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Abstract. This paper uses Hamiltonian methods to find and determine the stability of
some new solution branches for an equivariant Hopf bifurcation on C*. The normal form
has a symmetry group given by the semi-direct product of D, with T? xS, The
Hamuiltonian part of the normal form is completely integrable and may be analyzed using
a system of invariants. The idea of the paper is to perturb relative equilibria in this
singular Hamiltonian limit to obtasin new three-frequency solutions to the full normal form
Jor parameter values near the Hamiltonian limit. The solutions obtained have fully broken
symmetry, that is, they do not lie in fixed point subspaces. The methods developed in this
paper allow one to determine the stability of this new branch of solutions. An example
shows that the branch of three-tori can be stable.

1 Introduction

A standard approach in the bifurcation analysis of spatially extended systems (such
as Rayleigh-Benard convection in an infinite plane) is to restrict to a class of
functions that is spatially periodic with respect to a hexagonal, square or rhombic
lattice. The restricted equations have symmetry group D, x [ T?, where n=6, 4 or
2 respectively, and where x, denotes semi-direct product. In the event of a Hopf
bifurcation, there is an additional S symmetry in the normal form. In this paper,
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we consider Hopf bifurcation on a rhombic lattice. Center manifold reduction
leads to a bifurcation problem on C* which in normal form has (D, x ,T?) x S*
symmetry. This bifurcation problem arises, for example, in the study of spatally
periodic travelling waves in anisotropic systems (Silber et al., 1992), oscillatory
magnetoconvection (Clune & Knobloch, 1994) and transverse patterns in lasers
(Feng et al., 1994).

In this paper, we develop Hamiltonian methods to prove the existence and
stability of a primary branch of three-tori in the D, x T2-equivariant Hopf
bifurcation problem. Because this bifurcation problem is eight-dimensional and
complicated, a complete analysis of the normal form has not been possible.
However, the methods of equivariant bifurcation theory (Golubitsky et al., 1988)
have yielded a fairly complete analysis of the dynamics on the two-
and four-dimensional invariant subspaces (Silber & Knobloch, 1991; Silber et al.,
1992). The solutions obtained in this way retain some of the symmetries of the
normal form. Solutions that completely break the symmetry of the bifurcation
problem do not lie in an invariant subspace. One class of non-symmetric solutions
that is known to exist consists of structurally stable heteroclinic cycles (Silber ez al.,
1992). These solutions are composed of saddle-type periodic orbits and
heteroclinic connections between the periodic orbits; each connection lies entirely
within a four-dimensional invariant subspace, but the heteroclinic cycle as a whole
does not reside in any invariant subspace. Little else is known about non-symmetric
solutions of this bifurcation problem, although Knobloch and Silber (1992)
conjectured the existence of non-symmetric three-tori, and Clune and Knobloch
(1994) presented numerical evidence for the existence of these solutions.

The branch of three-tori that we investigate in this paper are non-symmetric
relative equilibria. By relative equilibrium, we mean an orbit z(£) € C* that has the
form z(r) =exp(z£)z(0) where exp(z£) is a one-parameter subgroup of the
continuous part of the symmetry group. If X is our T? x S'-equivariant vector field
on C* then X induces a vector field [X] on the quotient (orbit) space C*/(T? x 8'),
excluding the singular points in the quotient; the relative equilibria of X project to
fixed points for the dynamics of [X]. It is, in principle, possible to find relative
equilibria in the full problem by looking for fixed points of [X]. With this direct
approach, one would prove the existence of a primary branch of three-tori
by checking that the candidate fixed point of [X] is non-symmetric and persists to
the bifurcation point. For our problem, this method turns out to be intractable in
all its generality.

Here we develop a systematic approach to the problem that exploits the
integrability of a Hamiltonian limit, where the integrability is a consequence of the
symmetries. The Hamiltonian problem is relatively easy to analyze, because the
methods of Hamiltonian reduction (see, for example, Marsden, 1992) effectively
allow us to reduce the dynamics to two-dimensions, We adopt a particular
realization of this reduction that uses invariants due to Kummer (1986, 1990).
This technique is compatible with the orbit space reduction of the original
non-Hamiltonian problem.

In the Hamiltonian limit for the problem we study, non-symmetric solutions
appear as three- and four-tori, and orbits homoclinic to the three-tori. This limit
provides a natural starting point for perturbatively proving existence of three-tori.
Such a perturbative approach is delicate because the bifurcation parameter
vanishes in the Hamiltonian limit and three-tori are not isolated. We remove the
problem with the bifurcation parameter by using ideas of Field and Swift (1994)
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to decouple the dependence of the dynamics on the bifurcation parameter. This is
achieved by means of a rescaling of time and the dynamic variables. Crucial to the
success of this is that the decoupling is done before introducing the Hamiltonian
limit. The difficulty with non-isolated three-tori is averted by rewriting the defining
relative equilibrium equations in such a way that we can apply the implicit function
theorem.

Once the branch of three-tori is shown to exist in the normal form, one can use
a result of Field (1996) to deduce that the branch persists even when the S'
symmetry, introduced in the process of reduction to the normal form, is removed.
Thus, we conclude that a primary branch of three-tori exists for the
D, x ,T2-equivariant Hopf bifurcation problem.

In the general situation, computing the stability of the three-tori is a daunting task
because, even for the reduced problem, there are four eigenvalues to be found and no
remaining symmetries to simplify the calculation. For our problem, the Hamiltonian
limit is again useful, because we can calculate two eigenvalues using an eigenvalue
movement formula for nearly Hamiltonian systems. Once the movement of two
eigenvalues is known, the remaining two eigenvalues can be calculated directly.

In many systems for which one might try to perform a reduction using invariants,
there can be singularities in the orbit space, and these singularities are often very
important; see, for example, Haller and Wiggins (1993, 1996) and references
therein. Although singularities occur in our problem, we shall not be concerned
with them since the relative equilibria we locate occur at non-singular points of the
reduced space.

From a broad perspective, the questions raised in this paper concern what
information about a dynamical system can be obtained from its ‘Hamiltonian part’.
Similar questions were addressed in Lewis and Marsden (1989) who studied the
decomposition of normal forms into Hamiltonian and non-Hamiltonian parts; in
the planar case, they showed that a surprising amount of dynamic information was
nascent in the Hamiltonian part. Another paper in this spirit is Knobloch et al
(1994), where the role of Hamiltonian normal forms in the problem of system
symmetry breaking and symmetry-induced instabilities in certain fluid problems
was studied. The approach taken in the present paper is somewhat similar to that
used by van Gils and Silber (1995). They proved uniqueness, near a Hamiltonian
limit, of a branch of quasi-periodic solutions in the Hopf bifurcation problem with
D, x S! symmetry. The existence of this solution branch had been shown by Swift
(1988), who conjectured its uniqueness.

The outline of the paper is as follows. In Section 2, we describe the specific
normal form we will study, its invariants and the quotient dynamics. We calculate
the five-dimensional dynamical system induced on the space of invariants (there
are six invariants with one relation between them). An additional reduction to a
four-dimensional system (five variables and one relation) is obtained by a rescaling
of the variables and time. We calculate the Hamiltonian limit within this context
and give a partial analysis of the corresponding dynamics. Appendix A contains
information about the Hamiltonian structure of the problem.

In Section 3, we show that there exist branches of three-tori in certain parameter
regimes for the full problem. To do this, we use direct algebraic manipulation to find
particular equilibria of the reduced (four-dimensional) dynamics and then apply the
implicit function theorem to an associated system to show that these equilibria persist
under non-Hamiltonian perturbations. Using the framework developed in Section 2,
we deduce that the equilibria correspond to branches of three-tori in the full problem.
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In Section 4, we perform a stability analysis of the solutions found. The
Hamiltonian case can be analyzed completely. When we perturb from the
Hamiltonian limit, we use an eigenvalue movement formula derived in Appendix
B to compute the movement of two of the eigenvalues of the system, and show how
to calculate the remaining eigenvalues using direct techniques. We illustrate the
approach by looking at a specific example. A short summary of our method is given
in Section 5.

2 Preliminaries
2.1 The normal form

The following action of T? xS' on C* occurs in Hopf bifurcation problems with
D, x . T? symmetry (n=2, 4):
(0,5 0,) 1w (1w, 2wy, 6™ tany, 67 02u,) 1)

¢ :wel'w

where w=(w,, w,, w;, w,) € C*, (0,,0,) € T?, and ¢ € S'. Moreover, in the case
that D, =D,, this action applies in an eight-dimensional invariant subspace of the
twelve-dimensional equivariant bifurcation problem.

The action (1) arises naturally in the study of Hopf bifurcation to spatially
periodic travelling waves in spatially extended systems. For this class of problems,
w, and w, are the amplitudes of spatial Fourier modes

exp(ik, - x), exp(—ik, - x)
respectively, and w,, w, are amplitudes of
exp(ik, - x), exp(—ik, - x)

respectively, where k,, k, € R? are linearly independent, and |k,|=|k,|. The T2
symmetry arises from spatial translations perpendicular to k, and k,, and S is the
normal form symmetry associated with Hopf bifurcation. The discrete group D, is
related to the angle ¢ & (0, 7/2] between k, and k,; n=4if ¢=a/2, n=6 if p =7/3,
and n»=2 otherwise.

