamilton’s
principle on SO(3) holds:

�

Z
L dt = 0;

. 3. 
 satisfies the Euler equations

I
̇ = I
 � 
:

4. The reduced variational principle holds on R3:

�

Z
l dt = 0:

where variations in 
 are restricted to be of the form �
 = �̇ + � � 
, with � an
arbitrary curve in R3 satisfying � = 0 at the temporal endpoints.

An important point is that when one reduces the standard variational principle
from SO(3) to its Lie algebra so(3), one ends up with a variational principle in which
the variations are constrained. In this case, the term � represents the infinitesimal
displacement of particles in the rigid body. Note that the same phenomenon of
constrained variations occurs in the case of nonholonomic systems.

In symplectic reduction, one imposes J = � and passes to the quotient phase
space, inducing a symplectic form on the quotient. For Poisson reduction on the
other hand, one passes directly to the quotient (phase space)/(group) without the
imposition of J = � using the induced Poisson bracket. (See MARSDEN & RATIU

[1986] for a more sophisticated version.) The symplectic reduced spaces are the
symplectic leaves of the quotient Poisson manifold. For example, in the rigid body,
the phase space is P = T�SO(3) and the quotient space P=G = so(3)� �= R

3

contains the body angular momentum p = I
 as the basic dynamical variable. This
body angular momentum space carries the rigid-body bracket

fK; Lg = �hp;rK �rLi

and the angular momentum spheres kpk = constant are its symplectic leaves.

5.2. The Euler-Poincaré Equations

To understand the Lagrangian analogue of Poisson reduction, we first con-
sider the equations of generalized rigid bodies, governed by the Euler-Poincaré
equations. POINCARÉ [1901] showed how to generalize Euler’s rigid body and
fluid equations to any Lie algebra. The Euler-Poincaré equations may be described
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as follows (see MARSDEN & SCHEURLE [1993b] and BLOCH, KRISHNAPRASAD,
MARSDEN & RATIU [1994,1996] for more details). Let g be a Lie algebra and let
l : g! Rbe a given Lagrangian. Then the equations are

d
dt
@l
@�

= ad��
@l
@�

or, in coordinates,
d
dt

@l
@�a

= Cb
da�

d @l
@�b

;

where the structure constants are defined by

[�; �]a = Ca
de�

d�e:

If G is a Lie group with Lie algebra g, we let L : TG ! R be the left-invariant
extension of l and let � = g�1ġ. In this context, � reduces to 
, the body angular
velocity in the case of the rigid body.

The basic fact regarding the Lagrangian reduction leading to these equations is:

Theorem 5.1. A curve (g(t); ġ(t)) 2 TG satisfies the Euler-Lagrange equations for
L if and only if � satisfies the Euler-Poincaré equations for l.

In this situation, the reduction is implemented by the map (g; ġ) 2 TG 7! � =
g�1ġ 2 g:

One proof of this theorem is of special interest, since it shows how to drop
variational principles to the quotient. Namely, we transform

�

Z
L dt = 0

under the map (g; ġ) 7! � to give the reduced variational principle for the Euler-
Poincaré equations: � satisfies the Euler-Poincaré equations if and only if

�

Z
l dt = 0;

where the variations are all those of the form

�� = �̇ + [�; �]

and where � is an arbitrary curve in the Lie algebra satisfying� = 0 at the endpoints.
Variations of this form are obtained by calculating what variations are induced by
variations on the Lie group itself.

In fluid mechanics (where the Euler equations of ideal flow are Euler-Poincaré
equations on the Lie algebra of divergence-free vector fields), these restrictions on
the variations are related to the so-called “Lin constraints”.

One obtains the Lie-Poisson equations on g� by the Legendre transformation

� =
@l
@�
; h(�) = � � � � l(�):

In Lagrangian mechanics, dropping the variational principle is the analogue of
Lie-Poisson reduction in which one drops the Poisson bracket from T�G to g�.
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5.3. The Reduced Euler-Lagrange Equations

The Euler-Poincaré equations can be generalized to the situation in which G acts
freely on a configuration-space Q to obtain the reduced Euler-Lagrange equations.
This process starts with a G-invariant Lagrangian L : TQ ! R, which induces a
reduced Lagrangian l : TQ=G ! R. The Euler-Lagrange equations for L induce
the reduced Euler-Lagrange equations on TQ=G. To compute them in coordinates,
it is useful to introduce a principal connection on the bundle Q ! Q=G. Although
any can be picked, a convenient choice is the mechanical connection, so we pause
to recall its construction. We will make a similar construction for nonholonomic
systems shortly.

The Mechanical Connection. Assume that there is a G-invariant metric on the
configuration space. Normally this metric is the one associated with the kinetic
energy of our mechanical system.

Definition 5.2. The mechanical connection A is the connection on Q re-
garded as a bundle over shape space Q=G that is defined by declaring its horizontal
space at a point q 2 Q to be the subspace that is the orthogonal complement to the
tangent space to the group orbit through q 2 Q using the kinetic energy metric.
The locked inertia tensor I(q) : g ! g� (where g� denotes the dual of the
vector space g) is defined by

hI(q)�; �i = hh�Q(q); �Q(q)ii

where �Q is the infinitesimal generator of � 2 g and where hh ; ii is the kinetic
energy inner product.

The mechanical connection defines an equivariant g-valued one-form A on Q.
An explicit formula for it (see below and MARSDEN [1992] for further details and
references) is

A(vq) = I(q)�1J(vq) (5.3.1)

where J : TQ ! g� is the momentum map defined, as we saw earlier, by

hJ(vq); �i = hFL(vq); �Q(q)i :

As a simple example, consider the angular momentum of a single particle moving
in 3-space. We let q; p 2 R3, and J(q; p) = q� p. If we identify a tangent vector vq

toR3 at the point q 2 R3 with the pair (q; v), formula (5.3.1) gives

A(q; v) =
1

kqk2 (q � v) ;

an SO(3) connection on R3nf0g. Another characterization of the mechanical con-
nection is that it picks out the “optimal” rotating frame, i.e., it minimizes the kinetic
energy subject to the constraint J = �. The mechanical connectionA plays a funda-
mental role in the theory of geometric phases (MARSDEN, MONTGOMERY & RATIU

[1990]), where holonomy of an associated connection is involved, and in stability
theory where it is used to separate internal and rotational modes (SIMO, LEWIS &
MARSDEN [1991]).
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The mechanical connection has the physical interpretation for a system of
interconnected particles and rigid bodies, of being the spatial angular velocity of
the instantaneously equivalent rigid-bodysystem obtained by locking all the joints.
Thus, the phrase (spatial) locked angular velocity is sometimes used.

The Reduced Equations. To describe the reduced Lagrange-d’Alembert equations,
we make use of a connection on the principal G-bundle Q ! Q=G; for the Euler-
Poincaré equations, in which Q = G, the group structure automatically provides
such a connection. For a more general choice of Q one can choose the mechanical
connection as defined in the previous subsection.

Thus, assume that the bundle Q ! Q=G has a given (principal) connection A.
Divide variations into horizontal and vertical parts—this breaks up the Euler-La-
grange equations on Q into two sets of equations that we now describe. Let x� be
coordinates on shape space Q=G and 
a be coordinates for vertical vectors in a
local bundle chart. Drop L to TQ=G to obtain a reduced Lagrangian l : TQ=G ! R

in which the group coordinates are eliminated. We can represent this reduced
Lagrangian in a couple of ways. First, if we choose a local trivialization as we
have described earlier, we obtain l as a function of the the variables are (r�; ṙ�; �a).
However, it will be more convenient and intrinsic to change variables from �a to the
local version of the locked angular velocity, which has the physical interpretation
of the body angular velocity, namely, 
 = � + Alocṙ, or in coordinates,


a = �a + Aa
�(r)ṙ�:

We will write l(r�; ṙ�; 
a) for the local representation of l in these variables.

Theorem 5.3. A curve (qi; q̇i) 2 TQ, satisfies the Euler-Lagrange equations if and
only if the induced curve in TQ=G with coordinates given in a local trivialization
by (r�; ṙ�; 
a) satisfies the reduced Euler-Lagrange equations:

d
dt

@l
@ṙ�

�
@l
@r�

=
@l
@
a

�
�Ba

�� ṙ� + Ea
�d


d
�
; (5.3.2)

d
dt

@l
@
b =

@l
@
a (�Ea

�bṙ� + Ca
db


d); (5.3.3)

where Ba
�� are the coordinates of the curvature B of A, and Ea

�d = Ca
bdA

b
�.

The first of these equations is similar to the equations for a nonholonomic
system written in terms of the constrained Lagrangian, and the second is similar to
the momentum equation. It is useful to note that the first set of equations results from
the variational principle of Hamilton by restricting the variations to be horizontal
relative to the given connection. As we shall see, this is very similar to what one has
in systems withnonholonomicconstraints with the Lagrange-d’Alembert principle.

One other observation is of interest here. If one uses as variables (r�; ṙ�; pa),
where p is the body angular momentum, so that p = Iloc(r)
 = @l=@
, then the
equations become (using the same letter l for the reduced Lagrangian, an admitted
abuse of notation):
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d
dt

@l
@ṙ�

�
@l
@r�

= pa
�
�Ba

�� ṙ� + Ea
�dIdepe

�
� pd

@Ide

@r�
pe; (5.3.4)

d
dt

pb = pa(�Ea
�bṙ� + Ca

dbIdepe); (5.3.5)

where Ide denotes the inverse of the matrix Iab.
Connections are also useful in control problems with feedback. For example,

BLOCH, KRISHNAPRASAD, MARSDEN & SÁNCHEZ DE ALVAREZ [1992] found a
feedback control that stabilizes rigid body dynamics about its middle axis using an
internal rotor. This feedback controlled system can be described in terms of con-
nections (BLOCH, MARSDEN, & SÁNCHEZ DE ALVAREZ [1996]): a shift in velocity
(change of connection) turns the free Euler-Poincaré equations into the feedback
controlled Euler-Poincaré equations.

