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Abstract

This work devel ops the geometry and dynamics of mechanical systems with
nonholonomic constraints and symmetry from the perspective of Lagrangian me-
chanicsand with aview to control-theoreti cal applications. The basic methodol ogy
is that of geometric mechanics applied to the Lagrange-d’ Alembert formulation,
generalizing the use of connections and momentum maps associated with a given
symmetry group to this case. We begin by formulating the mechanics of nonholo-
nomic systems using an Ehresmann connection to model the constraints, and show
how the curvature of this connection entersinto Lagrange’s equations. Unlikethe
situationwith standard configurati on-space constraints, the presence of symmetries
in the nonholonomic case may or may not lead to conservation laws. However, the
momentum map determined by the symmetry group still satisfies a useful differ-
ential equation that decoupl es from the group variabl es. This momentum equation,
which plays an important role in control problems, involves paralle transport op-
erators and is computed explicitly in coordinates. An alternative description using
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a “body reference frame’ relates part of the momentum equation to the compo-
nents of the Eul er-Poincaré equations along those symmetry directions consistent
with the constraints. One of the purposes of this paper is to derive this evolution
equation for the momentum and to distinguish geometrically and mechanically the
cases where it is conserved and those where it is not. An example of the former
isaball or vertical disk rolling on aflat plane and an example of the latter is the
snakeboard, amodified version of the skateboard which uses momentum coupling
for locomotion generation. We construct a synthesis of the mechanical connection
and the Ehresmann connection defining the constrai nts, obtai ning an important new
object we call the nonholonomic connection. When the nonhol onomic connection
isaprincipal connection for the given symmetry group, we show how to perform
Lagrangian reduction in the presence of nonholonomic constraints, generalizing
previous results which only held in special cases. Severa detailed examples are
giventoillustrate the theory.

1. Introduction

Problems of nonholonomic mechanics, including many problems in robotics,
whedled vehicular dynamics and motion generation, have attracted considerable
attention. These problems are intimately connected with important engineering
issues such as path planning, dynamic stability, and control. Thus, theinvestigation
of many basic issues, and in particular, the role of symmetry in such problems,
remains an important subject today.

Despite thelong history of nonhol onomic mechanics, the establishment of pro-
ductive linkswith corresponding problemsin the geometric mechanics of systems
with configurati on-space constraints (i.e., holonomic systems) still requires much
development. The purpose of this work is to bring these topics closer together
with a focus on nonholonomic systems with symmetry. Many of our results are
motivated by recent techniquesin nonlinear control theory. For example, problems
in both mobile robot path planning and satellite reorientation involve geometric
phases, and the context of thispaper allowsoneto exploit the commonalitiesand to
understand thedifferences. To realize these goal swe make use of connections, both
in the sense of Ehresmann and in the sense of principa connections, to establish a
general geometric context for systems with nonholonomic constraints.

A broad overview of the paper is as follows. We begin by recalling the the
Lagrange-d’ Alembert equations of motion for a nonhol onomic system. Werealize
the constraints as the horizontal space of an Ehresmann connection and show
how the equations can be written in terms of the usual Euler-Lagrange operator
with a “forcing” term depending on the curvature of the connection. Following
this, we add the hypothesis of symmetry and devel op an evolution equation for the
momentum that generalizestheusual conservationlawsassociated with asymmetry
group. Thefina part of the paper is devoted to extending the Lagrangian reduction
theory of MARSDEN & SCHEURLE [1993a, 1993b] to the context of nonholonomic
systems. In doing so, we must modify the Ehresmann connection associated with
the constraints to a new connection that also takes into account the symmetries;
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this new connection, which is a principal connection, is called the nonholonomic
connection.

The context developed in this paper should enable one to further develop the
powerful machinery of geometric mechanics for systems with holonomic con-
straints; for example, ideas such as the energy-momentum method for stability
and results on Hamiltonian bifurcation theory require further general devel opment,
although of course many specific problems have been successfully tackled.

Previous progress in realizing the goas of this paper has been made by,
amongst others, CHAPLYGIN [1897a, 1897h, 1903, 1911, 1949, 1954], CARTAN
[1928], NEIMARK & FUFAEV [1972], ROSENBERG [1977], WEBER [1986], KOILLER
[1992], BLOCH & CROUCH [1992], KRISHNAPRASAD, DAYAWANSA & YANG [1992],
YANG[1992], YANG, KRISHNAPRASAD & DAYAWANSA [1993], BATES & SNIATYCKI
[1993] (see dso CUSHMAN, KEMPRAINEN, SNIATYCKI, & BATES [1995]), MARLE
[1995], and VAN DER SCHAFT & MASCHKE [1994].

Nonholonomic systems come in two varieties. First of dl, there are those with
dynamic nonholonomic constraints, i.e., constraints preserved by the basic Euler-
Lagrange or Hamilton equations, such as angular momentum, or more generally
momentum maps. Of course, these “constraints’ are not externally imposed on
the system, but rather are consequences of the equations of motion, and so it is
sometimes convenient to trest them as conservation laws rather than constraints
per se. On the other hand, kinematic nonhol onomic constraints are those imposed
by the kinematics, such as rolling constraints, which are constraints linear in the
velocity.

There have, of course, been many classical examples of nonholonomicsystems
studied (we thank HANS DUISTERMAAT for informing us of much of this history).
For example, RouTH [1860] showed that a uniform sphere rolling on a surface
of revolution is an integrable system (in the classica sense). Another example
is the rolling disk (not necessarily vertica), which was treated in VIERKANDT
[1892]; this paper shows that the solutions of the equations on what we would
call the reduced space (denoted D /G in the present paper) are dl periodic. (For
this example from a more modern point of view, see, for example, HERMANS
[1995], O'REILLY [1996] and GETZ & MARSDEN [1994].) A related example is
the bicycle; see GETz & MARSDEN [1995] and KOON & MARSDEN [1996b]. The
work of CHAPLYGIN [18974] is a very interesting study of the rolling of a solid
of revolution on a horizontal plane. In this case, it is aso true that the orbits are
periodic on the reduced space (this is proved by a nice technique of BIRKHOFF
utilizing the reversible symmetry in HERMANS [1995]). One should note that a
limiting case of thisresult (when the body of revolution limitsto a disk) isthat of
VIERKANDT. CHAPLYGIN [1897b, 1903] a so studied the case of arolling sphereon
a horizontal plane that additionally allowed for the possibility of spheres with an
inhomogeneous mass distribution.

Another classica exampleisthewobblestone, studiedinavariety of papersand
books such as WALKER [1896], CRABTREE [1909], BONDI [1986]. See HERMANS
[1995] and BURDICK, GOODWINE & OSTROWSKI [1994] for additional information
and references. In particular, the paper of WALKER establishes important stability
properties of relative equilibria by a spectra analysis; he shows, under rather



24 A.BLOCH ET AL.

genera conditions (including the crucia one that the axes of principa curvature
do not align with theinertiaaxes) that rotationin one directionis spectrally stable
(and hence linearly and nonlinearly asymptotically stable). By time reversibility,
rotationin theother directionisunstable. On the other hand, one can have arelative
equilibriumwith eigenvaluesin both half planes, so that rotationsin opposite senses
about it can both be unstable, as WALKER has shown. Presumably thisis consi stent
with the fact that some wobblestones execute multiple reversals. However, the
global geometry of this mechanism is still not fully understood anaytically.

Inthis paper we give severa examplesto illustrate our approach. Some of them
arerather smpleand areonly intended to clarify thetheory. For examplethevertical
rolling disk and the spherical ball rolling on arotating table are used as examples
of systems with both dynamic and kinematic nonholonomic constraints. In either
case, the angular momentum about the vertical axis is conserved; see BLOCH,
REYHANOGLU & MCCLAMROCH [1992], BLOCH & CROUCH [1994], BROCKETT &
DAl [1992] and YANG [1992].

A related modern exampl eisthe snakeboard (see LEwIS, OSTROWSKI, MURRAY
& BURDICK [1994]), which shares some of thefeatures of these examples but which
hasacrucial difference aswell. Thisexample, likemany of the others, hasthe sym-
metry group SE(2) of Euclidean motions of the plane but, now, the corresponding
momentum is not conserved. However, the equation satisfied by the momentum
associated with the symmetry isuseful for understanding the dynamics of the prob-
lem and how group motion can be generated. The nonconservation of momentum
occurs even with no forces applied (besides the forces of constraint) and isconsis-
tent with the conservation of energy for these systems. In fact, nonconservationis
crucia to the generation of movement in a control -theoretic context.

One of the important tools of geometric mechanics is reduction theory (either
Lagrangian or Hamiltonian), which provides awell-devel oped method for dealing
with dynamic congtraints. In this theory the dynamic constraints and the sym-
metry group are used to lower the dimension of the system by constructing an
associated reduced system. We develop the Lagrangian version of this theory for
nonholonomic systems in this paper. We have focussed on Lagrangian systems
because this is a convenient context for applications to control theory. Reduction
theory is important for many reasons, among which is that it provides a context
for understanding the theory of geometric phases (see KRISHNAPRASAD [1989],
MARSDEN, MONTGOMERY & RATIU [1990], BLOCH, KRISHNAPRASAD, MARSDEN
& SANCHEZ DE ALVAREZ [1992] and references therein) which, as we discuss
below, isimportant for understanding locomotion generation.

1.1. The Utility of the Present Work

The main difference between classical work on nonhol onomic systems and the
present work is that this paper devel ops the geometry of mechanical systems with
nonholonomicconstraintsand thereby providesaframework for additional control-
theoretic devel opment of such systems. This paper isnot ashortcut to the equations
themselves; traditional approaches (such as thosein ROSENBERG [1977]) yield the
equations of motion perfectly adequately. Rather, by exploring the geometry of
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mechanical systems with nonholonomic constraints, we seek to understand the
structure of the equations of motion in a way that aids the anaysis and helps to
isolate the important geometric objects which govern the motion of the system.

One example of the application of this new theory isin the context of robotic
locomotion. For alarge class of 1and-based |ocomotion systems — included | egged
robots, snake-likerobots, and wheeled mobile robots— it is possible to model the
motion of the system using the geometric phase associated with a connection on
a principal bundle (see KRISHNAPRASAD [1990], KELLY & MURRAY [1995] and
references therein). By modeling the locomotion process using connections, it is
possible to more fully understand the behavior of the system and in a variety of
instances the analysis of the system is considerably simplified. In particular, this
point of view seems to be well suited for studying issues of controllability and
choice of gait. Analysisof more complicated systems, where the coupling between
symmetries and the kinematic constraintsis crucia to understanding locomotion,
is made possible through the basic devel opments in the present paper.

A specific example in which the theory developed here is quite crucid is
the analysis of locomotion for the snakeboard, which we study in some detail
in Section 8.4. The snakeboard is a modified version of a skateboard in which
locomotion is achieved by using a coupling of the nonholonomic constraints with
the symmetry properties of the system. For that system, traditional analysis of
the complete dynamics of the system does not readily explain the mechanism of
locomotion. By means of the momentum equation which we derive in this paper,
the interaction between the constraints and the symmetries becomes quite clear
and the basic mechanics underlying locomotion is clarified. Indeed, even if one
guessed how to add in the extra “constraint” associated with the nonholonomic
momentum, without writing everything in thelanguage of connections, then things
in fact appear to be much more complicated than they redly are.

Thelocomotion properties of the snakeboard were originally studied by LEwIS,
OSTROWSKI, BURDICK & MURRAY [1994] using simul ationsand experiments. They
showed that several different gaitsare achievable for the system and that these gaits
involve periodicinputsto the system at integrally related frequencies. In particular,
al:1gait generatesforward motion, al:2 gait generates rotati on about afixed point
and and 2:3 gait generates sideways motion. Recently, using motivation based on
the present approach, it has been possible to gain deeper insight into why the 2:1
and 3:2 gaits in the snakeboard generate movement that was first observed only
numerically and experimentally. In the traditional framework, without the specia
structure that the momentum equation provides, thisand similar issues would have
been quite difficult. In the next subsection we will exhibit the general form of the
control systems that result from the present work so that the reader can see these
pointsalittle more clearly.

Another instancewhere the geometry associ ated with nonhol onomicmechanics
has been useful is in analyzing controllability properties. For example, in BLOCH
& CROUCH [1994] it is shown that for a nonabelian CHAPLYGIN control system,
the principal bundle structure of the system can be used to prove that if the full
system is accessible and the system is controllable on the base, the full system
is controllable. This result uses earlier work of SAN MARTIN & CROUCH [1984]
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and isnontrivial in the sense that proving controllability is generaly much harder
than proving accessihility. In BLOCH, REYHANOGLU & MCCLAMROCH [1992], the
nonholonomic structure is used to prove accessibility results as well as small-
time local controllability. Further, the holonomy of the connection given by the
congtraintsis used to design both open loop and feedback controls.

A long-term goal of our work is to develop the basic control theory for me-
chanical systems, and Lagrangian systemsin particular. There are severa reasons
why mechanica systems are good candidates for new resultsin nonlinear control.
On the practicad end, mechanical systems are often quite well identified, and ac-
curate models exist for specific systems, such as robots, airplanes, and spacecraft.
Furthermore, instrumentation of mechanica systemsisreatively easy to achieve
and hence modern nonlinear techniques (which often rely on full state feedback)
can be readily applied. We aso note that the present setup suggests that some of
the traditional concepts such as controllability itself may require modification. For
example, one may not always require full state space controllability (in parking a
car, you may not care about the orientation of your tire stems). For ideas in this
direction,see KELLY & MURRAY [1995]. These and other resultsin Lagrangian me-
chanics, including those described in this paper, have generated new insightsinto
the control problem and are proving to be useful in specific engineering systems.

Despite being motivated by problemsin roboticsand control theory, the present
paper does not discussthe effect of genera forces. The control theory we have used
as motivationdeals largely with “internal forces’ such asthose that naturally enter
into the snakeboard. While we do not systematically dea with general externa
forces in this paper, we do have them in mind and plan to include them in future
publications. As LAM [1994] and JALNAPURKAR [1995] have pointed out, external
forces acting on the system have to be treated carefully in the context of the
Lagrange-d’ Alembert principle. Our framework is that of the traditional setup for
constraint forces as described in ROSENBERG [1977]. In this framework the forces
of constraint do no work and in certain cases (such as for point particles and
particlesand rigid bodies) the Lagrange-d’ Alembert equations can be derived from
Newton's laws, as the preceding references show.

1.2. Control Systems in Momentum Equation Formt

To help clarify the link with control systems, we now discuss the general form
of nonholonomicmechanical control systemswith symmetry that have anontrivial
evolution of their nonhol onomic momentum. The group €l ements for such systems
generaly are used to describe the overall position and attitude of the system. The
dynamicsaredescribed by asystem of equati onshaving theform of areconstruction
equation for agroup element g, an equation for the nonholonomic momentum p (no
longer conserved in the general case), and the equations of motion for the reduced
variablesr which describe the “shape’ of the system. In terms of these variables,
the equations of motion (to be derived later) have the functional form

L We thank Jm OsTRowsk for his notes on this material, which served asafirst draft of
this section.
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g~ tg = —A(n)i +B(r)p, (1.2.1)
p=iTa()f +i7p(p+p Y (rp, (1.2.2)
M(NF = —C(r,r) + N(r,r,p) + 7. (2.2.3)

The first equation describes the motion in the group variables as the flow of a
|eft-invariant vector field determined by theinternal shaper, theveocity i, aswell
as the generalized momentum p. The term ¢~ is related to the body angular
velocity in the case that the symmetry group isthe group of rigid transformations.
(Aswe shall see later, thisinterpretationis not literally correct; the body angular
velocity is actually the vertica part of the vector (f, ¢).) The momentum equation
describestheevolutionof pand will beshowntobebilinearin (f, p). Finaly, thelast
(second-order) equation describes the motion of the variablesr which describe the
configuration up to a symmetry (i.e., the shape). The term M(r) isthe mass matrix
of thesystem, C isthe Coriolistermwhichisquadraticini, and N isquadraticint
and p. The variable 7 represents the potential forces and the external forces applied
to the system, which we assume here only affect the shape variables. Note that the
evolution of the momentum p and the shape r decouple from the group variables.
In this paper we shall derive a general form of the reduced Lagrange-d’ Alembert
equations for systems with nonholonomic constraints, which the above equations
illustrate. In thisform of the equations, the constraints are implicit in the structure
of thefirst equation.

The utility of this form of the equations is that it separates the dynamics
into pieces consistent with the overall geometry of the system. This can be quite
powerful in the context of control theory. In some locomotion systems one has
full control of the shape variables r. Thus, certain questionsin locomotion can be
reduced to the case where r(t) is specified and the properties of the system are
described only by the group and momentum equations. This significantly reduces
thecomplexity of locomotion systemswith many internal degrees of freedom (such
as snake-like systems).

More specifically, consider the problem of determining the controllability of a
locomotion system. That is, we would liketo determineif it is possiblefor agiven
system to move between two specified equilibrium configurations. To understand
local controllability of alocomotion system, one computestheLie a gebraof vector
fields associated with the control problem. For the full problem represented by the
aboveequationsthiscan bean extremely detail ed cal cul ation and isoften intractable
except in simple examples. However, by exploiting the particular structure of the
equations above, one sees that it is sufficient to ignore the details of the dynamics
of the shape variables: it is enough to assume that r(t) can be specified arbitrarily,
for example by assuming that i = u. Using this simplification, one can show, for
example, that the Lie bracket [ [f, ¢i], g;] is given by

0

[[f.9].91= | g
0
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where the four dots correspond to the variables g, p,r,r; f is the drift vector
field defined by setting the inputs to zero; g; and g; represent input vector fields;
and «jj is the ij component of the matrix «. Thus the term « that appears in
the momentum equation is directly related to controllability of the system in the
momentum direction. That the Lie bracket between two of the input vector fields
liesinthep directionhel psexplainthe use of the 1:1 gaitinthe snakeboard example
for achieving forward motion, which corresponds to building up momentum.

Thispoint of view isdescribed in KELLY & MURRAY [1995] for the case where
no momentum equation is present and in OSTROWSKI [1995] for the more genera
case, including the snakeboard. In fact, it was precisely thisform of the equations
which was used to understand some of the gait behavior present in the snakeboard
example.

1.3. Outline of the Paper

In Section 2 we develop some of the basic features of nonholonomic systems.
In particular, we show how to describe constraints using Ehresmann connections
and we show how to write the equations of motion using the curvature of this
connection. Moreover, a basic geometric setup is laid out that enables one to use
the ideas of holonomy and geometric phases in the context of the dynamics of
nonholonomic systemsfor thefirst time. Our overall philosophy isto start with the
genera caseof Ehresmann connections, then add the symmetry group structure, and
later specidize, for example, to purely kinematic (Chaplygin) systems or systems
where the nonholonomic connection is a principal connection, when appropriate.

In Section 3 we begin by recalling some basic notions about symmetry of me-
chanica systems, and show that the Lagrangian and the dynamics drop to quotient
spaces, providing the reduced dynamics. Later on, in Section 7 the reduced equa-
tions are explicitly computed. We aso review principa connectionsin Section 3
and relate them to Ehresmann connections.

The equationsfor the momentum map that replace the usual conservation laws
are derived in Section 4. We distinguish the cases in which one gets conservation
and those in which one gets a nontrivia evolution equation for the momentum.
For example, for the vertical rolling disk, one has invariance (of the Lagrangian
and constraints) under rotation about the disk’s vertical axis and this leads to a
conservation law for the disk that, in addition to the conservation of energy, shows
that the system is completely integrable. This example, a constrained particle
moving in three space and the snakeboard example are studiedin Section 8. Various
representations of the momentum equation are given as well and, in particular, the
form (1.2.2).