In this paper, we consider the case where the discrete group is D,. It is generated
by the following two reflections (see Silber ez al., 1992):

Kyt Wo (W, Wi, Wy, W)
Ka: w_)(wh W5 Wy, 'ws)
The cubic truncation of the normal form of the Hopf bifurcation problem that
commutes with the action (1) of T2 x 8!, and the action (2) of D, is (from Silber
er al., 1992)
Wy = pw, + (alw,|2+b|w2|2+c|w3|2+d|w4|2)w, +fw @3,
o, = pwy + (alw, | + blw, | +clwy|* +dlws | ) w, +fw, 0,0, (3)
thy=pw, + (alw,|? +blw,|® +clw, |> +dlw,|*) w, + fw,o,w,
Wy =pw, + (a|w4|2+b[w3|2+clw2|1+d|w1|2)w4 +fw, @,
Here an overbar denotes complex conjugation. The coefficients a, b, ¢, d and f are
complex; we denote their real and imaginary parts using subscripts r and ¢, as in
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a=a,+1a;. The coefficient u is purely imaginary at the Hopf bifurcation point; in
a neighborhood of the bifurcation point g=2—1iw, where i is the bifurcation
parameter {|{|«1). For the normal form of the D, x /T2-equivariant Hopf
bifurcation problem, an additional reflection forces c=d in (3) (see Silber &
Knobloch, 1991). In the case of the Dy x ;T?-equivariant Hopf bifurcation, the
normal form (3) applies in an eight-dimensional fixed-point subspace of the
twelve-dimensional bifurcation problem (see Clune & Knobloch, 1994, and
references therein).

Solutions that retain some of the symmetry of the normal form (3) have been
investigated elsewhere (Silber et al, 1992). In this paper, we are interested in
solution branches that have fully broken the symmetry and thus do not lie in an
invariant fixed-point subspace of C* Qur methods give us information about
simple non-symmetric solution branches in a particular region of the coefficient
space, specifically for £, ~0 and a,x b, x¢,xd,.

2.2 Invariants for the action of T*> x S* on C*

A natural way in which to study relative equilibria in systems with continuous
symmetries is to use the invariants of the symmetry as coordinates. This has been
done in a Hamiltonian context by Kummer (1986, 1990), while others have
exploited these methods in their study of non-Hamiltonian equivariant bifurcation
problems (see, for example, Chossat, 1993). Using the invariants of continuous
symmetries as coordinates results in an identification of all points on the orbit of
the continuous symmetry operation with a single point in the space of invariants.
As we see in this paper, this has the advantage of effectively reducing the dimension
of the problem. A trade-off in this reduction is that the reduced state space of the
dynamical system may have singularities that prevent it from being a manifold.
However, in our system, the singularities occur for symmetric states that are not
part of the present investigation. Another potential drawback in using invariants as
coordinates is that it can obscure the symmetry of the problem. This is not an issue
here as we are explicitly interested in solutions that have fully broken symmetry.
A set of T? x S! invariants of (1) is

X+iY=w,0,w,0,
Z=3(lw | —lw, ] + lws > — o, ]?)
L=g(lmy |+ w1 + 3] + |0, ]) @
J=1Uw, 1% = |w;)?)
K=3(lw,|? —lw,}?)

These are calculated by looking for all monomials invariant under the action (1).
In this sense, this is a complete set of invariants. In fact, all other smooth invariant
functions can be written in terms of the six real invariants X, Y, Z, ¥, K and L. (See,
for example, Golubitsky et al. (1988, Chapter XII, Section 4) for the theory
relevant for this discussion, and Rumberger and Scheurle (1996) for the finite
differentiability case.) Note that Ze [—(L—|%]), L—IK]] since

e, =L+Z+F20, |w,))’=L-Z+K=20

(5)
|w3|2=L+Z—jZO, IW412=L_Z—K20
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The action (2) of k,, k, € D, on the invariants is
KX, Y, Z, 7, K, L)=(X, =Y, —Z, - K, -5 L 6)
Kz(Xs Y) Z: .?s K, L) = (Xs -Y, -2, K’ja L)

Moreover, the invariants are not independent; they satisfy the following relation
X +Y=[(L+2)*-F)(L-2)*-K% )

We use the normal form (3) to derive the following equations for the evolution
of the invariants

X=4[i+ (0 +V)LIX-Mf,ZY +4f,(L>*—Z*)L-2f [ L(F*+ K?) - Z(F*-K?)]
Y=4[i+(c+V)L]) Y+ 4,ZX—4f(L* - Z*)Z+2f,[L(F*—K?) -Z(J*+K?)]
Z=2(i+20L)Z+3(F*-K?) +2fY

F=20i+ @+0)(L+2) +v(L-2)1F+2f(L+2)K
R=2[+i+ (@+6)(L-2) +V(L+2)1K+2f(L-2)F
L=2[i+(o+V)LIL+a(F*+K?) +28JK+2(c-v)Z*+2£.X

®

where
y=(a;— b+ —d)lf;
=a,—c,
f=b—d,
c=a,+c,
v=b +d,

The algebraic relation (7) can replace one of the six equations in (8) to yield five
independent evolution equations. That is, the relation (7) defines an invariant
five-dimensional variety (a manifold possibly with singularities) on which the
six-dimensional dynamical system evolves. To determine the behavior in the
original (unreduced) space C*=R?, we need to supplement (8) with equations for
the evolution of three phases. Specifically, let w;=r;e’), j=1, ..., 4, where ;20
is the (real) amplitude and ;€ [0, 27) is the phase. Equation (3) allows us to
derive evolution equations for three linearly independent phases (¥, —y3)/2,

Wo—¥)/2 and (Y, +Y +¥3+ )4

=¥ _ LY =1X)
> = (ai—cF+ (bi—d:)K'*‘m
it o KUY+
2 (a;—c)K+ (b;—d) ¥ ——(L—Z)z _K? ©
Jitda s+, (SX+(L-2)
3 =-—w+ (a;+b;+c¢;+d;)L+ 2[(L-2)°—K7]

_AY=£X) (L+2)
2[(L+2)° 7]
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Note that the phase ¥, is not defined when w;=0, and thus the evolution equations
(9) are not defined when Z=L + K, — L+ 7. The solutions we will focus on are not
at these points.

The three combinations of phases are chosen so that the evolution equations for
these combinations, i.e. equations (9), decouple from (8); the decoupling is a
consequence of the T? x S! symmetry. The equation for the evolution of the phase
W, —¥,+¢¥3—,, which is associated with the complex invariant X+iY in (4),
does not decouple. To find relative equilibria in the full eight-dimensional systern,
we can look for equilibria of the five-dimensional system defined by (7) and (8).

2.3 Reduction to a four-dimensional system

The system (8) is further simplified by scaling (X, Y, Z, J, K) by an appropriate
power of L and simultaneously rescaling time. Specifically, noting that 7, K, L, Z
are all G(jw|?), and X, Y are O(Jw]*), we let

XYZYK
LL*rrL

(x, ¥, 2, J k)=( 70T

and introduce the new time 1(z), where
=L@, 1(0)=0

Note that L>0 and that L=0 corresponds to the trivial equilibrium solution of
(3). It follows from (8) that
L'=2)+[20(1 +2%) +2v(1 =2%) +a (G2 + &%) +2fjk+2f.x] L
"= —dyfizy+2f.(2—j2 — k=222 —2x% + zj — 2k?) —29x (52 + k*) —4fixjk
—4(o—v)xz?
Y =4yfizx—=2f(22—j> + k2 —22° + z7° + 2k?) —4f.xy— 23y (2 + k%) — Afliky (10)
—4(a—v)yz?
2=2fy+2(a—v) (1 —22)z—2f, x2+ 4(j2 —k? —2j* —zk*) — 2fjkz
F =242z =k j-2fxi+2(c—v)(1 —2)jz+2f(1 +2—j2)
E=q(2-2z—2—k)k-2fxk—2(c—v)(1 +2)kz+20(1 —z—k?)j

where the prime indicates differentiation with respect to the new time 7. The
relation (7) now reads

4y =[1+2)* -1 —-2)* - &%) aan

Inspection of (5) shows that z €[|j|—1, 1 —|k|] and 5, ke [—2, 2] with |j|+ |kl < 2.
A nice feature of this transformation is that the (x,y, 2,/, k) dynamics have
decoupled from that of L. Moreover, relation (11) and the evolution equations for
(x, 3, z,J, k) are independent of the bifurcation parameter 4. We are interested in
finding fixed points of the reduced system of equations for (x, y, 2, j; &), with Loc i
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Table 1. Non-trivial fixed-point subspaces, and the generators of the isotropy subgroups that fix them.
(6,5 8,), $) € T? xS!, where (9,,0,) e T? and ¢ € S'; w,, w, € C. The element ((x, 7), #), which is in
every isotropy subgroup, is not listed