6. The Nonholonomic Connection and Reconstruction

In this section we continue to discuss the application of the momentum equation
to the problem of reconstructing paths on configuration-space Q given a path in
the base space Q=G. In many systems the base space Q=G corresponds to the set
of variables which are directly controlled by the application of control forces, and
hence we can follow any path in Q=G by application of appropriate forces. It is
therefore natural to focus on how these paths lift, as described by the constraints,
the generalized momenta, and the momentum equation, to the full configuration-
space. The main new tool to be introduced in this section is that of the nonholonomic
connection, a synthesis of the mechanical and the kinematic connections; see also
BLOCH & CROUCH [1992] and YANG [1992] for preliminary versions of similar
ideas.

6.1. The Unconstrained Case

We begin by recalling the reconstruction procedure for unconstrained mechani-
cal systems. As we discussed in the preceding section, for unconstrained mechanical
systems with symmetries, the equations of motion are naturally described by using
the principal bundle Q ! Q=G. In essence, the dynamical equations split into
two pieces by using Hamilton’s principle �L = 0 and dividing the variations into
vertical variations and a set of complementary variations. The vertical variations
lead to a set of conservation laws of the form

d
dt
hFL; �Qi = 0

for all � 2 g. These equations are of Euler-Poincaré type when the Euler-La-
grange equations are written in a local trivialization. As we mentioned above, the
mechanical connection is related to the momentum map and the locked inertia
tensor by

A(q) � vq = I�1(q)J(vq):
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Given a path in the base space Q=G, we can now use the connection to recon-
struct the motion of the system in the full space Q. The conservation law can be
written as

A(q) � q̇ = I�1(q)J(q̇) = I�1(q)�

where � 2 g� is a (constant) momentum. If we choose a local trivialization of the
bundle with coordinates q = (r; g) 2 (Q=G) � G (locally), the conservation law
becomes

A(q) � q̇ = Adg(g�1ġ + Aloc(r)ṙ) = (AdgI�1
loc (r)Ad�g) � �

where Iloc is the local expression for the locked inertia tensor written as a func-
tion over Q=G. Rearranging this equation, we see that the group variables evolve
according to

ġ = g (�Aloc(r)ṙ + 
) (6.1.1)

where 
 = I�1
loc (r)p is the body angular velocity and where p = Ad�g � � is the body

angular momentum. Note that the variables p (or 
 if one is using the Lagran-
gian point of view) are to be included amongst the variables in the reduced phase
space. Thus, given a path r(t) in the base variables, a motion in the body angular
momentum (p) space or velocity (
) space, and an initial condition for the group
variables, we can reconstruct the motion in the group and hence on the entire space,
as in MARSDEN, MONTGOMERY & RATIU [1990]. Finally, we reiterate a basic fact
from this discussion: The body angular velocity 
 = � +Aloc(r)ṙ (where � = g�1ġ)
is the local representative of the vertical part of the velocity vector q̇.

If nonholonomic constraints are present, it is still possible to reconstruct the path
in the group variables given the path in the base. This is useful in control applications
since it allows us to study the motion of the system without considering the full
equations of motion. We break the following discussion into three cases: purely
kinematic constraints, horizontal symmetries, and the general case. Examples of
each of the cases are given in the Section 8. The purely kinematic case occurs when
the constraint distribution complements the symmetry group orbit. In this case, it
is clear that we do not get any nontrivial components to the momentum equation
and that the constraint distribution itself defines a principal connection.

6.2. The Principal or Purely Kinematic Case

Recall that a set of nonholonomic constraints is said to be purely kinematic if the
constraints define a connection on a principal bundle and that this situation occurs
when the constraint distribution is G-invariant and the tangent space to the group
orbit forms a complement to the constraint distribution, that is, the subbundle with
the fibers Sq = Dq \ Tq(Orb(q)) = f0g for all q 2 Q. What this really means is that
there are no momentum equations in this case and that correspondingly there is no
analogue of the body angular momentum or velocity, as there was in the preceding
discussion of unconstrained systems. In particular, relative to a local trivialization
q = (r; g) the constraints can be written as

A(q)q̇ =
h
Adg(g�1ġ + Aloc(r)ṙ)

i
Q

= 0:
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The motion in the fibers is thus given by

ġ = �gAloc(r)ṙ

and we can reconstruct the group motion given the trajectory in Q=G. In this case,
as we saw previously, the equations reduce to second-order equations for r, that is,
to second-order equations on Q=G. The motion on the full space is then determined
by the solution to these reduced equations followed by first-order equations for the
group variables.

This can be said in a slightly different way: In the case of purely kinematic con-
straints, the kinematic connection replaces the mechanical connection to determine
the motion in the fibers. This situation occurs only when the constraint distribution
D and the vertical subspace Tq(Orb(q)) are such that TqQ = Tq(Orb(q)) � Dq, so
thatDq can be taken as the horizontal space for a connection. Thus the conservation
law which would govern the motion in the group variables if no constraints were
present is replaced by the motion dictated by the constraints. See KOILLER [1992]
for a further discussion of the purely kinematic case, including a description of
reduction in that context. As we also noted already, this reduction result can be
obtained as a special case of the results of MARSDEN & SCHEURLE [1993b] where
it is shown how to reduce the horizontal part of the variational principal relative to
any connection.

6.3. The Case of Horizontal Symmetries

A second case in which it is possible to lift the motion from the base Q=G to the
fibers using a connection is when there are enough horizontal symmetries such that
they and the constraints interact in a complementary fashion. This situation occurs,
for example, when there is a subgroup of G whose action on the configuration-space
satisfies the constraints. We call a symmetry of this type a horizontal symmetry
(relative to the kinematic constraints). When horizontal symmetries are present,
the motion in the group variables can be reconstructed by combining the kinematic
constraints with the conservation laws corresponding to the horizontal symmetries.
This is the case for the ball on the rotating plate.

We begin by restricting ourselves to the case when Dq + Tq(Orb(q)) = TqQ for
all q 2 Q and we assume that there exists a a subgroup H � G such that �Q 2 D for
all � 2 h andDq\Tq(OrbG(q)) = Tq(OrbH(q)). We call H the group of horizontal
symmetries and define the momentum map JH : TQ ! h� � g� as

hJH(vq); �i = hFL(vq); �Qi; � 2 h:

For a Lagrangian of the form kinetic energy minus potential energy we can write
the generalized momenta as linear functions of the velocity and these generalized
momenta are constant along solution curves since �q = � 2 h is constant. Thus we
have

hJH(q) � q̇; �i = h�; �i; � 2 h;

where � 2 h� is a constant, and we see that the generalized momentum has the
form of an affine constraint
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JH(q) � q̇ = �: (6.3.1)

To reconstruct the motion in the fibers, we build a connection on Q ! Q=G by
augmenting the kinematic constraints with the conservation law. Let I(q) : h! h�

be the locked inertia tensor relative to h, defined, as in Definition 5.2, by

hI(q)�; �i = hh�Q; �Qii; �; � 2 h:

We define a map Asym : TQ ! S as

Asym(vq) =
�
I
�1(q)JH(vq)

�
Q ; (6.3.2)

and the conservation law (6.3.1) can be rewritten as an affine constraint

Asym(q̇) =
�
I
�1(q)�

�
Q : (6.3.3)

The one-form Asym takes values in Sq = Tq(OrbH(q)) and is equivariant with
respect to the full group action since the kinetic energy metric is invariant and the
momentum map is equivariant. It also follows from the definition of the momentum
map that Asym is a projection ontoS and hence it maps vectors on Sq to themselves.

By assumption, the constraint distribution D is invariant. If we choose a sub-
space Uq � Tq(Orb(q)) such that Tq(Orb(q)) = Uq � Sq then we can represent the
constraints using a U-valued one-form Akin : TQ ! Uq where Akin satisfies

Akin(vq) = 0 if and only if vq 2 Dq,

Akin(vq) = vq for all vq 2 Uq, (6.3.4)

�g�Akin = Akin�g�:

We now combine the two mappings to form a new mapping A : TQ ! TOrb,
where TOrb denotes the union of the tangent spaces to the group orbits, that is, to
the vertical bundle for the projection Q ! Q=G, as

A = Akin + Asym: (6.3.5)

The mapping A : TQ ! TOrb is an equivariant Ehresmann connection on the
bundle Q ! Q=G and hence we can write

A(vq) = (A(vq))Q;

where A : TQ ! g is a principal connection. To see that A is an Ehresmann
connection it suffices to show that it is a projection on Uq and Sq. This follows
immediately from the fact that Asym and Akin are equivariant projections ontoS and
U respectively and Tq(Orb(q)) = Sq � Uq. Equivariance follows directly from the
equivariance of Uq and Sq and the existence of A follows from general properties
of equivariant Ehresmann connections.

Definition 6.1. We call the map A : TQ ! Tq(Orb(q)) defined by equations
(6.3.3)–(6.3.5) the nonholonomic connection (in the case of horizontal sym-
metries).
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Notice that the nonholonomic connection in the case of horizontal symmetries
reduces to the kinematic connection in the purely kinematic case and the mechanical
connection in the unconstrained case. The overall motion of the system satisfies

A(q) � q̇ = (I�1(q)�)Q (6.3.6)

which has the form of an affine constraint. The locked inertia tensor relative to h

satisfies
I(g � q) = Ad�g�1I(q)Adg�1

and hence in general the affine part of the constraint (6.3.6) is not equivariant since

I
�1(g � q)� = AdgI�1(q)Ad�g� = Adg(I�1(q)�):

This lack of invariance of the affine portion, as in the unconstrained case, would
cause problems in the construction of a principal connection if one tried to make
full use of the conservation laws by holding � fixed. On the other hand, the actual
reduced variables correspond to the body angular velocity or momentum, and in
these variables, equivariance is restored. Let us be more specific: Equation (6.3.6)
describes how to lift paths from the base space Q=G to the full space Q. This is
most easily seen relative to a local trivialization q = (r; g), where the constraints
can be written as

A(q) � q̇ = Adg(g�1ġ + Aloc(r)ṙ) = AdgI
�1
loc (r)Ad�g�

where AdgI
�1
loc (r)Ad�g� is the gD-valued function associated with the constant

momentum � 2 h�. This equation can be rewritten as

ġ = g(�Aloc(r)ṙ + I�1
loc (r);Ad�g�);

which shows how the path r(t) 2 Q=G lifts to the fibers.
Noting that Ad�g� = p is the body angular momentum and I�1

loc (r)p = 
 is
the corresponding body angular velocity, which may be regarded as a dynamical
variable in its own right, we can write the reconstruction equation takes the form

ġ = g(�Aloc(r)ṙ + 
): (6.3.7)

This equation again has the form ġ = g� and where � = �Aloc(r)ṙ + 
 has been
determined by equations of motion that themselves are independent of the group
variable. This form, rather than the form in which the momentum has been set
equal to a constant, shows the decoupling from the group variables most clearly.
As we saw before, and will do more generally below, it is the variable � rather
than the body angular velocity variable that evolves by means of a component of
the Euler-Poincaré equation. On the other hand, it is 
 that is the vertical variable
relative to the nonholonomic connection

verqq̇ = 
 = Aloc(r)ṙ + g�1ġ;

which is an instance of the general coordinate expression for the vertical part of a
principal connection. As we shall see in a moment, this point of view generalizes
to the case of nonhorizontal symmetries.
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The preceding equations only hold when Dq + Tq(Orb(q)) = TqQ and Dq \
Tq(OrbG(q)) = Tq(OrbH(q)). If we drop the second restriction, we can write the
reconstruction procedure must be modified to account for the interaction between
the constraints and the symmetries. The developments below will include this more
general situation.

