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1 Introduction

This paper gives a few new developments in mechanics, as well as some remarks of a
historical nature. To keep the discussion focussed, most of the paper is confined to
equations of “rigid body”, or “hydrodynamic” type on Lie algebras or their duals.
In particular, we will develop the variational structure of these equations and will
relate it to the standard variational principle of Hamilton.

Even this small area of mechanics is fascinating from the historical point of view.
In fact, it is quite surprising how long it can sometimes take for fundamental results
of the masters to be tied together and to filter into the main literature and to become
“well-known”. In particular, part of our story follows a few fragments of a thread
through the works of Euler, Lagrange, Lie, Poincaré, Clebsch, Ehrenfest, Hamel,
Arnold, and many others.

Although Newton’s discoveries were directly motivated by planetary motion,
the realm of mechanics expanded well beyond particle mechanics with the work of
Euler, Lagrange, and others to include fluid and solid mechanics. Today we see
its methods permeating large areas of physical phenomena besides these, including
electromagnetism, plasma physics, classical field theories, general relativity, and
quantum mechanics. Part of what makes this unified point of view possible is the
abstraction, often in a geometric way, of the underlying structures in mechanics.

Two general points of view emerged early on concerning the basic structures
in mechanics. One, which is commonly referred to as “Lagrangian mechanics” can
be based in variational principles, and the other, “Hamiltonian mechanics”, rests
on symplectic and Poisson geometry. As we shall see shortly, the history of this
development is actually quite complex.

How rigid body mechanics, fluid mechanics and their generalizations fit into this
story is quite interesting because of the way their equations fit into the schemes
of Lagrange and Hamilton. For example, the way the equations are normally pre-
sented (in body representation for the rigid body, and in spatial representation for
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ideal fluids), they do not literally fit in as written. However, through a process of
reduction, whereby the quotient by a Lie group of symmetries is taken, one gets
in either picture, a clear understanding of how the variational and symplectic (or
Poisson) structures descend to the quotient space. Since the reduction of variational
principles has received less attention in the literature than that of symplectic and
Poisson reduction, the paper spends more time on that aspect. Indeed, although the
results here are very simple, they do appear to be new. A more general reduction
procedure for Lagrangian systems that will also be sketched, is due to Marsden and
Scheurle [1993].

A specific instance of this reduction procedure, which the paper will focus on, for
both simplicity of exposition and its historical relevance, is that of equations on Lie
algebras g or their duals g

∗. The equations on g fit into the “Lagrangian mechanics”
scheme, while those on g

∗ fit into that of “Hamiltonian mechanics”. The equations
on g will be called the Euler-Poincaré equations, while those on g

∗ will be called
the Lie-Poisson equations.

Mechanics has not only undergone considerable internal maturation, but its links
with other areas of science and mathematics have strengthened considerably. For
example, in engineering and physics, we have come to a much deeper understanding
of stability, bifurcation and pattern formation through the maturation of mechanics
and concurrent developments in dynamical systems. Perhaps the best known ex-
ample of how mechanics links with mathematics is the use of symplectic techniques
in representation theory through the work of Kostant, Kirillov, Guillemin, Stern-
berg, and many others. There are of course many other examples of deep links with
mathematics and these mathematical bonds appear to be strengthening.

Acknowledgments I would like to especially thank Hans Duistermaat, Tudor
Ratiu, Jürgen Scheurle, Juan Simo, Alan Weinstein, and Norman Wildberger for
helpful discussions and comments. Sections 3 and 4 are based on notes kindly
supplied by Hans Duistermaat and are gratefully acknowledged. Some of the orig-
inal research reported here was done jointly with Jürgen Scheurle, and is hereby
acknowledged as well.

2 Some basic Principles of Mechanics

Let Q be an n-manifold and TQ its tangent bundle. Coordinates qi, i = 1, . . . , n
on Q induce coordinates (qi, q̇i) on TQ, called tangent coordinates. A mapping
L : TQ → R is called a Lagrangian . Often we choose L to be L = K − V where
K(v) = 1

2〈v, v〉 is the kinetic energy of the given mechanical system, and that
thus defines a Riemannian metric and where V : Q→ R is the potential energy .