Orbit Generators of Relations satisfied by scaled T?> x S!
representative isotropy subgroup invariants in the fixed-point subspace
w=(1,,0,0,0) (—6,0),4), ¢,0¢S' x=y=k=0, z=3j=1
w={(w,w,,0,0) Kz ((— ¢ — ), 6, ¢eS! x=y=2=0,j=k=1
w=(w1,0,0,w1) Ky ((—@s 9), ), ¢Esl x=y=2=0,j=—k=1
w=(w,, 0, w,, 0) KKy ((0,0),0), 0eS! x=y=j=k=0,z=1
w=(w,, w, w,, @) Kys Ky y=z=f=k=0,x=1
w=(w,, iwy, w,, iw,) K,((0, m), %)x K,3((0, m), %) y=z=j=k=0,x= -1
w=(w,, w,, 0,0) (- —¢), @), ¢eS! x=y=0,j=142zk=1-2
w=(w,,0,0, wz) (= ¢) &), ¢Esl x=y=0,j=1+2z,k=z—-1
w=(w,, 0, w,, 0) (0,8),0), 0eS' x=y=k=0,z=1

W= (10, W, Wy, W) K2 y=2z=0,j=k, x=1—j?

w= (1, i, W, 10,) K20, ), 5) y=2=0,j=h, x=52-1

w= (1, Wy, W, Wy) K, y=2=0,j=—k,x=j-1

W= (w0, 10,y Wy, i) Kx((oa n), ',25) y=2=0,j=-k, x=l_j2
w=(w,, Wy, W, Wy) KKy J=k=0, x*+y*=(1-2%?

then determined from the first of equations (10). In the setting of a class of
equivariant Hopf bifurcation problems, Field and Swift (1994) have proved a more
general result related to the observation that the equations for (x,y, z,J, k)
decouple from those of L. They find conditions under which a similar decoupling
results in the existence of a branch of attracting invariant spheres that capture all
the local dynamics, not just the equilibria.

The symmetries (1) and (2) ensure that equations (3) possess certain
dynamically invariant subspaces. These subspaces are fixed by isotropy subgroups
of the full symmetry group '=D, x ¢ T? x§'. For example, the subspace

{weCw, e C, wy=wy=w,=0}

is fixed by spatial translations (8,, 8,) € T? followed by the normal form phase shift
¢ = —0, € S', where the action of these group elements is given in (1). The action
of I' on this subspace generates additional invariant subspaces. In Table 1, we
present an orbit representative of each fixed-point subspace in terms of the original
coordinates on C* (see Silber ez al., 1992) and also in terms of the scaled invariants
(x, ¥s 2, J, k). Note that if a solution satisfies xz(|j| + |£]) # 0, then it does not possess
any symmetry other than the reflection ((n, n), n), which is in every isotropy
subgroup. Moreover, non-symmetric equilibria of the reduced system of equations
(8) correspond to three-tori in R®, since, generically, the frequencies (9) are
non-resonant when xz(|j| +|&]) #0.

The relation (11) defines a subset E* ¢ RS, Since it is the zero level set of the
real-valued function F(x, v, 2,/, ) =x>+y*—[(1 +2)2—][(1 —2)2—k3), E* is a
smooth four-dimensional manifold at points where the differential of F does not
vanish, that is, at points where not all five partial derivatives of F are zero
simultaneously. One checks that E* is non-smooth only at points in certain of the
fixed point subspaces of Table 1.

The system of equations (10) are equivariant under the transformations
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(3 2,/ ky L) = (x, -y —2, —k, —j, L)
(%3 2,45 ky L) —(x, -y =2,k 5, L) (12)
(%535 2,7 ks LY=(x, 3, 2, —j, —k, L)

due to the discrete symmetries (6). Hence the non-symmetric three-tori we seek
will come in sets of four that are symmetry-related.

2.4 Hamilionian limit

The four-dimensional problem consisting of the equations for (x, y, 2, J, &) in (10)
and the relation (11) has a Hamiltonian structure when

fi=d=f=a—v=0 (13)

In this case, (x,y, 2) evolve according to

x'= —4fyay
¥ =2f(2yzx—2z 4+ —k* +22° — 2% — zk?) (14)
2'=2fy

where (x, y, z) satisfy the relation
biu(x 3 2) =P +y) = [(1 +2)2 =P [(1-2)*~ k] =0, ze[ljl-1,1—]k] (15)

and ; and % are conserved quantities associated with the action of T2. That these
equations have a Hamiltonian structure becomes clear if we introduce the
Hamiltonian

H(x, 3, 2) =f(y2* + %) (16)
and observe that equations (14) can be written
V’=VHXV¢J~_,‘ (17)

where V=(x,y,2) and V is the standard gradient operator in Cartesian
coordinates. The preceding equations are actually in Hamiltonian form of rigid
body type. We explain this in a little more detail in Appendix A.

We refer to the particular choice of coefficient values (13) as ‘the Hamiltonian
limit’. Note that this does not correspond to a Hamiltonian limit of the original
normal form (3), which occurs when, in addition to (13), we require i=6=0. In
that case, L is an additional conserved quantity associated with the normal form
symmetry, and the bifurcation parameter has been removed from the problem.

Provided |j|+|%|<2, and jk#0, the relation (15) defines a compact
two-dimensional manifold in R* for each choice of j and k. We call this manifold
the ‘egg’. The condition |j]+ |k| <2 follows from the inequality [j|-1<2z<1—|4),
together with the observation that if | f| + || =2, then the manifold collapses to the
point x=y=0, 2=|j|—1=1—|k|. If j=0 (resp. £=0), the surface defined by (15)
is not smooth; it has a corner at x=y=0, 2= —1 (resp. z=1). In any case, for each
choice of the conserved quantities j and k%, we think of the equations (14) as
defining a two-dimensional Hamiltonian system on the surface defined by (15). A
solution that satisfies either |j|+|k|=2 or j&=0 may correspond to a symmetric
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(a)

®)

Fig. 1. Typical flows corresponding to equations (14) for some choice of j and %. Solutions lie on the
surface of the egg defined by (15). See text for further description of the solutions.

state of the original system (see Table 1); because we are interested in solutions
that fully break the symmetry, we avoid these cases from now on.

For a particular choice of j and %, orbits of (14) occur where the level sets of H
intersect the corresponding egg. We determine the dynamics by slicing the egg
defined by the relation ¢;, =0 with the parabolic surfaces of constant H. Equilibria
occur when there is a tangency between some surface of constant H and the
egg, with all other intersections corresponding to periodic or homoclinic orbits.
Note that equilibria found on the egg correspond to three-tori in the original
eight-dimensional phase space, and the periodic solutions correspond to
four-tori.

Two typical examples of flows on an egg are presented in Fig. 1. In the first
example, there are two elliptic equilibria; the rest of the egg is filled with periodic
orbits. In the second example, there are four equilibria, three being elliptic and one
hyperbolic. In addition, there are two isolated homoclinic orbits, with the rest of
the egg being filled with periodic orbits.

A complete analysis of the dynamics in the Hamiltonian limit is beyond the
scope of the present paper; instead, we give the results for the special case =k
and more generally for /2 near k%, and indicate what needs to be done to extend
these results to arbitrary j and 4. In what follows, it is convenient to work with the
scaled Hamiltonian A = HIf,.

It follows immediately from (14) that y=0 at an equilibrium solution. We
determined the other coordinates at equilibrium by calculating values of x, z and
H that satisfy the equations
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x=H—yz? (18)
2(2 =12+ R+ 4+ —2yMz+ (B2 -3 =0 (19)
=D+ P —kNz+ (1 =D -k)-F*=0 (20)

Equation (18) comes from rearranging (16), equation (19) expresses the
requirement that there be a tangency between the egg and some surface of constant
H at an equilibrium, and (20) is obtained by using (18) and (19) to simplify (15).
Note that without loss of generality we can consider the case 7> 0; the results for
7<0 follow from the observation that equations (18)-(20) are unchanged by the
transformation (H, 7, x) »(—H, —7, —x).

Substituting 2 = %? into (19) and (20) and solving these equations with (18), we
find that if 0 <y <7=(1 +7%)/(1 —j?) there are two equilibria on the egg, at

y=z=0
x=H=+(1-j €2y

(cf. Fig. 1(a)) while if y>>7 there are four equilibria on the egg, two at the values
given in (21) and two at

y=0
21713
z=1 1+j2—#
=1 (22)
H=y(1+j%) =2}j|/7*—1
L2l

J

(cf. Fig. 1(b)). This result is illustrated graphically in Fig. 2, where values of z that
solve (19) and (20) are plotted as H is varied; an intersection between the two
graphs corresponds to an equilibrium solution on the egg so long as the z
coordinate is in the range z ¢ ([f|~1, 1 —|/]). We see that there is a Hamiltonian
pitchfork bifurcation when y=7.

The dynamics for j># k% but j* near &’ can be determined qualitatively by
sketching the graphs of (19) and (20) again. The situation for ;2 — k? positive but
sufficiently small is shown in Fig. 3. It can be seen that there will still be parameter
values for which there are two equilibria and other values for which there are four
equilibria but the transition between the two cases now occurs via a Hamiltonian
saddle-node bifurcation at some y=7*x7.