Finally we end this section with a notational remark. In the general nonholo-
nomic case, as we have seen, the momentum map need not be conserved. In any
case, even if it is, the momentum in body representation p is not constant.

6.4. The Nonholonomic Connection

We now consider the most general case, where the symmetries are not neces-
sarily horizontal. Although it is not needed for everything that we will be doing,
the examples and the theory are somewhat simplified if we make the following
assumption:

Dimension Assumption. The constraints and the orbit directions span the entire
tangent space to the configuration-space:

Dq + Tq(Orb(q)) = TqQ: (6.4.1)

If this condition holds, we say that the principal case holds.

In this case, the momentum equation can be used to augment the constraints and
provide a connection on Q ! Q=G. Let Jnhc : TQ ! (gD)� be the nonholonomic
momentum map,

hJnhc(q) � q̇; �qi = hFL; �q
Qi;

and define, as before, a map Asym
q : TqQ ! Sq = Dq \ Tq(Orb(q)) given by

Asym
q (vq) = (I�1Jnhc(vq))Q: (6.4.2)

This map is equivariant and a projection onto Sq. Here I : gD ! (gD)� is the
locked inertia tensor relative to gD; it is defined in the same way as before.

If we now choose Uq � Tq(Orb(q)) such that Tq(Orb(q)) = Sq � Uq, then we
can synthesize a connection which encodes both the constraints and the momenta,
as before. This splitting of subspaces is shown in Figure 6.1. Let Akin

q : TqQ ! Uq

be a Uq-valued form that projects Uq onto itself and maps Dq to zero; for example,
it can be given by orthogonal projection relative to the kinetic energy metric (this is
our default choice). The constraints plus momentum equation can thus be written
as

Akin(q) � q̇ = 0 (constraints);

Asym(q) � q̇ = (I�1(q)p)Q (momenta);

where p 2 (gD)� is the time-dependent momentum defined by p =


Jnhc(q) � q̇; �q

�
.
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Fig. 6.1. Subspace definitions for the nonholonomic connection

Definition 6.2. Under the dimension assumption in equation (6.4.1), and the as-
sumption that the Lagrangian is of the form kinetic minus potential energies,
the nonholonomic connection A is the connection on the principal bundle
Q ! Q=G whose horizontal space at the point q 2 Q is given by the orthogonal
complement to the space Sq within the space Dq; see Figure 6.1.

Under the assumption that the distribution is invariant (condition (S1)), and
from the fact that the group action preserves orthogonality, it follows that the
distribution S and the horizontal spaces transform to themselves under the group
action. Thus, we get

Proposition 6.3. Under the assumptions in the previous definition and the condi-
tion (S1), the nonholonomic connection is a principal connection.

Using the preceding expressions, we obtain an expression for the nonholonomic
connection as an Ehresmann connection (and hence also as a principal connection)
by our earlier calculations. In fact, one can readily check that the following propo-
sition holds:

Proposition 6.4. The nonholonomic connection regarded as an Ehresmann con-
nection is given by

A = Akin + Asym: (6.4.3)

When the connection is regarded as a principal connection (i.e., takes values
in the Lie algebra rather than the vertical space) we will use the symbol A. The
nonholonomic connection defined here agrees with the definition in the horizontal
case. (In making this comparison, note that in the general definition of the connec-
tion, we do not fix the value of � but rather let it be determined by the point vq at
which the connection is evaluated.)
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The affine constraint A(q) � q̇ = (I�1(q) � p)Q describes the lifting of paths from
the base. The formula for the nonholonomic connection is given in terms of Akin,
which depends on the choice of complement Uq toSq within the tangent space to the
orbit. However, it is easily seen that A : TQ ! TOrb is independent of this choice,
as it must be since the definition of the nonholonomic connection was manifestly
independent of this choice. We compute the equations of motion in terms of the
nonholonomic connection in a local trivialization of the bundle Q ! Q=G in the
following sections.

6.5. Special Cases

Various special cases can be conveniently classified by the generic and extreme
ways the subspaces in the preceding figure intersect. For example, the purely
kinematic case occurs when the space Sq is zero dimensional. The extreme case in
which the tangent space to the orbit is a subset of the space of constraints is itself
an extreme case of that of horizontal symmetries, etc. The different cases we have
discussed are summarized in Table 6.5.1.

Table 6.5.1. Special cases of the nonholonomic connection (principal case)

Case Conditions Connection

Unconstrained Dq = TqQ Asym(q̇) = I�1J(q̇)

Purely
kinematic

Dq \ Tq(Orb(q)) = f0g Akin(q̇) = 0

Horizontal
symmetries

Dq \ Tq(OrbG(q))=Tq(OrbH(q)) Asym(q̇) +Akin(q̇) = I�1JH(q̇)

General
principal Dq + Tq(Orb(q)) = TqQ Asym(q̇) +Akin(q̇) = I�1Jnhc(q̇)
bundle case

In addition to these possibilities, one can also consider the case where
Dq + Tq(Orb(q)) 6= TqQ. When this happens, the base space for the Ehresmann
connection can no longer be chosen as Q=G and hence a bigger base space must be
chosen. However, the basic constructions still hold with the momentum augmenting
the constraints to give a synthesized connection.

Within this overall framework, reduction is also possible in certain cases. For
example, in the purely kinematic case, KOILLER [1992] showed that the dynamics
of the system drop to the base space Q=G. Similarly, in the case of horizontal
symmetries, we have discussed the situation above. The general case is discussed
in the following section and the reduced equations computed. In the general case,
the reduced equations will define a dynamical system on the space D=G, and
the reconstruction problem, which we have largely discussed already, will be the
problem of lifting the dynamics from D=G back to the space D � TQ.
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7. The Reduced Lagrange-d’Alembert Equations

The goal of this section is to compute the equations on the reduced space D=G.
The strategy is to explore the equations of motion, split according to the nonholo-
nomic connection that was constructed in the preceding section. Throughout this
section we make the dimension assumption x 6.4 of so that the nonholonomic
connection is a principal connection. Without this assumption, one would have to
assume an additional bundle structure. We avoid this for simplicity and because the
dimension assumption holds in all our examples and other related ones we know
about (such as the bicycle, the rolling ellipsoid, etc.). We will begin, however, with
a second form of the momentum equation that makes use of the geometry associ-
ated with the nonholonomic connection. We will follow this with the computation
of the reduced equations.

7.1. The Momentum Equation in an Orthogonal Body Frame

We first compute the reduced form of the momentum equation that will be one
of the sets of equations comprising the reduced Lagrange-d’Alembert equations.
This splitting of the equations is associated with breaking up the variations that go
into the Lagrange-d’Alembert principle into vertical and horizontal parts relative
to the nonholonomic connection. To do this, we make one further assumption,
namely, that the initial Lagrangian is of the form of kinetic minus potential energy;
in particular, the metric structure defined by the kinetic energy is used. Using the
kinetic energy metric, we choose our moving basis ec(q) to be orthogonal, that is,
the corresponding generators [ec(q)]Q are orthogonal in the given kinetic energy
metric. (Actually, all that is needed is that the vectors in the set of basis vectors
corresponding to the subspace Sq be orthogonal to the remaining basis vectors.)
The metric tensor is denoted by gij.

We begin by recalling the decompositions defined by the nonholonomic con-
nection described in the preceding section. Refer to Figure 7.1.

Given a velocity vector q̇ that satisfies the constraints, we orthogonally de-
compose it into a piece in Sq and an orthogonal piece denoted ṙh. We regard ṙh

as the horizontal lift of a velocity vector ṙ on shape space; recall that in a local
trivialization, the horizontal lift to the point (r; g) is given by

ṙh = (ṙ;�Alocṙ) = (ṙ�;�Aa
�ṙ�)

(compare equation (2.2.2)), where Aa
� are the components of the nonholonomic

connection (recall that it is a principal connection) in a local trivialization.
We denote the decomposition of q̇ by

q̇ = 
Q(q) + ṙh;

so that for each point q,
 is an element of the Lie algebra and represents the spatial
angular velocity of the locked system. Note that in this expression, the constraints
are implicitly included. In a local trivialization, we can write, at a point (r; g)


 = Adg(
loc)
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Fig. 7.1. The decomposition of q̇ into vertical and horizontal pieces relative to the nonholo-
nomic connection

so that 
loc represents the body angular velocity. Thus,


loc = Alocṙ + �

and, at each point q, the constraints are that 
 belongs to gq, i.e.,


 2 spanfe1(r); e2(r); : : : ; em(r)g:

As noted above, the vector ṙh need not be orthogonal to the whole orbit, just to
the piece Sq. Even if q̇ does not satisfy the constraints, we can decompose it into
three parts according to the figure and write

q̇ = 
Q(q) + ṙh = 
nh
Q (q) +
?

Q (q) + ṙh;

where 
nh
Q lies in the space Sq, that is, it satisfies the constraints, and is perpen-

dicular within TqOrb to 
?