In Section 5 we review some of the basic ideas from Lagrangian reduction that
will provide important motivation and ideas for the nonholonomic case. In rough
outline, Lagrangian reduction means dropping the Euler-Lagrange equations and
the associated variational principles to the quotient of the velocity phase space
by the given symmetry group, which generalizes the classica Routh procedure
for cyclic variables. On the other hand, in Hamiltonian reduction one drops the
symplectic form or the Poisson brackets along with the dynamical equationsto a
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guotient space. The reduced Eul er-Lagrange equations may be derived by breaking
up the Euler-Lagrange equations into two sets that correspond to splitting vari-
ations into horizontal and vertical parts relative to the mechanical connection, a
fundamental principal connection associated with the given symmetry group.

In Section 6, the first of two sections on nonholonomic reduction from the
Lagrangian point of view, we study reconstruction and combine the connection
determined by the constraints (the “kinematic connection”) and that associated
with the kinetic energy and the group action (the “mechanical connection”). This
resultsin a new connection called the nonhol onomi c connection that encodes both
sorts of information. This process gives equation (1.2.1).

In Section 7 we devel op thereduced Lagrange-d’ Alembert equations (Theorem
7.5) which gives the equation (1.2.3). For systems with nonholonomic constraints,
the equations of motion are associated with the horizontal variationsréeativeto the
Ehresmann connection associated with the constraints. This shows why there is
such asimilarity between the equations of a nonholonomic system and thefirst set
of reduced Euler-Lagrange equations, as we shall see explicitly. Inthe genera case
with both symmetries and nonholonomic constraints, we use the nonholonomic
connection and relative to it, the reduced equations will break up into two sets:
a set of reduced Euler-Lagrange equations (1.2.3) (which have curvature terms
appearing as “forcing”), and a momentum equation (1.2.2), which have a form
generalizing the components of the Eul er-Poincaré equations a ong the symmetry
directions consistent with the constraints. When one supplements these equations
with thereconstruction equations(1.2.1) and the constraint equations, one recovers
the full set of equations of motion for the system.

In Section 8 we consider some examples that illustrate the theory, namely,
the verticd rolling disk, a nonholonomically constrained particle in 3-space, a
homogeneous sphere on arotating table, and the snakeboard. The conclusionsgive
some suggestions for futurework in thisarea.

1.4. Summary of the Main Results

¢ Thedevelopment of ageneral setting for nonholonomic systemsusing the theory
of Ehresmann connections and the derivation of the Lagrange-d’ Alembert equa-
tions as Eul er-L agrange equations on the base space in the presence of curvature
forces. The constraintsare viewed as adistribution? ¢ TQ and thedistribution
isregarded as the horizonta space for an Ehresmann connection, which we call
the kinematic connection. Both linear and affine constraints are studied.

o Furthering the basic framework for the theory of nonholonomic systems with
symmetry with control-theoretic goalsin mind. In particul ar, a symmetry group
G that acts on the configuration-space and for which the Lagrangian isinvariant
issystematically studied.

o Thederivation of amomentum equation for nonhol onomicsystemswith symme-
try. We show that this equation implies, in particular, the standard conservation
laws for nonholonomic systems. However, the general momentum equation al-
lows for important cases in which the momentum equation is not conserved.
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Thiscaseiswell illustrated by the snakeboard example. The nonconservation of
momentum plays an important rolein |locomotion generation.

¢ The momentum equation iswritten in a variety of formsthat bring out different
geometric and dynamic features. For example, some forms involve the covari-
ant derivative (relative to a certain natural connection) of the momentum. The
momentum equations are also closely related to the Eul er-Poincaré equations.

o A connection, called the nonhol onomic connection, which synthesizes the me-
chanica connection and the kinematic connection, isintroduced. In many cases
of control-theoreticinterest, even though the kinematic connection is not princi-
pal (i.e., the systemis not Chaplygin), the nonholonomic connectionisprincipal
and thisisthe case we concentrate on.

¢ Thereduced equations on the space D /G are cal culated and a comparison with
the theory of Lagrangian reduction is made.

¢ Several examples, including the vertical rolling disk, a constrained particle, the
rolling ball on a rotating turntable, and the snakeboard are al treated in some
detail toillustrate the theory.

2. Constraint Distributionsand Ehresmann Connections

Wefirst consider mechanicsinthe presence of (linear and affine) nonholonomic
velocity constraints and devel op its geometry. For the moment, no assumptionson
any symmetry are made; rather we prefer to add such assumptions separately and
will do so in the following sections.

2.1. The Lagrange-d’ Alembert Principle

The starting point isa configuration-space Q and adistribution D that describes
the kinematic constraints of interest. Here, D is a collection of linear subspaces
denoted Dy C TyQ, one for each g € Q. A curve q(t) € Q is said to satisfy the
congtraintsif g(t) € Dy for al t. This distribution s, in general, nonintegrable;
i.e., theconstraintsare, in genera, nonholonomic. One of our goalsisto model the
congtraints in terms of Ehresmann connections (see CARDIN & FAVRETTI [1996]
and MARLE [1995] for some related ideas).

The above setup describeslinear constraints; for affineconstraints, for example,
aball onarotating turntable (wheretherotational vel ocity of theturntabl erepresents
the affine part of the constraints), we assume that there is a given vector fidd Vg
on Q and the constraints are written g(t) — Vo(q(t)) € Dgr). We will explicitly
discussthe affine case at various pointsin the paper and the example of the ball on
arotating table will be treated in detail.

Consider aLagrangian L : TQ — R.In coordinatesq’,i = 1,...,n, on Q with
induced coordinates(q', ¢) for thetangent bundle, wewriteL(q , §'). The equations
of motion aregiven by the by the Lagrange-d’ Alembert principle(see, for example,
ROSENBERG [1977] for adiscussion).

Definition 2.1. The Lagrange-d’Alembert equations of motion for the
system are those determined by
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b
) / L(q', g dt =0, (2.1.1)

where we choose variations 6q(t) of the curve q(t) that satisfy dq(t) € Dy(t) for
eacht,a<t<bh.

This principle is supplemented by the condition that the curve itself satisfies the
congtraints. In such aprinciple, wefollow standard procedure and take thevariation
before imposing the constraints, that is, we do not impose the constraints on
the family of curves defining the variation. The usual arguments in the calculus
of variations show that this constrained variational principle is equivalent to the

equations
doL oL ;
—éL= (a_ﬁqi - _6qi) 5q =0, (2.1.2)

for al variationsdq such that 6q € Dq at each point of the underlying curve q(t).

To explorethestructure of these equationsin more detail, consider amechanical
system evolving on a configuration-space Q with agiven LagrangianL : TQ — R
and let {w?} be aset of p independent one-forms whose vanishing describes the
constraints on the system. The constraints in general are nonintegrable. Choose a
local coordinate chart and alocal basisfor the constraints such that

w¥(q) = ds* + A (r, s)dr*, a=1,...,p, (2.1.3)

whereq=(r,s) € R"Px RP,

The equations of motion for the system are given by (2.1.2) where we choose
variations dq(t) that satisfy the condition w?(q) - 6q = O, i.e., where the variation
dq = (dr,ds) satisfies §s* + A2r = 0. Substitutioninto (2.1.2) gives

doL gLy _ ., /ddaL oL _
(&W_W)_A“<a8?_6?)’ a=1....n—p. (2149

Equations (2.1.4) combined with the constraint equations
F=_Are a=1,...,p, (2.15)

gives a compl ete description of the equations of motion of the system.
We now define the “constrained” Lagrangian by substituting the constraints
(2.1.5) into the Lagrangian:

Le(re, s %) = L(r™, 2,1, =A% (r, 9)F ).

The equations of motion can be written in terms of the constrained Lagrangian in
the following way, as a direct coordinate calculation (given in Remark 3 below)

shows doL. oL oL, oL
—J=c Y= a’=Cc _ _ Y-npb :p
dtore ore TPage - @b’ (2.1.6)

where
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Let dw® bethe exterior derivativeof «wP; another computation (see Remark 4 bel ow)
shows that

du®(g, -) = BE s odr?

and hence the equations of motion have theform

_[(ddLe OLe , L,0Le\ .. L | 4.
6L = (&W_ 87+A°‘8_sa) Jar ——a@dw (@, 9r).

This form of the equations isolates the effects of the constraints, and shows that
in the case where the constraints are integrable (dw = 0) the correct equations of
motion are obtained by substituting the constraintsinto the Lagrangian and setting
the variation of L. to zero. However, in the non-integrable case the constraints
generate extra (curvature) forces, which must be taken into account.

2.2. Ehresmann Connections

The above coordinateresultscan be put into an interesting and useful geometric
framework. To carry thisout, wefirst devel op the notion of an Ehresmann connec-
tion. A general reference for Ehresmann connections is MARSDEN, MONTGOMERY
& RATIU [1990], where many additional references may be found.

First of al, we assume that there is a bundle structure mq r : Q — Rfor our
space Q, that is, thereis another manifold R called the base and amap mq g Which
is a submersion (its derivative Tymg r iS Onto at each point q € Q). We call the
kernel of Tqmq r & any point the vertical space and denoteit by V.

Definition 2.2. An Ehresmann connection A is a vertical-valued one-form
on Q that satisfies

1 Aq: TqQ — Vyisalinear map for each pointg € Q,
2. Aisaprojection: A(vg) = vq for al vqg € V.

Note that these conditions imply that T,Q = Vq & Hq where Hyq = kerAq is the
horizontal space at q. We will sometimes write horg for the horizontal space.
Thus, an Ehresmann connection gives us a way to split the tangent space to Q at
each point into a horizontal and vertical part; for example, we can speak about
projecting a tangent vector onto its vertical part using the connection. Notice also
that the vertical space at g, namely Vy, istangent to the vertical fiber Vg, which
consists of al pointsthat get sent by the projection mq g, to the same point as g.
Thissituationisillustrated in Figure 2.1.

We now assume that we choose the Ehresmann connection in such away that
the given constraint distributionD isthe horizontal space of the connection, that is,
Hq = Dq. We emphasi ze that the choice of thebundle rq  isnot uniqueand that the
formulation of the Lagrange-d’ Alembert principle does not depend on this choice.
However, itisclear that once the bundlestructure mg r ischosen (i.e., once the base
and fiber variables are specified), the constraint distribution uniquely determines
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Fig. 2.1. An Ehresmann connection specifiesa horizontal subspace at each point

the connection. We also caution the reader that later on, when the assumption
of symmetry is added to this context, it may affect the choice of bundle and the
connection will get modified.

We have chosen abundlestructure simply for convenience so that theformalism
does not get too abstract and we have a convenient coordinatization for our calcu-
lations. In fact, the basic notion of curvature, defined below and which isa centra
object in our investigation, can be defined for a general distribution D, aslong as
one regards the curvature as TqQ/Dq-valued rather than vertical valued. This re-
flects theimportant point we have already made, namely that the basic theory does
not depend on the choice of bundle mq r. Later on, when we introduce symmetry
into the problem, we will have a natural bundle and thisissue will disappear.

When the bundle coordinates q' = (r, s?) described earlier are used, the coor-
dinate representation of the projection mq r isjust projection onto the factor r and
the connection A can be represented locally by a vector-valued differential form
which we denote w?:

A:waﬁ%, w?(q) = ds? + A2 (r, S)dr.

The exterior derivative of A is not defined (since it is a vertical-valued form,
not adifferential form), but we can, at least locally in coordinates, take the exterior
derivative of w2, In fact, thiswill give an easy way to compute the curvature of the
connection A, as we see shortly.

Given an Ehresmann connection A, apoint q € Q and avector v, € T,Rtangent
to the base at a point r = mor(0) € R, we can define the horizontal lift of vy to
be the unique vector v in Hg that projects to v, under Tymq r. If we have a vector
Xq € TqQ, we also writeitshorizontal part as

hor Xq = Xq — A(Q) - Xq.
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In coordinates, the vertical projection isthe map

(r*, &) — (0, + A% (r,9)i?) (221
whilethe horizontal projection isthe map

(F*, &8 — (i, —A%(r, 9)F"). (2.2.2)

Next, we recall the basic notion of curvature.

Definition 2.3. The curvature of A is the vertica-valued two-form B on Q
defined by its action on two vector fields X and Y on Q by

B(X,Y) = —A([hor X, hor Y])

where the bracket on the right-hand side is the Jacobi-Lie bracket of vector fields
obtained by extending the stated vectorsto vector fields.

Notice that this definition shows that the curvature exactly measures the failure of
the constraint distributionto be an integrable bundle.

A useful standard identity for the exterior derivative da of aone-form o (which
could be vector-space-valued) on amanifold M acting on two vector fields X, Y is

(da)(X,Y) = X[a(Y)] = Y[a(X)] — a([X, Y]).

This identity shows that in coordinates, one can evaluate the curvature by writing
the connection as aformw?@ in coordinates, computing its exterior derivative (com-
ponent by component) and restricting the result to horizontal vectors, that is, to the
constraint distribution. In other words,

0
_ a
B(X,Y) = dw?(hor X, horY)—ﬁsa,
so that the local expression for curvature is given by
B(X,Y)* = B ;X*Y” (2.2.3)

where the coefficients B2 5 ae given by (2.1.7).

2.3. Intrinsic Formulation of the Equations

We can now rephrase our coordinate computations from Section 2.1 in the
language of Ehresmann connections. We shall do thisfirst for systems with homo-
geneous constraints and then treat the affine case.
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Homogeneous Constraints. Let A be an Ehresmann connection on a given bun-
dle such that the constraint distribution D is given by the horizontal subbundle
associated with A. The constrained Lagrangian can be written as

LC(Qa Q) = L(Qa hor Q)a
and we have the following theorem.

Theorem 2.4. The Lagrange-d’ Alembert equations may be written as the equa-
tions
6'—0 = <FL, B(Qa 6Q)>a

where (, ) denotes the pairing between a vector and a dual vector and where

i 6Lc d 6Lc
—_ I . - =
5L°"<5q’ g dtaqi>’

inwhich dq isa horizontal variation (i.e, it takes values in the horizontal space)
and B is the curvature regarded as a vertical-valued two-form, in addition to the

constraint equations
A(Q)-q=0.

Thistheoremfollowsfromtheway that the constraintsrestrict ¢ and thefact that
the Lagrange-d’ Alembert principle requires 4q to be horizontal. This formulation
depends on a specific choice of connection, and there is some freedom in this
choice. However, as we will see later, the freedom can be removed in many cases
for systems with symmetry.

Affine Constraints. We next consider the modifications necessary to allow affine
constraints of the form
A@)-g=7(q,t)
where A is an Ehresmann connection as described above and (g, t) is vertical-
valued. The expression v here is related to the vector field Vg given above by
~(q) = A(Q) - Vo(q). Affine constraints arise, for example, in studying the motion
of aball on aspinning turntable. Since the turntableis moving underneath the ball,
thevelocity in the constraint directionsisnot zero, but isinstead determined by the
position of the ball on the turntable and the angular velocity of the turntable.
Since (g, t) isvertical, we can define the covariant derivative of v as

D~(X) = ver[hor X, 7]

(see MARSDEN, MONTGOMERY & RATIU [1990]). Relative to bundle coordinates
g=(r,s), wewritey as

0
— . a
and the covariant derivative adong ahorizontal vector field

_xe (9 _pad
X=X <6r°<_A°‘6$a)
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isgiven by

N s X SN 1o W A AV
Dy(X) =X (W—Aaﬁ_sb*"Ya—sb 8_33_'%‘X 7

which defines the symbols~2.
We now define the constrained Lagrangian as

LC(Qa Qa t) = L (Qa horq + V(Qa t)) .

A long calculation, similar to what we have already carried out in the case of linear
congtraints, shows that the dynamics have the form

dLc = (FL, B(q, 6q)) + (FL, Dy(4q)),
A@) - q=~(q,1t)

wherethedq arerestricted to satisfy A(q) - g = 0. In coordinates, thefirst of these
equations reads as

diLe Obc  ,a0ke _ OL .5 OL 4

dtare ~ore Page T o@ e T el
while the second reads as & + A2~ = ~2. Notice that these equations show how,
in the affine case, the covariant derivative of the affine part v enters into the
description of the system; in particular, notethat the covariant derivativein (2.3.1)
iswith respect to the configuration variables and not with respect to the time.

(2.3.1)

(2.32)

Remarks. 1. For a mechanical system with homogeneous nonholonomic con-
straints, conservation of energy holds: along a solution, the energy function

ILe .,
are
isconstant in time, asisreadily verified. (In the affine case, one requires the con-
dition (OL/95)~2r* = 0.) On the other hand, unlike the usua Euler-Lagrange
equationsfor systems with holonomic constraints, the Lagrange-d’ Alembert equa-
tionsneed not preserve the sympl ectic form along orbits; itsrate of changeinvolves
the curvature terms. This phenomenon is related to Hamiltonian formulations of
the problem and the failure of the Jacobi identity (see BATES & SNIATYCKI [1993]);
this aspect is not discussed further in the present paper. See KOON & MARSDEN
[1996b] for some additional information on the links between the Lagrangian and
Hamiltonian approaches.

EC(raaraaSa): _LC(raaraaSa)

2. Dynamicsin the presence of externa forces, which of course isimportant for
control-theoretic purposes, will be treated more fully in aforthcoming article; see
also YANG [1992], YANG, KRISHNAPRASAD & DAYAWANSA [1993] and BLOCH,
KRISHNAPRASAD, MARSDEN & RATIU [1994]. Briefly, we represent forces as map-
pings which take values in T*Q and can depend on configuration, velocity, and
time, that is, forcesare maps F : TQ x R — T*Q, which are bundle maps (take
tangent vectors to g to covectors also at q). Let F(g,q,t) € T*Q represent the



Nonholonomic Mechanical Systemswith Symmetry 37

externa forces on the system, and take all other quantities as described above.
From the Lagrange-d’ Alembert equations, the motion of the system is given by

dLe = (FL, B(q,4q)) — (F,d0).

Systemswith forces can be extended to the case of affine constraintscase by adding
exactly the extraterm in equation (2.3.1).

3. Thederivationof the equationsof motioninterms of theconstrained Lagrangian
proceeds as follows: using the rel ationships

Obe _ 0L p 0L
G TR
ole aL oL (6A” )

are ~ are 9P \ ore
oo _ oL _ oL (0A;
o g 9P \ o= ’

and substituting L into Lagrange’s equations (2.1.2) yields

GOk Ok pedle (G T, (Ea_L_i)
dt ore are > os? dt ore are dt o os
oL dy,, OLOAS ;o OLOAS

TPt ™ 63” are @ HP G

_[(d oL oL a [ d oL oL
'(&W‘W)*A“ (aa?a—a—sa)

oL (6A” oL R 6A”) 5

a a
Tow \ are T ars ey s * A s

Hence the equations of motion can be written as (2.1.6).

Notethat L. isadegenerate Lagrangian in the sense that it does not depend on
S. Also note that thinking of s as a cyclic variable does not lead to conservation
laws in the usua way because of the constraints.

4. Toseehow theright-hand side of the constrained Lagrange-d’ Alembert equation
(2.1.6) isrelated to the curvature of the Ehresmann connection of A = w?2(9/9s%),
let dwP be the exterior derivative of wP:

dP = d(ds” « AP dr®)

_OAP
o B
= o dr” A dr® e

b
_ A —=AYdr? A dre (2.3.3)

Contracting dw® with ¢ yields
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b b b b
oA, PPdre — oA, A3iPdre — oA, Fedr? + aﬂAgfo‘dr/j

ors o2 P ors o
b AL AL b
= (3Ao< $ B O —6A°‘Aa) idre

(g, ) =

ars 9 gre g P
= BY yrdr”. (2.3.4)

Combining al of these cdculations, we can write the equations of motion for the
constrained system as

dole Ole  ,a0lc _ 0L (. 0

The left-hand side of (2.3.5) may be checked to be the variational derivative of the
constrained Lagrangian. Theright-hand side consists of theforcesthat maintainthe
congtraints. Inthespecia casethat theconstraintsareholonomic, dw? = 0 sincedw?
represents the curvature and the curvature measures the lack of integrability of the
constraints; when they are integrable, we have, by definition, the holonomic case.
In this case, equation (2.3.5) reduces to the usual form of Lagrange's equations.
Thisverifiesthat for holonomicsystemsitisappropriateto “ pluginthe constraints’
before applying Lagrange's equations.

