—-

Dynamics and Stability of Systems, Vol. 10, No. 4, 1995 315

Pattern evocation and geometric phases in
mechanical systems with symmetry

Jerrold E. Marsden'! and Jiirgen Scheurle’
! Control and Dynamical Systems, Caltech 104-44, Pasadena, CA 91125, USA
2 Institiit fiir Angewandte Mathematik, Bundesstrasse S5, D-10146 Hamburg, Germany

(Received April 1995, final version August 1995)

Abstract. This paper is concerned with the relation between the dynamics of a given
Hamiltonian system with a given symmetry group and its reduced dynamics, We illustrate
the process of visualization of reduced orbits using the double spherical pendulum. In this
process of visualization, one sees certain patterns when the dynamics is viewed relative to
rotating frames with certain critical angular velocities. By using the reduced dynamics, we
also explain these patterns. We show that if the motion on the phase space reduced by a
continuous symmetry group at a given momentum level is periodic, then there is a
uniformly rotating frame, that is, a one-parameter group motion, relative ro which the
unreduced trajectory is periodic eith the same period. If the continuous symmetry group
of the system is Abelian, which corresponds to the system having cyclic variables, we
derive an explicit expression for the required angular velocity in terms of the dynamic
phase (an average of the mechanical connection) and the geometric phase (the holonomy
of the mechanical connection). We show that one can also find such a frame if the reduced
orbit is quasi-periodic and a KAM (Kolmogorov—Arnold-Moser) condition is satisfied.
The almost periodic case is also discussed. An important aspect of this procedure is how
to use it in the presence of discrete symmetries. We show that, under appropriate
conditions, the visualized orbit has, relative to a sustable uniformly rotating frame, the
same temporal behavior and discrete symmetries as the reduced orbit. Since these
spatio-temporal patterns are not apparent with repect 1o most frames, we call the
phenomenon pattern evocation.

1 Introduction

We will begin by explaining the phenomenon we wish to study in the case of the
double spherical pendulum.
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Fig. 1. The configuration space for the double spherical pendulum consists of two copies of the two-sphere.

1.1 Visualization for the double spherical pendulum

Consider the mechanical system consisting of two spherical pendula coupled with
spherical joints and moving without friction in a gravitational field (see
Fig. 1).

In this figure, the position vectors of each pendulum relative to their hinge
points are denoted q; and qz. These vectors are assumed to have fixed lengths /,
and  and the pendula masses are denoted m; and m..

The continuous symmetry group for the double spherical pendulum is the group
of rotations around the z-axis, that is, the axis of gravity. By reduction relative to
this group, we mean that a value of the angular momentum about the z-axis is
fixed and configuration points related by rotations about the z-axis are identified.
The full configuration space is parameterized by the positions of both bobs, and
the reduced configurations are parameterized by ry, rz, , where r; is the radial polar
coordinate of the ith pendulum bob, and where § is the angle between the two
vertical planes each of which contains one of the two bobs and the suspension
point (for details, see Marsden & Scheurle (1993a)).

A relative equilibrium for the double spherical pendulum is a motion of the
pendulum bobs that is given by a uniform rotation of the bobs about the z-axis
with a fixed angular velocity &.. In such a case, the reduced orbit is a fixed point;
that is, the variables ry, r2, 0 are fixed in time. In this simple case, if one views the
bobs from a frame rotating with the same angular velocity &, the bobs will of
course appear stationary.

A relatively periodic (resp. relatively quasi-periodic) orbit is one whose corre-
sponding reduced orbit is periodic (resp. quasi-periodic). Concretely, this means
that the variables r;, r,, # will be periodic (resp. quasi-periodic) in time. For such
orbits the visualization process is not so obvious as in the case of relative equilibria.

An interesting feature is that if one views a relative periodic orbit of the pen-
dulum bobs, then from the frame of a rotating platform (or camera), rotating with
a suitably chosen angular velocity (in the same general direction as the motion of
the bobs), the actual positions of the pendulum bobs will appear periodic in time.
As the frame of the platform is adjusted to ‘resonant’ values, one also sees patterns
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Fig. 2. An orbit of the double spherical pendulum relative to the lab frame; that is, with £ = 0.
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emerge. We see similar pattern formations for more complicated orbits whose
corresponding reduced orbits need not be periodic.

In Figs 24 (from Marsden et al., 1995), we show one orbit (one set of initial
data) visualized at three different frame angular velocities, which are denoted
by ¢. The upper curves in each figure show the actual trajectories of the bobs
in three space, relative to the rotating frame. The lower two curves show the
projections of these curves on to the horizontal plane. This projected information
is enough to capture the full information about the system in view of the length
constraints.

In Fig. 2, we show the orbit of the pendulum bobs relative to the lab frame (the
frame angular velocity ¢ is zero).

A pattern that emerges when the frame angular velocity is increased to the value
¢ =0.8550 is shown in Fig. 3.

Figure 4 shows a particular critical value ¢, of the frame angular velocity at
which the bobs do not encircle the z-axis. As we shall see later on, this special
value captures the dynamics of the corresponding reduced orbit. In the body of the
paper, we will be developing formulae for the value of this critical velocity.

As we shall explain in detail later, the discrete symmetry of the double spherical
pendulum given by reflection in a vertical plane together with reversability gives
rise to a discrete Z; symmetry of the reduced system. Thus, reduced trajectories
can have a spatiotemporal symmetry associated with this discrete symmetry. As we
show later and as the figures indicate, such symmetries arc inherited by the
trajectories relative to the rotating frame.

We notice here, and will discuss in greater detail in Marsden ez al. (1995), that
the following formula applies when the reduced orbit is periodic (but actually
holds surprisingly well in other cases too):
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Fig. 3. The same orbit of the double spherical pendulum at a resonant frame angular velocity.

Here, {. is the frame angular velocity at which one sees an m-fold symmetric
pattern, F is the frequency of the reduced periodic orbit and # is an integer.

1.2 Background and plan of the paper

The phenomena of visualization of orbits in the reduced space was studied,
especially for the case of the dynamics of point vortices, in Kunin ez al. (1992).
They observed phenomenon related to what we described above numerically for
the case of four point vortices. The motion of the vortices is observed to simplify

<10 .10

Fig. 4. The phasc portrait of the double spherical pendulum at the critical frame angular velocity.
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in the sense of developed patterns relative to an appropriately chosen rotating
frame (but the angular velocity of the frame might not be constant). A related
phenomenon is found in Meiburg et al. (1995).

