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1 Introduction

In Alber and Marsden [1992, 1994a, 1994b], we introduced a new method for
obtaining geometric phase phenomena for soliton equations, including the famil-
iar phase shift of interacting solitons—see for example, Ablowitz and Segur [1981].
Prior to this work, the phase spaces of integrable systems were viewed as being foli-
ated by invariant tori; however, for soliton phase spaces and to get formulas for the
geometric phases, we have shown that a foliation by noncompact varieties is essen-
tial. The method is based on what we called asymptotic reduction. This procedure
is applied to a new complex angle representation on a noncompact invariant variety
and it leads to a description of geometric phases in terms of the monodromy of the
phase function at singularities on hyperelliptic Jacobian fibrations. Monodromy
and action-angle variables for Hamiltonian systems were investigated in Duister-
maat {1980], Cushman and Duistermaat [1988], Ercolani [1989], Baider, Churchill
and Rod [1990], Alber and Marsden [1994a], Bates and Zou [1993], amongst others.

In the present paper, we apply our approach to effects that are related to the
problem of semiclassical monodromy. A crucial point in doing this is to consider
the complexification of the system. In particular, we describe new complex angle
representations and Hamiltonians for the classical simple spherical pendulum (our
angle representations hold for the n-dimensional case and are different from those
of the above mentioned authors even in the real case, and are based on the Abel-
Jacobi map). In particular, this yields néw exponential Hamiltonians and angle
representations on homoclinic varieties and leads to the introduction of Maslov
indices of closed curves in Lagrangian submanifolds of the cotangent bundle of
the configuration space. These Lagrangian submanifolds are defined by the first
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integrals of the problem and will be described below. Then we develop complex
geometric asymptotics with corresponding quantum conditions. These quantum
conditions include classical and complex monodromy together with phase shifts
that are related to Maslov indices after transporting the system along certain closed
curves in the space of parameters. We refer to these types of phase shifts which are
associated to the quantum conditions and also phase shifts that are associated to
singularities in the space of parameters as semiclassical monodromy.

Cushman and Duistermaat [1988] used Bohr-Sommerfeld quantum conditions
in the 2-dimensional case (i.e., a pendulum moving in 3-space) and, using a nu-
merical investigation, detected monodromy in the semiclassical spectrum of the
Schrédinger operator. They also pointed out that the main difficulty is related to
the construction of action-angle variables at the singular points. Guillemin and
Uribe [1989] suggested that one should relate monodromy to Maslov effects and
asked if one can “hear” monodromy for the spherical pendulum. In this paper, we
establish this relation and show that indeed one can “hear” the semiclassical mon-
odromy (in the sense that one can hear similar semiclassical modes in the acoustic
problem).

To carry out this task, we obtain exact formulae for complex modes, the main
ingredients in geometric asymptotics, which are defined on the covering space of
the Riemann surface under consideration. (These modes can be treated in a way
similar to the case of acoustic modes in the whispering gallery phenomenon. For
a detailed description of this phenomenon see Keller and Rubinow [1960] and Al-
ber [1989, 1991]). Then we obtain quantum conditions of Bohr-Sommerfeld-Keller
(BSK) type, which include Maslov indices. We investigate these quantum conditions
on the bundle of Riemann surfaces over the base space consisting of the spectral
data, considered as parameters of the problem. Finally, we describe semiclassical
monodromy which has contributions from classical (real) monodromy and complex
monodromy, as shifts in the quantum conditions resulting from the transport of a
semiclassical mode around certain closed curves in the space of parameters.

2 Monodromy and Complex Angle Representations

In this section we obtain complex Hamiltonians for the spherical pendulum.
The method works in the general n-dimensional case and is presented in the Ap-
pendix; in the main text we focus on the two dimensional case (that is, the ordinary
spherical pendulum in three-space) and just specialize the relevant results from the
appendix to this case.