Specific exampl es of the computation of the dynamics using theformulationin
thissection are given in Section 8.

3. Systemswith Symmetry

We now add symmetry to our nonholonomic system. We begin with some
genera remarks about symmetry, review some facts about principal connections
and then treat a specia case that we call the principa kinematic case (sometimes
called the CHAPLYGIN case) both for completeness and to set the stage for the more
general main resultsto follow.

3.1. Group Actions and Invariance

We refer the reader to MARSDEN & RATIU [1994], Chapter 9 for the basic
definitionsand examples of Liegroupsand group actionsfor what follows. Assume
that we are givenaLiegroup G and an action of G on Q. The action of G isdenoted
g+~ 9q = $,4(0). Thegroup orbit througha point g, which isalways an (immersed)
submanifold, is denoted

Orb(q) :={yq | g € G}.

When thereis danger of confusion about which group is meant, we write the orbit
as Orbg(0).

Let g denotethe Lieagebraof theLiegroup G. For an element ¢ € g, wewrite
£q, a vector field on Q for the corresponding infinitesimal generator; recall that
thisis obtained by differentiating the flow @exyie) With respect tot at t = 0. The
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tangent space to the group orbit through apoint qisgiven by the set of infinitesimal
generators at that point:

To(Orb(q)) = {¢q(@) | € € g}

Throughout this paper we make the assumption that the action of G on Q is
free (noneof themaps &, has any fixed points) and proper (themap (g, g) — gqis
proper, that is, theinverseimages of compact sets are compact). The case of nonfree
actionsisvery important and theinvestigation of the associated singularitiesneeds
to be carried out, but that topic is not the subject of the present paper.

Thequotient spaceM = Q/G, whosepointsarethegroup orbits, iscalled shape
space. It isknown that if the group action is free and proper then shape space is
a smooth manifold and the projection map = : Q — Q/G is a smooth surjective
map with a surjective derivative Ty a each point. We denote the projection map
by mq,c if thereisany danger of confusion. The kernel of thelinear map Tqw isthe
set of infinitesimal generators of the group action at the point g, i.e.,

ker Tqm = {q(@) | € € g},

so these are also the tangent spaces to the group orbits. We now introduce some
assumptions concerning the relation between the given group action, the Lagran-
gian, and the constraint distribution.

Definition 3.1.

(L1) We say that the Lagrangian is tnvariant under the group action if L is
invariant under the induced action of G on TQ.

(L2) We say that the Lagrangian is snfinitesimally invariant if for any Lie
agebraelement ¢ € g we have dL o £ = 0 where, for a vector field X on Q, X
denotes the vector field on TQ naturally induced by it (if F; isthe flow of X then
the flow of X is TF).

(S1) We say that the distribution D is invariant if the subspace Dq C T¢Q is
mapped by the tangent of the group action to the subspace Dyq C T,qQ. (S2) An
Ehresmann connection A on Q (that has D asitshorizontal distribution)is invari-
ant under G if the group action preserves the bundl e structure associated with the
connection (in particular, it maps vertical spaces to vertical spaces) and if, asamap
from TQ to the vertical bundle, A is G-equivariant.

(S3) A Lie dgebraeement ¢ issaid to act horizontally if £o(q) € Dy for all

qeQ.

Some relationships between these conditions are as follows: Condition (L1)
implies (L2), as is obtained by differentiating the invariance condition. It is also
clear that condition (S2) implies the condition (S1) since the invariance of the
connection A impliesthat the group action maps itskernel to itself. Condition (S1)
may be stated as

Ta®y - Dy =Dyq. (3.1.1)

In the case of affine constraints, we explicitly state when we need the assumption
that the vector field v be invariant under the action.
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To help explain condition (S1), we rewriteit in infinitesimal form. Let X5 be
the space of sections X of the distribution D, that is, the space of vector fields X
that take values in D. The condition (S1) implies that for each X € X, we have
97X € Xp. Here, @} X denotes the pull-back of the vector field X under the map
&,,. Differentiation of this condition with respect to ¢ proves the following result.

Proposition 3.2. Assume that condition (S1) holds and let X be a section of D.
Then, for each Lie algebra element &,

[€q, X] € Xp, (3.1.2)

which isalso written as
[gQa .%:D] - xD~

3.2. Reduced Lagrange-d’ Alembert Systems

We now explain in general terms how reduced systems are formed by elimi-
nating the group variables. Later on, we compute the associated reduced equations
explicitly and also show how to reconstruct the group variables. We confine our-
selves to linear congtraints for the moment.

Proposition 3.3. Assumptions (L1) and (S1) allow the formation of the reduced
velocity phase space TQ/Gandthe constrained reduced velocity phase
space D/G. The Lagrangian L induces well-defined functions, the reduced La-
grangian

|:TQ/G - R

satisfying L = | o m1q where m1q : TQ — TQ/G is the projection, and the
constrained reduced Lagrangian

lc:D/G =R,

which satisfies L|D = I¢ o 7p Where 7p : D — D/G is the projection. Also,
the Lagrange-d’ Alembert equations induce well-defined reduced Lagrange-
d’Alembert equations on D/G. That is, the vector field on the manifold D
determined by the Lagrange-d’ Alembert equations (including the constraints) is
G-invariant, and so defines a reduced vector field on the quotient manifold D/G.

This proposition follows from general symmetry considerations. For example,
to get the constrained reduced Lagrangian |, we restrict the given Lagrangian to
the distribution D and then use itsinvariance to pass to the quotient. The problem
of constrained Lagrangian reduction is the detail ed determination of these reduced
structures and is dealt with later. The specia case in which there are no constraints
(that is, thecase inwhich D = TQ) isreviewed in Section 5.

We make a few more genera remarks and constructions before proceeding.
In studying the reduced Lagrangian |, the space TQ/G (which was studied in
MARSDEN & SCHEURLE [1993h]) isitself important. Asexplained above, welet the
natural projection map associated with the action of G be denoted = : Q — Q/G.
We let bundle coordinates be denoted (r, g) wherer isa coordinate in the base, or
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shape space Q/G, and where ¢ is a group coordinate. Such a local trivialization
is characterized by the fact that in such coordinates, the group does not act on
the factor r but acts on the group coordinate by left trandations. Thus, locally in
the base, the space Q is isomorphic to the product Q/G x G and in this local
trivialization, the map = becomes the projection onto the first factor.

The space (TQ)/G, is a vector bundle over T(Q/G) with fiber isomorphic to
g, with the projection from (TQ),/G to T(Q/G) being the map induced by T, the
tangent of the projection. In other words, for vq € TqQ, the map [vg] — Tw(vg)
is well-defined, independent of the chosen representative vq of the equivalence
class, asiseasily checked. Inalocad trivialization of the bundle = with coordinates
g = (r, g), induced coordinates for the bundle (TQ)/G — T(Q/G) are given by
(r,i,€), where ¢ = ¢g—14. The bundle projection in these coordinates is simply the
projection onto thefirst two factors.

In these coordinates, the reduced Lagrangian | is easy to understand. Namely,
the Lagrangian L as a function L(r, g, , g) is invariant under the left action of G
and so it depends on ¢ and ¢ only through the combination ¢ = ¢—1¢. Thus, the
induced function | isgiven in thislocal trivialization by

[(r,r,&) =L(r,g,f,9). (3.2.1)

To write out the constrained reduced Lagrangian | in coordinates requires
a coordinate description of the constraints, using, for example, an Ehresmann
connection, including a choice of bundle 7qr : Q — R This bundle and the
bundle = : Q — Q/G need not coincide in general. As we shdl see in the next
subsection, thereis awell-devel oped theory dealing withthebundler : Q — Q/G
with a point of view that is rather different from that we have aready presented
utilizing Ehresmann connections. One of our goalsisto eventualy synthesizethese
two points of view. In the specia case in which these two bundles coincide, which
we call the principal kinematic case, there is no ambiguity. To describe it in more
detail we need the notion of a principle connection.

3.3. Principal Connections

Wenow recall, for the convenience of thereader and to set notation and conven-
tions, thenotionof aprincipal connection. Thereader whoisconsulting KOBAYASHI
& NoMIizu [1963] notices that there are various factors of 2 and minus signs that
are different from what we have here. These are due to the different conventions
that various authors use for the wedge product and the exterior derivative and the
fact that we use left actionsfor our default, whereas much of theliterature assumes
one has right actions. We follow the most common “Bourbaki” conventionsfor the
wedge product, asin ABRAHAM, MARSDEN & RATIU [1988].

As above, we start with a free and proper group action of a Lie group on a
manifold Q and construct the projection map = : Q — Q/G; this setup is adso
referred to as a principal bundle. The kernel ker Ty (the tangent space to the
group orbit through q) is called the vertical space of the bundle at the point g and
is denoted by verg.
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Definition 3.4. A principal connection ontheprincipa bundler : Q — Q/G
isamap (referred to as the connection form) A : TQ — g that islinear on each
tangent space (i.e., A isag-valued one-form) and is such that

1. A(o(q)) =¢fordl & e gandqge Q, and

2. Aisequivariant:
A(Tq@4(vg)) = AdyA(vg)

for al vq € TqQ and ¢ € G, where ¢, denotes the given action of G on Q and
where Ad denotes the adjoint action of G on g.

The horizontal space of the connection at apoint g € Q isthelinear space
horg = {vq € TqQ | A(vq) = 0}.
Thus, at any point, we have the decomposition
TyQ = horg 4 verg.

Often one finds connections defined by specifying the horizonta spaces (com-
plementary to the vertical spaces) at each point and requiring that they transform
correctly under the group action. In particular, notice that a connection is uniquely
determined by the specification of itshorizontal spaces, afact that we will uselater
on. We will denote the projections onto the horizontal and vertical spaces relative
to the above decomposition using the same notation; thus, for vq € TQ, we write

The projection onto the vertical part is given by

verqug = (A(vg))o(a)

and the projection to the horizonta part isthus

horqug = vq — (A(vq))Q(a).

The projection map at each point defines an isomorphism from the horizontal space
to the tangent space to the base; itsinverse is caled the horizontal lift. Using
the uniqueness theory of ordinary differential equations one finds that a curve in
the base passing through a point =(qg) can be lifted uniquely to a horizonta curve
through g in Q (i.e., a curve whose tangent vector a any point is a horizonta
vector).

Since we have a splitting, we can also regard aprincipal connection as aspecial
type of Ehresmann connection. However, Ehresmann connections are regarded as
vertical-valued forms whereas principal connections are regarded as Lie-algebra
vaued. Thus, the Ehresmann connection A and the connection one-form A are
different and we will distinguish them; they are related in this case by

A(vg) = (A(vg))o(a).

The genera nations of curvature and other properties which hold for general
Ehresmann connections specialize to the case of principa connections. Asinthe
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genera case, given any vector field X on the base space (in this case, the shape
space), using the horizontal lift, thereis a unique vector field X" that is horizontal
and that is r-related to X, that is, at each point g, we have

Tor - X'(0) = X(r(a))

and the vertical part iszero:

(AX)e(@) =0.

Itiswell known (see, for example, ABRAHAM, MARSDEN & RATIU [1988]) that the
relation of being r-related is bracket preserving; in our case, this means that

hor [X", Y] = [X, Y]",
where X and Y are vector fields on the base.

Definition 3.5. The covariant exterior derivativeD of aLie-agebra-vaued
one-form« isdefined by applyingtheordinary exterior derivatived tothehorizontal
parts of vectors:

Da(X,Y) = da(hor X, horY).

The curvature of a connection A is its covariant exterior derivative and it is
denoted by 5.

Thus, B isthe Lie-algebra-va ued two-form given by
B(X,Y) =dA(hor X, horY).
Using the identity

(da)(X,Y) = X[a(V)] * Y[a(X)] — ([X, Y]),

together with the definition of horizontal, shows that for two vector fields X and Y
on Q, we have
B(X,Y) = —A([hor X, hor Y]),

where the bracket on theright-hand side is the Jacobi-Lie bracket of vector fields.
The Cartan structureequationssay that if X and Y are vector fieldsthat areinvariant
under the group action, then

B(X,Y) = dA(X,Y) = [A(X), A(Y)]

where the bracket on the right-hand side is the Lie-algebra bracket. This follows
readily from the definitions, the fact that [£q, nq] = —[&, 5], thefirst property in
the definition of a connection, and writing hor X = X — ver X and similarly for Y,
in the preceding formulafor the curvature.

Next, we givesome useful local formulasfor the curvature. Todothis, wepick a
local trivialization of the bundle, that is, locally inthebase, wewriteQ = Q/G x G
where the action of G is given by |eft trandlation on the second factor. We choose
coordinatesr® onthefirst factor and a basis e, of the Lie algebra g of G. We write
coordinates of an element ¢ relative to thisbasis as £2. Let tangent vectorsin this
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local triviaization at the point (r, g) be denoted (u, w). We write the action of A
on thisvector smply as .A(u, w). Using this notation, we can write the connection
forminthislocal triviadizationas

AU, w) = Ady (wp + Ajoc(r) - U), (3.3.1)

where wy, is the left trandation of w to the identity (that is, the expression of w
in“body coordinates’). The preceding equation defines the expression A (r). We
define the connection components by writing

Aloc(r) U= AZ uoCea~
Similarly, the curvature can be writtenin alocal representation as
B((ug, wi), (U2, w2)) = Ady(Bioc(r) - (U1, W),

which again serves to define the expression Bjq(r). We can a so define the coordi-
nate form for thelocal expression of the curvature by writing

Bioc(r) - (ug, u2) = Z@U%Ugea

Then one has the formula

b 9D
B2, = (W‘a % *cgcAgAg) ,

ar? ore
where C, are the structure constants of the Lie algebra defined by

(€, &] = Coen.

3.4. ThePrincipal or Purely Kinematic Case

Toillustrate how symmetries affect the equations of motion, we start with one
of the simplest casesin which the group orbitsexactly complement the constraints,
which we call the principal or the purely kinematic case, sometimes called the
Chaplygin, or the nonabelian Chaplygin case. This case goes back to CHAPLYGIN
[1897], HAMEL [1904], and was put into a geometric context by KOILLER [1992].

An example of the purely kinematic caseisthevertical rollingdisk discussed in
the examples section below. However, in other examples, such as the snakeboard,
this condition is not valid and its failureis crucial to understanding the dynamic
behavior of this system, and thus below we will consider the more general case.

Definition 3.6. The principal kinematic case isthecase in which (L1) and
(S1) hold and where at each point g € Q, thetangent space TqQ isthedirect sum of
the tangent to the group orbit and to the constraint distribution, that is, we require
that, at each point, Sq = {0} and that

TqQ = TqOrb(q) & Dg =: Vq & Dy.
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In other words, we require that the group directions provide a vertical space
for the Ehresmann connection introduced earlier; thus, in this situation there is
a preferred vertical space and so there is no freedom in choosing the associated
Ehresmann connection whose horizonta space isthe given constraint distribution.
In other words, the nonholonomic kinematic constraints provide a connection on
the principa bundle = : Q — Q/G, so that we can choose this bundle to be
coincident with thebundle 7g r : Q — Rintroduced earlier. If the Lagrangian and
the constraintsare invariant with respect to the group action (assumptions(L 1) and
(S1)), then as we explained above, the equations of motion in Theorem 2.4 drop
to the reduced space D/G. Aswe shall see, in the principal kinematic case, these
reduced equationsmay beregarded assecond-order equationson Q/ G together with
the constraint equations. The connection that describes the constraintsprovidesthe
information necessary to reconstruct thetrajectory on thefull space. In essence, the
constraints provide a connection that replaces the mechanical connection whichis
used in the reduction theory of unconstrained systems with symmetry. The genera
case, described later, requires a synthesis of the two approaches.

Fromthewell-known fact that a principal connectionisuniquely determined by
the specification of its horizontal spaces as an invariant complement to the group
orhits, we get the following.

Proposition 3.7. Inthe principal kinematic case, there is a unique principal con-
nection on Q — Q/G whose horizontal space isthe given distribution D.

We now make these considerations more explicit. The vertica space for the
principal bundlew : Q — Q/G isVq = ker Ty, which is the tangent space to the
group orhit through g. Thus, each vertical fiber at apoint gisisomorphictotheLie
agebra g by means of themap £ € g — £o(0). In the principal kinematic case,
the splitting of the tangent space to Q given in the preceding definition defines
a projection onto the vertical space and hence defines an Ehresmann connection,
which, as before, we denote by A. If condition (S1) holds, then A : TQ — V is
group invariant (assumption (S2)), and there exists a Lie-algebra-valued one-form
A TQ — g such that

A@)-q=(A(Q)-Gq(a) or A=A

Thus on a principal bundle we can express our resultsin terms of A instead of A.
In bundle coordinates, .4 can be written as

A(r, 9) - (F,9) = Ady (9™ + Ajc(r)F),

asinequation (3.3.1).

We gave the expression (3.2.1) for the reduced Lagrangian in aloca trivial-
ization. We now turn to the expression in alocal trivialization for the constrained
reduced Lagrangian |.. Thisisobtained by substituting the constraints.4(q) - ¢ = 0
into the reduced Lagrangian. Thus|. : T(Q/G) — R isgiven by

le(r, 1) = 1(r, T, = Ajoc(r)F). (34.1)

Alternatively, note that we can write
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IC(ra r) = L(Qa hor Q)a

wherer = 7(q) and i = Tqm(0).
In this notation, the equations of motion can be read off of Theorem 2.4 to give
the following theorem.

Theorem 3.8. Inthe principal kinematic case, the equations of motion are

. = <%,B|oc(f,6r)> 0= =g A0, (34.2)

wheredr € T(Q/G), Bioc isthe curvature of Ajoc, and & = — Ajoc(r)F.

This theorem goes back to the works of CHAPLYGIN starting in 1897 (see the
references) for theabelian principal caseand was extended to thenonabelian caseby
KOILLER. Thisresultisal so aconsequence of theresultsof MARSDEN & SCHEURLE
[1993b]; indeed, they show that the first of these equationsis a consequence of the
horizontal variations in the action (i.e., the Lagrange-d’ Alembert principle) and
that in this calculation one can choose any connection, in particular, the principal
kinematic connection in this case. Of course the second of the equationsisjust the
condition of horizontality, that is, the kinematic constraints themselves.

We see inlocal coordinates that the dynamics of the system can be completely
writtenintermsof thedynamicsinbase coordinatesr € Q/G andthefull dynamics
aregiven by reconstruction of g using the constraints. Thus, inthe purely kinematic
case, we recover the process of reduction and reconstruction with the kinematic
connection A replacing the mechanical connection. We stress, in particular, that
in the principal kinematic case, something special happens, namely, there is no
dynamical equation for ¢ = g1 but rather ¢ can be expressed directly in terms
of r and by using the constraints, and when this expression is substituted into
the first equation, they become second-order equations for r. Thus, in this case,
the equations actually reduce from equations on D /G to equationson Q/G. The
dynamics of ¢ itself is then recovered by the constraint equation, which may
be regarded as similar to the problem of calculating holonomy, as in MARSDEN,
MONTGOMERY & RATIU [1990]. In particular, for abelian groups, the dynamics of
g can be written in terms of that of r by an explicit quadrature.