We have not determined the dynamics for the case of arbitrary j and &. Factors to
be considered in the general case include whether there could be six equilibria on
the egg (it is straightforward to show that there can be no more than six equilibria
on any egg) and whether there can be more than two equilibria when |y] < 1.

3 The existence of a branch of three-tori
3.1 Introduction and set-up

In this section, we prove the existence of a branch of three-tori that bifurcates from
the trivial solution at 2=0. The three-tori are relative equilibria that have fully
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Fig. 2. Solutions of (19) and (20) for the case j2=% when: (a) 0<y<1; (b) 1<y < (c) y>7; where
F=(14+7/(1 —5%) is the value of ; at the pitchfork bifurcation. The solid (resp. dashed) curves mark
values of H and z that solve (19) (resp. (20)). Note that one of the solid curves lies on the H-axis. The
large dots mark values of H and =z that satisfy both equations. Dots marked A have H=j*—1; B means
A=1-/4 C means H=Q0+/; D means H=(1+/7+2jIv7*—); E means
B=(1+57—2|jl/7*—1. Note that the dots marked D have values outside the allowable range
ze(|j]—1, 1—|7]), and therefore do not correspond to equilibrium solutions on the egg.
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Fig. 3. Qualitative plot of solutions to (19) and (20) for the case ;* —k? positive but small when: (a)

0<y<l; (b) 1<y<y*; (c) y>7*; where y* is the value of y at the saddle-node bifurcation. The solid

(resp. dashed) curves mark values of & and z that solve (19) (resp. (20)). The large dots mark values

of A and = that satisfy both equations. For j2 —k? small enough, the dots with the two largest A

coordinates will have = values outside the allowable range ze (||~ 1, | ~|&]), and therefore will not
correspond to equilibrium solutions on the egg.
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broken the symmetry of the bifurcation problem. We proceed by introducing a
small parameter ¢ such that the Hamiltonian limit is £ =0. Specifically, let
f.=¢€d, d =g, f=¢p 23)
We further restrict the problem by choosing
v=c+ex+&’p (24)

Because p will not enter our calculations at first order in &, this reduces by one the
number of parameters in the problem and significantly simplifies the equations for
(j'k— ke and (" + kk")/e below. Equations (10) now become

L'=2}+[46+0()]L

X' = —43fizy+ 266 (2 —j2 —k* =227 — 2x% + zj> — zk?) = 2eax (j? + k? - 227)
—4efxjk+ 0 (&)

¥ =4yfizx=2f,(22—j* + k* —22° + zj% + 2k*) — debxy — 2eay (2 + k2 — 227%)
—4efliky + € (&)

2 =2f,y—2ea(1l —22)z—2e0xz +£x(j* — k> — 2% — zk?) — 2efljkz + O (&)

J=e[a(24+222 —j2 —k2)j—26x7 + 2B(1 +2—j2) k] + O (&%)

kB =g[a(2+222—2— k) k—20xk+2B(1 —2—k2)j] + O(c?)

(25)

Note that the higher-order terms in ¢ are bounded because the dynamics takes
place on a compact manifold.

For the purpose of finding a branch of non-symmetric three-tori bifurcating from
the origin in the full problem, we will be interested in the case that the L'-equation
in (25) has an attracting non-trivial equilibrium; this is the case for 6 <0, >0, at
least for ¢ sufficiently small. For these values, there is an attracting seven-sphere of
radius L= /(oo |? +lw,|% + e, | + |w,|?)/4 = /(- 26) that bifurcates from the
origin at A=0 in the full problem. Thus, when ¢ <0, A>0, we can locate a
supercritical branch of non-symmetric three-tori in the eight-dimensional problem
by looking for non-trivial equilibria of the four-dimensional system defined by the
evolution equations for (x, ¥, 2, j, k) and the relation (11).

The system of equations (25) shows that relative equilibria of the perturbed
problem with jk # 0 satisfy the following algebraic system of equations:

Pp=x+y* = [(1+2)* =1 [(1-2)*—k] =0
81.=2f(2y2x =22+ —k* +22° ~ 2> —2k?) + 0 (e) =0

£2.=2fy+0(e)=0 (26)
£3.=2B[z(j*+R) — (A -k ] +0() =0

Lo =0(j2 +k?) (2—j2 —R* +22%) + 2[k(2 —j* — k) —28x(j> + k) + O () =0

Here we have replaced the x-equation in (25) by the relation (11), and the j', &'
equations by (F'k—kj)e and (j7+k'k)/e. The reason why we replace equations
(25) by equations (26) is as follows. We would like to use the implicit function
theorem to prove persistence for ¢ # 0 of equilibria we find at e =0. However, in the
case of equations (25), these equilibria are not isolated since j'=%'=0 when £=0.
In equations (26), we retain the @(¢) terms from the ;' and &' equations. This
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amounts to dividing the ' and %’ equations by ¢ before taking the limit of £ =0; this
works because we are looking for equilibria. As we will see, equilibria in equations
(26) are isolated, and we can then apply the implicit function theorem to prove
persistence. Note that ;' and %’ are 0(s?) for the values of j and % that satisfy
equations (26) with =0,

3.2 The unperturbed case

We prove the following theorem.

Theorem 1. Assume that 8#0 and f;#0. Then the equations

¢jk=31.o=g2.0=83.o=g4.o=0 27
have solutions with 0 <;? + k% <4 and j2#0 if and only if |7|> 1.

These solutions with the value of L= —//(20) give equilibria for the unperturbed
system associated with (25). In the next subsection, we will see how to perturb
these solutions to the case of non-zero &.

Proof. Our proof is constructive. We see immediately that any solution has y=0.
The equation g, o =0 gives us an expression for z in terms of j and &, and squaring
this expression allows us to write 22 as a function of the quantities S=;2 + k£ and
(jk)2. Substituting into the equations ¢ x=0 and g,,=0 and solving for
X, ¥, 2%, (jk)? in terms of S yields

y=y,=0
4CS(4-S)

7 (28)
(R)2 = (joko) 2 =CS*(4-S)

X

Xo

2 2 ]tz)_ktz) 2
2t=z5= 5 =1-4CS(4-39)
where
.',2
ey (29)
When a #0 the equation g, =0 gives
. 4 —S)S(8CS(6+ay) —
Joko=( S)S(BCS( 7) —ay) (30)

28y(2—-9)
whereas when «=0, j,k, satisfies
Bioko(2—8) =0xS (31)

Squaring equation (30) and substituting from (28) for (j,k,) % leads to the following
cubic equation for S when a #0:

PyS)=¢;8 +¢,8*+¢,S+¢,=0 (32)
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where
3= (*=1) + (5 +ay)?
c;=—4(( 1) (B +a’ +da/y) + (6+72)?)
¢, =4(y*—1) (B*+5a% +4da/y — a?/y?)

aZ ,2__1 2
Co=_l6¥

7

(33)

If =0, a similar procedure applied to equation (31) leads to a quadratic equation
for S:

Py(8)=c;8*+¢,S+¢, =0 (34)

where ¢y, ¢, and ¢, are as in (33) but with « set to zero.

In both cases, we require the value of S=;3 + k2 to satisfy the inequality 0 < S<4
since j2+k*<(|j|+]k))><4. Given an S in this range, it follows from the
requirement (joko)> >0 that a necessary condition for a solution to exist is

2>1

i.e. C>0. Indeed, this condition is both necessary and sufficient: if 2> 1 and a #£0,
the observation that

2.,2_] 2
oz(/.2 )(0

P,(0)=—16

Py(#)=16p(y’~1)>0

shows that there is at least one real solution S € (0, 4) of the cubic (32), while if
2=0 and y*> 1, the quadratic (34) has real roots, S=2 +2|8///(y*> —1)2+ 62, in
(0, 4).

Given this solution S, we can solve for the remaining variables using the
expressions (28). Note that both roots of the expression for 2 in (28) will give rise
to acceptable solutions. Note also that the magnitudes of j, and %, are determined
by (30) or (31) and the equation j} + 4% =S, and that the sign of j %, is determined
by (30) or (31), but we have two choices for the signs of j, and k,. The choices
for the signs of 2, j, and k, give us four distinct solutions that are related by the
symmetries (12). [ ]

3.3 Perturbation analysis

In this section, we determine conditions under which the implicit function theorem
ensures the persistence of the branches of three-tori found in the proof of Theorem
1.