The present paper puts this phenomenon into the general context of mechanical
systems with symmetry and uses, in particular, averaging, reconstruction, and the
theory of dynamic and geometric phases. (See Newton (1994) for the use of
geometric phases in problems of point vortices and for further references.) One of
our main points is that for motions whose reduced trajectory is periodic (resp.
quasi-periodic with a KAM (Kolmogorov-Arnold—-Moser) condition holding), the
frame angular velocity relative to which the orbit itself is periodic (resp. quasi-per-
iodic) with the same frequency can be chosen to be ‘constant’. The value of the
constant angular velocity involves a combination of the geometric and dynamic
phase, as will be demonstrated.

As we shall see, it is not sufficient to choose the so-called Tisserand frame,
which is the frame that rotates with an angular velocity chosen so that instan-
taneous (or locked) moment of inertia tensor times the angular velocity equals the
angular momentum; (this was introduced in Chapter 30 of Tisserand’s 1890 book
on celestial mechanics). The Tisserand frame need not be uniformly rotating;
however, its average also does not accomplish the desired task, even for cyclic
variables and relative periodic orbits, since it fails to take into account the
geometric phase. On a historical note, we mention that many of the ideas herein
were also relevant to Poincaré and it would be of interest to have a closer look at
his work from this perspective.

The plan of the paper is to first give some general results on the existence of
uniformly rotating frames valid for any symmetry group. Following this, we discuss
symmetries that drop to the reduced space and correspond to the patterns that one
might see visually. Finally, we show how to relate explicitly the desired frames to
the averaged Tisserand frame and the geometric phase. We do the latter in case the
symmetry group is Abelian and cyclic coordinates can be identified; the answer is
identified with a geometric construction, namely that

The angular velocity of the uniformly rotating frame that evokes the patterns
in the reduced space for the case of periodic orbits equals the average of the
Tisserand frame velocity (the dynamic effect) minus the average velocity
associated with the holonomy (the geometric effect).

We will show that this type of result also holds for certain quasi-periodic and
almost periodic motions and it is reasonable to conjecture that a similar result
holds for even more complicated orbits. It would be of interest in this regard to
relate the work here to that of Chossat and Golubitsky (1988), Melbourne ez al.
(1993) and related papers.

2 Systems with a general continuous symmetry group

Let G be a Lie group acting on a manifold M on the left and let X be a smooth
G-invariant vector field (i.e. an equivalent section of the tangent bundle). The flow
of X, obtained by solving the differential equation

x=X(x)

produces a one-parameter group of equivariant maps F;; M— M. We assume that
this flow is complete for simplicity. Being equivariant, it induces a reduced flow on
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the orbit space: ¢ M/G— M/G. Thus, nc F,= ¢,© n, where 1: M—M/G is the
projection.

In this general context, if SCM/G is an equilibrium or, respectively a periodic
orbit in M/G, then any dynamical orbit in the set n~'(S) C M is called a ‘relative
equilibrium’ in M, respectively a ‘relative periodic orbit’. We will use similar terms
when the orbit in the quotient space is quasi-periodic or almost periodic.

This paper is concerned with the visualization of these types of orbits for general
mechanical systems with symmetry. The case of a relative equilibrium is particu-
larly simple, as in the example of the double spherical pendulum. If z(f) e M is a
relative equilibrium, then we can write

2(1) = exp(t)2o

for some ¢ € g and some z; € M, where g is the Lie algebra of the group G. In a
frame moving with the constant angular velocity &, the motion will appear
stationary. The phrase ‘motion relative to a uniformly rotating frame with angular
velocity &’ simply means that we replace a given orbit z(r) by the new curve
exp(—1&)z(?). ‘Uniformly’ refers to the fact that ¢ is time independent. We are
mainly concerned with orbits that are periodic or quasi-periodic in the reduced
space. We claim that under suitable hypotheses, the motion in the original space
relative to a suitably chosen uniformly rotating frame is also periodic or quasi-
periadic.

In many interesting mechanical systems, there is an additional symmetry (often
discrete) for the given system and this symmetry passes to the reduced space. We
will show explicitly how to do this for the double spherical pendulum problem.
This discrete symmetry often means that the periodic or quasi-periodic orbit on
the reduced space has a discrete ‘space time’ symmetry, as in, for example,
Montaldi er al. (1988, 1990). When one visualizes orbits in the original space by
passing to a uniformly rotating frame, one wants not only to capture the periodicity
(not ‘corrupted’ by the given symmetry group G) but also the patterns present in
the reduced space because of the discrete symmetry. This is why we call this type
of construction ‘pattern evocation’.

The double spherical pendulum fits into this framework as follows. In the
context of Lagrangian mechanics, we choose M to be TQ where Q= 52X 5% and
choose the continuous symmetry group to be S'. The discrete symmetry group for
this system was described in the introduction and will be made explicit later in
section 5. The overall symmetry of the system will turn out to be the orthogonal
group O(2). The system has four degrees of freedom, but the reduced system
(whose phase space is the S' orbit space of a level set of the angular momentum)
has three degrees of freedom. Periodic motion in the reduced space corresponds
to motion on a two-torus in the original space, while motion on a two-torus in the
reduced space corresponds to motion on a three-torus in the original space. Here
the visualization process is very concrete as we have mentioned in the introduction:
one looks at the motion of the pendulum bobs through the lens of an overhead
rotating camera. If one has motion that is periodic or quasi-periodic (with a certain
number of independent frequencies) in the reduced space then the motion in the
camera will appear this way as well if its angular velocity is suitably chosen, but the
dynamical motion may appear more complicated when viewed from other rotating
frames.
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2.1 Existence of uniformly rotating frames for relatively periodic orbits

Let ¢(z) be an integral curve of X and let it project to a curve 7(z) under =n: that is

7(0) = n(c(®)-

Therorem 1. Assume that the exponential map exp: g— G is surjective. (For
example, this holds if G is compact and connected.) Assume that ¢(¢) is a relative
periodic orbit; that is, the integral curve y(¢) is closed; denote its period by 7. Then
there is a Lie algebra element ¢ e g such that exp( — t&)c(?) is also periodic with
period T.

Progf. Since c(z) covers 7(¢), and the latter is periodic with period T, there is a Lie
group element g € G such that ¢(7) =g - ¢(0). Since the exponential map is onto,
we can write g = exp(7¢) for some fixed Lie algebra element ¢ € q. We claim that
this ¢ satisfies the conditions required. To establish this, we need to show that the
curve exp( — t&)c(t) is T-periodic. That is, we need to show that

exp(— (T+0)8) » (T + 1) =exp(— ) * (1)
This condition is equivalent to

e(T+1) =exp(T¢) - ()

However, by G-invariance, exp(7¢) - ¢(¢) is an integral curve of X. Thus, the two
curves ¢(T + 1) and exp(T¢) - ¢(r) are both integral curves of X and they agree at the
point =0, so they are equal by uniqueness of integral curves.