The purely kinematic case can easily be extended to alow affine constraints
(see YANG [1992] and YANG, KRISHNAPRASAD & DAYAWANSA [1993)]). If the
constraints are of the form A(q) - § = v(q,t) where v is a vertica -valued vector
fiddd on Q and is G-invariant, then in the principa kinematic case the constraints
can beregarded as being Lie-algebra-valued and written

A(@) - q=1'(a,t) = Adg oc(r, t)

where I' : Q x R — g isdefined by ('(g,t))g = v(q,t) and c(r,t) € g isthe
versionof I" inaloca trivialization. The Lagrangian is modified as before and the
equations of motion become

o ol .
o= (5 B@i) +(F.006D). A@-a=r@D, (343
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wherethevariationsinr arefree, that is, Jr = Tqm - dq isfree and where DI'(X) =
dI'(hor X) is the covariant derivative of I'. The proof is via a direct coordinate
calculation and uses the fact that 1" depends equivariantly on the group variable.
Asbefore, relativeto alocal trivialization, these equations can be written as

ol = <%,Bloc(f,5r)> + <%, dﬂOC((sr)>a
9 = g(—=Aioc(r)f + Loc(r, 1))

(3.4.4)

which again determines a second-order dynamical system on shape space Q/G and
whereé = —Ajoc(r)f + Ioc(r, 1).

4. The Momentum Equation

In this section we use the Lagrange-d’ Alembert principleto derive an equation
for a generalized momentum as a consequence of the symmetries. Under the
hypotheses that the action of some Lie algebra dement is horizontd (that is, the
infinitesimal generator is automatically in the constraint distribution), thisyields
a conservation law in the usua sense. As we shall see, the momentum equation
does not directly involve the choice of an Ehresmann connection to describe the
distribution D, but the choice of such a connection is useful for the coordinate
Versions.

We have aready mentioned in the Introduction that some simple physica
systems that have symmetries do not have associated conservation laws, namely,
the wobbl estone and the snakeboard. It isa so easy to see why thisisnot generally
the case from the equations of motion. The simplest situation would be the case of
cyclic variables. Recdll that the equations of motion have theform

doL. Il + a8 oL 0OL
dtoFe  ore "9 9@
If thishasacyclic variable, say rt, thiswould mean that all the quantitiesLe, L, Bgﬁ
would be independent of rt. Thisisequivalent to saying that thereisatrand ational
symmetry in the r® direction. Let us also suppose, as is often the case, that the s
variablesare also cyclic. Then the above equation for themomentum py = dL./dit
becomes
d _ dL
a0
Thisfallsto beaconservation law in general. Note that theright-hand sideislinear
inf (thefirst term is linear in p;) and the equation does not depend on r? itself.
Thisisavery specia case of the momentum equation that we shall develop in this
chapter. Even for systems like the snakeboard, the symmetry group is not abelian,
sotheabove analysisfor cyclic variablesfailsto capturethefull story. In particular,
the momentum equation is not of the preceding form in that example and thus it
must be generalized.

B,
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4.1. The Classical Noether Theorem

To derive the momentum equation, it isuseful to first recal Noether’s origina
derivation of the conservation laws directly from Hamilton's variational principle.
Consider aLiegroup G acting on a configuration manifold Q and lift thisaction to
thetangent bundle TQ using thetangent operation. Given aG-invariant Lagrangian
L : TQ — IR, the corresponding momentum map is the mapping J : TQ — ¢~
defined by

or, in coordinates, oL
Ja = o —Kj, (4.1.2)

wherewe definethe action coefficients K. rdlativetoabasise,, a=1, ..., kof g by
writing £o(q) = K529/ with & = £2e,, and asum on theindex a is understood.

Theorem 4.1 (Classical Noether Theorem). For a solution of the Euler-Lagrange
equations, the quantity J isa constant in time.

We remark in passing, although we shall not use it, that this result holds even
if the Lagrangian is degenerate, that is, the fiber derivative defined by p; = dL/9¢
isnot invertible.

Proof. Choose any function ¢(t,s) of two variables such that the conditions
o(a,s) = ¢(b,s) = ¢(t,0) = 0 hold, where a and b are the temporal endpoints
of the given solution to the Euler-Lagrange equations. Since L is G-invariant, for
each Lie algebraelement ¢ € g, the expression

b
/ L(exp(¢(t, )¢) - a, exp(e(t, 5)¢) - G) dit (413

is independent of s. Differentiating this expression with respect tosat s = 0 and
setting ¢’ = 0¢/dstaken at s= 0 givesinfinitesimal invariance:

0= / <8q'€Q¢ oq (T€Q Q'¢ ) (4.1.4)

Now we consider the variation q(t,s) = exp(¢(t, 9)€) - g(t). The corresponding
infinitesimal variation is given by dq(t) = ¢'(t)o(q(t)). Since these variations
vanish at the endpoints, Hamilton's principle gives

b
0= / (g—;éq gql q) dt. (4.1.5)
a
Note that o
39 =0¢"bq+¢'(Téq - 0)
and subtract (4.1.5) from (4.1.4) to give
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b b
0= 24 (€g)'¢' dt=— / @ <6qi o | ¢’ dt. (4.1.6)
a a
Since ¢’ is arbitrary, except for endpoint conditions, it follows that the integrand
vanishes, and so the time derivative of the momentum map iszero. O

Thereader will find that this notion of momentum map coincideswith the clas-
sical notion for Lagrangian systems with symmetry; see, for example, MARSDEN
& RATIU [1994].

4.2. The Derivation of the Momentum Equation

We now adapt this approach to derive an equation for ageneralized momentum
map for nonholonomic systems. The number of equations obtained will equal the
dimension of the intersection of the orbit with the given constraints. As we will
see, this result will give conservation laws as a particular case.

To formulate our result, some additional ideas and notation are useful. As the
examples show, in general the tangent space to the group orbit through q intersects
the constraint distribution at q nontrivialy. It is helpful to give thisintersection a
name.

Definition 4.2. Theintersection of thetangent space to the group orbit throughthe
pointg € Q and the constraint distributionat this point is denoted Sy, asin Figure
4.1, and we et the union of these spaces over g € Q be denoted S. Thus,

Sq = Dq N To(Orb(q)).

Definition 4.3. Define, for each g € Q, the vector subspace g% to be the set of Lie
agebraelementsin g whose infinitesimal generators evaluated at g liein Sq:

g1={{ €g&0€ S}

The corresponding bundle over Q whose fiber at the point q is given by g% is
denoted g”.

Consider a section of the vector bundle S over Q; i.e., a mapping that takes
g to an element of Sy = Dg N Ty(Orb(q)). Whenever the action is free, a section
of & can be uniquely represented as 53 and defines a section £9 of the bundle g”.
For example, one can construct the section by orthogonally projecting (using the
kinetic energy metric) £o(q) to the subspace S,. However, as we shall seein later
examples, it is often easy to choose a section by inspection.

Next, we choose the variation analogously to what we chose in the case of
the standard Noether theorem above, namely, q(t, s) = exp(¢(t, 5)¢90) - q(t). The
corresponding infinitesimal variationis given by

Jq(t) = ¢ (E(a(t))-
Letting 9<% denote the derivative of ¢9 with respect to g, we have
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Orb(q)

T{0rb(g) = Vg

Fig. 4.1. Theintersection of the tangent spaceto the group orbit with the constraint distrib-
ution; here the tangent spaces are superimposed on the spacesthemselves

8q=¢'¢d" + ¢ |(TedV . @) + (090 - g)q| .

In this equation, the term T¢&" is computed by taking the derivative of the vector

field 3" with q(t) held fixed. By construction, the variation 6q satisfies the con-
straints and the curve q(t) satisfies the Lagrange-d’ Alembert equations, so that the
following variationa equation holds:

b

oL oL

0= /(6—qléq 6—q|6q) dt. (4.2.1)
a

In addition, the invariance identity (4.1.4) holds with £9:

a)yi 4/ aM) i g
0= / <3q.(€ Yo'+ 6q.(T€ q)fb) dt. (4.2.2)

Subtracting equations (4.2.1) and (4.2.2) and using the arbitrariness of ¢’ and
integration by parts shows that

dJL

T 7 (gq(t))Q 6q'[ (gq(t))]

The quantity whoserate of change isinvolved here isthe nonholonomic version of
the momentum map in geometric mechanics.
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Definition 4.4. The nonholonomic momentum map J" isthe bundlemap
taking TQ to the bundle (g?)* whosefiber over the point g isthe dua of the vector
space g¥ that is defined by

aL

(I (09).£) = (€)',

where¢ € g9, Intrinsically, this reads
(3"M(vg), €) = (FL(vq), &) »

whereTFL isthefiber derivative of L and where¢ e g9. For notational convenience,
especialy when thevariable vg is suppressed, we will often writethe | eft-hand side
of this equation as J"°(¢).

Notice that the nonholonomic momentum map may be viewed as giving just
some of the components of the ordinary momentum map, namely, along those
symmetry directionsthat are consistent with the constraints.

We summarize these resultsin

Theorem 4.5. Assumethat condition (L2) of Definition 3.1 holds(whichisimplied
by (L1)) and that £9 is a section of the bundle g”. Then any solution of the La-
grange-d’ Alembert equationsfor a nonholonomic system must satisfy, in addition
to the given kinematic constraints, the momentum equation:

d  Jonegeayy = OL [ oany]
When the momentum map is paired with asection in thisway, wewill just refer
toit as the momentum. The followingis adirect corollary of thisresult.

Corollary 4.6. If £ isa horizontal symmetry (see (S3) above), then the following
conservation law holds:

d nhc -
3 ) =0. (4.2.4)

A somewhat restricted version of the momentum equationwasgiven by KosLov
& KoLEsNIKov [1978] and the corollary was given by ARNOLD [1988, page 82]
(see BLOCH & CROUCH [1992, 1994] for the controlled case).

Remarks. 1. Theright-hand side of the momentum equation (4.2.3) can bewritten
in more intrinsic notation as

<FL(q(t)), (%&“‘))Q> .

2. Inthetheorem and the corollary, we do not need to assume that the distribution
itself isG-invariant, that is, we do not need to assume condition (S1). In particular,
as we shall see in the examples, one can get conservation laws in some cases in
which the distributionis not invariant.
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3. The validity of the form of the momentum equation is not affected by any
“internal forces’, that is, any control forces on shape space. Indeed, such forces
would beinvariant under the action of the Lie group G and so would be annihilated
by the variationstaken to prove Theorem 4.5.

4. The momentum eguation still holds in the presence of affine constraints. We
do not need to assume that the affine vector field defining the affine constraints
is invariant under the group. However, this vector field may appear in the fina
momentum eguation (or conservation law) because the constraints may be used to
rewrite the resulting equation. We will see thisexplicitly in the example of the ball
on arotating table.

5. Assuming that thedistributionisinvariant (Hypothesis(S1)), the nonholonomic
momentum map as a bundle map is equivariant with respect to the action of the
group G on the tangent bundle TQ and on the bundle (g?)*. In fact, since the
distributionisinvariant and using the general identity (Ad,&)g = @;_ng, validfor
any group action, we see that the space g¢ is mapped to g¢% by the map Ad,, and
S0 in this sense, the adjoint action acts in awell-defined manner on the bundle g .
By taking itsdual, we see that the coadjoint action iswell-defined on (g?)*. In this
setting, equivariance of the nonholonomic momentum map follows as in the usual
proof (see, for example, MARSDEN & RATIU [1994], Chapter 11).

6. Onecan find an invariant momentum if the section is chosen such that
(Ady-167%q = €4,

This can always be done in the case of trivia bundles; one chooses any £9 at the
identity in the group variable and trandates it around by using the action to get a
&9 at all points. This direction of reasoning (initiated by remarks of OSTROWSKI,
LEWIS, BURDICK & MURRAY) isdiscussed in Section 4.4. Aswe will see later, this
point of view is useful in the case of the snakeboard.

7. The form of the momentum equation in this section is valid for any curve
q(t) that satisfies the Lagrange-d’ Alembert principle; we do not require that the
constraints be satisfied for thiscurve. The version of the momentum equation given
in the next section and later in Section 7 will explicitly requirethat the constraints
are satisfied. Of course, in examples we aways will impose the constraints, so
thisisreally a comment about the logical structure of the various versions of the
equation.

8. In some interesting cases, one can get conservation laws without having hor-
izontal symmetries, as required in the preceding corollary. These are cases in
which, for reasons other than horizontality, the right-hand side of the momentum
equation vanishes. This may be an important observation for the investigation of
compl etdly integrable nonholonomic systems. A specific case in which thisoccurs
isthe vertical rolling disk discussed below.
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4.3. The Momentum Equationin a Moving Basis

There are several ways of rewriting the momentum equation that are useful;
the examples will show that each of them can revea interesting aspects of the
system under consideration. This subsection devel ops the first of these coordinate
formulas, which isin some sense the most naive, but aso the most direct. The next
subsectionwill develop aformthat issuitablefor alocal trivializationof thebundle
Q — Q/G. Later on, when the nonholonomic connection is introduced, we shdl
come back to both of these forms and rewrite them in amore sophisticated but aso
more revealing way.

Introduce coordinates g, . . ., g in the neighborhood of a given point go in Q.
At the point qg, introduce abasis

{elan""’a'naaTﬂ'la"'aa(}

of theLieagebrasuch that thefirst melements form abasisof g%. Thus, k = dimg
and m = dimg9, which, by assumption, is locally constant. We can introduce a
similar basis

{ew(@), ex(a), - - -, em(Q), em+1(a), - - ., &(@)}
at neighboring points g. For example, one can choose an orthonormal basis (in
either the locked inertia metric or rlative to a Killing form) that varies smoothly
with g. We introduce a change of basis matrix by writing

k
(@) =D Ui(dea

a=1

for b = 1,... k Here the change of basis matrix ¢2(q) is an invertible k x k
matrix. Relative to the dual basis, we write the components of the nonholonomic
momentum map as Jy. By definition,

=3 o=l

Using this notation, the momentum eguation, with the choice of section given

by
€W =gyqt)), 1<b<m

reads _
d. <~ (0L [d '
an = .Z:; (3_(1' [aa)(q(t))] Q) . (43.1)
Next, we define Christoffel-like symbols by
k
8 a
rg =S (b aﬁ? (4.32)
a=1

where the matrix ()3 denotes the inverse of the matrix 2. Observe that
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k n
%E’o(q‘t» =33 rgdeda)), (4323)
c=1l I=1
which impliesthat
d k _.n
[aeo(q(t»] - > rgdleda®)o (4.3.4)
c=1l I=1

Thus, we can write the momentum equation as

Z Z 156 [ee(a®)]o. (4.35)

c—1|I1

In the shorthand notation €, := [e:(q(t))]5,, the momentum equation reads

ZZ ql réq (4.3.6)

c=1 i)l=1

Breaking the summation over ¢ into two ranges and using the definition

oL
Jc:a—qie'c, 1<c<m

givesthefollowing form of the momentum equation:

Proposition 4.7 (Momentum equation in amoving basis). The momentum equa-
tion in the above coordinate notation reads

—Jb = Z Z &g + Z Z F,;q'é (4.3.7)

c=1 I=1 c=mlil= 1

Assuming that the Lagrangian is of the form kinetic minus potential energy,
the second term on the right-hand side of this equation vanishes if the orbit and the
constraint distribution are orthogonal, that is, if we can choose the basis so that the
vectors [e(q(t))]q for ¢ > m+ 1 are orthogonal to the constraint distribution. In
this case, the momentum equation has the form of an equation of parallel transport
along the curve q(t). The connection involved is the natural one associated with
the the bundle (g”)* over Q, using a chosen decomposition of g, such as the
orthogonal one. Inthegeneral case, the momentum equationisan equality between
the covariant derivative of the nonholonomic momentum and the last term on the
right-hand side of the preceding equation. In the next section, we shall write the
momentum equation in a body frame, which will be important for understanding
how to decouple the momentum equation from the group variables. This will be
important for the reduction theory in Section 7.
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4.4. The Momentum Equation in Body Representation

Next, we devel op an aternative coordinateformulafor the momentum equation
that is adapted to a choice of local trividization. Thus, let alocal trivialization be
chosen on the principal bundler : Q — Q/G, withthelocal representation having
coordinates denoted (r, g). Let r have components denoted r as before, being
coordinates on the base Q/G and let ¢ be group variables for the fiber, G. In
such arepresentation, the action of G is the l€eft action of G on the second factor.
We cal cul ate the nonhol onomic momentum map using well-known ideas (see, for
example, MARSDEN & RATIU [1994], Chapter 12), as follows. Let vq = (r, g, T, 9)
beatangent vector at thepointq = (r, g),n € glandlete = g=1g,ie, & = TyL,-1g.
Since L is G-invariant, we can define anew function | by writing

L(r,g,t,9) =I(r,1,£).
Use of the chain rule shows that

oL, ol
6_‘9—1—9'_9—1%,

and so

(I"M(vg), n) = (FL(r, g, , ), no(r, 9))
_ /oL _/al
= (a5 0T ) ={ G Adon).

The preceding equation showsthat we can write the momentum map in alocal
trivialization by making use of the Ad mapping in much the same way as we did
with the connection and the local formulas in the principa kinematic case. We
define J1° : TQ/G — (gP)* inalocd trivialization by

loc
, ol
<JIT)T;C(r’ rag)a 77> = <%’ 77> .

Thus, as with the previousloca forms, J™ and itsversion in alocal triviaization
are related by the Ad map; precisely,

IMr, g, F,9) = Ad)-1Joe (1, 1, ).

Secondly, choose a g-dependent basis e,(q) for the Lie algebra such that the
first m elements span the subspace gY. In aloca trividization, thisis donein a
very smpleway. First, one chooses, for each r, such abasis at theidentity element
g=1ld sy

e(r), ex(r), ..., em(r), ema(r), ..., &(r).

For example, this could be a basis such that the corresponding generators are
orthonormal in the kinetic energy metric. (Keep in mind that the subspaces D and
T4Orb need not be orthogonal but here we are choosing abasis corresponding only
to the subspace TOrb.) Define the body fized basis by
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€a(r, g) = Ad, - ea(r);

then the first m elements indeed span the subspace g% provided the distributionis
invariant (condition (S1)). Thus, in this basis we have

(I"(r, g,F, ), &(r,9)) = <§—€I, eo(r)> = Po, (4.4.1)

which defines pp, a function of r, r and ¢£. We are deliberately introducing the
new notation p for the momentum in body representation to signal itsspecia role.
Note that in this body representation, the functions p, are invariant rather than
equivariant, asis usually the case with the momentum map. The time derivative of
pp May be evaluated using the momentum equation (4.2.3). Thisgives

E —% E (r )i

gl [d

_ <(Tng_1)*%, [a (Ad, - eo(r))] Q>
= <g_€|’ [€,e] + g%fo‘> .

We summarize the conclusion drawn from this calcul ation:

Proposition 4.8. (Momentum equation in body representation.) The momentum
equation in body representation on the principal bundle Q — Q/G isgiven by

d _/al ey ..,
o= (pleal e 52, @42)
Moreover, the momentum equation in thisrepresentation isindependent of, that is,
decouples from, the group variables g.

In this representation, the variable ¢ is related to the group variable ¢ by
& = ¢g~14. In particular, in this representation, reconstruction of the group variable
g can be done by means of the equation

g =g&. (4.4.3)

On the other hand, this variable ¢ = ¢—%¢, as in the case of the reduced Euler-
Poincaré equations, is not the vertical part of the velocity vector § relative to the
nonholonomic connection to be constructed in the next section. The vertical part
isrelated to the variable ¢ by a velocity shift and thisvelocity shift will make the
reconstruction equation look affine, as in the case of the snakeboard (see LEWIS,
OsTROWSKI, MURRAY & BURDICK [1994]). In that example, the decoupling of the
momentum equation from the group variables played a useful role. We also recall
(asintheexampl e of therigid body withrotorsdiscussed in MARSDEN & SCHEURLE
[1993b]) that it is often the shifted velocity and not & that diagonalizesthe kinetic
energy, so this shift is fundamental for anumber of reasons. Aswe shall seelater,
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the same ideas in this section, combined with the calculations of MARSDEN &
ScHEURLE [1993b] will show how to calculate the fully reduced equations.

In the loca triviaization form (4.4.2) of the momentum equation, we may
write the terms (9e,/9r*)r in terms of a connection, as we did in deriving the
momentum equation in amoving basis. We will carry thisout later in Section 6.