Q . The relation 
loc = Alocṙ + � is valid even if the
constraints do not hold; also note that this decomposition of 
 corresponds to the
decomposition of the nonholonomic connection given by A = Akin + Asym that was
given in Proposition 6.4. We begin with the momentum equation (4.4.2) in body
representation, which we recall here for convenience:

d
dt

pb =
�
@l
@�
; [�; eb] +

@eb

@r�
ṙ�
�
: (7.1.1)

This equation is one of the reduced equations since it manifestly decouples from
the group variables. We now work out this equation in coordinates.

To avoid confusion, we make the following index and summation conventions:
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1. The first batch of indices range from 1 to m corresponding to the symmetry
directions along constraint space. These indices will be denoted a; b; c; d; ::: and a
summation from 1 to m will be understood.

2. The second batch of indices range from m+1 to k corresponding to the symmetry
directions not aligned with the constraints. Indices for this range or for the whole
range 1 to k will be denoted by a0; b0; c0; ::: and the summations will be given
explicitly.

3. The indices �; �; ::: on the shape variables r range from 1 to �. Thus, � is the
dimension of the shape space Q=G and so � = n � k. The summation convention
for these indices will be understood.

We need the following calculation:

Proposition 7.1. In a local trivialization

�
@l
@�
; �

�
= Iac(r)
a�c +

kX
a0=m+1

�a0��
a0 ṙ�

= pc�
c +

kX
a0=m+1

�a0��
a0 ṙ�: (7.1.2)

In this equation, the partial derivatives of l are evaluated at a point (r; ṙ; �) satisfying
the constraints (that is, the corresponding 
loc = � + Alocṙ lies in gq) and � is an
arbitrary element of g. Also,

pb = Iab(r)
a;

where Iab(r) are the coefficients of the locked inertia tensor Iloc(r) in a local
trivialization (recall from the last section that the locked inertia tensor has indices
that range only over the first batch), and where

�a0� = la0� �

kX
b0=1

la0b0A
b0
� :=

@l
@�a0@ṙ�

�

kX
b0=1

@l
@�a0@�b0A

b0
� (7.1.3)

for a0 = m + 1; : : : ; k.

Proof. We denote the kinetic energy metric on TqQ by hh ; iiq. The corresponding
metric on g restricted to the subspace gq gives the locked inertia tensor as we saw
before.

The kinetic energy is given as follows, without the assumption that q̇ satisfies
the constraints:

K(q; q̇) = 1
2





nh

Q + 
?

Q + ṙh; 
nh
Q +
?

Q + ṙh��
q

= 1
2





nh

Q ; 

nh
Q

��
q

+




?

Q ; ṙ
h
��

q

+ 1
2





?

Q ; 

?

Q

��
q

+ 1
2




ṙh; ṙh

��
q ; (7.1.4)

where we have suppressed the q dependence of 
Q(q) for simplicity.
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Now we pass to a local trivialization and remove the explicit g dependence. We
change variables to (r; ṙ; 
) by the transformation 
 = � + Alocṙ, which is valid
even if the constraints are not satisfied. The partial derivatives with respect to 

equal those with respect to � (evaluated at the corresponding points).

To form the reduced Lagrangian, we substitute ṙh = (ṙ�;�Aa
�ṙ�) into the

second term and arrive at

1
2 Iac


a
c +
Pk

a0=m+1 la0;�

a0 ṙ� �

Pk
a0;c0=m+1 la0c0


a0Ac0
� ṙ� + �

where 
a and 
a0 are the components of 
nh and 
? respectively, where the
subscripts on the l denote the corresponding partial derivatives, as above, and where
� corresponds to the last two terms in (7.1.4), which vanish when the partials are
taken with respect to 
 at 
? = 0. It should now be clear that the derivatives of
this expression evaluated at 
? = 0 are as stated in the proposition. ut

The coefficients �a0� measure the failure of the horizontal space for the non-
holonomic connection to be orthogonal to the tangent space to the orbit.

Next, for each b such that 1 5 b 5 m, we write out the components of the
remaining expression in (7.1.1):

[�; eb] +
@eb

@r�
ṙ� = [
 �Alocṙ; eb] +

@eb

@r�
ṙ�

=
kX

c0=1

Cc0
ab


aec0 �

kX
a0;c0=1

Cc0
a0bA

a0
� ṙ�ec0

+
kX

c0=1


c0
b�ṙ�ec0 (7.1.5)

where the symbols such as Cc0
a0b are the corresponding components of the structure

constants in the given basis and where we have written

@eb

@r�
=

kX
c0=1


c0
b�ec0 ; (7.1.6)

Alocṙ =
kX

a0=1

Aa0
� ṙ�ea0 : (7.1.7)

(compare equation (4.3.3)). Substituting (7.1.2), (7.1.5), (7.1.6) and (7.1.7) into
(7.1.1), we arrive at

Proposition 7.2. The momentum equation in an orthogonal body frame is

d
dt

pb = Cc
abIadpcpd + Dc

b�ṙ�pc + D��bṙ�ṙ�; (7.1.8)

where
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Dc
b� =

kX
a0=1

�Cc
a0bA

a0
� + 
c

b� +
kX

a0=m+1

�a0�Ca0
abIac; (7.1.9)

D��b =
kX

a0=m+1

�a0�

�
�Ca0

abA
a
� + 
a0

b�

�
: (7.1.10)

In the case of the snakeboard, the subspace gq is one-dimensional as we shall
see, and the following corollary applies.

Corollary 7.3. If the subspace gq is either one-dimensional or abelian, then the
first term on the right-hand side of (7.1.8), which is quadratic in p, is zero.

Another notable special case is the following,which will be used in the example
of a constrained particle in R3 to produce a nontrivial parallel transport equation.

Corollary 7.4. If g is abelian, and if the horizontal space is orthogonal (in the
kinetic energy inner product) to the group orbit, then the momentum equation is in
the form of a parallel transport equation over the curve r(t) in shape space:

d
dt

pb = 
c
b�ṙ�pc:

We observe that the parallel transport form of the equations is characterized by
the vanishing of the terms in the momentum equation that are purely quadratic in ṙ
and in p. This situation is important in understanding the complete integrability of
some systems, such as Routh’s problem of the rollingball in a surface of revolution;
cf. ZENKOV [1995]. In all the examples considered later, the momentum equation
does not have the terms quadratic in p, but many of them do have the terms quadratic
in ṙ. An example of one with the momentum equations quadratic in p is the rolling
nonhomogeneous ball, which has symmetry group including the nonabelian group
SO(3). Note that these terms quadratic in p are exactly those appearing in the
Euler-Poincaré equations.

7.2. The Reduced Equations

We now are in a position to put several parts of the preceding discussions
together. As we saw above, the momentum equation in body representation decou-
ples from the group variables themselves, which is important for the reconstruction
strategy. On the other hand, this is a local representation for the intrinsic equations
on the space D=G. As we mentioned before, it is convenient to write them in local
representation in terms of the variables 
 and ṙ for several reasons:

1. This split of the equations corresponds to a global intrinsic split of the Lagran-
ge-d’Alembert principle according to the nonholonomicconnection (we emphasize
that there is some freedom here; other connections can be used in its place).

2. This split enables us to use the (locked) body angular velocity
 as a basic vari-
able instead of � since it has better diagonalization properties for the kinetic energy
and will ultimately be more useful for purposes of stability analyses; these two
variables are related by the velocity shift given by the nonholonomic connection:
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loc = Alocṙ + �:

We will show that the equations of motion can be written (using a local trivializa-
tion) as three systems of equations, namely

� the constraint equations,

� the reduced Euler-Lagrange equations for the variable ṙ,

� the momentum equation (of Euler-Poincaré type) in body representation.

We formulate the reduced Lagrange-d’Alembert equations under the assumptions
of Proposition 6.3. In this context, the Lagrange-d’Alembert principle may be bro-
ken up into two principles by breaking the variations �q into two parts, namely, parts
that are horizontal with respect to the nonholonomic connection and parts that are
vertical (but still inD). We will use as variables, (r�; ṙ�; ) where (r; ṙ) are variables
in the base and where 
 is the vertical part (the locked body angular velocity).
Let lc(r; ṙ; 
) denote the reduced Lagrangian written in terms of these variables as
before; the subscript c is used to indicate the fact that
 is confined to the constraint
subspace gq. Use the orthogonal basis e1(r); e2(r); : : : ; em(r); em+1(r); : : :ek(r) in-
troduced for the momentum equation in the body representation (recall that this
means that the first m elements are orthogonal as are the second k � m elements
but that the two sets need not be orthogonal to each other). Let

pb(r; ṙ; 
) =

�
@lc

@

; eb(r)

�
; b = 1; : : : ;m:

Theorem 7.5. Using the preceding notation, and regarding lc as a function
of (r; ṙ; p), the following reduced nonholonomic Lagrange-d'Alembert

equations hold for each 1 5 � 5 � and 1 5 b 5 m:

d
dt
@lc

@ṙ�
�

@lc

@r�
=
�
Kad
� p�pd + K��ṙpa + K��
 ṙ� ṙ�

�
(7.2.1)

d
dt

pb = Cc
abIadpcpd + Dc

b�ṙ�pc +D��bṙ�ṙ�; (7.2.2)

where the coefficients Dc
b� and D��b are defined in Proposition 7.2, and the

coefficients Kad
� , Ka

��, and K��� are defined by

Kad
� =

@Iad

@r�
�

kX
b0=1

Ca
b0cAb0

� Icd + 
a
c�Icd;

Ka
�� =

kX
a0=m+1

�a0�

 
�

kX
b0=1

Ca0
b0cAb0

� Ica + 
a0
c�Ica

!
� Ba

��;

K��� =
kX

a0=m+1

�a0�Ba0
�� ;

where
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Ba0
�� =

kX
b0;c0=1

 
@Aa0

�

@r�
�
@Aa0

�

@r�
� Ca0

b0c0A
b0
� Ac0

� + Ac0
�


a0
c0� � Ac0

� 

a0
c0�

!

for all a0 in the range of 1 to k.