Our approach resolves the issue of multivaluedness for the angle representations
through the introduction of Riemann surfaces. The associated Riemann surfaces
depend parametrically on values of the first integrals of the problem and have
singularities, as described below; these manifolds are Lagrangian submanifolds away
from singularities. If one fixes values of the first integrals, then for each closed curve
in phase space (normally chosen to be in the real phase space and passing through
these Lagrangian submanifolds), one can define an associated Maslov index. This
index plays a crucial role in the semiclassical geometric asymptotics as we shall see
below.

As we shall see, the main difference between the spherical pendulum and the
problem of geodesics on a sphere is the presence of additional singularities of these
Lagrangian submanifolds. We will show that the angle representation in this case
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is similar to that for umbilic geodesics (see Alber, Camassa, Holm and Marsden
[1995]).

2.1 Some Complex Geometry for the 2-dimensional Spherical Pen-
dulum The Hamiltonian for the spherical pendulum in Cartesian coordinates Q;,
7 =1,2,3, and their conjugate momenta P; has the form

2
3 3
1
H=5 |3 P-|> PQ;| | +Qs (2.2.1)

Here the acceleration due to gravity and constraint of the length of @ have been
set equal to one. In this Hamiltonian, the constraint

3
> Qi=1 (2.2.2)
Jj=1

has been enforced by the extra term

3
> PiQ
=1

Hamilton’s equations on R® for (2.2.1) automatically preserve the set (2.2.2). Notice
also that this extra term vanishes on the constrained phase space, so the Hamilto-
nian becomes the usual expression of kinetic energy plus potential energy on this
constrained phase space. This construction, which also holds in the n-dimensional
case, provides an example of a Hamiltonian that automatically preserves a desired
set of constraints.

Now we change to new variables 2; and 2z and their conjugate momenta P,,,
P,, as follows. Let 8; and 8, be spherical coordinates, so that @Q; = cos8; sin 8,
Q2 =sinf,; sinf,, and Q3 = cos 2, and let Py, and Py, be their conjugate momenta.
Let

2

21 = cos? 0y,
25 = c0os fs,
ng(l - 21)22 = Pozl,
P (1-2)=P;.

(2.2.3)

This change of variables is canonical and in terms of them, the Hamiltonian
becomes
1

H=_——— _Pp? (].‘—Z]).Zl-l"l

T 2P32(1 - 22) + 2. (2.2.4)

The n-dimensional version is given in the appendix.

Spherical coordinates provide a convenient “nested” structure that leads to the
first integrals, whereas the variables z; provide variables on the Riemann surfaces
determined by the first integrals. We will demonstrate this below explicitly for the
spherical pendulum.
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2.2 The Angle Representation in the 2-dimensional Case First inte-
grals for the spherical pendulum are the angular momentum about the z-axis and
the energy, which we denote 8, and 8;. A computation establishes the identities

P2 = 'H—lz
= (1 -2 )21 !
P o B B 22 (2.2.5)

== -4 C0-
2(32 —z)(1- 22) — ﬁl
(1-23)?
This yields the following expression for the action function
§ = 51(z1) + S2(22)

[ 8 [MG) M(z) (2.2.6)
/ (1—;1)21 l+./z, (1-2z : 7 422,

which will be regarded as the generating function of a canonical transformation
from coordinates (z;, P;,) to (8x, ax) to be described below. Here

M(z)=2(63 -z) (1-2%) - B} (2.2.7)
is a basic polynomial of the hyperelliptic curve (Riemann surface) given by

W2 =M(z)=2(62 —2)(1-2%) - g}
= (z = mi)(z = m2)(z — m3),

(2.2.8)

where, —1 <m3 < 0 < my <1< m;. We choose 3; and 3, as action variables of
the problem and introduce the following conjugate variables

o) = _ﬁ = - " ; dzl + 2 ﬂ1d22 ao
8h 2 V-2 2 (1-22)/M(z) 229)
aS %2 d22 0 -

Here o® = (a?,a)) is the base point of the angle representation & = (a1, a2) and
t is time in the original Hamiltonian system. In the real case, 2; and z; move
along cycles I} and !> over the basic cuts [0,1] and [m3,m2] on the corresponding
Riemann surfaces R; and R, defined by

Ry :W2=(1-2))n, Ro:W?=M(zp). (2.2.10)

The pair (a),a2) can be considered as an Abel-Jacobi map with singularities.
These singularities result in an additional monodromy in the space of parameters.