Other noteworthy features of this form of the momentum equation are the
following direct consequences of the preceding proposition.

Corollary4.9. 1. Ife,, b =1,..., mareindependent of r, then the momentum
equation in body representation is equivalent to the Euler-Poincaré equations
projected to the subspace g“.

2. If g isabelian, then the momentum equations reduce to

d /ol O&.,
apb—<%,mr > (4.4.9)

3. If gisabelian, or more generally, if the bracket of an e ement of g% withonein
g isannihilated by 01/0¢, and if &, b = 1,... m, are independent of r, then the
quantitiespp, b =1, ..., mare constants of motion.

Regarding the first item, see MARSDEN & RATIU [1994] for a discussion of the
Euler-Poincaré equations; these are also briefly reviewed in the following section.
In this case, the spatia form of the momentum is conserved, just as in the case
of systems with holonomic constraints. For the snakeboard, g9 is abelian, but g is
not and the second item above does not apply. We shall devel op the geometry and
notation to study this situation more thoroughly in Section 7. Aswe shall see later
in the examples section, the last case occurs for the vertical rolling penny.

5. A Review of Lagrangian Reduction

Lagrangian reductiontheory for systemswith hol onomic constraintswas devel -
oped by MARSDEN & SCHEURLE [1993a,b].2 We summarize some of the features of
that theory, not only for purposes of comparison, but to exploit areas of common-
ality. The ultimate picture of a nonholonomic mechanical system with symmetry
will involve asynthesis of thereduced Eul er-Lagrange equations and the equations
for a nonholonomic system, as we mentioned in the Introduction.

5.1. Rigid-Body Reduction

We begin by recaling a smple case, namely, the rotational motion of a free
rigidbody. Let R € SO(3) denote the time-dependent rotation that givesthe current
configuration of therigid body. The body angular velocity (2 isdefined in terms of
R by

2 Sign conventions for the curvature in this reference differ from those in the present
paper. We have consistently used the conventionsin the current paper to avoid confusion.
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R R=,
where 2 isthe 3 x 3 skew matrix defined by v := £ x v. Denoting by | the
(time independent) moment of inertia tensor, the Lagrangian when thought of as
afunction of Rand Ris given by L(R R) = (142, £2)/2 and when thought of as a
function of 2 aloneisgiven by 1(£2) = (112, £2)/2.
A basic fact about rigid-body dynamics and reduction is that the following
statements are equival ent:
1. (R R) satisfies the Euler-Lagrange equations on SO(3) for L. 2. Hamilton's
principle on SO(3) holds:
J / Ldt=0,

. 3. 2 satisfiesthe Euler equations
12=102x 2.

4. The reduced variational principle holdson R 3:

6/Idt:O.

where variationsin 2 are restricted to be of theform 62 =5 + 5 x 2, withn an
arbitrary curve in IR 3 satisfying = 0 at the temporal endpoints.

An important point isthat when one reduces the standard variational principle
from SO(3) toitsLiea gebraso(3), oneendsup with avariational principleinwhich
the variations are constrained. In this case, the term n represents the infinitesimal
displacement of particles in the rigid body. Note that the same phenomenon of
constrained variations occurs in the case of nonholonomic systems.

In symplectic reduction, one imposes J = p and passes to the quotient phase
space, inducing a symplectic form on the quotient. For Poisson reduction on the
other hand, one passes directly to the quotient (phase space)/(group) without the
imposition of J = i using the induced Poisson bracket. (See MARSDEN & RATIU
[1986] for a more sophisticated version.) The symplectic reduced spaces are the
symplectic leaves of the quotient Poisson manifold. For example, intherigid body,
the phase space is P = T*SO(3) and the quotient space P/G = s0(3)* =~ R3
containsthe body angular momentum p = 1 {2 asthebasic dynamical variable. This
body angular momentum space carries therigid-body bracket

{K,L} = —(p, VK x VL)

and the angular momentum spheres ||p|| = constant are its symplectic |eaves.

5.2. The Euler-Poincaré Equations

To understand the Lagrangian analogue of Poisson reduction, we first con-
sider the equations of generalized rigid bodies, governed by the Euler-Poincaré
equations. POINCARE [1901] showed how to generalize Euler’s rigid body and
fluid equationsto any Lie a gebra. The Eul er-Poincaré equations may be described
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as follows (see MARSDEN & SCHEURLE [1993b] and BLOCH, KRISHNAPRASAD,
MARSDEN & RATIU [1994,1996] for more details). Let g be a Lie algebra and let
| : g — IR beagiven Lagrangian. Then the equations are

dol_ il
dtoc " ¢oc
or, in coordinates, d ol ol
dt 8€a Cdag 6€ba

where the structure constants are defined by
[¢,n]* = CG£¢®.
If Gisaliegroup with Lie dgebrag, welet L : TG — R be the left-invariant
extension of | and let ¢ = ¢g~¢. In this context, & reduces to {2, the body angular
velocity in the case of therigid body.
Thebasic fact regarding the Lagrangian reduction leading to these equationsis:

Theorem 5.1. Acurve(¢(t), ¢(t)) € TG satisfiesthe Eul er-Lagrange equati onsfor
L ifand onlyif ¢ satisfies the Euler-Poincare equationsfor I.

In this situation, the reduction isimplemented by the map (¢, ¢) € TG — ¢ =
—1-
9 79¢€g.
One proof of this theorem is of specia interest, since it shows how to drop
variationa principlesto the quotient. Namely, we transform

6/Ldt:O

under the map (g, ¢9) — & to give the reduced variational principle for the Euler-
Poincaré equations: ¢ satisfies the Euler-Poincaré equationsif and only if

6/Idt:O,

where the variations are all those of the form
5 =n+[& )

andwherenisan arbitrary curveintheLiea gebrasatisfyingrn = 0 at theendpoints.
Variations of thisform are obtained by calculating what variations are induced by
variationson the Lie group itself.

In fluid mechanics (where the Euler equations of idea flow are Euler-Poincaré
equations on the Lie algebra of divergence-free vector fields), these restrictionson
the variations are related to the so-called “Lin constraints’.

One obtains the Lie-Poisson equations on g* by the Legendre transformation

_al
/’L_ﬁga

In Lagrangian mechanics, dropping the variationa principle is the analogue of
Lie-Poisson reduction in which one drops the Poisson bracket from T*G to g*.

h() = - & = 1(6).
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5.3. The Reduced Euler-Lagrange Equations

TheEuler-Poincaré equationscan be generalized to thesituationin which G acts
freely on a configuration-space Q to obtain the reduced Eul er-Lagrange equations.
This process starts with a G-invariant Lagrangian L : TQ — R, which induces a
reduced Lagrangian | : TQ/G — . The Euler-Lagrange equations for L induce
the reduced Euler-Lagrange equations on TQ/G. To compute them in coordinates,
itisuseful to introduceaprincipa connection on the bundle Q@ — Q/G. Although
any can be picked, a convenient choice isthe mechanical connection, so we pause
to recall its construction. We will make a similar construction for nonholonomic
systems shortly.

The Mechanical Connection. Assume that there is a G-invariant metric on the
configuration space. Normally this metric is the one associated with the kinetic
energy of our mechanical system.

Definition 5.2. The mechanical connection A isthe connection on Q re-
garded as abundle over shape space Q/ G that is defined by declaring its horizontal
space a apoint g € Q to be the subspace that is the orthogonal complement to the
tangent space to the group orbit through g € Q using the kinetic energy metric.
The locked inertia tensor 1(Q) : g — g* (where g* denotes the dua of the
vector space g) isdefined by

(I@E, m) = (€(a), no(a))

where £q is the infinitesimal generator of ¢ € g and where ((, )) is the kinetic
energy inner product.

The mechanical connection defines an equivariant g-valued one-form .4 on Q.
Anexplicit formulafor it (see below and MARSDEN [1992] for further details and
references) is

A(vg) =T1(0)~(vg) (5.3.1)

whereJ : TQ — g* isthe momentum map defined, as we saw earlier, by

((vq), ) = (FL(vq), £o(Q)) -

Asasimple example, consider the angular momentum of a single particle moving
in 3-space. Welet g, p € R3, and J(q, p) = q x p. If weidentify a tangent vector vq
to 3 at the point q € 23 with the pair (g, v), formula (5.3.1) gives

A(q,v):ﬁ(qxv),

an SO(3) connection on 23\ {0}. Another characterization of the mechanical con-
nectionisthat it picksout the“optimal” rotatingframe, i.e., it minimizesthekinetic
energy subject tothe constraint J = . The mechanical connection A playsafunda
mental rolein the theory of geometric phases (MARSDEN, MONTGOMERY & RATIU
[1990]), where holonomy of an associated connection isinvolved, and in stability
theory where it is used to separate internal and rotationa modes (SIMO, LEwWIS &
MARSDEN [1991]).



Nonholonomic Mechanical Systemswith Symmetry 61

The mechanica connection has the physicd interpretation for a system of
interconnected particles and rigid bodies, of being the spatial angular velocity of
theinstantaneously equival ent rigid-body system obtained by locking all thejoints.
Thus, the phrase (spatial) locked angular velocity is sometimes used.

The Reduced Equations. To describethereduced Lagrange-d’ Alembert equations,
we make use of a connection on the principa G-bundle Q — Q/G; for the Euler-
Poincaré equations, in which Q = G, the group structure automatically provides
such a connection. For amore general choice of Q one can choose the mechanical
connection as defined in the previous subsection.

Thus, assume that the bundle Q — Q/G has a given (principal) connection .A.
Divide variations into horizontal and vertical parts—this breaks up the Euler-La
grange equations on Q into two sets of equations that we now describe. Let x* be
coordinates on shape space Q/G and {22 be coordinates for vertical vectorsin a
local bundle chart. Drop L to TQ/G to obtain areduced Lagrangian| : TQ/G — R
in which the group coordinates are eliminated. We can represent this reduced
Lagrangian in a couple of ways. First, if we choose a locd trividization as we
have described earlier, we obtain | as afunction of thethevariablesare (r, i<, £9).
However, it will be more convenient and intrinsicto changevariablesfrom é2 tothe
local version of the locked angular vel ocity, which has the physical interpretation
of the body angular velocity, namely, £2 = £ + Ajqcf, Or in coordinates,

22 =2+ A2 (r)ie.
Wewill writel(re, r, £22) for the local representation of | in these variables.
Theorem 5.3. Acurve (', ¢) € TQ, satisfiesthe Euler-Lagrange equationsif and

only if the induced curve in TQ/G with coordinates given in a local trivialization
by (re, i, 2?) satisfiesthe reduced Euler-Lagrange equations:

dore ~ gra - aga Bast’ €. (532)
dol _ o,
O = (£ + ) (533

where 33 ; are the coordinates of the curvature B of A, and £34 = 2, AR.

The first of these equations is similar to the equations for a nonholonomic
system written interms of the constrained Lagrangian, and the second issimilar to
themomentum equation. It isuseful to notethat thefirst set of equationsresultsfrom
the variational principle of Hamilton by restricting the variations to be horizontal
relativeto the given connection. Asweshall see, thisisvery similar towhat onehas
insystemswith nonhol onomicconstraintswith the Lagrange-d’ Alembert principle.

One other observation is of interest here. If one uses as variables (r*, r%, p,),
where p is the body angular momentum, so that p = Tjo(r)§2 = 01/942, then the
equations become (using the same letter | for the reduced Lagrangian, an admitted
abuse of notation):



62 A.BLOCH ET AL.

d ol ol onee

_ : d
aﬁfoé - 8[‘0( - pa <_ g@rﬁ + ggdl epe) - pdmpe, (534)
d )
GiPo = Pa(—E2bi ™ + C3pl “pe), (5.3.5)

where 1% denotes the inverse of the matrix | .

Connections are aso useful in control problems with feedback. For example,
BLOCH, KRISHNAPRASAD, MARSDEN & SANCHEZ DE ALVAREZ [1992] found a
feedback control that stabilizesrigid body dynamicsabout itsmiddle axis using an
internal rotor. This feedback controlled system can be described in terms of con-
nections (BLOCH, MARSDEN, & SANCHEZ DE ALVAREZ [1996]): a shift in velocity
(change of connection) turns the free Euler-Poincaré equations into the feedback
controlled Euler-Poincaré equations.

6. The Nonholonomic Connection and Reconstruction

I n thissection we continueto discussthe appli cation of themomentum equation
to the problem of reconstructing paths on configuration-space Q given a path in
the base space Q/G. In many systems the base space Q/G corresponds to the set
of variables which are directly controlled by the application of control forces, and
hence we can follow any path in Q/G by application of appropriate forces. It is
therefore natural to focus on how these paths lift, as described by the constraints,
the generalized momenta, and the momentum equation, to the full configuration-
space. Themain new tool to beintroduced in thissectionisthat of thenonholonomic
connection, a synthesis of the mechanica and the kinematic connections; see also
BLOCH & CRoucH [1992] and YANG [1992] for preliminary versions of similar
idess.

6.1. The Unconstrained Case

We begin by recalling the reconstruction procedure for unconstrai ned mechani-
cal systems. Aswediscussedinthe preceding section, for unconstrained mechanical
systems with symmetries, the equations of motion are naturally described by using
the principal bundle Q — Q/G. In essence, the dynamica eguations split into
two pieces by using Hamilton's principle L = 0 and dividing the variationsinto
vertica variations and a set of complementary variations. The vertica variations
lead to a set of conservation laws of the form

d

—(FFL =0

for dl n € g. These equations are of Euler-Poincaré type when the Euler-La-
grange equations are written in alocal trivialization. As we mentioned above, the
mechanical connection is related to the momentum map and the locked inertia
tensor by

A(Q) - vg =T~ A)I(v)-
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Given apath in the base space Q/G, we can now use the connection to recon-
struct the motion of the system in the full space Q. The conservation law can be
written as

A@) - a=T"4a)I(@ =1~ )u
where 1 € g* isa (constant) momentum. If we choose alocd trivialization of the
bundle with coordinates q = (r, g) € (Q/G) x G (localy), the conservation law
becomes

A(@) - 4= Ady (g7 + Aioe()) = (Ady LK (NACY) -

where I|o is the local expression for the locked inertia tensor written as a func-
tion over Q/G. Rearranging this equation, we see that the group variables evolve
according to

9 =g (=Aic(r)i + £2) (6.1.1)

where (2 = H,j.cl(r)p isthe body angular velocity and where p = Ady - 1« isthe body
angular momentum. Note that the variables p (or §2 if one is using the Lagran-
gian point of view) are to be included amongst the variables in the reduced phase
space. Thus, given a path r(t) in the base variables, a motion in the body angular
momentum (p) space or velocity (£2) space, and an initia condition for the group
variables, we can reconstruct the motioninthe group and hence on the entire space,
asin MARSDEN, MONTGOMERY & RATIU [1990]. Finaly, we reiterate a basic fact
from this discussion: The body angular velocity £2 = £ + Ajoc(r)i (Whereé = g—1¢)
isthe local representative of the vertical part of the velocity vector §.

If nonhol onomic constraintsare present, it isstill possibleto reconstruct the path
inthegroup variablesgiventhepathinthebase. Thisisuseful incontrol applications
since it alows us to study the motion of the system without considering the full
equations of motion. We break the following discussion into three cases. purdy
kinematic constraints, horizontal symmetries, and the general case. Examples of
each of the cases are givenin the Section 8. The purely kinematic case occurs when
the constraint distribution complements the symmetry group orbit. In this case, it
is clear that we do not get any nontrivial components to the momentum equation
and that the constraint distributionitself defines a principal connection.

6.2. ThePrincipal or Purely Kinematic Case

Recall that aset of nonholonomicconstraintsissaid to be purely kinematicif the
constraints define a connection on a principa bundle and that this situation occurs
when the constraint distribution is G-invariant and the tangent space to the group
orbit forms a complement to the constraint distribution, that is, the subbundlewith
thefibers Sq = Dy N Ty(Orb(q)) = {0} for al g € Q. What thisreally meansis that
there are no momentum equationsin this case and that correspondingly thereisno
anal ogue of the body angular momentum or vel ocity, as there wasin the preceding
discussion of unconstrained systems. In particular, relative to alocal trivialization
g = (r, g) the constraints can be written as

A= |Ady(g~"g + Aiac(r)F) o 0.
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The motion in the fibersisthus given by

g = _g-Aloc(r)f

and we can reconstruct the group motion given the trgiectory in Q/G. In this case,
aswe saw previously, the equations reduce to second-order equationsfor r, that is,
to second-order equations on Q/G. The motion on thefull space isthen determined
by the solution to these reduced equationsfollowed by first-order equationsfor the
group variables.

Thiscan besaid inadlightly different way: In the case of purely kinematic con-
straints, the kinematic connection repl aces the mechanical connection to determine
themaotionin the fibers. This situation occurs only when the constraint distribution
D and the vertical subspace Tq(Orb(q)) are such that T,Q = Ty(Orb(q)) & Py, SO
that Dy can betaken asthe horizontal space for aconnection. Thusthe conservation
law which would govern the motion in the group variables if no constraints were
present is replaced by the motion dictated by the constraints. See KOILLER [1992]
for a further discussion of the purely kinematic case, including a description of
reduction in that context. As we also noted aready, this reduction result can be
obtained as a specia case of the results of MARSDEN & SCHEURLE [1993b] where
it isshown how to reduce the horizontal part of the variational principal relativeto
any connection.

6.3. The Case of Horizontal Symmetries

A second case inwhichit ispossibletolift the motion from the base Q/G to the
fibers using a connection iswhen there are enough horizontal symmetries such that
they and the constraintsinteract in acomplementary fashion. This situationoccurs,
for example, when thereisasubgroup of G whose action on the configuration-space
satisfies the congtraints. We call a symmetry of this type a horizontal symmetry
(relative to the kinematic constraints). When horizontal symmetries are present,
the motion in the group variables can be reconstructed by combining the kinematic
constraintswith the conservation laws corresponding to the horizontal symmetries.
Thisisthe case for the ball on the rotating plate.

We begin by restricting ourselves to the case when Dgq + To(Orb(q)) = T4Q for
al g € Qand weassume that thereexistsaasubgroupH C Gsuchthat g € D for
alé € hand DygNTy(Orbg(a)) = To(Orby(0)). Wecdl H thegroup of horizontal
symmetries and define the momentum map Jy : TQ — h* C g* as

(I (vg), &) = (FL(vg), &q), £ €D

For a Lagrangian of the form kinetic energy minus potential energy we can write
the generalized momenta as linear functions of the velocity and these generalized
momenta are constant along solution curves since £9 = ¢ € h isconstant. Thus we
have

(W@, =8, £eb,

where ;1 € h* is a constant, and we see that the generalized momentum has the
form of an affine constraint
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(@) -q=p. (6.3.1)

To reconstruct the motion in the fibers, we build a connection on Q — Q/G by
augmenting the kinematic constraintswith the conservation law. Let T(q) : h — h*
bethelocked inertiatensor relative to h, defined, as in Definition 5.2, by

L@, m = (a:neh),  &neED.
Wedefineamap AY™: TQ — S as

AYM(vg) = (T7H(a)In (Uq))Qa (6.3.2)
and the conservation law (6.3.1) can be rewritten as an affine constraint
AYT(G) = (17 Ha)u) o - (6:3.3)

The one-form AY™ takes values in Sq = Ty(Orbn(d)) and is equivariant with
respect to the full group action since the kinetic energy metric is invariant and the
momentum map is equivariant. It al so followsfromthe definition of the momentum
map that AY™ isaprojectiononto S and hence it maps vectors on Sy to themsel ves.
By assumption, the constraint distribution D isinvariant. If we choose a sub-
space Uy C Ty(Orb(g)) such that T4(Orb(g)) = Uy & Sq then we can represent the
constraints using al{-valued one-form AK" : TQ — Uy where A" satisfies

AN(yg) =0 if and only if vq € Dq,
A (yg) = vg for all vq € Uq, (6.3.4)
@g*Akin - Akin@g*.