Assume that the conditions of Theorem 1 are satisfied, i.e. §;7#0 and || > 1. We
use the relation (11) to express x, implicitly, as a function of y, 2, j, &, and consider
the system of four algebraic equations for y, z, 5, &:

g;ECgl K24 gZ.c’ g3.¢’ g4.z)=0 (35)

where the functions g;, were defined in equations (26). In the proof of Theorem
1, we found a solution of the unperturbed system g, = (g, ¢, £2.05 £3.0s £1.00 =0. To
ensure that this equilibrium persists under the ¢(¢) perturbations, we invoke the
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implicit function theorem. Specifically, we must show that det(Dg,) # 0, where the
Jacobian matrix,

081 .0 9810 0810 0810
dy oz 7} ok
0820 0810 080 0810
oy 0z of ok
Dg,= (36)
0 0gs0 0830 0830 0830
dy dz i) ok
584.0 a84.0 584.0 ag-z.o
cy iz &7 ck

is evaluated on the unperturbed solution branch. We find that the implicit function
theorem applies if ff;#0 and

Z (% B, 7, 6) =4jokola(l —S+23) = Bioko—0x,] [S+2(y*—1)23]
+4Joko [ (7S +1) (4=8) —47] [ (1 —S+23) — Bio kg — %,)
+p8%(2-8) (Y223 + 1~ 23) + 1o koS(2—S) (85 +4ayzZ + 4672 22)
+78(2—=8) (Bxo +doko) [(7°S+1) (4-8) —47*] #0

(37

The value of Se(0,4) is determined by the cubic (32) or the quadratic (34),
whereas 2z} and x, are given as functions of S in (28), and Joko 1s given as a function
of Sin (30) or (31).

The rather complicated expression in (37) is not manifestly identically zero.
However, in order to allay fears of a conspiracy, we evaluate it for fixed values of
2, and J and a range of values of y. We thereby show that the inequality is
satisfied in an open region of the («, f, 7, 3, f)-coefficient space. Specifically, we
pick =0, i=1 and 6=2. Equation (34) then yields S=2+4/./7%+3. We pick
S§=2-4/y7*+3, use equation (28) and (31) to evaluate xo, zo and jok,, and
subsitute these values into (37). The resulting expression, which depends on 7, is
plotted in Fig. 4 for y € (1, 50]. It is clear from the figure that for ;0 and for the
values of x, f,y and J considered, £ #0, from which we conclude that the
equilibrium persists under €(¢) perturbations. Evaluation of & for the choice
S=2+4//y*+3 similarly leads to the conclusion that the corresponding
equilibrium persists under perturbation.

The arguments given in this section prove the existence of a branch of three-tori
for equations (3), the cubic truncation of the normal form. These arguments can
be modified to also give persistence under inclusion of higher-order terms in the
normal form. Furthermore, a result of Field (1996) indicates that the branch of
three-tori will persist under addition of sufficiently high-order terms that break the
S' symmetry introduced by the process of reduction to normal form. Thus, we can
conclude that a primary branch of three-tori exists for the D, x ,;T2-equivariant
Hopf bifurcation problem.

We note that the dynamics on a three-torus for the normal form equations is
very simple; because a three-torus is a relative equilibrium, the three frequencies
are typically independent so that the flow is quasi-periodic. Removing the normal
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Fig. 4. Plot of ¥(z,f,7,9) for the case 2=0, =1, =2, y€(1,50], and with the choice
S=2-4/y7y* +3.

form symmetry at high order will not change this dynamics qualitatively. This can
be seen by noting that a three-torus for the eight-dimensional, non-S!-symmetric
equations will correspond to an invariant circle in the quotient space C%/T?;
because the frequencies associated with a three-torus in the normal form are
non-zero, the dynamics on the corresponding invariant circle in C*T? will be
periodic (no stationary solutions), at least for small enough non-S'-symmetric
perturbations.

4 Stability analysis

In this section, we compute the stability of the relative equilibria found in the
previous section. The computation of the eigenvalues of the appropriate Jacobian
matrix proceeds in three steps. We first observe that each equilibrium solution of
the unperturbed problem, obtained by setting ¢=0 in (25), also corresponds to an
equilibrium in the Hamiltonian limit where (x, y, z) evolve according to equation
(14) and j’=%'=0. To see this, note that the equations for the evolution of x, y and
z are the same in both cases and the j, 2 dynamics are trivial in the Hamiltonian
limit.

In the next subsection, we compute the eigenvalues of the Jacobian matrix
associated with the Hamiltonian limit. Of the four relevant eigenvalues, two are
zero due to conservation of j and & in the Hamiltonian limit. The remaining two
are either a real pair with equal magnitude but opposite signs, in which case the
corresponding equilibrium is hyperbolic, or a purely imaginary pair, in which case
the equilibrium is elliptic.

The next step in the computation is to calculate how the eigenvalues move under
non-Hamiltonian perturbations. We do not need to do any further calculations to
determine stability of the perturbed solution in the hyperbolic case; the perturbed
equilibrium must have at least one positive real eigenvalue and hence be unstable,
at least for small enough perturbations. In the elliptic case, we use an eigenvalue
movement formula derived in the second appendix to determine how the pair of
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purely imaginary eigenvalues moves. Once we know the corrections to the complex
eigenvalues, we can determine the movement of the remaining zero eigenvalues.
Because the expressions we obtain for movement of the zero eigenvalues are rather
ugly, we do not calculate stabilities in the general case but restrict attention 1o a
specific example.

4.1 Eigenvalues in the Hamiltonian limit

In this subsection, we compute the eigenvalues of the Jacobian matrix associated
with the Hamiltonian limit (14) evaluated at one of the equilibria in the
unperturbed problem. To carry out this computation, we choose coordinates so
that the Hamiltonian structure on the egg is canonical. In the following, we
abbreviate the notation: we fix some j and % and let the function defining the egg
be called simply ¢. This function, previously called ¢, is given by (15).

A normal vector to the egg at an equilibrium is given by the gradient of ¢
evaluated at that equilibrium; we write (leaving out the evaluation at the

equilibrium in the notation)
_{dd o
n= ( ox’ 0, E)

The second component of n is zero since the equilibria we found in the previous
section have y=0. Tangent vectors to the egg are vectors orthogonal to n; we
choose these to be

0 0
e,=00,1,0) and e2=(_6_f’0’ a_i’)
Equation (17) yields
,__0¢oH
T oy oz

,_09 0H ¢ 0H
y—ax dz 0z 0x

, 0¢p 0H

(38)

Ty ox

Here we have used the fact that H is independent of y (see equation (16)). Let A
denote the linearization of this systemn at the equilibrium described above.
Regarding A as a 3 x 3 matrix, a straightforward calculation shows that

Ae, =ae,, Ae, = —be,, An=ce,

where

a

oo\ o
Toy*\ oz 0z
_09 0’9 0H_(0¢\'0’H 0¢ 0°¢ OH
" 9z 0x* 0z dx | 8z*  ox 0z* Ox
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and ¢ is some non-zero coefficient. Note that in calculating a we use the y'-equation
in (38) 1o say that at an equilibrium

OH_o6 cH (08"
dx 0x 0z \ 0z

The matrix of A with respect to the basis {e,, e,, n} is thus

0 a ¢
A=| -5 0 0
0 00

From which it is seen that the eigenvalues of A are 0, +./—ab. If ab<0 the
equilibria of the unperturbed problem are saddles. If ab>0, we put A into
canonical form by choosing e, =pu, and e, =p " 'u, where p=/a/b; the matrix of
A in the basis {u,, u,, n} is given by

0 w, cp
0 o 0

where w,=/ab. Substituting the solution (28) into the expressions for a and b
given above, we find w? in terms of S:

wi=4fH2S? + (1 -4y)S+4(y*—1)] (39
In summary, we have proved the following theorem.
Theorem 2. 1f wi> 0, then the solutions constructed in Theorem | define stable

equilibria (centers) at y=0 for the Hamiltonian dynamics induced on the egg by
the system (14). If w2 <0, then the solutions correspond to unstable saddles.

Equation (39) shows that if the value of S at one of the solutions constructed in
Theorem 1 satisfies

2_ 9y _ 2 2 2
Se((‘lv 1) ,/1+8y’(4} 1)+\/1+8}) (40)

2y 2y*

the unperturbed equilibria are unstable saddles, as are the perturbed equilibria, at
least for small enough &, If, on the other hand,

2_ 1y _ 3 2 3
Se (0’ (4y 1)272,/l+87 )U((4,’ 1)+\/l+8/,4) @n

272

the unperturbed equilibria are centers. We devote the remainder of the paper to
calculating the stability of these elliptic equilibria under small perturbations.

4.2 Movement of imaginary eigenvalues under the addition of non-Hamiltonian terms

Now we use the eigenvalue movement formula from Appendix B to determine
whether the purely imaginary pair of eigenvalues +iw, associated with an elliptic
equilibrium of the unperturbed problem moves to the left or right half of the
complex plane with the addition of the non-Hamiltonian terms.
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In the {u,, u,} basis of the previous subsection, the linearized equations on the
egg are Hamiltonian and they are in canonical form; the symplectic form on the
tangent space to the egg at the relative equilibrium is represented by the matrix

01
! [ -1 0]

If we regard this in the five-dimensional (x, y, z,, 2) space rather than on the
tangent space to the egg, then one adds three rows and columns of zeros to the
matrix for the symplectic form. The resulting two-form is degenerate, and this is
why we allow degeneracy in the eigenvalue movement formula in Appendix B.