Let us now apply this result to the context of mechanical systems with symmetry.
Let P be a symplectic manifold on which a Lie group G (with a Lie algebra g) acts
by symplectic transformations and that has an equivariant momentum map
J: P— g*. Here equivariance is taken with respect to the given action of G on P and
the coadjoint action of G and g*. Fix a value u of J and let G,, be the isotropy group
of e g* and let g, be its Lie algebra. The reduced space is the orbit space
P,=J '(1)/G,. Here we will assume that u is a regular value of J and that the
quotient space does not have singularities. In this case, it is well known (Marsden
& Weinstein, 1974) that the reduced space is a symplectic manifold in a natural
way. We need not assume that p is a regular element of g*; however, we remark
that the regular elements form an open dense set and the isotropy group G, of such
elements is Abelian. This is the Duflo-Vergne theorem; see Marsden and Ratiu
(1994) for a proof and a discussion. If G is compact and connected, so is G,
(Guillemin & Sternberg, 1984) and so in this case, G, is generically a torus. (In
fact, it is a maximal torus.)

Recall that if a given Hamiltonian H is G-invariant, it induces a Hamiltonian,
which we will call H, on the reduced space P, and that the dynamics of H projects
naturally to the dynamics of H,.

For the case of the double spherical pendulum, the assumption of regularity
means that we do not study the dynamics in a neighborhood of the straight down
state. This state is singular (in several senses) and is discussed in Marsden and
Scheurle (1993a). While this state is of course very interesting, we do not discuss
it in this paper.

Now consider an integral curve ¢,(£) of the reduced Hamiltonian vector field Xz,
on P, With a given initial condition zp € J " !(x), denote by c(¢) = F(zo) the
corresponding integral curve of Xy such that =,(c(r)) = ¢, (1), where n,c J~ ) - P,
is the projection.
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Specializing the preceding general result to the case of M =]~ !(x) and with the
induced action of the symmetry group G,, we get the following.

Theorem 2. Assume that the Lie group G, is such that its exponential map is
surjective (which is true automatically for generic p in the compact connected
case). Assume that ¢(¢) is a relative periodic orbit; that is, the integral curve c,(z)
is closed; denote its period by T. Then there is a Lie algebra element ¢ € g, such
that exp( — t&)¢(r) is also periodic with period T.

Later we will study systems with cyclic variables where there is an explicit formula
for the angular velocity that produces the results of Theorem 2 in terms of the
reduced orbit. Using this context we will be able to answer a similar question for
quasi-periodic orbits.

2.2 Reconstruction

In what follows, we shall obtain further information on the moving frame and how
to choose its velocity, and shall relate the result above to geometric and dynamic
phases. To do this, we use a reconstruction construction for mechanical systems
with symmetry and its relation to the theory of geometric phases; see Marsden
(1992) and Marsden ez al. (1990).

To achieve these goals, we relate the two integral curves c(z) and ¢.(f) more
specifically. To do so, choose a smooth curve d(z) in J~'(x) such that d(0) = zo,
where 2z, is the initial conditon of the orbit in the original space and where
n,(d(D)) = ¢, (). Write ¢(r) = Py (d(®)) for some curve g(t) in G, to be determined,
where the group action is denoted g+ 2= ®,(2). First note that

Xule@®)=c¢'(®)
= TayPetn(d' (D) + Tay Pty - (Tt Lgto - 1 (&' (01 p(d(1)) ¢))
Since ®. Xy = Xo, =Xy, (1) gives
d' (1) + (TenLety - 1€ (0)) p(d(8)) = Ty 1 X (P (d(2)))

= (G0 Xu)(d())
= Xu(d(®) @

Regarding g(¢) as the unknown in this equation, we solve for g(z) in two steps.
Step 1. Find &(1) € g, such that
@OHA®) =Xu(d(®) —d () 3

Step 2. With ((f) determined, solve the following non-autonomous ordinary
differential equation on G,:

£®=TLw(l®), withg0)=e @

Step 1 is typically of an algebraic nature; in coordinates, for matrix Lie groups, (3)
is a matrix equation. We show below how £(7) can be explicity computed if a
connection is given on J~'(u) - P,. With g(¢) determined, the desired integral
curve ¢(2) is given by c(f) = Py (d(D).

Step 2 can be carried out explicitly in the generic case that G, is Abelian. Here
(the connected component of the identity of) G, is a cylinder R? X T%? and the
exponential map

exXpP(C1s + + s $&) = (S1s + v o5 Gps Cp+1(mod2nm), . . ., Er(mod2rm))
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is onto, so we can write g(t)=exp #n(), where #(0)=0. Therefore
) = TnLyw-1(g'(0)) = 4’ (@) since ' and y commute, i.e. () = [§ £(s)ds. Thus
the solution of (4) is

0 = exp( [ ras) O

This reconstruction method depends on the choice of d(). With the help of
additional structure, d(z) can be chosen in a geometric way. What we use is a
connection so that we can horizontally lift curves on the base to curves in the total
space. Suppose then that the principal G, bundle =n,: J~'() — P, is endowed with
a connection A. That is, A: TJ " '(u) —*g, is a g,-valued one-form on J~'(u) C P
such that 4, - {p(p) =¢ for all ¢ € g, and that LA =Ad, < A for all ge G,.

We choose d(7) to be the horizontal lift of ¢, passing through the point z,. In
other words, d(¢) satisfies Ad(®)) - d'(t) =0, n,od=¢,, and d(0) = zop. We summa-
rize the calculations for the reconstruction procedure as follows.

Theorem 3. Suppose 7,;] ~'(1) = P, is the principal G,-bundle with a connection
A. Let ¢, be an integral curve of the reduced dynamical system on P,. Then the
corresponding curve ¢ through a point z e n; '(c,(0)) of the system on P is
determined as follows:

(i) horizontally lift ¢, to form the curve d in J ~!(s) through zo;

(ii) let &() = A(d()) - Xu(d(®)), so that £(2) is a curve in g,

(iii) solve the equation g(r) = g(¢) + £(r) with g(0) =e.
Then ¢(t) = g(2) - d(¢) is the integral curve of the system on P with initial condition
20.

Suppose now that ¢, is a closed curve with period 7; thus, both ¢ and d intersect
the same fiber of the bundle #,: J~!(x) — P,. Write

dD)=g-d0) and () =h-0)
for g, h € G,. Note that

h=g(Dg (6)

The Lie group element ¢ (or the Lie algebra element log §) is called the ‘geometric
phase’. It is the holonomy of the path ¢, with respect to the connection A and has
the important property of being parameterizaton independent. The Lie group
clement g(T) (or log g(T)) is called the ‘dynamic phase’,

We recall that the group G, is generally Abelian and so the computation of g(7T)
and g are then relatively easy, as was indicated above.