Proof. The second set of equations, which are the momentum equations, were
derived in the preceding proposition. To get the first set of equations, one can
proceed in two ways. First, one can invoke the calculations earlier in this paper for
the motion relative to a general Ehresmann connection, restricting attention to the
variations that are horizontal; this is a straightforward, although somewhat tedious
calculation. A second method is to write the equations in a “vector” form similar
to those for the momentum equation in body representation that we derived earlier
by using the local form of the equations regarding the momentum terms as affine
constraints (see (2.3.1)):

� �lc = �

�
@l
@�
; dAloc(ṙ; �r) � [Aloc(ṙ);Aloc(�r)]

�
(7.2.3)

�

�
@l
@�
; (DI�1

locp)(�r)
�
:

When these equations are converted to coordinate form one recovers the coordinate
form above. ut

The above equations become the reduced Euler-Lagrange equations described
earlier in case there are no constraints. Notice also that the reduced equations
are decoupled from the group variables, which is important for the reconstruction
process. We summarize what we have already established on reconstruction as
follows:

Proposition 7.6. The group variables are reconstructed by means of the equation

ġ = g � �

where � = 
 �Alocṙ.

Of course we could also write this equation in terms of the nonholonomic
momentum pb. As before, let A : TQ ! g be the Lie-algebra-valued one-form
corresponding to Aq : TqQ ! Tq(Orb(q)). Since the nonholonomic momentum
map is equivariant, we can write it in a local trivialization, as before:

Jnhc(g; r; ġ; ṙ) = Ad�g�1 (Jnhc
loc (r; ṙ; �)):

This is a form similar to that for the local expression for a connection and its
curvature. Then the reconstruction equation becomes

ġ = g(�Aloc(r)ṙ + I�1
loc (r)p)

where Aloc : T(Q=G) ! g is the local version of A and I�1
loc is the local version of

the locked inertia tensor, as was defined before.
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Note that ġ depends linearly on ṙ and also linearly on p. In the case of horizontal
symmetries, the term �Alocṙ defines the geometric phase and the term 
loc =
I
�1
loc (r)p := � (r)p determines the dynamic phase. We adopt the same terminology

in the general case. If the dynamic phase term is zero, then the motion in the
group variables is determined solely by the path in the base space, not its time
parametrization. On the other hand, the dynamic phase determines the motion of
the system when ṙ = 0 and hence corresponds to unforced motions of the system.
For a system with horizontal symmetries, p is a constant.

As we have shown, it is possible to choose a basis of sections for Sq = Dq\TqOrb
such that the momentum map and the locked inertia tensor is group invariant
(independent of g). This was also shown by OSTROWSKI, BURDICK, LEWIS &
MURRAY [1995], who write the momentum and reconstruction equations in the
form

ġ = g(�Aloc(r)ṙ + I(r)�1p);

ṗ = �(r; ṙ; p):

To reiterate, the reconstruction process now decouples as follows: Given an initial
condition and a path in the base space, we first integrate the momentum equation to
determine p(t) for all time. We then use r(t) and p(t) to determine the motion in the
fiber. This decoupling is only possible when ṗ is independent of g, since otherwise
the equations for p and g are coupled. Of course, this whole process can be read in
many different ways depending on the dynamics and control objectives. We will
be exploring a number of these avenues in future publications.

Some Additional History. We have discussed quite a few of the earlier historical
points in the Introduction, and here we make a few more remarks on the more
recent history relevant to this paper. Additional information, especially on the
Russian literature, can be found in SUMBATOV [1992]. First of all, KOILLER [1992]
established the reduction procedure in what we call here the purely kinematic case.
Thus, our results can be viewed as a generalization of his. Also, BLOCH & CROUCH

[1992] treated the case which we would call here that of horizontal symmetries.
YANG [1992] treated the purely kinematic case together with horizontal symmetries,
as well as considering affine constraints. MARSDEN & SCHEURLE [1993a,b] treated
the case of Lagrangian reduction for holonomic systems and introduced the idea of
dividing the variations into horizontal and vertical parts in the variational principle
and worked out the reduced Euler-Lagrange equations for this case. The present
work can also be viewed as the generalization of that work to include the case of
nonholonomic constraints.

8. Examples

We now consider several detailed examples to illustrate the theory developed
above. Although most of these examples are of strictly academic interest, they
illustrate the basic concepts and indicate how more complicated examples should
be attacked. The examples which we present are a vertical disk rolling on a plane,



78 A. BLOCH ET AL.

a nonholonomically constrained particle in R3, a ball on a spinning plate, and the
snakeboard, a variant of the skateboard. This last example is perhaps the richest
of these examples and it uses the full momentum equation to describe its motion.
Indeed, it was primarily this example which helped guide the theory and led to the
development of the momentum equation and the nonholonomic connection.

In addition to the examples presented here, there are many other nonholonomic
systems of both academic and practical importance. We already mentioned the
falling disk and the wobblestone in the Introduction; another is the controlled
bicycle (GETZ [1994] and GETZ & MARSDEN [1995]). Many robotic locomotion
systems can be modeled in terms of nonholonomic constraints; see KELLY & MUR-
RAY [1995]. Additional examples can be found in robotic manipulation, particularly
robotic grasping; see MURRAY, LI & SASTRY [1994].

In all of the examples that follow, we will assume that the kinematic constraints
hold exactly and that the Lagrange-d’Alembert principle holds; in particular, the
forces of constraint do no (virtual) work. In practice, one modifies the resulting
equations to take into account friction, slipping, and other effects.

8.1. The Vertical Rolling Disk

Although the vertical rolling disk is very simple and classical, it nonetheless
illustrates the ideas. We mention that the falling disk can be treated by similar
methods; see VIERKANDT [1892], O’REILLY [1996], GETZ & MARSDEN [1994] and
CUSHMAN, HERMANS, & KEMPPAINEN [1995].

We begin by developing the equations of motion using the Ehresmann connec-
tion given by the constraints and deriving the reduced Lagrangian, thus illustrating
the material of Section 2. The equations are then written explicitly in terms of
the reduced Lagrangian and the curvature of the connection. We then discuss the
momentum equation of Section 4 and Section 7. Using different subgroups of the
full symmetry group we show how one gets conservation laws from both horizontal
and nonhorizontal symmetries. The different forms of the conservation laws are
also illustrated.

Consider a vertical disk free to roll on the (x; y)-plane and to rotate about its
vertical axis. Let x and y denote the position of contact of the disk in the (x; y)-
plane. The remaining variables are � and ' denoting the orientation of a chosen
material point P with respect to the vertical and the “heading angle” of the disk, as
in Figure 8.1.

Thus, the unconstrained configuration-space for the vertical rolling disk is
Q = R

2 � S1 � S1. The velocities associated with the coordinates x; y; �; ' are
denoted ẋ; ẏ; �̇ and '̇, which provide the remaining coordinates for the velocity
phase space TQ. The Lagrangian for the problem is taken to be the kinetic energy

L(x; y; �; '; ẋ; ẏ; �̇; �; '̇) = 1
2 m(ẋ2 + ẏ2) + 1

2 I�̇2 + 1
2J'̇2 (8.1.1)

where m is the mass of the disk, and I and J are its moments of inertia. Note that
so far, we use the full configuration-space, ignoring the constraints and that the
Lagrangian is the standard “free” Lagrangian.
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ϕ
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Qx

z

y

θ

(x, y)

Fig. 8.1. Geometry of the vertical rolling disk

The rolling constraints (assuming the disk has radius R) may be written as

ẋ = R(cos')�̇; ẏ = R(sin')�̇: (8.1.2)

At first we can close our eyes to the symmetry of the problem and just think of the
constraints as the horizontal space of an Ehresmann connection, as in Section 3. To
do this, we must choose a bundle Q ! R. Given the nature of the constraints and
the fact that we imagine that eventually controls would be added to either the � or
the' variable, we are motivated to choose the base R to be S1�S1 parametrized by
� and ' with the projection to R being the naive one (s1; s2; r1; r2) = (x; y; �; ') 7!
(r1; r2) = (�; '). From the constraints we can read off the components of the
Ehresmann connection (see (2.1.3)):

A1
1 = �R(cos'); A2

1 = �R(sin'); (8.1.3)

and the remaining Aa
� are zero. If we choose to regard the bundle Q ! R as a

principal bundle with group G = R2, we get an abelian purely kinematic system (see
BLOCH, REYHANOGLU & MCCLAMROCH [1992] and BLOCH & CROUCH [1992]).
Indeed, note that using the obvious action of G, we get

TqOrb(q) = span
�
@

@x
;
@

@y

�
: (8.1.4)

Notice that Dq \ Tq(Orb(q)) = f0g and that the components of A are independent
of x and y.

Proceeding with the analysis of Section 3, we obtain the constrained Lagrangian
Lc by substituting (8.1.2) into (8.1.1):

Lc(�; '; x; y; �̇; '̇) = 1
2(mR2 + I)�̇2 + 1

2J'̇2: (8.1.5)

Note that if the mass density of the disk were constant, then I = 1
2mR2 and we could

simplify the coefficient of �̇2 to 3
4mR2�̇2, but we need not make this assumption.

The curvature of the connection A is computed using formula (2.1.7) to be
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B1
21 = �B1

12 = �R sin'; B2
12 = �B2

21 = �R cos'; (8.1.6)

with the remaining Ba
�� zero. The equations of motion

d
dt

�
@Lc

@ṙ�

�
�
@Lc

@r�
= �

�
@L
@ṡa

�
Ba
�� ṙ� (8.1.7)

become

(mR2 + I)�̈ = (mR(cos')�̇)(�R(sin')'̇)

+(mR(sin')�̇)(R(cos')'̇) = 0; (8.1.8)

J'̈ = (mR(cos')�̇)(R(sin')�̇)

+(mR(sin')�̇)(�R cos')�̇ = 0: (8.1.9)

Thus, �̇ = 
 and '̇ = ! are constants, so � = 
t+�0; ' = !t+'0 and equation (8.1.2)
gives

ẋ = 
R cos(!t + '0); ẏ = 
R sin(!t + '0):

Hence

x =



!
R sin(!t + '0) + x0; y = �




!
R cos(!t + '0) + y0:

We now turn to the momentum equation. It is clear that in the example as
presented, we have the whole group SE(2) � S1 as a symmetry group. In such
a case, the orbit of the group spans the entire constraint distribution. While this
is certainly allowed by the theory, it is an extreme case that one does not have
in general. In the presence of controls some of the symmetry will be broken, so
it is appropriate to consider a smaller symmetry group, namely, a subgroup of
SE(2) � S1 to be the group G in the general theory. For illustrative purposes, we
make two choices, namely, the subgroup SE(2) and the direct productR2� S1. To
keep things clear, we write these two choices as

G1 = SE(2) and G2 = R2 � S1:

It is interesting that, as we shall see, the actions of G1 and G2 give rise to the two
conservation laws �̇ = 
 and '̇ = ! respectively, one being induced by a horizontal
symmetry, the other not.