The eigenvectors associated with the complex eigenvalues +iw, are given in the
basis {u,, u,} by v, =(1, §) and v, =(1, —i). If we convert these to five-vectors, the
remaining components are zero. In the notation of Appendix B, we take
v,=(1,0,0,0,0) and v;=(0, 1, 0, 0, 0). We then find that

vijv,=1

so the denominator in the eigenvalue movement formula is simply 2. The
numerator is given by

N=v]]Bv,—v[]Bv,

Here ¢B, is a 5 x5 Jacobian matrix associated with the non-Hamiltonian terms in
the vector field, i.e. the () terms in the (x', ¥, 2,7, ) equations of (25); it is
evaluated at the unperturbed equilibrium. In this formula, we must express
everything in the basis #=(u;,u,,n, e, e;), where e,=(0,0,0,1,0) and
e;=(0,0,0, 0, 1) are the standard basis vectors associated with the variables j and
k. A short calculation gives

N=B,,+B,,

where B;; is the 7 entry of the matrix B, with respect to the above basis. Thus, the
real part of the perturbation of the eigenvalue i, is given by

. 1
Re(2(e))=¢ ( E(B' 1 +B55) ) +0(e?)
The following theorem summarizes.

Theorem 3. ‘The perturbation of the eigenvalues tiw, is into the left half-plane if
&(B,, + B,,) <0 and into the right half-plane if e(B,, + B,,) > 0.

We now derive an explicit formula for B, + B,, in terms of the solution § of (32);
recall that this formula only applies to equilibria that are centers for the
Hamiltonian problem restricted to the egg, i.e. S must satisfy (41).

Let ef, be the non-Hamiltonian part of the vector field and write
£,=fy.00 fogo Ja.o f1.pp f1.4)> Where the subscripts x, , 2, j, k specify the component of
the (x', ¥, 2',j’, R") equation. After the appropriate change of basis, we find

B, =% (42)
oy
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B _[(@)2_*_ @)2 - 5_¢)25fd.x__@2(£ af;i,x+6j;i.z
227\ ox oz oz ) ox 0z dx\ 3z dx 43)
ik
ox oz

We use (28)-(30) to express B,, +B,, in terms of S=j%+ k2, and find that
dsS® +d,S*+d,S* +d,8? +4d,S" +d,

and

B, ,+B,,= 44
A S Yo Y Y P e wg prwr vo sy B
where
dy=7y*(87+2)
d,=y*(6—1567* — day® — 10ay)
—u? 3 155 4 2 _
dy=7*(796y” = 1567+ 32y%a + 372> — 54) (45)

d,=7(830y* —1786y* — 5 —96ay® — 337> + 330)
d, =2(y* —1) (8267 — 85y + 64ay* + 27ay* — )
dy=—8(y—1)2(567+ 8ay? + 2u)

In summary, to compute the movement of the purely imaginary eigenvalues
associated with the egg dynamics, one must first find S by solving (32) or (34).
Then, provided S lies in the range (41) so that the associated equilibria are centers
for the Hamiltonian dynamics, one applies (44) to determine whether the
eigenvalues move into the left or right half-plane when the non-Hamiltonian
perturbations are introduced. If £(B, | + B,,) >0, then the eigenvalues move to the
right and the equilibria and the associated three-tori are unstable, at least for
sufficiently small ¢. If, on the other hand, ¢(B,, + B,,) <0, then we must complete
the stability computation by determining how the zero eigenvalues associated with
J and % conservation move with the introduction of the & perturbations. This
problem is tackled in the next section,

4.3 The other eigenvalues

We focus on the case where, in the Hamiltonian limit, the eigenvalues of the
Jacobian matrix evaluated at an equilibrium are +iw,, 0,0, with w, € R. Then,
under the non-Hamiltonian perturbations, the simple eigenvalues will move to
iwg+e2,+0(?) and —iwy+e4) +0(c*), where Re(4,) was calculated in the
previous subsection. Meanwhile, the two zero eigenvalues will move an amount
given by an expression of the form &”y, +0(e?) and ¢y, + o(¢?) , for some p>¢>0.
(This comes from perturbation theory of spectra, as in, for example, Kato (1984,
Chapter 2).) In this case, the trace of the Jacobian matrix is ¢(¢"), where r=g if
g<1and r=1 otherwise, and the determinant is ¢(¢”*9). Thus, p=¢=1 if and only
if the determinant is ¢’(¢2) and the trace is G(g). Later in this subsection we show
that we do in fact have p=g¢=1 for our system.

Given that p=¢=1, we can determine the movement of the zero eigenvalues by
computing the trace and determinant of the Jacobian matrix. In particular, the
trace is &(2Re(4,) + 1, +p,) +0(¢) and the determinant is s2w3ju, i, +o(e?). Since
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2Re(4,)=B,,+B,, and w} are known (see equations (39) and (44)), we can
compute t, -+ u, and u, i, by computing the trace and determinant. The equilibria
are stable under perturbation when w3 >0, ¢éRe(4,) <0, (i, +u,) <0 and p,u,>0.
If any of these inequalities are reversed, then the perturbed equilibria are unstable.

We compute the Jacobian matrix from the (v, 2,j’, &) equations in (25),
remembering that x is determined implicitly in terms of y, 2, f, # through the
relaton (11). In contrast to the calculation in the previous section, here the
Jacobian matrix is evaluated at the perturbed equilibrium solution, which we
specify as

(X0s Yos Z0s Jos ko) +E(X15 Y1 21 Jys k1) + O(62)

The unperturbed solution (x4, ¥o, 295 Jos 2o) Was given in equations (28)-(34) and
the first-order corrections (x,, ¥, 2;,;, 2,) will be calculated as needed.
The Jacobian matrix is computed to have the form

€a;; @2 813 Gy,
Gy EQy; Eaj3 Eay,
M= (46)

£%ay, 643, €333 &as,

elay tay; £a,; tay,
where the g;; are order one in ¢. From this, we establish that

Tr(M) =8(a|1 +a22+a33+a44)
Det(M) =¢a,, [a,,(a34043— @33044) +@13(@33845 —34842) 47)

+a,4(a3385;—a33843) ] + O (%)
At leading order in &, we find

a1y = — 40x0— 205 — 4fjo ko + 40z — 41fizo31 /%o
a,,=4yfxo—2f(2— 623+ 8) —8yfiz3(1 —22)/x,

a3 =4fjo{1 —2o— 720 [ (1 —20) > —k§)/x,}
ayy=—4fko{1+2,+725[(1+2,)° _J%]/xo}

a3, =2f,

ay;= —2a(1—323) —28xy— xS — 28y ke + 4622 (1 —22)/x,

ay, =4azyjo + 2Bko + 40j020 (1 —23) /x4

a3y =a[2(1+23—j2) —8) —26x,—4Bjoko + 282 [ (1 —20) > — k3] /x,
a33= = 29%jg ko + 2P (1 +24—13) +28joko [ (1 +24) 2 =131 /%o

a4y =4azoko — 2Bjo + 46kozo (1—235)/x

ayy= — 200 kg +2B(1 — 2o —k3) +28joko [ (1 —20) 2 — k2] /x,

ag =a[2(1 +25—k3) —S] —20x5— 4Bjs ko + 26k [ (1 +2) 2 —73)/xo

(48)
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where § is a solution of the cubic (32). Note that the leading order terms in the
trace and the determinant depend on the perturbation of the solution through the
component y, in a,, only; from the z’-component of (25) we find

Sivi=a(l —2)zo +8xo20 + Pioko2o (49)

Here we use the fact that j3 — k3 =2,S at the equilibrium (see equation (28)).
A fairly lengthy computation determines that the trace can be expressed in terms
of the solution S of (32) as follows:

(€4St +238° +¢,5% +¢,5+¢p)

T == s T (50)

where
o =48af%y(y* ~1)
¢, =28af%y — 68af2y> — 16026 — 4082925 + 320*725 — 160y*$
e, =4B%p%0 — 2af%y— 16ayd® — 240925 + 4926 + 205295 + 26 82925
+32af%y% + 1607352
&3 =y (4a%yd — 4953 — 508292 — B295 — 836 — 1 2a725% + 4ad® — 44%730)
e, =072(8% — B2 +a®y? 4 2076 + f272)

51

The determinant can similarly be expressed in terms of S. However, in this case
the expression is quite unwieldy. For example, in the special case that a=0, we
find that the determinant is of the form

JSES(my ST+ mS®+msS® +m,S*+my S+ m, S+ m S+my)

Det(M) =¢ B(S—2)3("—1)° (52)

+0(e?)

where the coefficients my, ..., m, are polynomials in £,y and 4. We omit the
explicit expressions, but pursue this example further in the next subsection. In any
case, so long as the order & terms in Tr(M) and the order £ terms in Det(M) are
not identically zero, we see that we do in fact have the desired dependence of the
eigenvalues on ¢, i.e. p=¢g=1. We note that this is the case for the example given
in the next subsection, and hence for an open set of the (a, f3, 7, 6, f;)-coefficient
space.

These stability results have been calculated for three-tori that are solutions to
equations (3), the cubic truncation of the normal form. Because the three-tori in
the normal form are hyperbolic, the stability results carry over to the corresponding
three-tori that exist in the full D, x [T? bifurcation problem.