We now combine the two mappings to form a new mapping A : TQ — TOrb,

where TOrb denotes the union of the tangent spaces to the group orbits, that is, to
the vertical bundlefor the projectionQ — Q/G, as

A= AN 4 AYM (6.3.5)

The mapping A : TQ — TOrb is an equivariant Ehresmann connection on the
bundle Q — Q/G and hence we can write

A(vg) = (A(vg))q,

where A : TQ — g isaprincipal connection. To see that A is an Ehresmann
connection it suffices to show that it is a projection on ¢/ and Sg. This follows
immediately from the fact that AY™ and A" are equivariant projectionsonto S and
U respectively and Tq(Orb(q)) = Sy & Ug. Equivariance follows directly from the
equivariance of ¢y and Sy and the existence of .4 follows from general properties
of equivariant Ehresmann connections.

Definition 6.1. We call the map A : TQ — Ty(Orb(qg)) defined by equations
(6.3.3)(6.3.5) the nonholonomic connection (inthecase of horizontal sym-
metries).
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Notice that the nonholonomic connection in the case of horizontal symmetries
reducesto thekinematic connectioninthe purely kinematic case and the mechanical
connection in the unconstrained case. The overall motion of the system satisfies

A@) - §= (I~ a)u)e (6.3.6)

which has the form of an affine constraint. The locked inertiatensor relative to b
satisfies

(g - q) = Ady_.T(Q)Ad,
and hence in genera the affine part of the constraint (6.3.6) is not equivariant since

1=y - Q) = Ad, T {A)AD 1 = Ad,y (1= X(O)).

This lack of invariance of the affine portion, as in the unconstrained case, would
cause problems in the construction of a principal connection if one tried to make
full use of the conservation laws by holding p: fixed. On the other hand, the actual
reduced variables correspond to the body angular velocity or momentum, and in
these variables, equivariance is restored. Let us be more specific: Equation (6.3.6)
describes how to lift paths from the base space Q/G to the full space Q. Thisis
most easily seen relative to alocal trividization g = (r, g), where the constraints
can bewritten as

A(Q) - 6= Ady(9715 + Atoc(r)F) = Ady oA, 1

where AdgH,j.cl(r)Ad;ﬂ is the gP-valued function associated with the constant
momentum z € h*. This equation can be rewritten as

g = g(=Aoc(r)r + HE.(;l(r), Ad;ﬂ),

which shows how the path r(t) € Q/G liftsto thefibers.

Noting that Adj . = p is the body angular momentum and H,j.cl(r)p =is
the corresponding body angular vel ocity, which may be regarded as a dynamical
variablein its own right, we can write the reconstruction equation takes the form

g = g(=Aoc(r)r + £2). (6.3.7)

This equation again has the form g = g¢ and where & = — Ajoc(r)f + £2 has been
determined by equations of motion that themselves are independent of the group
variable. This form, rather than the form in which the momentum has been set
equal to a constant, shows the decoupling from the group variables most clearly.
As we saw before, and will do more generally below, it is the variable ¢ rather
than the body angular velocity variable that evolves by means of a component of
the Euler-Poincaré equation. On the other hand, it is §2 that isthe vertical variable
relative to the nonhol onomic connection

vergd = 2 = Aioc(r)f + 9714,

which is an instance of the general coordinate expression for the verticd part of a
principal connection. Aswe shall see in a moment, this point of view generalizes
to the case of nonhorizontal symmetries.
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The preceding equations only hold when Dg + T4(Orb(g)) = TqQ and Dy N
Ty(Orbg(q)) = Ty(Orbn(a)). If we drop the second restriction, we can write the
reconstruction procedure must be modified to account for the interaction between
the constrai ntsand the symmetries. The devel opments bel ow will includethismore
genera situation.

Finally we end this section with a notational remark. In the general nonholo-
nomic case, as we have seen, the momentum map need not be conserved. In any
case, even if itis, the momentum in body representation p is not constant.

6.4. The Nonholonomic Connection

We now consider the most general case, where the symmetries are not neces-
sarily horizontal. Although it is not needed for everything that we will be doing,
the examples and the theory are somewhat simplified if we make the following
assumption;

Dimension Assumption. The constraints and the orbit directions span the entire
tangent space to the configuration-space:

Dq + Ty(Orb(q)) = TyQ. (6.4.1)
If this condition holds, we say that the principal case holds.

Inthiscase, the momentum equation can be used to augment the constraintsand
provide a connection on Q — Q/G. Let J"° : TQ — (g”)* be the nonholonomic
momentum map,

<‘]nhc(Q) : Qa €q> = <FL, €g>a
and define, as before, amap A7 : TqQ — Sq = Dq N Tq(Orb(q)) given by

AY™(vg) = (I71M(vg))o. (6.4.2)

This map is equivariant and a projection onto Sg. Here T : g? — (gP)* is the
locked inertiatensor relative to g”'; it is defined in the same way as before.

If we now choose Uy C Tq(Orb(q)) such that To(Orb(q)) = Sq & U, then we
can synthesi ze a connection which encodes both the constraints and the momenta,
as before. This splitting of subspacesis showninFigure6.1. Let AS" : TqQ — Uq
be al{y-valued form that projectsi{y onto itself and maps D to zero; for example,
it can be given by orthogonal projection relativeto thekinetic energy metric (thisis
our default choice). The constraints plus momentum equation can thus be written
as

Adng).gq=0 (constraints),

AY™(q) - q = (I"{a)p)q (momenta),
wherep € (gP)* isthetime-dependent momentum defined by p = (3""°(q) - ¢, £9).
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T Orb(qg) = vertical space
q .

for the nonholonomic

mechanical connection

horizontal space for the
nonholonomic mechanical
connection

Fig. 6.1. Subspace definitions for the nonholonomic connection

Definition 6.2. Under the dimension assumption in equation (6.4.1), and the as-
sumption that the Lagrangian is of the form kinetic minus potential energies,
the nonholonomic connection A isthe connection on the principal bundle
Q — Q/G whose horizontd space at the point q € Q is given by the orthogonal
complement to the space Sy within the space Dy; see Figure 6.1.

Under the assumption that the distribution is invariant (condition (S1)), and
from the fact that the group action preserves orthogonality, it follows that the
distribution § and the horizonta spaces transform to themselves under the group
action. Thus, we get

Proposition 6.3. Under the assumptions in the previous definition and the condi-
tion (S1), the nonhol onomic connection isa principal connection.

Using the preceding expressions, we obtai n an expression for the nonholonomic
connection as an Ehresmann connection (and hence also as aprincipal connection)
by our earlier calculations. In fact, one can readily check that the following propo-
sition holds:

Proposition 6.4. The nonholonomic connection regarded as an Ehresmann con-
nectionisgiven by _
A= AN 4 AYM (6.4.3)

When the connection is regarded as a principal connection (i.e., takes vaues
in the Lie agebra rather than the vertical space) we will use the symbol A. The
nonholonomic connection defined here agrees with the definition in the horizontal
case. (In making this comparison, note that in the genera definition of the connec-
tion, we do not fix the value of 1 but rather let it be determined by the point vg at
which the connection is evaluated.)
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The affine constraint A(q) - § = (T~%(q) - p)o describesthe lifting of pathsfrom
the base. The formulafor the nonholonomic connection is given in terms of A",
whi ch depends on the choi ce of complement ¢, to Sy withinthetangent spacetothe
orbit. However, itiseasily seen that A : TQ — TOrb isindependent of thischoice,
as it must be since the definition of the nonholonomic connection was manifestly
independent of this choice. We compute the equations of motion in terms of the
nonholonomic connection in alocal trivialization of thebundle Q — Q/G in the
following sections.

6.5. Special Cases

Various special cases can be conveniently classified by the generic and extreme
ways the subspaces in the preceding figure intersect. For example, the purely
kinematic case occurs when the space Sq is zero dimensional. The extreme case in
which the tangent space to the orbit is a subset of the space of constraintsis itself
an extreme case of that of horizontal symmetries, etc. The different cases we have
discussed are summarized in Table 6.5.1.

Table 6.5.1. Special casesof the nonholonomic connection (principal case)

Case Conditions Connection
Unconstrained Dq=T4Q AYM(@G) = 171(g)
Purely - Kin(gy) =

ey i Dq N T(Orb(@)) = {0} A =0
Horizontal - ymy ¢ Kingeyy = =11, (¢
ymmatries a0 TaOba(@)=To(Orbu(@) 4”@ + A@) =179u(@
Genera _

principal Dq + Tq(Orb(q)) = TqQ AY(@) + ANN(@) = T719™4(Q)
bundle case

In addition to these possibilities, one can aso consider the case where
Dy + Ty(Orb(q)) # T¢Q. When this happens, the base space for the Ehresmann
connection can no longer be chosen as Q/G and hence a bigger base space must be
chosen. However, thebasi ¢ constructionsstill hol d with the momentum augmenting
the constraintsto give a synthesized connection.

Within this overall framework, reduction is also possible in certain cases. For
example, in the purely kinematic case, KOILLER [1992] showed that the dynamics
of the system drop to the base space Q/G. Similarly, in the case of horizontal
symmetries, we have discussed the situation above. The genera case is discussed
in the following section and the reduced equations computed. In the general case,
the reduced equations will define a dynamical system on the space D /G, and
the reconstruction problem, which we have largely discussed aready, will be the
problem of lifting the dynamics from D /G back to the space D C TQ.
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7. TheReduced Lagrange-d’ Alembert Equations

Thegod of thissection isto compute the equations on the reduced space D/G.
The strategy is to explore the equations of motion, split according to the nonholo-
nomic connection that was constructed in the preceding section. Throughout this
section we make the dimension assumption § 6.4 of so that the nonholonomic
connection is a principa connection. Without this assumption, one would have to
assume an additional bundlestructure. We avoid thisfor simplicity and because the
dimension assumption holdsin all our examples and other related ones we know
about (such asthebicycle, therolling elipsoid, etc.). We will begin, however, with
a second form of the momentum equation that makes use of the geometry associ-
ated with the nonhol onomic connection. We will follow thiswith the computation
of the reduced equations.

7.1. The Momentum Equation in an Orthogonal Body Frame

We first compute the reduced form of the momentum equation that will be one
of the sets of equations comprising the reduced Lagrange-d’ Alembert equations.
This splitting of the equationsis associated with breaking up the variationsthat go
into the Lagrange-d’ Alembert principle into vertical and horizontal parts relative
to the nonholonomic connection. To do this, we make one further assumption,
namely, that theinitial Lagrangian isof theform of kinetic minus potential energy;
in particular, the metric structure defined by the kinetic energy is used. Using the
Kinetic energy metric, we choose our moving basis e;(q) to be orthogond, that is,
the corresponding generators [e.(0)]o are orthogonal in the given kinetic energy
metric. (Actualy, al that is needed is that the vectors in the set of basis vectors
corresponding to the subspace Sy be orthogonal to the remaining basis vectors.)
The metric tensor is denoted by g;;.

We begin by recalling the decompositions defined by the nonholonomic con-
nection described in the preceding section. Refer to Figure 7.1.

Given a velocity vector § that satisfies the constraints, we orthogonally de-
compose it into a piece in Sq and an orthogonal piece denoted i". We regard "
as the horizontal lift of a velocity vector i on shape space; recall that in a local
trivialization, the horizontal lift to the point (r, g) is given by

i = (F, —Aioct) = (F*, —A5F)

(compare equation (2.2.2)), where .42 are the components of the nonholonomic
connection (recall that it isa principa connection) in alocd triviaization.
We denote the decomposition of ¢ by

§= 2o(q) + ",

so that for each point g, £2 isan element of theLie algebraand representsthe spatial
angular velocity of the locked system. Note that in this expression, the constraints
areimplicitly included. In alocal triviaization, we can write, at apoint (r, g)

2= Adg(gloc)
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constraint space = Dq
T,Orb(a)

" = horizontal lift of

horizontal space for the
nonholonomic mechanical
connection

Fig. 7.1. The decomposition of g into vertical and horizontal piecesrelative to the nonholo-
nomic connection

so that §2)0c represents the body angular vel ocity. Thus,
Qo = Alocl +&
and, at each point g, the constraints are that {2 belongsto g9, i.e,

2 € span{e(r), ex(r), ..., em(r)}.

As noted above, the vector " need not be orthogonal to the whole orbit, just to
the piece Sq. Even if  does not satisfy the constraints, we can decompose it into
three parts according to the figure and write

§= 2o(q) + " = 25'(a) + 2 () + ",

where Qgh liesin the space Sg, that is, it satisfies the constraints, and is perpen-
dicular within T4Orb to .(23. The relation 2ioc = Ajocf + & isvalid even if the
constraints do not hold; also note that this decomposition of {2 correspondsto the
decomposition of the nonholonomic connection given by A = AK" + AY™ that was
given in Proposition 6.4. We begin with the momentum equation (4.4.2) in body
representation, which we recall here for convenience:

d _/al ey ..,
o= (pleal s 52 ). (1)
This equation is one of the reduced equations since it manifestly decouples from
the group variables. We now work out this equation in coordinates.

To avoid confusion, we make the following index and summation conventions:
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1. The first batch of indices range from 1 to m corresponding to the symmetry
directionsalong constraint space. These indiceswill bedenoted a, b, ¢, d, ... and a
summation from 1 to mwill be understood.

2. Thesecond batch of indicesrangefrom m+1 tok correspondingto the symmetry
directions not aligned with the constraints. Indices for this range or for the whole
range 1 to k will be denoted by &, b/, ¢, ... and the summations will be given
explicitly.

3. Theindicesa, 3, ... on the shape variables r range from 1 to . Thus, ¢ isthe
dimension of the shape space Q/G and so0 & = n — k. The summation convention
for these indices will be understood.

We need the following calcul ation:

Proposition 7.1. Inalocal trivialization

Bl X .
<%, 77> = |ac(r)9a770+ Z /\a’oﬂ]a re

a’'=m+l

k
=Pt D Ao (7.12)

a’=m+l

Inthisequation, thepartial derivativesof | areevaluatedatapoint(r, , &) satisfying
the congtraints (that is, the corresponding £2ioc = £ + Ajocf liesin g% and n isan
arbitrary element of g. Also,

Pp = Iab(r)gaa

where 14(r) are the coefficients of the locked inertia tensor Ijoc(r) in a local
trivialization (recall fromthe last section that the locked inertiatensor hasindices
that range only over the first batch), and where

k

k

: al al /

Mo =laa = O NawAS = e = > AY (7.1.3)
st 0¢Xofe L= 0¢ 0¢

fora’ =m+1, ... k.

Proof. We denote the kinetic energy metric on T4Q by (, >>q. The corresponding
metric on g restricted to the subspace g? gives the locked inertiatensor as we saw
before.

The kinetic energy is given as follows, without the assumption that ¢ satisfies
the constraints:

K(a,q) =

(03 +025 +1", 03 + 25 +"),
(2, o)+ (24,17,
3095, 25+ 3 (" "), (714

where we have suppressed the g dependence of £2q(q) for simplicity.

1
2
1
2
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Now we passto alocal trivialization and remove the explicit ¢ dependence. We
change variables to (r, r, £2) by the transformation £2 = & + Ajcf, which is valid
even if the constraints are not satisfied. The partia derivatives with respect to 2
equal those with respect to ¢ (evaluated at the corresponding points).

To form the reduced Lagrangian, we subgtitute i" = (i, —.42i%) into the
second term and arrive a

k 1. k / /.
%|acQaQC + Za’zrml Ia’yoéga re— Za’,c’zrml laver £2° Agc re+x

where £22 and £22 are the components of 2™ and 21 respectively, where the
subscriptsonthel denotethecorresponding partial derivatives, as above, and where
x corresponds to the last two termsin (7.1.4), which vanish when the partidsare
taken with respect to £2 at 2+ = 0. It should now be clear that the derivatives of
thisexpression evaluated at 21 = 0 are as stated in the proposition. O

The coefficients A, measure the failure of the horizontal space for the non-
holonomic connection to be orthogonal to the tangent space to the orhit.

Next, for each b such that 1 < b < m, we write out the components of the
remaining expressionin (7.1.1):

08 o _ oe,

[5,90]*'8? [Q—Alocf,%]*'a?fa

k k
= ch;).Qaec/ — Z CgﬁbAngéec/

c'=1 a',c'=1

k
+3 e (7.1.5)

c'=1

where the symbols such as c:gib are the corresponding components of the structure
constants in the given basis and where we have written

k
o0&y W
0 - y 7.1.6
6ra ; PYbOéeC bl ( )
k
Atk =D ATi%ey. (7.1.7)
a=1

(compare equation (4.3.3)). Substituting (7.1.2), (7.1.5), (7.1.6) and (7.1.7) into
(7.1.1), we arrive at

Proposition 7.2. The momentum equation in an orthogonal body frameis

d . .
5P = Ca 2pepg + Do *Pe + Doppl *T7, (7.1.8)

where
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k k
Dgoc = Z *Cg’bAg: + Pygoc + Z /\a'Oé g;)laca (719)
a=1 a'=m+l
k
Dapp= 3 Aaa (—Cg;Ag +~yg;) . (7.1.10)
a’'=m+l

In the case of the snakeboard, the subspace g% is one-dimensional as we shall
see, and the following corollary applies.

Coroallary 7.3. If the subspace g% is either one-dimensional or abelian, then the
first term on theright-hand side of (7.1.8), which isquadraticin p, is zero.

Another notablespecial caseisthefollowing, whichwill beusedintheexample
of aconstrained particlein I2 2 to produce a nontrivia parallel transport equation.

Corollary 7.4. If g is abelian, and if the horizontal space is orthogonal (in the
kinetic energy inner product) to the group orbit, then the momentumequationisin
the form of a paralléel transport equation over the curve r(t) in shape space:

E =~C @
dtpb = b Pc-

We observe that the parallel transport form of the equationsis characterized by
the vanishing of the termsin the momentum equation that are purely quadraticinr
and in p. Thissituation isimportant in understanding the complete integrability of
some systems, such as Routh’ sproblem of therollingball in asurface of revolution;
cf. ZENKOv [1995]. In all the examples considered later, the momentum equation
doesnot havethetermsquadraticin p, but many of them do havethetermsquadratic
int. An example of onewith the momentum equationsquadraticin p istherolling
nonhomogeneous ball, which has symmetry group including the nonabelian group
SO(3). Note that these terms quadratic in p are exactly those appearing in the
Euler-Poincaré equations.

7.2. The Reduced Equations

We now are in a position to put severa parts of the preceding discussions
together. Aswe saw above, the momentum equation in body representati on decou-
plesfrom the group variablesthemsd ves, whichisimportant for thereconstruction
strategy. On the other hand, thisisalocal representation for theintrinsic equations
on the space D/G. Aswe mentioned before, it is convenient to writethemin local
representation in terms of the variables {2 and 1 for severa reasons:

1. Thissplit of the equations correspondsto aglobal intrinsic split of the Lagran-
ge-d’ Alembert principleaccording to the nonhol onomic connection (we emphasi ze
that there is some freedom here; other connections can be used in its place).

2. Thissplit enablesusto usethe (locked) body angular velocity 2 asabasic vari-
ableinstead of ¢ sinceit has better diagonalization propertiesfor the kinetic energy
and will ultimately be more useful for purposes of stability analyses; these two
variables are related by the velocity shift given by the nonholonomic connection;
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Dioc = Alocl +€.

We will show that the equations of motion can be written (using alocal triviaiza
tion) as three systems of equations, namely

o the constraint equations,
o thereduced Euler-Lagrange equationsfor the variabler,
« the momentum equation (of Euler-Poincaré type) in body representation.