The connection A can be (but does not have to be) taken to be the connection
induced by the mechanical connection and a choice of Killing form on the Lie
algebra. We will describe this connection explicitly in the Abelian case below.

2.3 The mechanical connection

The basic ingredients needed to define the mechanical connection are Q, a
configuration manifold ((,)), a metric on Q (normally the kinetic energy) and G a
given group acting on Q by isometries. Let ¢ e g and let ¢, a vector field on Q,
be the corresponding infinitesimal generator. Recall that in this case, the momen-
tum map J: TQ - g* is given by

J(g 0), &) = (v, Sol@)
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that is, J, = gv'K%(q), where ({o)' = Ki(g)&® define the ‘action coefficients® K. The
locked inertia tensor is given by I(g): ¢ g%,

@, O = {no(@s Col@»

or, in coordinates, I;=g;K.Ki. We define «/: TQ—gq, a Lie algebra valued
1-form, by

(g v)=1i(g)~ 'J(Q; v)
or, in cordinates,
1= Pog K

An alternative definition is to specify </, the y-component of «/ in terms of the
kinetic energy function K by

K(s/4(g)) =inf of K on T,Q subject to the constraint J=pu

Intuitively, the mechanical connection gives the angular velocity of the locked
system, as in coupled rigid bodies when one locks the joints of the system. One
checks that «/ is a connection on the G-bundle Q— Q/G, in the sense of a
principal bundle connection.

3 Systems with cyclic coordinates

We now relate the above general theory to calculations that are specific to the case
of systems with Abelian symmetry groups. We make use of cyclic coordinates and
classical notation to aid the exposition; as we shall sce, the result is a recognizable
answer and agrees with the general construction when combined with the
reconstruction method described earlier.

3.1 Notation

We consider a simple mechanical system with Lagrangian L of the form kinetic
minus potential, where the configuration manifold Q is a Riemannian manifold.
Furthermore, assume that the symmetry group G is Abelian and, in fact, is a torus,
and acts freely so that the quotient spaces are smooth. Following Marsden and
Scheurle (1993b), we recall how to reduce the Euler-Lagrange equations for L on
TQ to equations on the quotient space TQ/G. We shall identify the action of the
symmetry group G using a set of cyclic coordinates. In fact, assume that G acts on

Q by
xH—rx’(a=1,...,m) and 04—+ p*(a=1,...,k)

where ¢° € [0, 27), and where x',...,x™ 0',..., 0% are suitably chosen (local)
coordinates on Q. Then G-invariance implies that the Lagrangian L = L(x, %, 0)
does not explicitly depend on the variables 69, i.e. these variables are cyclic. In
these coordinates, we have

L(x, %, 0) = %g,ﬂ(x)x*xﬂ + Zar(x)%20° + % Zap(x)0°0° — V(%) )
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Moreover, the infinitesimal generator ¢g on Q of an element ¢ =(¢',..., & is
given by

Eo=10(0,...,0,¢, ...,
where there are m zeros, Therefore, we have the following action coefficients:
Ki=0, Ki=4;
The components of the momentum map J: 70 — g* for G are given by

-Ia = ;_gda = gaztx.a = gabob
i.e. they are the classical momenta conjugate to the variables (%, Note that the
momentum map is G-equivariant and, in fact, invariant here, and that its compo-
nents are conserved quantities for the equations of motion. Thus, the level surfaces
of J in TQ are invariant. In the present coordinates, this also follows immediately
from the standard Euler-Lagrange equations for L

d(aL) oL _ o
d\on 5;—0, r=1,..,m
®
dfoLy _ _
a‘i(a—é—:)—o, C—l,...,k

It is readily checked that the locked inertia tensor [, is given by g, We denote the
inverse of this tensor by [% = g,

Note that (8) are local equations, since the coordinates x, % 0 correspond to a
(local) trivialization of the bundle TQ/G. Since these equations are independent of
0, they locally drop to the quotient. In order to give the dropped equations a global
(intrinsic) meaning, we now introduce the velocity shift. To this end, we replace
the variables “ by &° given by means of the mechanical connection ./ as follows:

& = 14g K¢
= 1"g,¢
= 1%g,, 2™ + 19, ()¢
=0+ /%"

where
o= U"bgby
are the components of the connection. Thus,
(09 = §o(x, %, &) = &~ o/ 2%
which defines 0 in terms of (x, %, $). In particular, as a Lic algebra 1-form, ./ has
components
of =d0° + o/%dx*

Thus, we replace 0 by the locked angular velocity ¢ € g, the generator &g of which
gives the velocity component tangential to the group at a given configuration of the
system. In terms of the transformed Lagrangian

I(x, % &) = L(x, % 0(x, % &)
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the equations of motion reads as follows
d a ol ol

—— - — = %" 7=1,...
drax o age ot IS heoam
4o 9
d
aa—é:=0, C=l,...,k
as a straightforward computation using the chain rule shows. These equations are
a special case of the general reduced Euler-Lagrange equations of Marsden and

Scheurle (1993b). Here
Bl =5, — A5

can be viewed as the components of the curvature # of the connection </ which
in the Abelain case, is given by the exterior derivative of .«/:
#°=[d/)° = D, H#%dx Adx”
;<2

Thus, the first set of equations in (9) are forced Euler-Lagrange equations with
Lagrangian / as a function of the base variables (x, x). The second set of equations
are Euler-Poincaré equations in ¢, which are degenerate because we are dealing
with an Abelian group G here. Since these equations as well as / do not depend on
the #-variables, they drop to the quotient (7Q)/G just as they are stated.

In Marsden and Scheurle (1993a), we carried out a further reduction to
J7'(W)/G, in the case of a simple mechanical system and assuming that the
quotient is a smooth manifold again, i.e. y is a regular value of J and G, acts freely
on the level set J = u. Recall that G, is the isotropy subgroup of s For Abelian
groups, locally, i.e. in coordinates, this reduction amounts to the classical
Routhian procedure, which leads to Euler-Lagrange equations for the classical
Routhian Rl Note that in the Abelian case, G,= G and J '(u)/G,~ T(Q/G).
Marsden and Scheurle (1993a) modified this procedure to give it an intrinsic
(global) meaning and to include the case of non-Abelian groups G. In terms of the
setting of this section, the Routhian R* is defined by a (partial) Legendre
transformation of / with respect to ¢:

R'= (x> x) = [I(x: X, é) - (l), ;_.')]i. = 3(x %, )

where &(x, %, J0) is the unique solution for ¢ of the equation
al .
— % =u
a¢

for a particular value of p e g*. So, now we replace the variable ¢ by u in the
equations (9). Then the second set of equations in (9) become

d
(Tt;t¢=0, c=1,...,k
which expresses the fact that x4 is conserved for the motion. Thus, fixing a
particular value for g, the restriction of (8) to the level set J = u is given by the first
set of equations in (9). Rewriting those in terms of the Routhian R* rather than !/
leads to

d aR* IR*

di o axt = B33 = [1:8,])vs y=1,...,m (10)
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i.e. on J=pu we have Euler-Lagrange equations for the Routhian R with forcing
given by the magnetic 2-form 4, which in the present coordinates is defined as
follows:

By =D, po#%dx’ adx?

y<a

Note that #, = d«/, is the exterior derivative of the 1-form «/,:Q— T#Q given by

o = 11,d0° + pie/5dx?