4.4 An example

In this subsection, we give an example that demonstrates that three-tori can exist
as stable solution branches. We set x=0, f=1, § =2, and consider a range of values
of y. Our conclusions are independent of the parameter f, provided f,#0.

In Section 3.3, we showed that for the chosen values of «, 8, 4 and y € (1, 50],
the solutions of the unperturbed problem, corresponding to S=2+4//7*+3,
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persist under small non-Hamiltonian perturbations. Substituting these values of §
into equation (39) yields

2
wi=—d 77342 /743
743

Both choices of sign give positive expression for w3 when y%> 1, and this ensures
that both equilibria correspond to elliptic fixed points in the Hamiltonian limit.

The movement of the purely imaginary eigenvalues under perturbation can be
calculated from equation (44). Figure 5(a) plots the quantity B,, + B,, for the
equilibria corresponding to S=2-4//y*+3 and for ye[2,50]. We see that
B,,+B,,<0 for these values of the coefficients; for £>0 sufficiently small, the
purely imaginary eigenvalues move into the left half plane uder perturbation.
Figure 5(b) shows the order one terms of Tr(M)/c¢—~ (B, + B,,) and Fig. 5(c) plots
the order one terms of Det(M)/(f2£2). We see that for > 0 sufficiently small and
v € [2, 50], the zero eigenvalues perturb to pu,, pt,, where y; + u, <0 while p,u, > 0;
the zero eigenvalues also move into the left half-plane under perturbation. Thus,
in the case a=0, =1, =2, ye[2,50], £;#0, and for ¢ sufficiently small and
positive, the equilibrium corresponding to $=2—4/./7°+3 becomes asymptoti-
cally stable under the addition of the non-Hamiltonian terms £f}; in equations (25).
This equilibrium corresponds to a stable branch of three-tori existing in the full
system for 2> 0 so long as 6 <0. In terms of our original system of equations (3),
we have shown that there is an open region of the parameter space with £, =0,
axbxcxd, a,+c¢<0, for which a branch of stable three-tori bifurcates
supercritically from the equilibrium at the origin when Ai=0.

Similar calculations for the choice S=2 +4/./7> + 3 show that, to lowest order in
& By +8B,,>0, Tr(M)/e—(B,;+B,,)>0 and Det(M)>0, i.e. when ¢>0 the
purely imaginary eigenvalues and the zero eigenvalues all move into the right
half-plane under perturbation. Thus the corresponding branch of three-tori in the
full system is unstable.

As a demonstration of the above result, we return to the original system of
equations (3) for (w,, w,, wy, w,) € C*. We numerically integrate equations (3)
starting from a single initial condition and with the choice of parameters

u=0.1+i, a=—0.95+1, b= —-0.9—1, = =0.95 42,
d=-1-2i, f=024+1{

This choice of parameters gives

(53)

=0, =1, 6=2, =06, a=-1.9, £=0.1 (54)

If we neglect the (’(¢) corrections, we expect the branch of stable three-tori to
satisfy L= —i/2a, S=2-2|6)//(72—1)B?+ 6%, and equations (28)-(29), i.e. to
satisfy

L~0.026, x=~0.15, yx0.0, 22~0.077, jk~0.65, S=x1.36 (55)

The resuits of our numerical integration are presented in Figs 6 and 7. In Fig. 6, we
plot Re(w)) as functions of ¢, i=1, . . ., 4. The plots of Im(w,) as functions of r are
similar. From this data, we can generate plots of L, x, y, 2, j, k£ as functions of ¢, and
these are presented in Fig. 7. Note that in drawing Fig. 6, we discard the
initial transient solution, but we retain the transient for Fig. 7. We find that the
final values of L, x, y, z, j, k are {cf. equation (55))
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Fig. 5. For the case 2=0, 8=1, §=2, y€ (2, 50], and with S=2-4//y*+3: (a) B +8,,5 (b) order
one terms of Tr{(M)/e— (B,,+B,,); (c) order one terms of Det(M)/(f; £2).
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L=0.027, x~0.16, y=x0.03, 2z*20.078, jk~0.65, Sx1.35 (56)

The solution plotted in Figs 6 and 7 appears to approach an equilibrium with
x2(l7 |+ |k]) #£0, as is required for a non-symmetric three-torus. Furthermore, the
amplitudes of oscillation for the components w; are all different from one another,
as is also required for a non-symmetric three-torus.

$ Summary

We have shown the existence of a branch of stable three-tori, bifurcating from the
origin, in a Hopf bifurcation problem on C* with D, x ,T? symmetry. The three-tori
completely break the symmertry of the problem, and correspond to relative
equilibria for the normal form of the bifurcation problem. For the applications
where this symmetry group and bifurcation problem arose, the three-tori represent
three-frequency spatially periodic waves (Clune & Knobloch, 1994; Silber ez al.,
1992). The existence of the branch of three-tori is shown in a regime of the
coefficient space that is close to a Hamiltonian limit of the bifurcation problem. We
expect the approach taken here may apply to other equivariant bifurcation problems
that have integrable Hamiltonian limits by virtue of their continuous symmetries.
The main steps in our analysis can be summarized as follows:

e We first posed the bifurcation problem in the orbit space of the continuous
symmetries by introducing, as coordinates, invariants for the T? x ! symmetry.
This decoupled three phases from the rest of the dynamics, reducing the
dimension of the problem from eight to five. The three-tori of interest are then
equilibria in the orbit space.

o Next, we reduce the problem by one more dimension by rescaling time and our
coordinates by an appropriate power of L =1|w|?, where w € C*. This caused the
L equation to decouple from the others. Moreover, the bifurcation parameter
appeared only in the L equation with the consequence that the dynamics of the
reduced problem were independent of the bifurcation parameter. This reduction
worked because the nonlinear terms in the truncated normal form (3) are
homogeneous (see Field & Swift, 1994).

o The remainder of our analysis was applied to the four-dimensional problem. The
equilibria for this problem are readily identified in a Hamiltonian limit, although
they are not isolated due to the integrable structure. We perturbed from this
limit, and looked for equilibria that persisted under the non-Hamiltonian
perturbations. The difficulty with equilibria not being isolated in the
Hamiltonian limit was removed by rewriting the fixed point equations so that the
implicit function theorem could be used to deduce persistence.

e We addressed the stability of the three-tori by computing the eigenvalues of the
corresponding equilibria of the four-dimensional problem in the Hamiltonian
limit, For the elliptic points, we used an eigenvalue movement formula derived
in Appendix B to determine how the purely imaginary eigenvalues moved under
the non-Hamiltonian perturbations.

e The movement of the two remaining eigenvalues was then calculated directly by
a perturbation argument to finish the stability calculation.

It may be possible to use the framework presented here to also prove existence of
a primary branch of four-tori. Based on what we have done, it is reasonable to
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expect that there are parameter values where the complex eigenvalues for an
equilibrium in the four-dimensional problem remain purely imaginary under
perturbation. To calculate the values of «, f8, 7, & for which this occurs, we would
determine where B, , + B,,=0. If this condition can be met with «, fi,  not all zero,
i.e. without reducing to the Hamiltonian limit, and we can show that B,, +B,,
changes sign as we vary these parameters, then we are in a setting where we may
be able to apply the Hopf bifurcation theorem. The bifurcation parameter in this
case would be a function of the nonlinear coefficients «, #, 7, d; it would not depend
on the value of the original bifurcation parameter 4, thereby ensuring that the
four-tori appear as a primary branch. Four-tori obtained in this manner would
correspond to relative periodic orbits in the original normal form. We would
interpret this as meaning that one of the periodic orbits of the reduced Hamiltonian
problem survives the non-Hamiltonian perturbation (see Fig. 1).
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Appendix A: Invariants and resonances

For the problem considered in this paper, symmetry forces a 1:1:1:1 resonance at
the Hopf bifurcation point. In this appendix, we recall some results of Kummer
(1990) that explain the Hamiltonian structure of our problem and similar
problems. We shall first describe the situation relevant for simple resonances of two
oscillators and then indicate how it may be generalized.

A.1 Resonances of two oscillators

We start by considering the action of S! on C2, pertinent to the £:/ resonance, given
by

(w,s w,) —(e*%w,, e'%w,) (AD

where %k and / are integers.

Hamiltonian reduction by such a group action can be a useful tool in studying the
associated Hamiltonian system, and its dissipative perturbations. For instance,
Hamiltonian reduction led to the egg dynamics in Section 2.4. Here we describe
this reduction from both the Poisson and the symplectic points of view. For the 1:1
resonance, this situation was developed by, among others, Cushman and Rod
(1982) and Marsden (1987). Of course, resonances occupy a large body of
literature, but two other references relevant to the reduction point of view are Holm
(1989) (see also David et al., 1990; David & Holm, 1992) and Kummer (1990).
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The action (A1) is symplectic with respect to the symplectic form on C? given by

Qw15 0, (@15 @) = —Im (e, B7) 7l 7) (a2)
which is a convenient rescaling of the canonical symplectic structure. Apart from
this scaling, the Hamiltonian structure we use is the standard one obtained by
taking the real and imaginary parts of w, and w, as conjugate variables. For
example, with & and / equal to one and writing w, =g¢, +ip,;, Hamilton’s equations
have the standard form

¢, =0H/dp,, p,= —0HIdq,

In complex notation, Hamilton’s equations are z,= — 2i0H/0Z,.
Associated with the symmetry there is a corresponding conserved quantity, or
momentum mapping, given in this case by

1
M(w,, w2)=§(lwxlz+lwzlz) (A3)

Note that if we had not put the scaling factors in the symplectic structure, they
would appear in the momentum map.