We formulate the reduced Lagrange-d’ Alembert equations under the assumptions
of Proposition 6.3. In this context, the Lagrange-d’ Alembert principlemay be bro-
kenup intotwo principlesby breaking thevariationséqintotwo parts, namely, parts
that are horizonta with respect to the nonholonomic connection and partsthat are
vertical (but ill inD). Wewill useasvariables, (r*, r*,) where(r, r) arevariables
in the base and where {2 is the vertica part (the locked body angular velocity).
Let I(r, 1, £2) denotethe reduced Lagrangian written in terms of these variables as
before; the subscript cisused toindicatethefact that 2 isconfined to theconstraint
subspace gY. Use the orthogonal basis e (r), ex(r), . . ., en(r), &na(r), . . . &(r) in-
troduced for the momentum equation in the body representation (recall that this
means that the first m elements are orthogonal as are the second k — m elements
but that the two sets need not be orthogonal to each other). Let

Po(r, ¥ Q)_<8Q’Q’(r)>’ b=1,...,m

Theorem 7.5. Using the preceding notation, and regarding I as a function
of (r,r,p), the following reduced nonholonomic Lagrange-d’Alembert
equationsholdforeachl< o <candl<b<m

d al ol . 4.
d . o
G = Col PePa + D, Pe + Dl * 17, (7.2.2)

where the coefficients D, and D,pp are defined in Proposition 7.2, and the
coefficients K29, K25, and K55 are defined by

|ad

ZC AU +A8,1%,

O‘ o
8r ot
k k
3, = Z Aarp (_ch,cAgwawgawa) x B2,
a’'=m+l b’=1
k
Kags = Y AasBly,
a’'=m+l

where
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k / a'

1 6Aa 8A 1 / / / 1 / 1

a o B a b’ AC ¢ a c_a

e = bzl ( oo~ e — CRoAYAL + AT, — A,
! c/=

for all & intherangeof 1tok.

Proof. The second set of equations, which are the momentum equations, were
derived in the preceding proposition. To get the first set of equations, one can
proceed in two ways. First, one can invoke the calculations earlier in this paper for
the motion relative to a general Ehresmann connection, restricting attention to the
variationsthat are horizontal; thisis a straightforward, athough somewhat tedious
caculation. A second method is to write the equationsin a “vector” form similar
to those for the momentum equation in body representation that we derived earlier
by using the local form of the equations regarding the momentum terms as affine
constraints (see (2.3.1)):

Cdle=— <% Aioe(F, 61) — [t A.oc(ar)]> (7.23)

- <% (DHE.clp)(ér)> |

When these equations are converted to coordinate form onerecovers the coordinate
formabove. O

The above equations become the reduced Eul er-Lagrange equations described
earlier in case there are no constraints. Notice also that the reduced equations
are decoupled from the group variables, which isimportant for the reconstruction
process. We summarize what we have aready established on reconstruction as
follows:

Proposition 7.6. The group variables are reconstructed by means of the equation
9=9-¢
Wha‘eg = Q - ./4|ocf.

Of course we could also write this equation in terms of the nonholonomic
momentum py. As before, let A : TQ — g be the Lie-algebra-valued one-form
corresponding to Aq : T4Q — Tq(Orb(a)). Since the nonholonomic momentum
map is equivariant, we can writeit in alocal trivialization, as before:

Iy, 1, ,F) = Ady -1 (e (r, T,€)).

This is a form similar to that for the local expression for a connection and its
curvature. Then the reconstruction equation becomes

9= g(=Aiac(")F + Ti5(r)p)

where Ajoc : T(Q/G) — g isthelocal version of .4 and H,;cl istheloca version of
the locked inertiatensor, as was defined before.
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Notethat ¢ dependslinearly ont and aso linearly on p. In the case of horizontal
symmetries, the term — Al defines the geometric phase and the term 21 =
H,j.cl(r)p := I'(r)p determines the dynamic phase. We adopt the same terminol ogy
in the genera case. If the dynamic phase term is zero, then the motion in the
group variables is determined solely by the path in the base space, not its time
parametrization. On the other hand, the dynamic phase determines the motion of
the system when r = 0 and hence corresponds to unforced motions of the system.
For a system with horizontal symmetries, p is a constant.

Aswehaveshown, itispossibleto chooseabasisof sectionsfor §, = DgNTyOrb
such that the momentum map and the locked inertia tensor is group invariant
(independent of ¢). This was also shown by OSTROWSKI, BURDICK, LEWIS &
MURRAY [1995], who write the momentum and reconstruction equations in the
form

9 = g(—=Aic(n)F +1(r)"'p),
p=o(r,r,p).

To reiterate, the reconstruction process now decouples as follows: Given an initia
conditionand apath inthe base space, wefirst integrate the momentum equation to
determine p(t) for al time. Wethen user(t) and p(t) to determine the motionin the
fiber. This decoupling isonly possible when p isindependent of ¢, since otherwise
theequationsfor p and g are coupled. Of course, thiswhole process can beread in
many different ways depending on the dynamics and control objectives. We will
be exploring a number of these avenues in future publications.

Some Additional History. We have discussed quite a few of the earlier historical
points in the Introduction, and here we make a few more remarks on the more
recent history relevant to this paper. Additional information, especialy on the
Russian literature, can be found in SumBaTOv [1992]. First of all, KOILLER [1992]
established thereduction procedurein what we call herethe purely kinematic case.
Thus, our results can be viewed as ageneralization of his. Also, BLOCH & CROUCH
[1992] treated the case which we would call here that of horizontal symmetries.
YANG [1992] treated the purdy kinematic casetogether with horizontal symmetries,
aswell as considering affine constraints. MARSDEN & SCHEURLE [1993a,b] treated
the case of Lagrangian reduction for holonomic systems and introduced the idea of
dividingthe variationsinto horizonta and vertica partsinthe variationa principle
and worked out the reduced Euler-Lagrange equations for this case. The present
work can also be viewed as the generalization of that work to include the case of
nonholonomic constraints.

8. Examples

We now consider severa detailed examples to illustrate the theory devel oped
above. Although most of these examples are of strictly academic interest, they
illustrate the basic concepts and indicate how more complicated examples should
be attacked. The examples which we present are a vertica disk rolling on a plane,
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anonholonomically constrained particlein 3, a ball on a spinning plate, and the
snakeboard, a variant of the skateboard. This last example is perhaps the richest
of these examples and it uses the full momentum equation to describe its motion.
Indeed, it was primarily this example which hel ped guide the theory and led to the
devel opment of the momentum equation and the nonhol onomic connection.

In addition to the exampl es presented here, there are many other nonholonomic
systems of both academic and practical importance. We already mentioned the
faling disk and the wobblestone in the Introduction; another is the controlled
bicycle (GETz [1994] and GETz & MARSDEN [1995]). Many robotic locomation
systems can be modeled in terms of nonholonomic constraints; see KELLY & MUR-
RAY [1995]. Additional examples can befoundin roboticmanipulation, particularly
robotic grasping; see MURRAY, LI & SASTRY [1994].

Inall of the examples that follow, we will assume that the kinematic constraints
hold exactly and that the Lagrange-d’ Alembert principle holds; in particular, the
forces of constraint do no (virtual) work. In practice, one modifies the resulting
equationsto take into account friction, dipping, and other effects.

8.1. The \ertical Rolling Disk

Although the verticd rolling disk is very smple and classical, it nonetheless
illustrates the ideas. We mention that the falling disk can be treated by similar
methods; see VIERKANDT [1892], O’ REILLY [1996], GETz & MARSDEN [1994] and
CUSHMAN, HERMANS, & KEMPPAINEN [1995].

We begin by devel oping the equations of motion using the Ehresmann connec-
tion given by the constraints and deriving the reduced Lagrangian, thusillustrating
the material of Section 2. The equations are then written explicitly in terms of
the reduced Lagrangian and the curvature of the connection. We then discuss the
momentum equation of Section 4 and Section 7. Using different subgroups of the
full symmetry group we show how one gets conservation laws from both horizontal
and nonhorizontal symmetries. The different forms of the conservation laws are
asoillustrated.

Consider a vertica disk free to roll on the (x, y)-plane and to rotate about its
vertical axis. Let x and y denote the position of contact of the disk in the (x, y)-
plane. The remaining variables are # and  denoting the orientation of a chosen
material point P with respect to the vertical and the“heading angle” of thedisk, as
inFigure8.1.

Thus, the unconstrained configuration-space for the vertica rolling disk is
Q = R?x S x S The velocities associated with the coordinates x, y, 6, ¢ are
denoted X, y, 6 and ¢, which provide the remaining coordinates for the velocity
phase space TQ. The Lagrangian for the problem is taken to be the kinetic energy

L% Y, 0,0,%Y,0,6,¢) = $m(C +§P) + 3167 + 335 (8.1.1)

where misthe mass of the disk, and | and J are its moments of inertia. Note that
so far, we use the full configuration-space, ignoring the constraints and that the
Lagrangian isthe standard “free’ Lagrangian.
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Fig. 8.1. Geometry of the vertical rolling disk

The rolling constraints (assuming the disk hasradius R) may be written as
X = R(cose)d, Y= R(siny)d. (8.1.2)

At first we can close our eyes to the symmetry of the problem and just think of the
constraintsas the horizontal space of an Ehresmann connection, asin Section 3. To
do this, we must choose a bundle Q — R. Given the nature of the constraints and
the fact that we imagine that eventually controlswould be added to either the 6 or
the ¢ variable, we are motivated to choose the base Rto be S' x St parametrized by
6 and ¢ with the projection to R being the naive one (s, s, 11, r?) = (x,y, 6, ¢) —
(rt,r?) = (8, ). From the constraints we can read off the components of the
Ehresmann connection (see (2.1.3)):

Al = —R(cosy), A2 =—R(siny), (8.1.3)

and the remaining A2 are zero. If we choose to regard the bundle Q — Ras a
principal bundlewithgroup G = IR weget an abelian purely kinematic system (see
BLOCH, REYHANOGLU & MCCLAMROCH [1992] and BLOCH & CROUCH [1992]).
Indeed, note that using the obvious action of G, we get

_ o 0
T4Orb(g) = span { X @} : (8.1.4)

Notice that Dq N To(Orb(g)) = {0} and that the components of A are independent
of xandy.

Proceeding withtheanalysisof Section 3, we obtainthe constrained Lagrangian
L¢ by substituting (8.1.2) into (8.1.1):

Le(0,0,%, Y, 6, 9) = 3R +1)0% + 3357, (8.15)

Notethat if the mass density of thedisk were constant, then| = EmR2 and we could

simplify the coefficient of 42 to %mRzéZ, but we need not make this assumption.
The curvature of the connection A is computed using formula (2.1.7) to be
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B}, =B}, = —Rsiny, B, =—B% = —Rcosy, (8.1.6)

with the remaining B2 5 Z€X0. The equations of motion

d /oL le _ LN La .
HER L G17)
become
(MR2 +1)d = (MR(cos )0)(—R(Sinp)$)
+MR(sin)8)(R(cosp)¢) = 0, (8.1.8)

Jp = (MR(cos )d)(Rsing)d)
+(MR(sin ¢)§)(—Rcos)d = 0. (8.1.9)

Thus, 6 = 2and ¢ = w areconstants, sof = 2t+fg, p = wt+pg andeguation (8.1.2)
gives
X = QRcos(wt + ¢g), Y= N2Rsin(wt + o).
Hence
2 _ . N
x=—Rsn(wt+po) +X%, Yy=-——Rcos(wt+ o) +Yo.
(o3} (o3}

We now turn to the momentum equation. It is clear that in the example as
presented, we have the whole group SE(2) x S as a symmetry group. In such
a case, the orbit of the group spans the entire constraint distribution. While this
is certainly alowed by the theory, it is an extreme case that one does not have
in general. In the presence of controls some of the symmetry will be broken, so
it is appropriate to consider a smaller symmetry group, namely, a subgroup of
SE(2) x S to be the group G in the general theory. For illustrative purposes, we
make two choices, namely, the subgroup SE(2) and the direct product B2 x St. To
keep things clear, we write these two choices as

G =SE(2) and G,=R?x S

Itisinteresting that, as we shall see, the actions of G; and G; give rise to the two
conservationlawsé = 2 and ¢ = w respectively, onebeinginduced by ahorizontal
symmetry, the other not.

The action of G; = SE(2) onIR*is given by

(X,Y,8,¢) — (Xcosa — ysina+a,xsna+ycosa +b, 0, o +a) (8.1.10)
where (a, b, o) € SE(2). The[R? x S action is given by
XY, 0,0) = X+ y+pu,0+05, ). (8.1.11)

The tangent space to the orbitsof the SE(2) action is given by

_ a 9 0
TqOrb(q) = span { % 3y’ %} ; (8.1.12)

whilefor the G, = R2 x St action, itis
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g o0 0
T,Orb(q) = — =, = . 8.1.13
oro() = spen { £ ®119
One checks that the Lagrangian and the constraints are invariant under each of
these actions.

We now consider the momentum equati ons corresponding to these two actions.
The preceding cal cul ations show that the constraint distribution D is given by

_ 0 0 .9 0
Dq—span{%,RmS¢a—)(+Rsngo@+%}. (8.1.14)

Recall that the space Sy is given by the intersection of the tangent space to the orbit
with the constraint distributionitself. Hence, for the SE(2) action we have

Sq = Dgq N TgOrbg, (0) = span { ai} (8.1.15)
¥
and for theR2 x St action we have
Sq = Dgq N TyOrbg,(q) = span < Rcos é+Rsin é+£ (8.1.16)
q=Lqlllg ,(0) = soax goay 20 A

To obtain the corresponding momentum equations, we consider the bundles
whose fibers are the span of the tangent vectors in the preceding two equations
in the respective cases, and choose sections of these bundles. The bundles are
of course trivial. In the case of the G; = SE(2) action, note that the generators
corresponding to the Lie algebra el ements represented by the standard basisin 3
(with trandlations being the first two components and rotationsthe third) are given

by

=0 =0 NN
(1aOaO)Q—a—X, (0,1,0)Q—@, (O’O’l)Q__y8X+X6y+6gp'

To obtain the section of S, given by the vector field

0
3= - 8.1.17
5Q D ) ( )
we thus choose the Lie a gebra el ement
E’q = (ya =X, 1)a (8118)

whilefor the G, = R2 x S action we take the section to be the vector field

_ 0 .9 0
§o= Rm3¢a—)( + Rsngo@ + e (8.1.19)
with corresponding Lie algebra element
£9=(Rcosp,Rsng, 1). (8.1.20)

For the SE(2) action, the nonholonomic momentum map is
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aL

h — [
JMee) = o4 (€3) =3¢ (8.1.21)
and hence the momentum equation becomes
d mmereqy - A oo _ OLTd o]
aJ €M = a(JSD) T o a(f ) o (8.1.22)

= mx(y) + my(—X) +0=0.

Thisisof coursean ordinary conservationlaw and isoneof the equationsof motion.
Note that corresponding to thisaction,

Dq N Tq(Orbg, () = Ta(Orbr(a)),

where H = St, and we obtain a conservation law corresponding to the horizontal
action of S'. Thislaw can of course also be obtained by directly considering the St
action.

For the G; action, a straightforward calculation shows that the third part of
Corollary 4.9 applies and so thisis oneway to find the constants of motion. Rather
than giving the detailsof thiscalculation, we givethemfor the G, = 22 x S action:
For the G, action, the nonholonomic momentum map is

aL
oG

and so the momentum equation becomes

Ihe(e = = (¢3) = mKReosp +myRsing + 10, (8.1.23)

%(mecos@ +MmyRsing +10)
= rm'(%(Rcos@) + my%(stngo), (8.1.24)

i.e.,
Rcosy mk + Rsinpmy + 16 = 0. (8.1.25)

Using the constraints to eliminate X and § from this equation we get
(MRZ +1)d =0, (8.1.26)

which we derived in (8.1.8). Alternatively, observe that, after imposing the con-
straints, the right-hand side of equation (8.1.24) is zero and the left-hand side
reduces to the |eft-hand side of (8.1.26). Thus the two momentum equationsyield
the reduced equations of motion.

We now illustrate, for the case of the G, = R2 x S action, the momentum
equation in a moving basis (4.3.7) and the momentum equation in a body frame
(4.4.2). The latter is equivalent to the reduced form of the momentum equation
given in Theorem 7.5. We first treat the version (4.3.7). Choose a fixed basis for
the Lie agebra of G, = B2 x S', namdly, (1,0,0), (0,1, 0), and (0,0, 1). From
£9 = £3¢g,, we have

¢ =Rcosp, £2=Rsing, =1
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Choose the moving basis
e(a) = (Reosp, Rsing, 1), e(9)=(1,0,0,  e(q)=(0,1,0),
and write ey(q) = ¢ 2(0)ea. Wefind that
Yl=Reosp, v2=Rsing, ¢3=1 y¢i=1 ¢2=1

and ¥8 = 0 otherwise. Writing &, = K}¢?, we find that the coefficients of the
infinitesimal generator are given by K{ = K2 = K§ = 1 and K}, = 0, otherwise.
From theformulaJ, = (L/99" )KL&, we find

J1 = MKRcose + MyRsing + 16,

noting that Sy is one-dimensional, so the range of the index b in the nonholonomic
momentum map issimply b = 1. We find that

0 .
F14 (W~ 1)2 1/)1_ —Rsiny,
6
F14 (W~ 1)3 ;:01 =Rcosyp,

'S =0 otherwise.

Withr =1, n =4, and k = 3, these cal cul ations show that the momentum equation
(4.3.7) becomes

—Jl Zfl.alq Z wﬁﬁq‘ [ez(q(t))]Q+Z wﬁﬁq‘ [e(a()]o- (8.1.27)

i,1=1 i,1=1
Thefirst termis zero and the momentum equation simplifiesto

d
dt
which isindeed the correct momentum equation.
We now discuss the version (4.4.2) of the momentum equation, continuingwith
the G, action. Here the shape variabler is and ¢ = (X, Y, #) and so the reduced
Lagrangianis

J= m%(Rcos@) + my%(Rs' ne), (8.1.28)

(e, .%,¥,0) = 3m( + ) + 3102 + 3352,
We choose e1(p) = (Rcosp, Rsing, 1), &x(y) = (1,0,0), and es(v) = (0,1,0).
Then (4.4.1) gives
ol . L :
pL = o€ e ) = MxRcosp + myRsing + 16,
which, when the constraints are substituted, gives
p1 = (MRR +1)4.

The momentum equation (4.4.2) now becomes, since the group is abelian,
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do o (9 de
= ((mx, my, 10), (-Rsing, Rcosg, 0))
= —mxRsing + myRcosy,
which vanishesin view of the constraints. Thus, we recover dp; /dt = 0O, as before.

Observe that thisformulation directly gives us a conservation law even though the
symmetry is not horizontal.

8.2. A Nonholonomically Constrained Particle

Aninstructiveexampledueto ROSENBERG [1977] that illustratesthe momentum
equation isthefollowing example of anonholonomically constrained free particle.
This example was also used to illustrate the theory in BATES & SNIATYCKI [1993].
We show here that the momentum equation in an orthogonal body frame is a pure
parallel transport equation with respect to the nonmetric connection for the particle
observed by BATES & SNIATYCKI. We thus provide a general method for deriving
such a connection.