Equations (2.2.5) define Lagrangian submanifolds £ = R; x R, as level sets of
the first integrals in the phase space C* except at singular points, namely at points
where 2; is 0 or 1 and z; is £1.

Definition 2.1 We call the Hamiltonian system with Hamiltonian (2.2.4) and
first integrals (2.2.5) on the Lagrangian submanifolds L the complex Hamiltonian
system associated with the 2-dimensional spherical pendulum.



Semiclassical Monodromy and the Spherical Pendulum 5

This family of parameterized Lagrangian submanifolds will be used to define
semiclassical monodromy and Maslov phases below.

The second expression in (2.2.9) can be considered as a Jacobi inversion problem
on the Riemann surface (2.2.8). This shows that 2; is a periodic function defined
on this Riemann surface. The first integral from the expression for a; is equal to
6,. This shows that

1 = Bidza 0
01 == 2 —

229 (1-22)/M(2) (2.2.11)
0, = arccos z;.

Here the function 23, the upper limit of the integral in the expression for 6,, is
considered on the Riemann surface R given by (2.2.8). Therefore, 8, is defined on
the covering space of R. In the real case, these two angles (6;,82) are the usual
spherical coordinates of the pendulum.

In conclusion, note especially that the construction presented here resolves the
problem of multivaluedness for the angle representations for the two dimensional
spherical pendulum only for the fixed values of parameters 8, and ;. First, aver-
aged values of o) and a3 are multivalued functions of 8) and 3, due to presence of
classical monodromy. (For details concerning classical monodromy see Duistermaat
[1980], Cushman and Duistermaat [1988] and Bates and Zou [1993]). Second, the
additional monodromy of the singularities in the space of parameters is related to
the symplectic representation of the braid group in a way described in Alber [L991b)
and Alber and Marsden [1992]. These two types of monodromy are obtained when
the system goes through the singularities (8; = 0,82 = %1) in the first case and
m3 = my in the second case. The first type of singularity can be resolved in the
real context. In the second case, complexification is essential. We notice that in the
multidimensional case n > 3, one gets additional monodromy due to the presence
of additional singularities.

3 The Homoclinic Variety for the Spherical Pendulum

In this section, we will investigate the dependence of the Hamiltonian system
defined by the spherical pendulum, on parameters. We will choose the parameters,
as in the previous section, to be the 8, introduced in the Appendix for the n
dimensional case. In the two dimensional case, the parameters, 8, and 3, are the
angular momentum and the energy, as in Cushman and Duistermaat [1988], as we
mentioned earlier.

This will lead, in particular, to the description of complex exponential Hamilto-
nians. We will also construct explicit homoclinic action-angle variables and describe
the corresponding monodromy. In the next section, this monodromy will be shown
to be one of the components of the semiclassical monodromy. This is done by in-
vestigating the dependence of the complex modes and the quantum conditions on
the parameters of the system.

3.1 Homoclinic Angle Representations We now will choose special values
of 81 and 3, that correspond to choosing special values of the constants of motion
that put one on the homoclinic variety. This yields the following form of the basic
polynomial associated with the homoclinic variety

M(z)=(1-2)%1+2). (3.3.1)
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Namely, we consider the following limiting process: in the polynomial (2.2.8), we
let 87 tend to zero and let 43 tend to one so that the polynomial develops a double
root. Recall that this corresponds to a special value of the conserved quantities. In
this case, the system of angle variables can be represented as follows,

21 1
o = — —_— dZ] = ao,
20y (1 - 21)21 ! (3 3 2)
22 3.
az = —V2 dzg =t+ad.