The action of G1 = SE(2) on R4 is given by

(x; y; �; ') 7! (x cos�� y sin� + a; x sin� + y cos� + b; �; ' + �) (8.1.10)

where (a; b; �) 2 SE(2). TheR2 � S1 action is given by

(x; y; �; ') 7! (x + �; y + �; � + �; '): (8.1.11)

The tangent space to the orbits of the SE(2) action is given by

TqOrb(q) = span
�
@

@x
;
@

@y
;
@

@'

�
; (8.1.12)

while for the G2 = R2 � S1 action, it is
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TqOrb(q) = span
�
@

@x
;
@

@y
;
@

@�

�
: (8.1.13)

One checks that the Lagrangian and the constraints are invariant under each of
these actions.

We now consider the momentum equations corresponding to these two actions.
The preceding calculations show that the constraint distributionDq is given by

Dq = span

�
@

@'
;R cos'

@

@x
+ R sin'

@

@y
+
@

@�

�
: (8.1.14)

Recall that the space Sq is given by the intersection of the tangent space to the orbit
with the constraint distribution itself. Hence, for the SE(2) action we have

Sq = Dq \ TqOrbG1(q) = span
�
@

@'

�
(8.1.15)

and for theR2 � S1 action we have

Sq = Dq \ TqOrbG2 (q) = span
�

R cos'
@

@x
+ R sin'

@

@y
+
@

@�

�
: (8.1.16)

To obtain the corresponding momentum equations, we consider the bundles
whose fibers are the span of the tangent vectors in the preceding two equations
in the respective cases, and choose sections of these bundles. The bundles are
of course trivial. In the case of the G1 = SE(2) action, note that the generators
corresponding to the Lie algebra elements represented by the standard basis inR3

(with translations being the first two components and rotations the third) are given
by

(1; 0; 0)Q =
@

@x
; (0; 1; 0)Q =

@

@y
; (0; 0; 1)Q = �y

@

@x
+ x

@

@y
+
@

@'
:

To obtain the section of Sq given by the vector field

�
q
Q =

@

@'
; (8.1.17)

we thus choose the Lie algebra element

�q = (y;�x; 1); (8.1.18)

while for the G2 = R2 � S1 action we take the section to be the vector field

�
q
Q = R cos'

@

@x
+ R sin'

@

@y
+
@

@�
(8.1.19)

with corresponding Lie algebra element

�q = (R cos';R sin'; 1): (8.1.20)

For the SE(2) action, the nonholonomic momentum map is
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Jnhc(�q) =
@L
@q̇i (�q

Q)i = J'̇ (8.1.21)

and hence the momentum equation becomes

d
dt

Jnhc(�q) =
d
dt

(J'̇) =
@L
@q̇i

�
d
dt

(�q)
�i

Q

(8.1.22)

= mẋ(ẏ) + mẏ(�ẋ) + 0 = 0:

This is of course an ordinary conservation law and is one of the equations of motion.
Note that corresponding to this action,

Dq \ Tq(OrbG1 (q)) = Tq(OrbH(q));

where H = S1, and we obtain a conservation law corresponding to the horizontal
action of S1. This law can of course also be obtained by directly considering the S1

action.
For the G1 action, a straightforward calculation shows that the third part of

Corollary 4.9 applies and so this is one way to find the constants of motion. Rather
than giving the details of this calculation, we give them for the G2 = R2�S1 action:
For the G2 action, the nonholonomic momentum map is

Jnhc(�q) =
@L
@q̇i (�q

Q)
i

= mẋR cos' + mẏR sin' + I�̇; (8.1.23)

and so the momentum equation becomes

d
dt

(mẋR cos' + mẏR sin' + I�̇)

= mẋ
d
dt

(R cos') + mẏ
d
dt

(R sin'); (8.1.24)

i.e.,
R cos'mẍ + R sin'mÿ + I�̈ = 0: (8.1.25)

Using the constraints to eliminate ẍ and ÿ from this equation we get

(mR2 + I)�̈ = 0; (8.1.26)

which we derived in (8.1.8). Alternatively, observe that, after imposing the con-
straints, the right-hand side of equation (8.1.24) is zero and the left-hand side
reduces to the left-hand side of (8.1.26). Thus the two momentum equations yield
the reduced equations of motion.

We now illustrate, for the case of the G2 = R
2 � S1 action, the momentum

equation in a moving basis (4.3.7) and the momentum equation in a body frame
(4.4.2). The latter is equivalent to the reduced form of the momentum equation
given in Theorem 7.5. We first treat the version (4.3.7). Choose a fixed basis for
the Lie algebra of G2 = R

2 � S1, namely, (1; 0; 0); (0; 1; 0), and (0; 0; 1): From
�q = �aea, we have

�1 = R cos'; �2 = R sin'; �3 = 1:
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Choose the moving basis

e1(q) = (R cos';R sin'; 1); e2(q) = (1; 0; 0); e3(q) = (0; 1; 0);

and write eb(q) =  a
b(q)ea: We find that

 1
1 = R cos';  2

1 = R sin';  3
1 = 1;  1

2 = 1;  2
3 = 1

and  a
b = 0 otherwise. Writing �i

a = Ki
a�

a, we find that the coefficients of the
infinitesimal generator are given by K1

1 = K2
2 = K3

3 = 1 and Ki
a = 0, otherwise.

From the formula Jb = (@L=@q̇i)Ki
a 

a
b , we find

J1 = mẋR cos' + mẏR sin' + I�̇;

noting that Sq is one-dimensional, so the range of the index b in the nonholonomic
momentum map is simply b = 1. We find that

� 2
14 = ( �1)2

a
@ a

1

@'
= �R sin';

� 3
14 = ( �1)3

a
@ a

1

@'
= R cos';

� d
1k = 0 otherwise:

With r = 1; n = 4, and k = 3, these calculations show that the momentum equation
(4.3.7) becomes

d
dt

J1 =
4X

l=1

� 1
1l J1 q̇l+

4X
i;l=1

@L
@q̇i�

2
1l q̇l [e2(q(t))]i

Q+
4X

i;l=1

@L
@q̇i�

3
1l q̇l [e3(q(t))]i

Q: (8.1.27)

The first term is zero and the momentum equation simplifies to

d
dt

J1 = mẋ
d
dt

(R cos') + mẏ
d
dt

(R sin'); (8.1.28)

which is indeed the correct momentum equation.
We now discuss the version (4.4.2) of the momentum equation, continuing with

the G2 action. Here the shape variable r is ' and � = (ẋ; ẏ; �̇) and so the reduced
Lagrangian is

l('; '̇; ẋ; ẏ; �̇) = 1
2m(ẋ2 + ẏ2) + 1

2 I�̇2 + 1
2 J'̇2:

We choose e1(') = (R cos';R sin'; 1); e2(') = (1; 0; 0); and e3(') = (0; 1; 0).
Then (4.4.1) gives

p1 =

�
@l
@�
; e1

�
= mẋR cos' + mẏR sin' + I�̇;

which, when the constraints are substituted, gives

p1 = (mR2 + I)�̇:

The momentum equation (4.4.2) now becomes, since the group is abelian,
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d
dt

p1 =
�
@l
@�
;
@e1

@'
'̇

�
=


(mẋ;mẏ; I�̇); (�R sin';R cos'; 0)

�
= �mẋR sin' + mẏR cos';

which vanishes in view of the constraints. Thus, we recover dp1=dt = 0, as before.
Observe that this formulation directly gives us a conservation law even though the
symmetry is not horizontal.

8.2. A Nonholonomically Constrained Particle

An instructive example due to ROSENBERG [1977] that illustrates the momentum
equation is the following example of a nonholonomically constrained free particle.
This example was also used to illustrate the theory in BATES & SNIATYCKI [1993].
We show here that the momentum equation in an orthogonal body frame is a pure
parallel transport equation with respect to the nonmetric connection for the particle
observed by BATES & SNIATYCKI. We thus provide a general method for deriving
such a connection.

Consider a particle with the Lagrangian

L = 1
2 (ẋ2 + ẏ2 + ż2) (8.2.1)

and the nonholonomic constraint

ż = yẋ: (8.2.2)

The constraints and Lagrangian are invariant under theR2 action on R3 given by

(x; y; z) 7! (x + �; y; z + �): (8.2.3)

The tangent space to the orbits of this action is given by

TqOrb(q) = span

�
@

@x
;
@

@z

�
; (8.2.4)

and the kinematic constraint distribution is given by

Dq = span

�
@

@x
+ y

@

@z
;
@

@y

�
; (8.2.5)

and thus

Dq \ Tq(Orb(q)) = span
�
@

@x
+ y

@

@z

�
: (8.2.6)

Consider the bundle S with fibers the span of these tangent vectors. To obtain the
momentum equations we begin by taking an arbitrary section of this bundle. The
bundle is of course trivial and for simplicity we take the section to be the vector
field

�
q
Q =

@

@x
+ y

@

@z
: (8.2.7)
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The corresponding Lie algebra element �q 2 R2 is

�q = (1; y): (8.2.8)

The nonholonomic momentum map in this case is

Jnhc(�q) =
@L
@q̇i

(�q
Q)i = h(ẋ; ẏ; ż); (1; 0; y)i = ẋ + yż: (8.2.9)

Hence the momentum equation becomes

dJnhc(�q)
dt

=
d
dt

(ẋ + yż) =
@L
@q̇i

�
d
dt

(�q)

�i

Q

= h(ẋ; ẏ; ż); (0; 0; ẏ)i = żẏ: (8.2.10)

i.e.,
ẍ + yz̈ = 0: (8.2.11)

Using the constraint ż = yẋ, we may rewrite the momentum equation as

ẍ +
y

1 + y2
ẋẏ = 0: (8.2.12)

Together with the Lagrangian equation of motion ÿ = 0, this completely specifies
the motion, and in fact these two equations are a (non-metric) geodesic flow
as pointed out in BATES & SNIATYCKI [1993]. In this example we note that the
momentum equation is the total derivative of a first-order conservation law:

ẋ �
c

(1 + y2)1=2
= 0 (8.2.13)

for c an arbitrary constant. Note, however, that this equation, which is used in the
Bates-Sniatycki procedure, is a conservation law, but is not directly a component
of a conserved momentum map. In other words, the fact that the second-order
momentum equation here is the derivative of a first-order conservation law is not
due to considerations of symmetry.