Note that in contrast to .=/, %, does not depend on the (-variables just as R" does
not. Therefore, all terms in (10) drop further to the quotient J ™ '(1)/G and the
structure of these equations is preserved there,

Moreover, locally these equations are even standard Euler-Lagrange equations
on the quotient. Namely, as closed 2-form %, is locally exact. Therefore, locally
the right-hand side of (10) can be included into the left-hand side by replacing R*,
by the classical Routhian

Réjass = [L(xy %y 0) = p1a0% paiias, 2,

-Iﬂcd

=R' + g%
where
0° = 6a(x3 % 1) = [pe — gaex )1

is the unique solution of the equation J = u with respect to . It is to be noted that
globally, 4, is not exact on the quotient J '(1)/G in general. In the present
context, this can be seen from the fact that the 1-form .o/, explicitly depends on
the {-variables.

We refer to Marsden and Scheurle (1993a) for a Lagrange—d’Alembert varia-
tional principle behind the equations (10). We also point out that there are
variational principles underlying the general reduced Euler-Lagrange equations as
well, as has been shown by Marsden and Scheurle (1993b).

3.2 The frame angular velocity formula

In the context of the preceding scction, we give the formula for the angular velocity
£® of the frame that does the job of pattern evocation. We state this in the following
way:

Theorem 4. Using the above notation, suppose that ¢(z) is a solution of the
Euler-Lagrange equations on Q and that the reduced trajectory x(z) is periodic
with period 7. Then relative to the frame with angular velocity given by

T T
&= %, J; (e (e)) pudz — %,J; Bac(x(D)2* (D)1 (x(2))dt

the solution ¢(2) is also periodic with period T.

We observe that the first term is the average of the locked velocity, so represents
the dynamic phase. The second term, which can also be written as a loop integral

1
54.9/ 2dx*

represents the effective angular velocity for the geometric phase.
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To prove the theorem, we need only show that )° — ¢ is periodic with period
T. We do this as a consequence of the following standard lemma
Lemma 1. Suppose that f(s) is a periodic function with period 7. Then the

function

: T
Fo = [ fous- 1] e

is periodic with period 7.

Proof. We have
T+e

F(T+9-F@)= Sf(s)ds - —J f(9)ds - ff(s)ds + J f(s)ds
0
T+t
= s+ (551 f firds
T+t

= f(s)ds — j f)ds=0

!

This proves the lemma.
Proof of theorem. Use our prior formula for the momentum map to give
Ha = gax®” + ga0)®

Solving for  and integrating gives
0%ty ~ 0°(0) = f 1% (x() pads — f 198(x(5)) 8ax(x(5)) %7 (x(s))ds
0 0

Now we apply the lemma, for each fixed &, to the function
S(s) = 1 (x(5)) pta — 0°°((5)) gar(x (5)) 2% (2(5)) 1m

which gives the desired result.

3.3 The quasi-periodic case

Here we generalize the result of Theorem 4 to the case where the reduced orbit
x(?) is ‘quasi-periodic with » independent frequencies’ )y, ..., 0, € &, i.e. there
exists a function ¢ = ¢(zy, . . ., z,) which is 27 periodic in all its arguments, such
that

x(1) = plent, . . .5 wyt)

holds for all ¢. It turns out that the straightforward generalization of the formula
for the angular velocity ¢® in Theorem 4 leads to the desired result, provided that
the frequencies «w;, . . ., ), satisfy a non-resonance condition of KAM typec:

n
2 Jur

for all non-zero j= (ji, . . ., ju) € Z". Here 7 and 7 are positive constants, and || is
any chosen norm in R". It is well known that with respect to the Lebesgue
measure, almost all n-tuples of frequencies (@, . . ., w,) € R" satisfy such a con-
dition,

(12)
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If x(s) is quasi-periodic, then the functions f(s) in (11) are also quasi-periodic
with the same frequencies. Thus, they can be represented by their Fourier series:

Z aﬂw e
je Z®

where o= (w), ..., w,) is the frequency vector, j: w is the Euclidean inner
product, and the Fourier coefficients are given by

1 (7 -
.= ki ) —i(f-w)s
aj= lim Tjo fs)e ds

If fis C* for k=1 + 2, then there is a positive constant # such that

laj = pdljll=¢*2 (13)
for all non-zero j e Z". We will use this to obtain the following result.

Theorem 5. Suppose that g(2) is a solution of the Euler-Lagrange equations on Q
and that the reduced trajectory x(rf) is quasi-periodic with the frequencies
Wy . . ., Wy such that (12) holds. Assume that the metric tensor and the potential
are C* for k=1 + 2. Then, relative to the frame with angular velocity given by the
formula

1 T
¢*= lim }L (1@ pte — aex(D) 271 (x(e)))d2 (14)

the solution ¢(¢) is also quasi-periodic with the frequencies ;. . 1y Wy

Proof. Analogously 10 the periodic case, to prove this theorem, we need to show
that 09— &% is quasi-periodic with the frequencies w, ..., w,. Noting that the
integrand in the preceding formula is C*, this follows, as in the periodic case, as
a consequence of a standard lemma, as follows.

Lemma 2. Suppose that f(s) is quasi-periodic with frequencies wy, . . ., @, such
that (12) holds. Furthermore, suppose that the Fourier coefficients of f satisfy (13).
Then the function

f 1 T
F) =Lf(§)¢—t' tim ?Lf(S)ds (15)

is quasi~periodic with the frequencies wy, . . ., w,.
Proof. Represent f by its Fourier series

f(S = E a)ex'(j‘m)s

jean

and note that the second term in the formula for F(?) is just zap where

1 T
. Qo= im ?of(s)ds

1
T =

is the mean value of f. Hence f(¢) is given by

F() = fo (j%ajgo-w)s)ds
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By (13), the Fourier series for f is uniformly convergent with respect to s and hence
we can integrate termwise, yielding

a; o9
F(t) = _ 7 ex(; )t
jZ:O Hw-j)
But, due to the non-resonance condition (12) and (13), the series

9= 3, = "2

jfrot(w-p)

converges uniformly in 2= (2, .. ., 2,) and the limit function ¢(z) is 2n-periodic
in all of its arguments z; By construction, F(¢) = ¢(wt) and therefore F(r) is a
quasi-periodic with frequencies wy, . . ., @,.