22 (1 - 22)\/1 + 22

The problem of inversion for (3.3.2) leads to the expression for the homoclinic orbit
of the usual pendulum. This means that homoclinic manifold for the spherical
pendulum splits into 1-dimensional homoclinic orbits on the great circles obtained

by-intersecting S* and a plane through the poles parameterized by the angle 8, =
af = const.
Lastly, we construct exponential Hamiltonians on the homoclinic varieties.

Theorem 3.1 The spherical pendulum on the homoclinic variety defined above
is ¢ Hamiltonian system with a Hamiltonian of exponential type.

Proof We introduce the following action function

i 42 log(bz - Zg)
S=/ 1=2)z1 +bdz; + ——=""d2y. 3.3.3
p VI 1)21 + b dz s Vith 22 (3.3.3)
This corresponds to a new choice of the first integrals
P =/ -z1)z +bi,

log(bz - zg) (3.3.4)
Vi+z

for the system of differential equations

H=vV(l-2)n+b
2y = (by — 22)V1 + 23,
This is obtained from the Hamiltonian system with Hamiltonian (5.5.1) by setting

B1 =0 and B2 = 1 and by introducing parameters b; and b;. System (3.3.5) is a
Hamiltonian system with the Hamiltonian

P =

(3.3.5)

H= (P12 —(1-z)n + bx)) + (e‘ +*anh_ (b - 22)) . (3.3.6)
Now we consider the following system of action-angle variables
L=b, o= —gbi’
! (3.3.7)
L=by, ap= _95
2= ] 2 = ab2 .

Lastly, one obtains angle representation (3.3.2) by setting b, = 0 and b, = 1 in
(3.3.7). O
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4 Semiclassical Monodromy

In what follows, we recall from Alber {1989, 1991] and Alber and Marsden
[1992], a method of complex geometric asymptotics for integrable Hamiltonian flows
on Riemann surfaces. We will use geometric asymptotics to describe the quantiza-
tion conditions of Bohr-Sommerfeld-Keller (BSK) type. Then we will investigate
the dependence of these conditions on the parameters (i.e., the first integrals) of the
system. This dependence near singularities produces effects caused by the classical
and semiclassical monodromy.

Let us consider quadratic complex Hamiltonians of the following form:

lem 4
=3 > ¢7Pl +V(z,...,20) (4.4.1)
=1

defined on C2*. We think of C2" as being the cotangent bundle of C*, with config-
uration variables u, ... , #n and with canonically conjugate momenta P,...,P,.

Notice that the systems considered earlier are indeed of this form. We consider
the functions g’/ as components of a (diagonal) Riemannian metric, construct the
associated Laplace-Beltrami operator, and then the stationary Schrédinger equation

VIV,U +w(E - V)U =0, (4.4.2)

defined on the n-dimensional complex Riemannian manifold C*. Here V7 and
V; are covariant and contravariant derivatives defined by the tensor g/ and w
(which is the inverse of Planck’s constant ) and E (the energy eigenvalue) are
parameters. Note also that in general, the metric tensor is not constant, and even
may have singularities, so that the kinetic term in the expression for H is not purely
quadratic.

Now we establish a link between equation (4.4.2) and the Hamiltonian sys-
tem (4.4.1) by means of geometric asymptotics; namely, we consider the following
function that is similar to the well known Ansatz from WKB theory:

Ulzyy--- y2n) = ZAk(zl, «eer 2n) expliwSk(21, - . 1 2n))
k

= ; [1Uss(2) (4.4.3)

j=1

= Z H(Akj (Zj) eXp[ink:i (ZJ')])'

k j=1

which is a multivalued function of several complex variables defined on C". If,
instead, one considers U to be defined on the covering space of the Jacobi variety of
the problem, then U becomes single valued. (The Jacobi variety was described in
Section 3.) The functions present in this expression together with r, which denotes
a vector of Maslov indices, will be determined below.