Note also that if one chooses the right base and fiber, this system is again an
abelian Chaplygin system. Here we takeR2 with coordinates fx; yg to be the base
and Rwith coordinate z to be the fiber. Then

Tq(Orb(q)) = span

�
@

@z

�
(8.2.14)

and Dq \ Tq(Orb(q)) = 0.
We again illustrate both coordinate versions of the momentum equation, namely,

(4.3.7) and (4.4.2), first treating the version (4.3.7). We choose a fixed basis for g =
R

2, namely, e1 = (1; 0) and e2 = (0; 1); then �q = �1e1 + �2e2, where �1 = 1; �2 = y.
As before, choose a moving basis

e1(q) = (1; y); e2(q) = (0; 1):
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If

eb(q) =
2X

a=1

 a
b(q)ea;

then clearly
 1

1 = 1;  2
1 = y;  1

2 = 0;  2
2 = 1:

Writing
�i

Q = Ki
a�

a;

we find K1
1 = 1, K3

2 = 1, and Ki
a = 0 otherwise. Hence,

J1 =
@L
@q̇i

Ki
a 

a
1 = ẋ + yż

noting that Sq is one-dimensional, so the range of the index b in the nonholonomic
momentum map is simply b = 1.

Next we compute the connection coefficients. We find

( �1)1
1 = 1; ( �1)2

1 = �y; ( �1)1
2 = 0; ( �1)2

2 = 1;

and hence � 2
12 = 1, and � 1

bk = 0 otherwise. These calculations with r = 1; n = 3,
and k = 2, show that the momentum equation (4.3.7) becomes

d
dt

J1 =
3X

l=1

� 1
1l J1 q̇l +

3X
i;l=1

@L
@q̇i �

2
1l q̇l[e2(q(t))]i

Q: (8.2.15)

The first term is zero and so the momentum equation simplifies to

d
dt

J1 = żẏ; (8.2.16)

the correct momentum equation.
Now we discuss the version (4.4.2) of the momentum equation. First, we must

orthogonalize the preceding moving basis. Here the shape variable r is y and
� = (ẋ; ż) and so the reduced Lagrangian is

l(r; ṙ; �) = 1
2 (ẋ2 + ẏ2 + ż2):

We choose
e1(r) = (1; y); e2(r) = (�y; 1):

Then (4.4.1) gives
p1 = ẋ(1 + y2):

Again the group is abelian, and so the momentum equation (4.4.2) becomes

d
dt

p1 =
�
@l
@�
;
@e1

@y
ẏ

�
= h(ẋ; ż); (0; 1)i = żẏ;

as before. Writing
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@e1

@y
= (0; 1) = 
1

11e1 + 
2
11e2;

we see that


1
11 =

y
1 + y2 ; 
2

11 =
1

1 + y2

and so the momentum equation (see Corollary 7.4) becomes

d
dt

p1 =
yẏ

1 + y2
p1

which is in parallel transport form. Note that the connection we have just constructed
using the general principles of the momentum equation is the same nonmetric
connection as in BATES & SNIATYCKI [1993].

8.3. A Homogeneous Ball on a Rotating Plate

An example which illustrates the theory in the case of affine constraints is
a model of a homogeneous ball on a rotating plate (see NEIMARK & FUFAEV

[1972] and YANG [1992] for the affine case and, for example, BLOCH & CROUCH

[1992], BROCKETT & DAI [1992] and JURDJEVIC [1993] for the linear case). As we
mentioned in the Introduction, CHAPLYGIN [1897b, 1903] studied the motion of a
nonhomogeneous rolling ball. Here we illustrate the derivation of the equations of
motion for a homogeneous ball in the affine case as well as the structure of the
nonholonomic momentum map in this setting.

ω

(x, y)
Ω

Fig. 8.2. The ball rolling on a plate

Consider the system shown in Figure 8.2. Fix coordinates in inertial space
and the let the plane rotate with constant angular velocity 
 about the z-axis. The
configuration-space of the sphere is Q = R2�SO(3), parametrized by (x; y;R);R 2
SO(3), all measured with respect to the inertial frame. Let ! = (!x; !y; !z) be the
angular velocity vector of the sphere measured also with respect to the inertial
frame, let m be the mass of the sphere, mk2 its inertia about any axis, and let a be
its radius.

The Lagrangian of the system is

L = 1
2 m(ẋ2 + ẏ2) + 1

2 mk2(!x
2 + !y

2 + !z
2) (8.3.1)

with the affine nonholonomic constraints
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ẋ � a!y = �
y; ẏ + a!x = 
x: (8.3.2)

Note that the Lagrangian here is a metric on Q which is bi-invariant on SO(3) as
the ball is homogeneous. Note also that R2 � SO(3) is a principal bundle over R2

with respect to the right SO(3) action on Q given by

(x; y;R) 7! (x; y;RS) (8.3.3)

for S 2 SO(3). The action is on the right since the symmetry is a material symmetry.
Observe, as in YANG [1992] and BLOCH & CROUCH [1992], that the angular

momentum of the ball about the z-axis is conserved since the Lagrangian is invariant
under rotations about the z-axis and the infinitesimal generator of these rotations
clearly lies in Dq. That is, we have horizontal symmetries. The conservation laws
together with the constraints, namely,

!x +
1
a

ẏ =

x
a
; !y �

1
a

ẋ =

y
a
; !z = c; (8.3.4)

where c is a constant, thus determine the nonholonomic connection.
To compute the equations of motion we use the following notation. Let r1 = x,

r2 = y, and let s1; s2; s3 denote the angles corresponding to rotation about the x, y
and z axes respectively. The constrained Lagrangian is given by (eliminating !x,
!y and !z)

Lc =
1

2a2

�
m(a2 + k2)(ẋ2 + ẏ2)

+mk2
2(x2 + y2) + 2mk2(
yẋ � 
xẏ)
	

(8.3.5)

(up to an irrelevant constant). Using the above definitions of the variables r; s we
see that

A1
2 = �

1
a
; A2

1 =
1
a

(8.3.6)

with all other Aa
� equal to zero. Hence all the curvature terms Ba

�� are zero.
On the other hand, recalling that the affine constraints are written as!(q̇) = 
(r)

with d
a = 
a
�dr� we have


1
1 =




a
; 
2

2 =



a
(8.3.7)

with all other 
a
� equal to zero. Then the equations of motion

d
dt

�
@Lc

@ṙ�

�
�
@Lc

@r�
= �

@L
@ṡa


a
� (8.3.8)

become
1
a2
fm(a2 + k2)ẍ + 2mk2
ẏ �mk2
2xg

= �mk2!x



a
= �

mk2

a2 (
2x� 
ẏ)

1
a2 fm(a2 + k2)ÿ � 2mk2
ẋ� mk2
2yg

= �mk2!y



a
= �

mk2

a2
(
2y + 
ẋ)
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i.e.,

ẍ +
k2


a2 + k2
ẏ = 0; ÿ�

k2


a2 + k2
ẋ = 0: (8.3.9)

These equations may also be derived by considering the momentum equations
associated with the system.

Note first that the constraint distribution given by the two kinematic constraints
is (modulo the affine piece)

Dq = span
�

a
@

@x
+ �y; �a

@

@y
+ �x; �z

�
; (8.3.10)

where �x, �y, and �z denote the infinitesimal generators of rotations about the x,
y and z axes of the ball respectively. Now consider the action of the full group
R

2 � SO(3) on the configuration-space. Clearly the Lagrangian is invariant under
this action. Also, we see that in this case we then have

Sq = Dq \ TqOrb(q) = Dq :

Thus the nonholonomic momentum map Jnhc has three components corresponding
to the three independent generators of Dq.

We have

Ji =
@L
@q̇j

(�i)
j
Q

which gives

J1 =


(mẋ;mẏ;mk2!x;mk2!y;mk2!z); (a; 0; 0; 1; 0)

�
= amẋ + mk2!y;

J2 =


(mẋ;mẏ;mk2!x;mk2!y;mk2!z); (0;�a; 1; 0; 0)

�
(8.3.11)

= �amẏ + mk2!x;

J3 =


(mẋ;mẏ;mk2!x;mk2!y;mk2!z); (0; 0; 0; 0; 1)

�
= mk2!z :

In all cases �q is independent of q, so the momentum equations are simply

dJ1

dt
=

d
dt

(amẋ + mk2!y) = 0;

dJ2

dt
=

d
dt

(�amẏ + mk2!x) = 0; (8.3.12)

dJ3

dt
=

d
dt

(mk2!z) = 0:

The third equation is of course nothing but the conservation of angular momentum
mentioned earlier. However the first two equations can easily be seen to be equiv-
alent to the equations of motion (8.3.9)—one simply carries out the differentiation
and solves for the derivatives of !x and !y using the derivatives of the constraint
equations (8.3.2).



90 A. BLOCH ET AL.

The dynamics of this system are particularly interesting—for example, the ball
will generally not roll off a finite plate (see YANG [1992] and the experimental work
of LEWIS & MURRAY [1994]). Note also that all the interesting behavior arises from
the affine nature of the constraints as there is zero curvature.

8.4. The Snakeboard

The snakeboard is a modified version of a skateboard in which the front and back
pairs of wheels are independently actuated. The extra degree of freedom enables the
rider to generate forward motion by twisting his or her body back and forth, while
simultaneouslymoving the wheels with the proper phase relationship. A diagram of
the snakeboard is shown in Figure 8.3. A detailed description was first presented by
LEWIS, OSTROWSKI, MURRAY & BURDICK [1994]; see also OSTROWSKI, BURDICK,
LEWIS & MURRAY [1995] and OSTROWSKI [1995].