Remarks

(1) Note that there is a necessary as well as sufficient condition for F in (15) to
be quasi-periodic with the same frequencies as f, namely uniform boundedness
of F with respect to t € R. Here, no non-resonance condition of type (12) is
needed. Furthermore, this criterion carries over directly to the case of a
general almost-periodic function f. Hence, our theory makes sense even in
certain cases when the reduced orbit is almost periodic but not quasi-periodic.
Recall that a continuous function f{¢) is said to be almost periodic if the
following holds. Given any positive real number g, there is a positive number
T = T(e) such that any interval of length 7 on the real axis contains a number
7 with [f(t + 1) — ()| < € for all z € R. Each almost-periodic function f(z) has a
Fourier expansion of the form

)= 23 ae"*
jeld
where the frequencies w; are certain real numbers and the coefficients g; are
defined in a way analogous to the quasi-periodic case (see, for example, Bohr,
1947).

Of course, in general it is not easy to check the boundedness of F. In fact,
there are many combinations of frequencies of f such that F fails to be
bounded. For example, in the quasi-periodic case, the set of n-tuples of
frequencies (@, ..., w,) in R" for which F is unbounded is of the second
category (see Scheurle, 1981).

(2) Despite the preceding remark, our formula for £° can always be used to
visualize quasi-periodicity or almost periodicity of the reduced orbit x(¢) in the
following approximate sense. Given any positive real numbers ¢ and 7T, then
relative to the rotating frame with £° as in (14), and for 0<:=< T, the exact
orbit ¢g(7) is e-close to an approximate orbit %(¢) which is almost periodic with
the same frequencies as x(z). From a practical point of view, this actually
justifies our method completely. The approximate orbit %(f) is determined by
approximating 0° — £° by a trigonometric polynomial, the derivative of which
is the Fourier expansion of 0% — & truncated after sufficiently many terms.
Here we assume that this Fourier expansion converges uniformly to 0% — &,

(3) We finally consider the special case where the quotient Q/G is one-dimen-
sional, which implies complete integrability of the original system. First of all
assume that x is a real coordinate in a single coordinate chart. Then the
integral of the second term of the integrand in (14) is given by the integral
of g..(x)1°(x) evaluated along the reduced orbit x=x(z). Therefore, the
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contribution of that second term &° is 0, if x(¢) is bounded. In other words, the
term in the formula £ related to the geometric phase is 0 in this case. On the
other hand, if the quotient space is a circle, so that x is an angular variable, the
contribution from the geometric phase term can be non-zero.

4 Discrete symmetries
4.1 Imtroduction

Next we study the role of discrete symmetries. We do this by enlarging the group
G with which we reduce to a group we will call I'. One can view the discrete
symmetry group in one of two ways. First, one can assume that G is a normal
subgroup of I and then define the ‘discrete’ symmetries by = = I'/G. Alternatively,
we can suppose that the discrete symmetries are given separately as a group 2,
assume that 2 acts on G, and then form the semi-direct product Z®G. Recall that
the semi-direct product group has the multiplication law

(61, &1) - (02, g2) = (6162,(02) (1) 82) (16)

These two approaches are essentially the same; namely, given a semi-direct
product I' = Z®G, the group G may be regarded as a normal subgroup of I" and
the quotient group is X. Conversely, given I, a normal subgroup G, and a group
homomorphism 7: I/G— T, an acton of I/G on G is induced as well as an
isomorphism between I' and 2®G.

In some examples, the discrete symmetries are manifest or are readily con-
structed. For example, in the double spherical pendulum, we shall discuss how to
use the rotational symmetry and the symmetries of reflection in vertical planes and
time reversibility to obtain the enlarged group I'. In other cases, the discrete
symmetries might arise as more subtle normal form symmetries near resonances or
other interesting critical phenomena.

We assume that the group I' acts on our phase space P. We are assuming that
the ‘continuous’ group G acts freely (removing singular points if necessary) and
that we can thereby form the quotient space P/G, but we do not assume that the
I" itself acts freely since we are interested in the discrete isotropy of points in a
sense to be made precise.

Assuming we have a given homomorphism : £ =I/G T, there is also an
action of = on P. The action of £ on P and its action on G are assumed to be
compatible in a sense made precise below. Conversely, if one is given a semi-direct
product and an action of £ on P compatible with its action on G, then one gets
an action of I' on P. Generally, we also want the action to have an associated
equivariant momentum map as well; we will spell out this aspect below too.

Another important ingredient for the examples is to include some aspects of
reversibility. Reversible transformations are usually and-symplectic (or anti-
Poisson) and transform the Hamiltonian vector field to its negative. The discrete
symmetry group 2 can, in general, include both symplectic and anti-symplectic
transformations. The symplectic transformations define a normal subgroup 2, of =
and the anti-symplectic transformations are given by Z,=3\S,.

The discrete group I' induces an action on the quotient phase space P/G and
provides ‘spatiotemporal’ structure to solutions in the reduced space. For example,
a periodic orbit could have the symmetry of this discrete group; that is, be invariant
under the discrete group up to a temporal phase shift. We want to show in what
sense this symmetry can be visualized in the original phase space.
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Fig. 5. Assumption 1: compatibility of the discrete and the continuous actions.

4.2 The relation between quotient groups and semi-direct products

We now show how to relate the two approaches mentioned above. We start by
assuming that we have a semi-direct product Z®G where, in many cases, 2 is the
discrete group and G is the continuous group of interest. A simple example is O(2)
regarded as the semi-direct product Z,®S0(2), with Z, regarded as reflections in
a fixed line in R? and acting on SO(2) by conjugation.

We now want to give the assumptions explicitly that enable one to extend the
action of G on our phase space P to an action of I' = 2®G on P.

Let (P, ) be a symplectic manifold, G a Lie group acting on P by symplectic
transformations and J: P— g* an Ad*-equivalent momentum map for the G-action.
Let = be a Lie group acting on P and each such transformation is either symplectic
or anti-symplectic; we then form the subgroup Z, and the set 2, as above. We also
assume that T acts on G by group homomorphisms. For ¢ € £, write

ap: P2P and aq: GG

for the corresponding symplectic map on P and group homomorphism on G. Let
6,: g— g be the induced Lie algebra homomorphism (the derivative of g¢ at the
identity) and o4 g* — g* be the dual of (6™ g so, as is well known, o, is a
Poisson map with respect to the Lie~Poisson structure (see, for example, Marsden
& Ratiu, 1994).