Consider a particle with the Lagrangian

L=10(C+V+7) (8.2.1)
and the nonhol onomic constraint
7= Y&, (8.2.2)
The constraints and Lagrangian are invariant under the IR 2 action on IR 2 given by
X Y,2) = (X+ Ay, 2+ p). (8.2.3)

The tangent space to the orbitsof this action is given by

_ o 0
TyOrb(q) = span { x 8_2} , (8.2.4)
and the kinematic constraint distributionis given by
0 o 0
Dq—span{a—x+yﬁ—z,@}, (8.2.5)
and thus 5 )
P To(Orba) = pan { -y | (526)

Consider thebundle S with fibers the span of these tangent vectors. To obtain the
momentum equations we begin by taking an arbitrary section of thisbundle. The
bundleis of course trivial and for simplicity we take the section to be the vector
field

0 0

9- Y9 49
o x Vo (8.2.7)
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The corresponding Lie algebra element ¢9 € R2is

=1 y). (8.2.8)

The nonholonomic momentum map in thiscase is
nhc q\ — 6'— q i_ ... . .
‘] (€ ) - 6_ql(€Q) - <(Xa ya Z)a (1a Oa y)> =X+ yZ (829)

Hence the momentum equation becomes

dmeed) d,. oo aL[d, o1 . L
dt - a X+yZ) - 8_q| [a(g ):| 0 - <(Xa ya Z)a (Oa Oa y)> - Zy (8210)
i.e,
X+yz=0. (8.2.11)
Using the constraint z = yx, we may rewrite the momentum equation as
. y ..
X+ i y2xy =0. (8.2.12)

Together with the Lagrangian equation of motion y = 0, this completely specifies
the motion, and in fact these two equations are a (non-metric) geodesic flow
as pointed out in BATES & SNIATYCKI [1993]. In this example we note that the
momentum equation isthe total derivative of afirst-order conservation law:

. c
X———=0 8.2.13
(L+y?)/2 o

for ¢ an arbitrary constant. Note, however, that this equation, which isused in the
Bates-Sniatycki procedure, is a conservation law, but is not directly a component
of a conserved momentum map. In other words, the fact that the second-order
momentum equation here is the derivative of a first-order conservation law is not
due to considerations of symmetry.

Note also that if one chooses the right base and fiber, this system is again an
abelian Chaplygin system. Here we take R 2 with coordinates {x, y} to be the base
and R with coordinate z to be the fiber. Then

T4(Orb(g)) = span { 8% } (8.2.14)
and Dy N Ty(Orb(q)) = 0.

Weagainillustrate both coordinate versi ons of themomentum equation, namely,
(4.3.7) and (4.4.2), first treating the version (4.3.7). We choose afixed basisfor g =
R2 namey, e; = (1,0)and & = (0, 1); then ¢9 = £le; + %6y, whereél = 1 62 =y,
Asbefore, choose amoving basis

e(d=(1y), e(@=(0m1).
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2
() =D Uh(aen,

a=1
then clearly
vi=1 wi=y, ¥3=0, ¢3=1.

Writing _ _

o = Kaé?,
wefind K} =1, K3 = 1, and K}, = 0 otherwise. Hence,

oL o

Ji= a—quél/)? =X+yz

noting that Sy isone-dimensional, so the range of the index b in the nonholonomic
momentum map issimply b = 1.
Next we compute the connection coefficients. We find

W hHi=1 @ hHi=-y (@ hHi=0 (¥ H3=1

and hence 1'%, = 1, and I}, = O otherwise. These caculationswithr = 1,n = 3,
and k = 2, show that the momentum equation (4.3.7) becomes

d > =L, -
LD RTEDY pr 7 dlex(a®)]o. (8.2.15)
I=1 i1=1
Thefirst termis zero and so the momentum equation simplifiesto
EJ =3 (8.2.16)
dt 1= 2y, L.

the correct momentum equation.

Now we discuss the version (4.4.2) of the momentum equation. First, we must
orthogonalize the preceding moving basis. Here the shape variable r is y and
& = (X, 2) and so thereduced Lagrangian is

I(r,7,€) = 162+ + 2).

We choose
el(r) = (1,y), e(r) = (-y, 1).
Then (4.4.1) gives

pL = X(1+Y).
Again the group is abelian, and so the momentum equation (4.4.2) becomes
d /ol ode.\ . . L
apl - <%a 8_yy> - <(Xa Z)a (Oa 1)> =27,

as before. Writing
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dey
oy =(0,1) = v,&1 +7h e,

we see that
1 _ Y 2 _ 1
’711——1+y2, ’711——1+y2

and so the momentum equation (see Corollary 7.4) becomes

a

yy
1 +y2 pl
whichisinparalée transport form. Notethat theconnection wehavejust constructed
using the genera principles of the momentum equation is the same nonmetric

connection asin BATES & SNIATYCKI [1993].

8.3. A Homogeneous Ball on a Rotating Plate

An example which illustrates the theory in the case of affine constraints is
a modedl of a homogeneous ball on a rotating plate (see NEIMARK & FUFAEV
[1972] and YANG [1992] for the affine case and, for example, BLOCH & CROUCH
[1992], BROCKETT & DAI[1992] and JURDJEVIC [1993] for thelinear case). Aswe
mentioned in the Introduction, CHAPLYGIN [1897b, 1903] studied the motion of a
nonhomogeneousrolling ball. Here we illustrate the derivation of the equations of
motion for a homogeneous ball in the affine case as well as the structure of the
nonholonomic momentum map in this setting.

(X y) /
Q

Fig. 8.2. The ball rolling on a plate

Consider the system shown in Figure 8.2. Fix coordinates in inertial space
and the let the plane rotate with constant angular velocity {2 about the z-axis. The
configuration-space of the sphereisQ = 22 x SO(3), parametrized by (x,y, R), R€
SO(3), al measured with respect to theinertial frame. Let w = (wy, wy, w7) bethe
angular velocity vector of the sphere measured also with respect to the inertial
frame, let m be the mass of the sphere, mk? itsinertia about any axis, and let a be
itsradius.

The Lagrangian of the system is

L = ImGé +7) + ImiP(w,d + wy? +w7?) (8.3.1)

with the affine nonhol onomic constraints
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X—awy=—02y, y+aw=02xX (8.3.2)

Note that the Lagrangian here is a metric on Q which is bi-invariant on SO(3) as
the ball is homogeneous. Note also that 22 x SO(3) is aprincipa bundle over 22
with respect to the right SO(3) action on Q given by

xy,R — (xy,RS (8.3.3)

for S € SO(3). Theactionisontheright sincethesymmetry isamaterial symmetry.

Observe, as in YANG [1992] and BLOCH & CROUCH [1992], that the angular
momentum of theball about the z-axisisconserved sincethe Lagrangianisinvariant
under rotations about the z-axis and the infinitesimal generator of these rotations
clearly liesin Dq. That is, we have horizontal symmetries. The conservation laws
together with the constraints, namely,

wx+%y: %(, wy—%X: %/, wz = C, (8.34)
where c is a constant, thus determine the nonhol onomic connection.
To compute the equations of motion we use the following notation. Let rt = x,
r2 =y, and let st, &, s denote the angles corresponding to rotation about the x, y
and z axes respectively. The constrained Lagrangian is given by (eliminating wy,
wy and wy)

Lo = o (i +1O)6 +7)
+MK222(X + y?) + 2mk3(2yX — 2x) } (8.3.5)

(up to an irrelevant constant). Using the above definitions of the variablesr, swe
see that 1

Al = - A== (8.3.6)
with all other A% equal to zero. Hence dll the curvature terms B, ; are zero.

Onthe other hand, recalling that the affine constraintsare written asw(€)) = ~(r)
withd+? = ~2dr~ we have

SR

n

2
1 2 —
— =— 8.3.7
n=5 2Ty (8.3.7)
with all other v2 equal to zero. Then't eequanonsof motion
Ol a
8.38
( ara) 'ya (8.3.8)

become
a—lz{m(a2 + k2% + 2mk2 2y — mk?22x}

? k2 .
= M, = —n;—(.QZx— )

a—lz{m(a2 + K2y — 2mk2 2% — mk2 2%y}

2
= —mkzwy% = _”;—';(sz 0%)
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k202 . K22 .

X+ ——vVy= - X=
a2+k2y oY a2 + k2

0. (8.3.9)

These equations may also be derived by considering the momentum equations
associated with the system.

Notefirst that the constraint distribution given by the two kinematic constraints
is (modul o the affine piece)

0 0
Dy = span {a8_>< +¢&y, *a@ + &, 52} , (8.3.10)

where &y, &y, and &, denote the infinitesimal generators of rotations about the X,
y and z axes of the ball respectively. Now consider the action of the full group
22 x SO(3) on the configuration-space. Clearly the Lagrangian isinvariant under
thisaction. Also, we see that in this case we then have

Sq =DqN TOrb(q) = Dy .

Thus the nonhol onomic momentum map J"° has three components corresponding
to the three independent generators of Dy
We have

oL, .\
Ji = %(&)JQ
which gives

Jl = <(rnxa rnya mksza mkzw)/a mkzwz)a (aa Oa Oa 1a O)>
= amx + mk2uwy,

‘]2 = <(rnxa rnya mksza mkzw)/a mkzwz)a (Oa _aa 1a Oa O)>
_ . 2 (8.3.11)
= —amy + mk-wy,

‘]3 = <(rnxa rnya mksza mkzw)/a mkzwz)a (Oa Oa Oa Oa 1)>

Inall cases €9 isindependent of g, so the momentum equations are simply

d; _d, . 5 v

i a(amx+ mkwy) =0,

% = %(—amy+ mkZwy) = 0, (8.3.12)
di; _d

d—f = a(mkzwz) =0.

Thethird equation is of course nothing but the conservation of angular momentum
mentioned earlier. However thefirst two equations can easily be seen to be equiv-
alent to the equations of motion (8.3.9)—one simply carries out the differentiation
and solves for the derivatives of wy and wy using the derivatives of the constraint
equations (8.3.2).
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The dynamics of this system are particularly interesting—for example, the ball
will generaly not roll off afiniteplate (see YANG [1992] and the experimental work
of LEwIS & MURRAY [1994]). Notea so that all theinteresting behavior arisesfrom
the affine nature of the constraints as thereis zero curvature.

8.4. The Shakeboard

Thesnakeboard isamodified version of askateboard in which thefront and back
pairsof wheelsareindependently actuated. The extradegree of freedom enablesthe
rider to generate forward motion by twisting his or her body back and forth, while
simultaneously moving thewhed swith the proper phaserel ationship. A diagram of
the snakeboardisshown in Figure 8.3. A detailed descriptionwasfirst presented by
LEWIS, OSTROWSKI, MURRAY & BURDICK [1994]; see also OSTROWSKI, BURDICK,
LEWIS & MURRAY [1995] and OSTROWSKI [1995].

Fig. 8.3. The variables in the snakeboard

One of theinteresting features of the snakeboard is that it leads to a nontrivia
momentum equation which, in the general notation, has terms that are linear in p
and also quadraticinr. Other examples with asimilar structure for the momentum
equation are the roller racer (see TSIKIRIS [1995]) and the bicycle (see GETz AND
MARSDEN [1995]).

We mode the snakeboard as a rigid body (the board) with two sets of in-
dependently actuated whedls, one on each end of the board. The human rider is
model ed asamomentum wheel which sitsin themiddle of theboard and isallowed
to spin about the vertical axis. Spinning the momentum wheel causes a counter-
torque to be exerted on the board. The configuration of the board is given by the
position and orientation of the board in the plane, the angle of the momentum
whesd, and the angles of the back and front whedls. Thus the configuration-spaceis
Q=SE(2) x St x St x S'. Welet (x, y, ) represent the position and orientation of
the center of the board, 1) the angle of the momentum whed relative to the board,
and ¢ and ¢, the angles of the back and front wheels, also relative to the board.
We take the distance between the center of the board and thewheels asr.

The Lagrangian for the snakeboard consists only of kinetic energy terms. We
take the simplest possible model for the various mass distributions and write the
Lagrangian as

L(q, &) = 2m(@ +¥?) + 1302 + 130(0 + ¢)?
+ 130+ $1)? + 33,(0 + $2)?,
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where misthe total mass of the board, J istheinertiaof theboard, Jy istheinertia
of therotor and J;, i = 1, 2, isthe inertia corresponding to ¢;. The Lagrangian is
independent of the configuration of theboard and henceitisinvariant to al possible
group actions.

Therolling of the front and rear wheels of the snakeboard is modeled by using
nonholonomic constraints which alow the wheels to spin about the vertica axis
and roll inthe direction that they are pointing. The wheels are not allowed to slide
in the sideways direction. This gives constraint one-forms

w1(Q) = — sin(f + ¢1)dx + cos(6) + ¢1)dy — r cos ¢1d0,

wo(Q) = — SiN(@ + ¢2)dX + cos(f + ¢2)dy + r coS$dl. (8.4.1)

These congtraints are invariant under the SE(2) action given by

(Xa Y, 9’ 1/)a ¢1a ¢2)

— (XCOSa — ySina +a XsSna +ycosa +b, 6 +«a, v, ¢1, ¢2),

where (a, b, o) € SE(2), and also under the S* action defined by

(Xa Y, 9’ 1/)a ¢1a ¢2) = (Xa Y, 9’ 1/) + 6a ¢1a ¢2)

We consider here only the SE(2) symmetry since we have in mind the situation in
which the St symmetry is destroyed by the controls. The constraints determinethe
kinematic distribution Dy

_ o 9 0 0 0 0
Dq—span{%,%,%,aﬁ—x+ aﬁc%}, (8.4.2)
wherea, b, and ¢, are given by
a= —r(cos¢1cos(f) + ¢2) + COSP2 COS(0 + $1)),
b= —r(cos¢gisin(f + ¢2) + cosg2sin(f + ¢1)), (84.3)
c=sin(¢1— ¢2).
The tangent space to the orbitsof the SE(2) action is given by
_ g o0 0
TyOrb(@) = span{ 7. . (B4.4)

(note that thisis not a left-invariant basis). The intersection between the tangent
space to the group orbits and the constraint distributionis thus given by

0 0 0
Dq N Ty(Orb(q)) = a8_>< + b@ + c%. (8.4.5)

We construct the momentum by choosing a section of D N TOrb regarded as a
bundle over Q. Since Dy N TqOrb(q) is one-dimensional, we choose the section to

be d d d
gQ:a—+b—+C

5% " Pay a0 (8.4.6)
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which isinvariant under the action of SE(2) on Q. The corresponding Lie algebra
eement £9 € se(2) is

£9=(a+yc)e +(b—xc)e +cey

where g is the basis dement of the Lie algebra corresponding to trandationsin
the x direction (and whose corresponding infinitesimal generator is §/0x), €tc.
Physically, £% corresponds to planar rotation about the point P where the axles
of the front and back whedls intersect. When ¢1 = ¢», this rotation becomes a
trand ation (rotation about a point at infinity). See Figure 8.4. We notice that there
isasingularity in the distributionwhen P is at the center of the snakeboard (when
the axles of the whedls are aligned along the center line of the board).

Fig. 8.4. The momentum map component is the angular momentum about P

Equation (8.4.6) gives a nonhol onomic momentum map

p = (e = g—;(gg)i

= max + mby + Jcf + Joc(@ + ) + (@ + ¢1) + (0 + 62).

We now specialize to the case in which ¢1 = —¢, and J; = J,. We aso choose
the parameter J such that J + Jp + J; + J, = mr2. We do thisfollowing OSTROWSKI
[1995] for simplicity; it eliminates some terms in the derivation but does not affect
the essential geometry of the problem.

We now compute the nonholonomic connection for thiscase. If weset ¢ = ¢; =
— >, the constraints plus the momentum are given by

0= —sin(@ + ¢)x+ cos(f + ¢)y — r cos¢d,

0= —sin(@ — ¢)x+cos(d — ¢)y +r cosad,

p = —2mr cos(¢) cos(d)x x 2mr cos’(¢) sin(6)y
+mr2sin(2¢)0 + Jo SiN(2¢) .

Adding, subtracting, and scaling these equations, wecan write (away from¢ = 7 /2)
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Yoo _1
cos(0)x + sin(8)y — oo SIN(20)0 5P
_ sin(@)k + cos(0)y | + 0 -1 70 |. (a7
0 Jo .2 tan ¢
2 sin“(¢)y 2

These equations have the form
974+ Aioc(n)f = T(r)p
where

__ b g Jo g2
Aloe = =5 Sn(29)ecdy + 5 Sin“(¢)ey dv,

-1 1
= __ e+ —_tan
T 2 2mr2t (@)€.

Theseareprecisely thetermswhich appear inthe nonhol onomic connection rel ative
to the (global) trivialization (r, g). Note that 7" contains the same information as
thelocal (body) form of thelocked inertiatensor, 1o, as was explained earlier. We
also notethat 7°(r) is not paralle to the vector £¢9 written above, since 7" isin body
representation; when an Ad, isfactored out of £9, itis paralld.
The momentum equation, which governsthe evolution of p, is given by
oL Td '
= p— q
= 5 | .
= 4nr cos(0) cos(¢) Sin(¢)% + 4mr sin(6) cos(¢) sin(¢)ye
+ 2Jp COS(2¢) 1) + 2mr? cos(2¢)0
— 2mr cos(6) cos2(¢)y8 * 2mr sin(8) cos?(4)xd. (8.4.8)

Using equation (8.4.7) to solve for the group veocities X, y, g, the momentum
equation can be rewritten as

p = 2Jp cosX(¢) ¢¢ — tan(¢) pe. (8.4.9)

This version of the momentum equation corresponds to the coordinate form in
body representation, equation (4.4.2). Note that equation (8.4.9) contains no terms
which are quadraticin p, dueto the fact that g9 is one-dimensional.

Equations(8.4.7) and (8.4.8) describe how pathsinthebase space, parametrized
byr e St x S x S, arelifted to the fiber SE(2). Notice that even if r = 0, it is
till possible to get motion in the group variables if p + 0. Indeed, the essential
property of the snakeboard is that it is possible to build up p so that the board
can build up forward momentum without being directly pushed. The utility of
equation (8.4.7) isthat it greatly simplifies the process of solving for the motion
of the system given the base space trgjectory. One aternative, used for example, in
LEWIS, OSTROWSKI, MURRAY & BURDICK [1994], involves completely solvingthe
dynamicsof the system without taking into account the special geometric structures
developed here.

The second-order equations which describe the evolution of the base space
variables are quite complex and are not given here. See OSTROWSKI [1995] for
additional details.
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9. Conclusions

In this paper we have established some basic properties of nonholonomic sys-
tems from the Lagrangian point of view; in particular, we have shown how Ehres-
mann connections can be used to write the kinematic constraints as the condition
of horizontaity with respect to the connection and shown how the equations of
motion can be written in terms of base variables and that these equations involve
the curvature of the connection. We then regard symmetry properties of such sys-
tems and develop one of the main consequences of this symmetry, namely, the
momentum egquation. The geometry and coordinate structure of this momentum
equationisexplored indetail. The process of reduction and reconstructionfor these
nonholonomic systems is worked out by making use of a new connection which
we call the nonholonomic connection. This connection is obtained by synthesizing
the mechanical connection and the constraint connection. Building on the anal ogy
between thistheory and the theory of Lagrangian reduction, the reduced Lagrange-
d’ Alembert equations are developed. Severa examples are worked out in detail,
including the verticd rolling penny, the spherical bal on a rotating table and the
snakeboard.

Some interesting topics for futurework are

e The setting of VERSHIK & FADDEEV [1981] for nonholonomic systems with
symmetry combined with the results of the present paper. This allows one to
better understand the presence of forces and allows oneto consider more general
constraints and ones that can do work.

¢ The Hamiltonian formalism for nonhol onomic systems with symmetry and the
failureof Jacobi’sidentity asrelated to curvature (see BATES& SNIATYCKI [1993]
and VAN DER SCHAFT & MASCHKE [1994]).

o Additional work on control-theoreticissuesin the present context. For example,
some issues related to gaits are studied in OSTROWSKI [1995] and issues of
optimal control are addressed in KOON & MARSDEN [19964].

¢ Energy-momentum integrators for nonholonomic systems; see MARSDEN, PAT-
RICK, & SHADWICK [1996] for some of the recent literature.

¢ Energy-momentum methodsfor stability and eventually bifurcationusing anon-
holonomic version of the work of SIMO, LEwIS & MARSDEN [1991]. The liter-
ature in this area is adready extensive (see, for example, NEIMARK & FUFAEV
[1966]) and for resultsin the spirit of the present paper, see KARAPETYAN [1994],
KARAPETYAN & RUMYANTSEV [1990] and ZENKOV [1995]. Additional worksin
thisarea are in preparation.
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