ϕ1

ϕ2

ψ
θ(x, y)

r

Fig. 8.3. The variables in the snakeboard

One of the interesting features of the snakeboard is that it leads to a nontrivial
momentum equation which, in the general notation, has terms that are linear in p
and also quadratic in ṙ. Other examples with a similar structure for the momentum
equation are the roller racer (see TSIKIRIS [1995]) and the bicycle (see GETZ AND

MARSDEN [1995]).
We model the snakeboard as a rigid body (the board) with two sets of in-

dependently actuated wheels, one on each end of the board. The human rider is
modeled as a momentum wheel which sits in the middle of the board and is allowed
to spin about the vertical axis. Spinning the momentum wheel causes a counter-
torque to be exerted on the board. The configuration of the board is given by the
position and orientation of the board in the plane, the angle of the momentum
wheel, and the angles of the back and front wheels. Thus the configuration-space is
Q = SE(2)� S1 � S1 � S1. We let (x; y; �) represent the position and orientation of
the center of the board,  the angle of the momentum wheel relative to the board,
and �1 and �2 the angles of the back and front wheels, also relative to the board.
We take the distance between the center of the board and the wheels as r.

The Lagrangian for the snakeboard consists only of kinetic energy terms. We
take the simplest possible model for the various mass distributions and write the
Lagrangian as

L(q; q̇) = 1
2m(ẋ2 + ẏ2) + 1

2 J�̇2 + 1
2 J0(�̇ +  ̇)2

+ 1
2 J1(�̇ + �̇1)2 + 1

2J2(�̇ + �̇2)2;
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where m is the total mass of the board, J is the inertia of the board, J0 is the inertia
of the rotor and Ji, i = 1; 2, is the inertia corresponding to �i. The Lagrangian is
independent of the configuration of the board and hence it is invariant to all possible
group actions.

The rolling of the front and rear wheels of the snakeboard is modeled by using
nonholonomic constraints which allow the wheels to spin about the vertical axis
and roll in the direction that they are pointing. The wheels are not allowed to slide
in the sideways direction. This gives constraint one-forms

!1(q) = � sin(� + �1)dx + cos(� + �1)dy� r cos �1d�;

!2(q) = � sin(� + �2)dx + cos(� + �2)dy + r cos�2d�:
(8.4.1)

These constraints are invariant under the SE(2) action given by

(x; y; �;  ; �1; �2)

7! (x cos�� y sin� + a; x sin� + y cos� + b; � + �;  ; �1; �2);

where (a; b; �) 2 SE(2), and also under the S1 action defined by

(x; y; �;  ; �1; �2) 7! (x; y; �;  + �; �1; �2):

We consider here only the SE(2) symmetry since we have in mind the situation in
which the S1 symmetry is destroyed by the controls. The constraints determine the
kinematic distributionDq:

Dq = span

�
@

@ 
;
@

@�1
;
@

@�2
; a
@

@x
+ b

@

@y
+ c

@

@�

�
; (8.4.2)

where a, b, and c, are given by

a = �r(cos �1 cos(� + �2) + cos�2 cos(� + �1));

b = �r(cos �1 sin(� + �2) + cos�2 sin(� + �1)); (8.4.3)

c = sin(�1 � �2):

The tangent space to the orbits of the SE(2) action is given by

Tq(Orb(q)) = span

�
@

@x
;
@

@y
;
@

@�

�
(8.4.4)

(note that this is not a left-invariant basis). The intersection between the tangent
space to the group orbits and the constraint distribution is thus given by

Dq \ Tq(Orb(q)) = a
@

@x
+ b

@

@y
+ c

@

@�
: (8.4.5)

We construct the momentum by choosing a section of D \ TOrb regarded as a
bundle over Q. Since Dq \ TqOrb(q) is one-dimensional, we choose the section to
be

�
q
Q = a

@

@x
+ b

@

@y
+ c

@

@�
; (8.4.6)
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which is invariant under the action of SE(2) on Q. The corresponding Lie algebra
element �q 2 se(2) is

�q = (a + yc)ex + (b � xc)ey + ce�

where ex is the basis element of the Lie algebra corresponding to translations in
the x direction (and whose corresponding infinitesimal generator is @=@x), etc.
Physically, �q corresponds to planar rotation about the point P where the axles
of the front and back wheels intersect. When �1 = �2, this rotation becomes a
translation (rotation about a point at infinity). See Figure 8.4. We notice that there
is a singularity in the distribution when P is at the center of the snakeboard (when
the axles of the wheels are aligned along the center line of the board).

P

Fig. 8.4. The momentum map component is the angular momentum about P

Equation (8.4.6) gives a nonholonomic momentum map

p = Jnhc(�q) =
@L
@q̇i (�q

Q)i

= maẋ + mbẏ + Jc�̇ + J0c(�̇ +  ̇) + J1c(�̇ + �̇1) + J2c(�̇ + �̇2):

We now specialize to the case in which �1 = ��2 and J1 = J2. We also choose
the parameter J such that J + J0 + J1 + J2 = mr2. We do this following OSTROWSKI

[1995] for simplicity; it eliminates some terms in the derivation but does not affect
the essential geometry of the problem.

We now compute the nonholonomic connection for this case. If we set � = �1 =
��2, the constraints plus the momentum are given by

0 = � sin(� + �)ẋ + cos(� + �)ẏ� r cos ��̇;

0 = � sin(� � �)ẋ + cos(� � �)ẏ + r cos��̇;

p = �2mr cos2(�) cos(�)ẋ � 2mr cos2(�) sin(�)ẏ

+mr2 sin(2�)�̇ + J0 sin(2�) ̇:

Adding, subtracting, and scaling these equations, we can write (away from� = �=2)
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2
64

cos(�)ẋ + sin(�)ẏ

� sin(�)ẋ + cos(�)ẏ

�̇

3
75 +

2
6664
�

J0

2mr
sin(2�) ̇

0
J0

mr2
sin2(�) ̇

3
7775 =

2
6664

�1
2mr

p

0
tan�
2mr2 p

3
7775 : (8.4.7)

These equations have the form

g�1ġ + Aloc(r)ṙ = � (r)p

where

Aloc = �
J0

2mr
sin(2�)ex d +

J0

mr2 sin2(�)e� d ;

� (r) =
�1
2mr

ex +
1

2mr2
tan(�) e�:

These are precisely the terms which appear in the nonholonomic connection relative
to the (global) trivialization (r; g). Note that � contains the same information as
the local (body) form of the locked inertia tensor, Iloc, as was explained earlier. We
also note that � (r) is not parallel to the vector �q written above, since � is in body
representation; when an Adg is factored out of �q, it is parallel.

The momentum equation, which governs the evolution of p, is given by

ṗ =
@L
@q̇i

�
d
dt
�q

�i

Q

= 4mr cos(�) cos(�) sin(�)ẋ�̇ + 4mr sin(�) cos(�) sin(�)ẏ�̇

+ 2J0 cos(2�)�̇ ̇ + 2mr2 cos(2�)�̇�̇

� 2mr cos(�) cos2(�)ẏ�̇ � 2mr sin(�) cos2(�)ẋ�̇: (8.4.8)

Using equation (8.4.7) to solve for the group velocities ẋ; ẏ; �̇, the momentum
equation can be rewritten as

ṗ = 2J0 cos2(�) �̇ ̇ � tan(�) p�̇: (8.4.9)

This version of the momentum equation corresponds to the coordinate form in
body representation, equation (4.4.2). Note that equation (8.4.9) contains no terms
which are quadratic in p, due to the fact that gq is one-dimensional.

Equations (8.4.7) and (8.4.8) describe how paths in the base space, parametrized
by r 2 S1 � S1 � S1, are lifted to the fiber SE(2). Notice that even if ṙ = 0, it is
still possible to get motion in the group variables if p = 0. Indeed, the essential
property of the snakeboard is that it is possible to build up p so that the board
can build up forward momentum without being directly pushed. The utility of
equation (8.4.7) is that it greatly simplifies the process of solving for the motion
of the system given the base space trajectory. One alternative, used for example, in
LEWIS, OSTROWSKI, MURRAY & BURDICK [1994], involves completely solving the
dynamics of the system without taking into account the special geometric structures
developed here.

The second-order equations which describe the evolution of the base space
variables are quite complex and are not given here. See OSTROWSKI [1995] for
additional details.
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9. Conclusions

In this paper we have established some basic properties of nonholonomic sys-
tems from the Lagrangian point of view; in particular, we have shown how Ehres-
mann connections can be used to write the kinematic constraints as the condition
of horizontality with respect to the connection and shown how the equations of
motion can be written in terms of base variables and that these equations involve
the curvature of the connection. We then regard symmetry properties of such sys-
tems and develop one of the main consequences of this symmetry, namely, the
momentum equation. The geometry and coordinate structure of this momentum
equation is explored in detail. The process of reduction and reconstruction for these
nonholonomic systems is worked out by making use of a new connection which
we call the nonholonomic connection. This connection is obtained by synthesizing
the mechanical connection and the constraint connection. Building on the analogy
between this theory and the theory of Lagrangian reduction, the reduced Lagrange-
d’Alembert equations are developed. Several examples are worked out in detail,
including the vertical rolling penny, the spherical ball on a rotating table and the
snakeboard.

Some interesting topics for future work are

� The setting of VERSHIK & FADDEEV [1981] for nonholonomic systems with
symmetry combined with the results of the present paper. This allows one to
better understand the presence of forces and allows one to consider more general
constraints and ones that can do work.

� The Hamiltonian formalism for nonholonomic systems with symmetry and the
failure of Jacobi’s identity as related to curvature (see BATES & SNIATYCKI [1993]
and VAN DER SCHAFT & MASCHKE [1994]).

� Additional work on control-theoretic issues in the present context. For example,
some issues related to gaits are studied in OSTROWSKI [1995] and issues of
optimal control are addressed in KOON & MARSDEN [1996a].

� Energy-momentum integrators for nonholonomic systems; see MARSDEN, PAT-
RICK, & SHADWICK [1996] for some of the recent literature.

� Energy-momentum methods for stability and eventually bifurcation using a non-
holonomic version of the work of SIMO, LEWIS & MARSDEN [1991]. The liter-
ature in this area is already extensive (see, for example, NEIMARK & FUFAEV

[1966]) and for results in the spirit of the present paper, see KARAPETYAN [1994],
KARAPETYAN & RUMYANTSEV [1990] and ZENKOV [1995]. Additional works in
this area are in preparation.
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