Substituting (4.4.3) in (4.4.2), equating coefficients for w and w? and inte-
grating, we obtain the amplitude function A, which is a solution of the transport
equation, of the form

Ao

A= T Dat)

(4.4.4)
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Here D is the volume element of the metric: D = \/[];_, gu and J is the Jacobian of
the change of coordinates from the z-representation to the angle (o) representation.
We also find that the phase function § is a solution of the Hamilton-Jacobi equation

AISA;S -V = E, (4.4.5)

meaning that it coincides with the action function.

Now we can apply the above construction to the 2-dimensional spherical pen-
dulum. Note that in this case the action function (2.2.6) can be represented in
terms of angle variables (2.2.9) as follows

2 2'2 d22

S = —ﬂla? - ﬁgag (446)

z2 (22

The last two terms correspond to the holomorphic and meromorphic parts of the
action function. The holomorphic part is proportional to the angle variable of the
classical problem. The amplitude A can be found after calculating D and J

1

D=./g = —_—— 4.4.7
11922 \/m ( )
and
- aa: 232
detJ! = =- . 4.4.8)
62] \/M(ZQ)Z](I —21) (

This results in the following form of the function U:

Z Ao\/2B2(M(22)) ¥ exp [szsk,(z,)} (4.4.9)

k—(k] ,kq) Jj=1

Zy ﬂ%
Sk](zl) = /z? Mm dZ] + k1T1, (4410)
%2 / M T
Sk2(22) = /n (1_(—‘:2%))2 dzg + koT5 + 51‘2, (4.4.11)
22

where r; is Maslov index, and

4 [CE,
ni= '%;.1 (1 - Zl)Z “ (4_4.12)

2r3f f 2pdzo g2 dzy .
2 Jin \/_M(Zz Ve S, (1 - 23)y/M(20)

The amplitude A has singularities at the branch points zo = m,;,ma, m3 of the
Riemann surface (2.2.8). Each time a trajectory approaches one of these singular-
ities, we continue in complex time and go around a small circle in complex plain
enclosing the singularity. This results in a phase shift (+iw/2) of the phase function
S, which is common in geometric asymptotics. The indices k; and k; keep track

where

and
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of the number of oriented circuits for z; and z; around !, and l,. The complex
mode (4.4.9) is defined on the covering space of the complex Jacobi variety. Note
that in the real case, it is defined on the covering space of a real subtorus. Keeping
this in mind, quantum conditions of BSK type can be imposed as conditions on the
number of sheets of the covering space of the corresponding Riemann surface for
each coordinate 2;:

wle; = 27T'N1,

4.4.1
%1’2 + wkoTy = 27w N3, ( 3)

Here Ni, N, are integer quantum numbers. The quantum conditions (4.4.13) in-
clude a monodromy part after transport along a closed loop in the space of param-
eters (8, and Bz). This semiclassical monodromy consists of a classical part as well
as a contribution from complex monodromy and the Maslov phase.

Classical monodromy may be explained briefly as follows. We consider two
different cases, namely the case —1 < 2 < 1 and 82 > 1. In the first case, one
considers a cycle I over the cut [—1,03] and in the second case, one considers a
cycle I3 over the cut [—1,1). There is a closed curve in the space of parameters that
leads one from one case to the other. Evidently, there is a difference in the values
of the third integral in the expression for 7> between the two cases that is given by
the residue of the integrand at z; = 1.

The complex monodromy can be demonstrated if one of the roots m; and m2 of
the basic polynomial M(z) approach each other. This singularity can be resolved by
interchanging these two roots in the complex plane so as to avoid a real singularity.
This leads to the change of orientation of the cycle I; and in the general case, can
be described by the generator of the symplectic representation of the braid group.
It results in additional shift in the quantum conditions.