Assumption 1. The actions of G and of 3 are compatible in the sense that the
following equation holds:
ap> gp= {oG(g)]e- ap a7

for each ¢ € £ and g € G, where we have written g» for the action of ge G on P
(see Fig. 5).

This is the key property by which an action of I' can be constructed. Conversely,
if one starts with an action of I' and if a homomorphism t is chosen, then 2
inherits the properties in Assumption 1.

4.3 Preservation properties of the momentum map

Next we turmn to the properties of the momentum map. If we differentiate equation
(17) with respect to g at the identity g=e¢, in the direction ¢ € g, we get

Topo Xy, 5 = Xy, 0,00 0P (18)
where X denotes the Hamiltonian vector field on P generated by function £ P— R.

Since op is symplectic (resp. antisymplectic) for 6 € 3, (resp. 0 € Z,), (18) is
equivalent to

X4, 0051 = £Xg,0,0 (19)
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Fig. 6. Assumption 2: compatibility of the discrete action with the momentum map.

J-op= * 4,2 ]+ (co-cycle) (11)]

We shall assume, in addition, that the co-cycle is 0. In other words, we make a
second assumption.

Assumprion 2. The following equation holds (see Fig. 6):
Joop= *o.5]) @)

where we use the plus sign for symplectic transformations and the minus for the
antisymplectic case.

Assumption 1 shows that there is a well defined action of X on P/G. From
Assumption 2, and thc additional assumption that 3 preserves J, there is a
well-defined action on the symplectic reduced space.

4.4 Relative equilibria

We begin with the simplest case, namely that of relative equilibria to fix the ideas.
Thus, let w € P/G be a fixed point in the quotient space, so that the integral curve
¢(?) that projects to @ is a relative equilibrium. We assume that @ has a discrete
symmetry 6o € 2, which means that

Cw=w (22)

There is a unique Lie algebra element ¢ such that ¢(2) = ¢7'¢(0). This Lie algebra
element plays the role of the angular velocity determined by our procedures for
periodic, anti-periodic or almost-periodic orbits.

In this context, when we pass to the frame rotating with angular velocity &, we
obtain the ‘visualized orbit’ ¢(0). However, this point in P need not have the
discrete symmetry oo because the continuous symmetry G is not ‘synchronized’
with the discrete symmetry. For example, if G = SO(2) acts by rotations about the
z-axis and X = Z, acts by reflections in a vertical plane, then a point in the original
phase space needs to be rotated into the plane of reflection before it is fixed by a
particular reflection ao.

Generally, it follows that ¢(0) has at least some symmetry which is rclated to oy.
In fact, since (22) holds, and goc(0) and ¢(0) project down to gow and w
respectively, we have

0c(0) = £,¢(0)

for some group element g, € G. Here we make use of a given homomorphism
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7: Z—T 1o regard gy as an element of I'. Hence ¢(0) is fixed under the group
element gg 'age T, i.c.

go '60c(0) = ¢(0) (23)

On the other hand, one can now try to synchronize the continuous symmetry
group G with the particular discrete symmetry g by shifting the ‘visualized’ orbit
¢(0) to the point z = g,¢(0), where by group element g, € G is determined by the
requirement that 0oz = 2, i.e. gog;¢(0) = g,c(0). By (23), this leads to the following
‘commutator equation’

oogi ‘60 ' = go 24

to be solved for g. Thus, if this equation has a solution for g, € G, then the
‘synchronized visualized’ orbit z has the same symmetry oy as w, the reduced orbit
corresponding to ¢(¢).

An equivalent way to intepret ¢og1c(0) = g,c(0) is that ¢(0) has the symmetry
gr 'aegy which is conjugate to g, and hence has the same group-theoretical
properties as go. For instance, in the case of the above example, with G = SO(2)
and I = Z,, g 'o0g1 is a reflection in the vertical plane rotated by g).

Remarks

(1) If ao(g) =g~ ', then one can choose g; to be a square root of go.

(2) To see that (24) is solvable for O(2), let g, be the reflection in the x-axis in
R? and go be a rotation through an angle 0. Then the preceding remark
applies and so g, may be chosen to be the rotation through an angle 0¢/2 or
0/2 + 1.

4.5 General time-dependent orbits

Now let w(?) € P/G be a time-dependent orbit, for example, a periodic, quasi-
periodic or almost-periodic orbit. Assume that it has a discrete symmetry
(60, &) € £ X R, where R acts on orbits by time shifts, i.e.

cow( * 1) = w(t+ k) (25)

for all 1e R. Here the plus sign refers to the case where 6o € Z, is symplectic,
whereas the minus sign refers to the case where 6 € Z, is anti-symplectic. Let ¢()
be an orbit covering w(t) and let

&(t) = exp(— Sn)e(®) (26)

be the ‘visualized’ orbit, as constructed earlier, so that (z) has the same dynamical
properties as w(f), such as periodicity, quasi-periodicity or almost periodicity.
We claim that

ool( 1) =goc(t + 1) 27)

holds for some g € G and for all ;e R provided that the momentum map J is
ao-invariant. We note right away that g, can preserve J even if it is anti-symplectic,
as we shall sce in the double spherical pendulum c¢xample. To prove (27), first
note that both sides project to the same element in the quotient at t=0. This
defines go. Second, it is sufficient to show that both sides are integral curves of the
common vector field Xy 5. To show the latter, denote the action of
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exp(—¢&)=e ' on Pby @exp( - iy and recall this action is symplectic. Hence, since
¢(?) is an integral curve of Xy, we have

d
Y &) = Thexp( - e * Xu(c(®)) — Xy, a(exp( — EDe(®))
= Xu- g, 5(E@)

i.e. Z(¢) is an integral curve of X} _ g, 5. Now the claim follows since this vector field
is autonomous, equivariant with respect to G and ¥, and reversible with respect
to Z,.

Starting from (25), we can proceed as in the case of relative equilibria. Namely,
(25) says that the ‘visualized orbit’ &) has the symmetry &, 160, Ip) € I’ X R which
is related to the symmetry (60, k) of the reduced orbit w(z) as in the case of relative
equilibria. However, assuming that the commutator equation (24) has a solution
&1 € G, we can again synchronize by shifting &(¢) to 2,&(t), which then has the same
symmetry (oo, Ip) as the reduced orbit.

Remark. One has to be careful between the symmetries one can see in P and
those in P/G. In particular, one can have ‘more’ symmetrics for the ‘visualized
orbits’ in P than in P/G. Specifically, it is possible that there can be many values
of ¢ (beside the one constructed to visualize the periodicity or quasi-periodicity)
and associated group elements that project to the same symmetry in the reduced
space. One sees this multiplicity in simulations of the double spherical pendulum,
for example.