The momentum map M is invariant under the S' action. Other invariant
functions are given by

1
Z=-2-(wal"—lwz|2) (Ad)
X+iY=w,"'v} (A5)
Notice that —M <Z <M. Also, note that these invariants are related by
X+ Yi=(M+Z)M-2Z) (A6)

In performing Poisson reduction, one normally constructs the quotient space
C?/S! and calculates its naturally induced Poisson bracket. However, except for the
case of k=1 and /=1, the action, while locally free (apart from the origin), is not
free (i.e. there are non-identity elements of the group that leave some points fixed),
and so one has to be careful about singularities in the quotient space. For example,
for k=1 and /=2, the action of the group element ¢ leaves points of the form
(0, w,) € C* invariant. Nevertheless, there can often be situations where the
quotient in the Poisson context can be singularity free, while the symplectic context
has singularities.

For each real number m, define the map ¢,,:R*—R by

Pu=X2+Y —(m+Z)(m-2Z) (A7)

Notice that the relation (A6) between the variables X, Y, Z, M can be written as
¢M(X, Y’ Z) =0.

Proposition A1. The quotient C%/S! is identifiable with R*® coordinatized by
(X, Y, Z) and it carries the quotient Poisson structure given as follows. Let F and
G be given functions of X, Y, Z and let (X, Y, Z) lie on the set ¢,(X, Y, Z)=0.
Then
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{F, G}(X, Y, Z) =kIV$,, (VFx VG) (A8)

Proof. This is proved as follows. Define f=Fon where n is the map sending
(wy, wy)—(X, Y, Z). The Poisson bracket on C? associated to the (scaled)
canonical symplectic structure is given by

{f 8} =—kRI(V,, £, V,,8) —lIm(V,,, £, V,,,8) (A9)

where the gradient is the real gradient, taken with respect to the real inner product.
One now computes {f, g} using the chain rule and one gets the bracket stated. It
is a straightforward, although slightly lengthy, computation. n

Next, one shows that the symplectic leaves in the above Poisson structure are given
by the symplectic reduced spaces, namely by the sets ¢, =0 corresponding to the
symplectic-reduced spaces M~ '(m)/S’. The bracket (A8) is the Poisson bracket
associated with these leaves. The leaves ¢,=0cR> are, in general, ‘pinched
spheres’, with the ‘pinch’ referring to the singularities in these sets, as mentioned
above. For example, for the 2:1 resonance, this set is pear shaped with one conical
singularity.

If H is a Hamiltonian on C2 that is invariant under the action of S!, then it
induces a function H on R* and the reduced equations on the pinched sphere
¢, =0 are given by the (Euler-like) equations

V=kIVH x V¢, (A10)

where V=(X, Y, Z).

In deriving normal forms for bifurcations of equilibria in Hamiltonian systems,
one naturally obtains systems that have a symmetry inherited from the flow of the
linear part. Such normal forms may be integrable systems and be subject to an
analysis as above, as they are in the present paper and in the following section. We
also remark that one can derive a geometric phase formula associated with this
situation that is analogous to Montgomery’s geometric phase formula for the rigid
body (see Marsden and Ratiu (1994) for a discussion and references).

A.2 Multiple resonances

The case of multiple resonances proceeds in a way similar to the case of simple
resonances in the preceding subsection. The details depend on the nature of the
symmetry and the resonance. We make a few remarks relevant to our case.

Start with the action of T2 x S' on C* given by

(6, 8,) : w1, 2w,, e 1o, 6™ 0200,)

(A1)
¢ wirew
The canonical Poisson bracket on C* is given by
of 6g of dg of og 6f 6g
s g} (w, w) = 2‘(6', Jw, 0wl 0w, )+2'(0w2 6w2 awz 6:02
(Al12)

+2(6f % of o )+21( o g o 6g)

010, 0w, (3w3 0w, o, dw, Ow, O,
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where w; and @; (j=1, . .., 4) are conjugate variables. Hamilton’s equations are

= 2_5h =1 4 Al3
= l@zb,-’ i=1,..., (Al3)

The momentum map is given by (%, K, L) as defined in (4) in the main body of
the paper, and the other invariants are given by X, Y, Z, also as defined in (4).
Define the map ¢;, :R*—>R by

b1usX ¥, Z2)=Z+I+))Z+I-)Z~1-BZ-1+ B -X* -V (Al4)

where ¢, (X, Y,Z)=0 on the reduced manifold defined by (7). A tedious
calculation analogous to the simple resonance case then determines that the
reduced bracket is a bracket of ‘Nambu’ type:

{F, G}(X, Y, 2)=V¢;,," (VFxVG) (A15)
and the reduced vector field is
V=VHxVé,,, (A16)

where V=(X, Y, Z). This Hamiltonian structure has of the form of a generalized
rigid body, as with the case of simple resonances (see Churchill er al., 1983; Haller
& Wiggins, 1996).

Appendix B: An eigenvalue movement formula

This appendix derives a formula for the movement of eigenvalues that is relevant
for dissipative perturbations of Hamiltonian systems. This formula is a
modification of formulae for the movement of eigenvalues that go back to Krein,
see MacKay (1991) and Bloch et al. (1994) and references therein. Our version of
the formula allows the symplectic form to be degenerate, which is appropriate for
the situation in this paper.

B.1 Notation

Start with a system x =f(x, £) where x € R" and ¢ is a small parameter. Assume that
x(e) is a curve of equilibria:

f(x(c), &) =0
and that for ¢ =0, the linearization in x,
D, f(x(0), 0)

has purely imaginary eigenvalues /,=iw, and -)._;= —iw,. We will assume these
eigenvalues are simple so there are corresponding (smooth) eigenvalues 4(e) and
eigenvectors v(¢) for D, f(x(e), £) for small |¢|. Write

x(£)=x0+8x| + ...
Me)=roteig+ ...

v{e)=vo+evy+ ...
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Our goal is to find a formula for Re(/,). Note that
. od,
4 =&’-(€)|¢ =0

so that Re(4,) tells us to first order how the eigenvalues are moving transverse to
the imaginary axis as ¢ is varied.
Write

f=f,+ef,

where f, is Hamiltonian and f; is dissipative (non-Hamiltonian). Explicitly, assume
we have a skew bilinear form Q on R” relative to which D, f,, is skew. We do not
assume (Q is non-degenerate. We write, relative to a set of coordinates,

Qv, w) =v Jw

where v’ is the transpose of v, so v" is a row vector and J is a real matrix.
Let vo=v, +iv; be the real and imaginary parts of v,. We will assume that

viIv,#0
Define a linear operator B, by
B, -w=D, {)(x,, 0) - w

and note that this operator depends on £, but not on x,.
B.2 The formula

Proposition Bl. The following formula holds

VrT JBv,— V.'T JBv,
2v,Jv,

Re(4,)=

Note especially that the formula does not involve v, or x, which is what makes it
so useful.

B.3 Proof of the formula
We start by differentiating the defining condition
D_f(x(e), e)v(e) — i(e)v(e) =0
with respect to ¢ at £=0 to give
D, f(xg; 0) v, + D (x4, 0)(x,, vo) + D2, £(x, 0) * Vo= AoV, + 4,V

Now we apply the operation Q(¥,,) to each side of this equation, where the
overbar denotes complex conjugation. Here we need to keep in mind that Q is
regarded as a real bilinear form extended to complex vectors and that D f(x,, 0)
is a real linear transformation. Since D, f(x,, 0) =D, f,(x,) is Q-skew and since

4= — /¢ because / is pure imaginary, the terms involving v, drop out and we get

Q(¥,, D;Z: f(xo, 0) - (%, Vo)) +Q(\70, Di; f(x,, 0) - Vo) =4,Q(¥g, Vo) B1
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Next, we use the fact that D, f,(x(g)) is Q-skew:

QD . f,(x(£)) -u, v) = —Q(u, D, f,(x(e)) - v) (B2)
Differentiate (B2) with repect to ¢ at £=0 to get
QD2 £, (x,) * (%, w), V) = —Q(u, D (%) - (%, V) (B3)

This implies that the first term in (B1) is real. Thus, taking the imaginary part of
(B1) and using f=f, +¢f, gives

Im(Q(¥g, D, £,(x0, 0) - vo)) =Im(4,Q2(¥,, vy)) (B4)
Since Q(¥,, v,) is pure imaginary, this becomes
Im(Q(¥, B, " vo)) =Re(4)Im(Q(¥y, Vo)) (B5)

Solving for Re(4,), using the expression for Q in terms of J and writing vo=v, +iv;,
we get the stated formula.