The third type of shift in the quantum conditions comes from the integral
representation for the Maslov class.

The complex mode (4.4.9), which corresponds to a particular choice of param-
eters in (4.4.13) is similar to an acoustic mode that occurs in the whispering gallery
phenomenon described in Keller and Rubinow [1960] and Alber (1989, 1991].

The n-dimensional system can be treated in a similar way. A complex mode U
has the form

v ¥ AT Ba
et oy (C1PE(z2) - Kn(zm) (1= 2)(1 = 2)% . (1= 2a)"2)}

X exp inSkj(zj) . (4.4.14)
i=1

which yields following quantum conditions
wk1T1 =2aN 1,
-7211‘2 + wkoT; = 27Ny,
(4.4.15)

%rn + wk,T, = 27N,,.
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Since the form of Tj,j = 2,...,n — 1 is different from both T} and T}, one gets
additional new types of monodromy in the n-dimensional case.

Lastly, the results of Section 4 yield a construction of the complex mode defined
on the homoclinic varieties despite the fact that the Hamiltonians are not quadratic,
but are exponential in this case.

5 Appendix: The n-dimensional Spherical Pendulum

Recall that a Riemann surface R is a connected two-dimensional topological
manifold with a complex-analytic structure. Compact Riemann surfaces are deter-
mined by nonsingular algebraic curves of the form R(W, E) = 0, where (W, E) are
points in C2, and R(W, E) is a polynomial with no multiple roots. We shall also
need notions about complex Jacobi varieties and Abel-Jacobi maps; for details see
Ercolani and McKean [1990).

A.1 The Hamiltonian and First Integrals In what follows we will handle
the spherical pendulum in a way similar to the problem of geodesics on an n-
dimensional sphere in R**1,

We recall from Alber and Alber [1985] the following form of the Hamiltonian

1 n n 1
H=§ZP;(1—zj)z,( II — ) (5.5.1)
j=1 k k

k=741

for the problem of geodesics on the n-sphere of radius 1:

n+1

Pt
j=1

To explain the notation in this expression for the Hamiltonian, we consider n-
dimensional spherical coordinates on the unit n-sphere defined as follows

Q1 = (cos8)(sinfz)...(sin8,),

Q2 = (siny)(sinéy) ... (sind,),

(5.5.2)
Qn = (cosp-1)(sinb,),

Qn+1 =cosby,.

In (5.5.1) the variables z; and P.,, the momentum conjugate to z;, are related to
spherical coordinates and momentum (6;, Ps,) on the sphere by

zj = cos’ 8;, (5.5.3)
P(1-2z)2=F}, -
where j = 1,...,n. The Hamiltonian is taken to be the standard one, namely the
kinetic energy. When the Hamiltonian is transformed to the variables z; and P,
one gets the expression (5.5.1). Spherical coordinates provide a convenient “nested”
structure that leads to the first integrals, whereas the variables z; provide variables
on the Riemann surfaces determined by the first integrals. We will demonstrate
this below explicitly for the spherical pendulum.

/"W\u)
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The Hamiltonian of the n-dimensional spherical pendulum in Cartesian coor-
dinates Q; and their conjugate momenta F; has the form

2
n+1 n+l

H= Z PJ2 - Z Pij + Qn+1- (5.5.4)
j=l j=1

Do -

Here the acceleration due to gravity and constraint of the length of @ have been
set equal to one.

Remark 5.1 In this Hamiltonian the constraint

n+1

Y @=1 (5.5.5)

=1
has been enforced by the extra term

n+1

> PQ;
i=1

Hamilton’s equations on R%"+1) for (5.5.4) automatically preserve the set (5.5.5).
Notice also that this extra term vanishes on the constrained phase space, so the
Hamiltonian becomes the usual expression of kinetic energy plus potential energy
on this constrained phase space. This construction provides an example of a Hamil-
tonian that automatically preserves a desired set of constraints.