5 The double spherical pendulum

In this section, we discuss the theory developed above for the case of the double
spherical pendulum. This example was studied by Marsden and Scheurle (1993a).
In that paper, we examined the relative equilibria, their bifurcations and stability.
In this section, we are rather focusing on periodic and quasi-periodic orbits and
their visualization, but the knowledge of the relative equilibria is a helpful guide.

5.1 The base equations and their continuous symmetry

The double spherical pendulum system is shown in Fig. 1. Recall that we let the
position vectors of each pendulum relative to their hinge points be denoted q, and
qz. These vectors arc assumed to have fixed lengths /; and /; and the pendula
masses are denoted m, and m,. The configuration space is Q =S7 X S}, the
product of spheres of radii /; and  respectively. The Lagrangian is

1 1
L{qi, a2, 41, 42) = 2 mlén]® + 2 mollay + Qof* — mngq; - k — maglqy +q2) -k (28)

where Kk is the unit vector along the z-axis. Since q, + q represents the. position of
the second mass relative to an inertial frame, (28) has the standard form of kinetic
minus potential energy. We identify the velocity vectors perpendicular to ¢, and
{2, respectively.

The conjugate momenta are

P = i =myy + m2(qy + §2) (29
aq
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and
oL
p2=——=m2q) + &) (30)
g2
regarded as vectors in R* that are only paired with vectors orthogonal to q; and q;
respectively.

The Hamiltonian is therefore

1 1
H(@y, @z, p1, P2) = 5 — o1 = Pl + =—llpall® + mgqy - k + mag(qy + q2) - k (31)
m 2n1,

The equations of motion are given by the Euler-Lagrange equations for L on TQ
or, equivalently, by Hamilton’s equations for H on T#Q.

As for the symmetry group, let G= S act on Q by simultaneous rotation of the
two pendula about the z-axis. If Ry is the rotation by an angle 0, the action is

(a1, 92— (Ruqy, Reqz)

The infinitesimal generator corresponding to the rotation vector wk, where w € R,
is w(k X qi, k X q2) and so the corresponding momentum map (conserved quan-
tity) is the total angular momentum about the z-axis, given by

J(as; gz, p1> P2); wk) = w[p: - kKX qu) + p2 - (kX q2)) (32)
=wk- [q Xp1+q2+p2]
ie.
J=k- [qi Xp:+q2Xp:] (33)
Note that from (29) and (30),

J=Kk- [mqy X q, + maqy X (@ + §2) + m2q2 X (41 + q2))
=Kk [m(q X q) + ma(qy + q2) X (qu + ¢2)]

This system is one with a cyclic coordinate and so the mechanical connection and
the locked inertia tensor may be constructed as explained in previous sections. In
this case, the mechanical connection is

k- [mqy X vy + n(qy + q2) X (v; + v2)]
myllqi | + mall(q: + q2)°|]

where ¢* denotes the horizontal projection of a vector q. The locked inertia tensor
is the moment of inertia of the system about the z-axis regarded as a rigid
structure. Thus,

a(q1 Q2 V1, V2) = (3G4)

(a1, q2) = millqil? + mall (@) + q2)* (35)

where |lqi]l* = |lau|f* - ||g: - k|]* is the square length of the projection of q, on to the
xy-plane. Note that [ is the moment of inertia of the system about the %-axis and,
in this example, it is a scalar function on configuration space.

Here, the symplectically reduced space, reduced at a non-zero angular momen-
tum value p, is 7+(Q/S') which is 6-dimensional. It has a non-trivial magnetic term
obtained by taking the differential of the u-component of (35). A convenient way
of coordinating this reduced space is by coordinates r, = ||q;||* and r, =|q3|P* and
the angle ¢ between the vectors q and qs.
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5.2 The discrete symmetries

The double spherical pendulum has two basic discrete ‘symmetries’, namely
spatial reflection in vertical planes and time reversibility. We note that already in
Marsden and Scheurle (1993), these discrete symmetries played an important role
in the stability analysis of relative equilibria.

Obviously the simultaneous rotations of the two pendula together with spatial
reflections in vertical planes represent an action of O(2) on Q. Correspondingly,
we obtain a lifted symplectic action on TQ (one can work with either 7Q or T*Q
as is convenient). The time reversibility acts on orbits in 7Q by t— —1t, g;— q; and
4~ — 4, i=1,2. The map #: (q;, 4)—(Q> — ¢q) generates an anti-symplectic
action of Z; on TQ.

Note that # commutes with the O(2)-action. Thus, altogether, we get an action
of the direct product Z, X O(2) on TQ.

Note also that & changes the sign of the momentum map J given in (32), as does
any element in O(2)\S®. Thus, separately, these actions do not drop to the reduced
phase space J~'(1)/G,. However, it turns out that by combining the action by #
with the action of transformation in O(2)\S', one obtains a new action of O(2)
(with S! acting symplectically and transformation in O(2)\S" acting anti-symplecti-
cally) that preserves J. Thus, it drops to a Z,-action on the symplectic reduced
space. This is a reversible symmetry in the sense that it preserves the Lagrangian
(or Hamiltonian), but its non-trivial element is anti-symplectic.

To put the preceding observations in the framework of the previous sections, we
make the following choice for I" as a subgroup of Z, X O(2):

= {(e, s)ls € S'COR)} U {(a, s)|e # 6 € Z2, s € O2)\S"} 36)

Obviously [ is isomorphic to O(2), where we identify the normal subgroup S* with
the set {(e, 5)|s € S'C O(2)}. Thus, £ =T/S!, which is isomorphic to Z, is our
discrete symmetry group. It acts anti-symplectically and clearly preserves J, and so
drops to an anti-symplectic action on the symplectically reduced space.

We remark that this example shows that even for anti-symplectic transforma-
tions, one can have J preserved in (21), since — g, is the identity in this case.

There are many solutions of the reduced double spherical pendulum equation
that have this type of reversible symmetry; that is, the corresponding orbits are
Z,-symmetric. For example, consider the neighborhood of a (regular) point in the
reduced phase space which corresponds to a relative equilibrium point of the
pendulum problem. Take any values of the system parameters (the pendulum
lengths and masses) such that the linearized vector field has pairs of simple purely
imaginary eigenvalues which are not integer multiples of one another. Then by the
Lapunov center theorem, there exist families of periodic orbits with frequencics
approximately given by the imaginary parts of the cigenvalues. But by reversibility,
for any solution, action by the non-trivial element of ¥ and time-reversal produces
another solution. Thus, by uniqueness of the Lapunov orbits within each energy
surface, the orbits as sets are invariant under 2, (For other systems, one can usc
the methods of Montaldi et al. (1988, 1990) to find orbits with discrete sym-
metries.) As we saw in the introduction, one can visualize this symmetry.
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