The same Hamiltonian in the n-dimensional spherical coordinates (5.5.2) can
be expressed in the following “nested” form

1l 2 [ T 1
H—E-ﬁ;})gj kglm + Rcosby, (5.5.6)

or

1 1 1 1
gt (L (p2 +_ Y (p2 4+~
2R? (sin'2 6, ( On-2 ™ §in26,_, ( On-2 7 in20,_,

1 1
. P+ —— P2}, )
( +sin203 ( Ch sin® 62 0‘)) ))

é%Pg“ + Reosf,. (5.5.7)

+
The change of coordinates

25 =COS29]', Pzzj(l—Zj)Zj=P92j, j=1,...,(n—l);

zn=cosb,, PL(1-Z)=F;.
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results in the Hamiltonian

= 1
H=§§ fj(l—zj)zj(H (1—4)) (1-22)

k=j+1
1
+ §P3n(1 —22)+ 2,. (5.5.9)
Here R =1 and (z;, P,,) and (8;, Py,) are pairs of conjugate variables.

The nested structure of the Hamiltonian (5.5.7) shows that one has the following
first integrals for the n-dimensional pendulum

=4,
Pozq ﬂl = ﬂ2$
2 (5.5.10)
P2 4+ _ﬁ.i =2
On-1 sin2 0,;-1 —b
1 P + = + cosf, = 2.
2 " 9

Here 3; are constants along solutions of the corresponding Hamiltonian system.

Denote m\
Ki(z)=B(1-2) =By, §=2,...,n—1, |
and ’
Kn(z)=2(67-2) (1-2°) -G,

Using the change of coordinates (5.5.8), the first integrals take the form

2
2 __ B
P = z(l-2)’
po_ B B __ Kz
i 12(1 - Zz) 22(1 - 22)2 22(1 - 22)2 ’
(5.5.11)
P2 = [ _ 2 _ _Kn-1(2n1)
e zpe1(l=zno1)  Zao1(1 = 20-1)? T Zne1(1— 20-1)?’
p2 -9 [i5 [ zn  _ Ka(za)

1-22) (1-222 “(1-22) (1-22)%

where constants ﬂ} are positive real numbers. Therefore, we consider the real-
valued solutions in which case one has a correspondence with the system in spherical
coordinates.



( Semiclassical Monodromy and the Spherical Pendulum 13

A.2 The Complexified n-dimensional Spherical Pendulum Now we use
the representation (5.5.11) to extend our system into the complex domain by con-
sidering ﬁ;*-’ as complex numbers and variables z; defined on the associated Riemann
surfaces:

Ry: W= Zi (1 l 1)
Ry Wi mﬁ"’fzilw
(5.5.12)
Ry W2, = ,ﬂI_{f(—szZ:z)z
Rn : W2 (fi(j?r:;z

Equations (5.5.10) define Lagrangian submanifolds £ = ®; x - -- x R, as level sets
of the first integrals in the phase space C2" except at singular points, namely at
points where z; is 0 or 1.

Definition 5.2 We cell the Hamiltonian system with Hamiltonian (5.5.9) and
first integrais (5.5.11) on the Lagrangian submanifolds L the complez Hamiltonian
system associated with the n-dimensional spherical pendulum.

A.3 Monodromy in the n-dimensional Case We construct an action func-
tion of canonical transformation from (z, P;) to the new (e, 8) coordinates to be
described below, in the form

n z
s=Y / " P,dz;. (5.5.13)
i=1 22

3

Here expressions for P, are taken from (5.5.11). Notice that the function S is, at
the same time, a generating equation of the Lagrangian submanifold in the phase
space.

~—
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We choose 8; and o; = —85/08; as conjugate action-angle variables in the
n-dimensional case. Thus,

Bhrdzz

21 1 N 4]
o = —/ ——dz +/ ,
LY, (1 —21)zn 23 (1 - Zz)\/ 22K2(22)

,BJdZ] Zi+t ﬁjdzj+l
VziKj(z;) - zi+1)Vzj1 K1 (zj41)
(5.5.14)
_ n-t ﬂn—ldzn—l /z" Bn_1dz,
Qp-) = — + )
\/zn—-lKn—l(zn—l) (1- z%)\/Kn(zn)
a _ ™ 2fndz,
" 20 \/K,,(zn).
where j = 2,...,n—2. This vector function e, ... , oy, defines the Abel-Jacobi map

and its image (i.e., the space in which these angle variables are uniquely defined)
is called the Jacobi variety of the problem.

Theorem 5.3 The Hamiltonian flow of the n-dimensional spherical pendulum
linearizes in terms of the action-angle variables (5.5.14) on each Jacobi variety
determined by a choice of parameters 8,... , 8.

Proof We substitute in each equation of a Hamiltonian system 2 = H /9P,
with the Hamiltonian (5.5.9) expression for momenta P, from (5.5.11) to obtain the
following system of differential equations on the correspondmg Riemann surfaces

’ 1
=1 -2)n (H (1- zk)) (1-2z2)’

= \/K (2j)z; (

Z:, = VKn(zn),

1 (5.5.15)
1 -zk)) ==

k=j+1
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where j = 1,...,n — 1. Transforming equations (5.5.15) and taking linear combi-
nation one obtains

Bi2' 2’y _

(1 - 22)\/22K2(22) - \/(1 - 21)21 -

Biz'j+1 __Bi%i  _,
(1= zj4)V2z51 K1 (zin) V2 Ki(25) (5.5.16)
Brn-12'n _ Bn-12'n-1 -0
(1-22)\/Ka(za) V2n-1Kn-i(zas1)
2ﬁnz,n

== _,—-—-—Kn' _(z") = fBn.

where 8, ...,0, are constants and j =2,...,n -2,
After integrating (5.5.16) we obtain on the left-hand side expressions which
coincide with the expressions (5.5.14) for the angle variables

a; = aj,
TN (5.5.17)
aﬂ =ﬂﬂt+an'

where j=1,...,n=1. O

A.4 Homoclinic Varieties in the n-dimensional case We fix an integer
m and apply the following limiting processes to (5.5.14) in the given order:

61 - 0’
(5.5.18)
Bm — 0.
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This yields the following expression for the angle representation
2 / " ___du ol
1=— —_—— = a,
ze ‘\/ (1 -2 )Zl !

2 dzm 0
Qm = — —_—=a,,,
22 V(1= zm)zm

Zm+1 dzm+1

Q1 = — PRt s &
eV zm+1(1 = zm+1)
+/z"'+2 Bm+1dZm 42
]
20,2 (1- zm+2)\/zm+2Km+2(2m+2)

% fidz (5.5.19)
2 2 K;j(z;)
+_/szrl Bidzj+1 0

= aj,
% (U= zi)VziaKin(zie)

Q; = —

#n-1 ﬁn—ldzn-l
2_, Van-1Kn-1(2n-1)

Fn ﬁn-—ldzn 0
v —al,

2 (1=-22)y/Kn(za)
o 28,.dz,

B 22 Kn(zn) B

where j=m+2,...,n—2,

There are two different cases. For m < n — 1, the system (5.5.19) describes an
m-dimensional family of parameterized (n —m)-dimensional spherical pendula. For
m=n -1 and 8, = 1, one obtains a family of 1-dimensional homoclinic orbits.

There have been many important developments in which the methods of com-
plex and algebraic geometry have been used to investigate the eigenfunctions of
Hill’s operator in the context of integrable equations. In Alber and Marsden [1995]
we link a new class of Hamiltonian systems on Riemann surfaces to systems of pde’s
using Bloch eigenfunctions for stationary Shrodinger equations with new types of
potentials. In particular, this yields a system of pde’s with monodromy.

Qpn-1 = —

an = Bnt + a?,,
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