The variational principle of Hamilton singles out particular curves q(t) ∈ Q
by the condition

δ

∫ a

b
L(q(t), q̇(t))dt = 0, (2.1)

where the variation is over smooth curves in Q with fixed endpoints. Note that (2.1)
is unchanged if we replace the integrand by L(q, q̇)− d

dtS(q, t) for any function S(q, t).
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This reflects the gauge invariance of classical mechanics and is closely related to
Hamilton-Jacobi theory.

If one prefers, Hamilton’s variational principle states that the map I defined by

I(q(·)) =

∫ b

a
L(q(t), q̇(t))dt

from the space of curves with prescribed endpoints in Q to R has a critical point
at the curve in question. In any case, a basic, but elementary result of the calculus
of variations is that Hamilton’s variational principle for a curve q(t) is equivalent to
the condition that this curve satisfy the Euler-Lagrange equations:

d

dt

∂L

∂q̇i
−
∂L

∂qi
= 0. (2.2)

The Maupertuis principle of critical action , which is closely related to Hamil-
ton’s principle, states that the integral of the canonical one form be stationary
relative to curves with the energy constrained to a fixed value and with temporal
variations of the endpoints possible.

Let us recall a few other basic results about this formalism. Given L : TQ→ R,
let FL : TQ→ T ∗Q, called the fiber derivative , be the derivative of L in the fiber
direction. In coordinates,

(qi, q̇j) 7→ (qi, pj)

where pj = ∂L/∂q̇j . A Lagrangian L is called hyperregular if FL is a diffeomor-
phism. If L is a hyperregular Lagrangian, we define the corresponding Hamiltonian

by
H(qi, pj) = piq̇

i − L.

The change of data from L on TQ to H on T ∗Q is called the Legendre transform .
For the hyperregular case, the Euler-Lagrange equations for L are equivalent to

Hamilton’s equations for H, namely,

q̇i =
∂H

∂pi
(2.3)

ṗi = −
∂H

∂qi
. (2.4)

These equations define a vector field XH on T ∗Q that is related to the canonical
symplectic form

Ω =
n∑

i=1

dqi ∧ dpi

by
iXH

Ω = dH,

where i denotes the interior product. They can also be written in Poisson bracket
form Ḟ = {F,H} where

{F,K} =

n∑

i=1

∂F

∂qi

∂K

∂pi
−
∂K

∂qi

∂F

∂pi
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is the canonical Poisson bracket. One can, as is well known, also cast Hamilton’s
equations directly into a variational form on phase space (unlike Hamilton’s princi-
ple, which is presented on configuration space).

In a relativistic context one finds that the two conditions pj = ∂L/∂q̇j and H =
piq̇

i − L, defining the Legendre transform, fit together as the spatial and temporal
components of a single object. Suffice it to say that the formalism developed here
is useful in the context of relativistic fields.

3 Some Early History of the Euler-Lagrange Equations

and Symplectic Geometry

In this section we make a few remarks concerning the history of the Euler-Lagrange
equations.1 Naturally, much of the story focuses on Lagrange. Section V of La-
grange’s Mecanique Analytique contains the equations of motion in Euler-Lagrange
form (2.2). Lagrange writes Z = T − V for what we would call the Lagrangian
today. In the preceding section of Mecanique Analytique, Lagrange came to these
equations by asking for a coordinate invariant (i.e., a covariant) expression for mass
times acceleration. His conclusion is that it is given (in abbreviated notation) by
(d/dt)(∂T/∂v) − ∂T/∂q, which transforms under changes of configuration variables
as a 1-form. This approach is closely related to Lagrange’s introduction of gener-
alized coordinates, which we would today refer to by saying that the configuration
space is a differentiable manifold.

Interestingly, Lagrange does not recognize the equations of motion as being
equivalent to the variational principle

δ

∫
Ldt = 0

. In fact, this principle was observed only a few decades later by Hamilton. The
peculiar fact about this is that Lagrange did know the general form of the differen-
tial equations for variational problems and he actually had commented on Euler’s
proof of this—his early work on this in 1759 was admired very much by Euler. He
immediately applied it to give a proof of the Maupertuis principle of least action, as
a consequence of Newton’s equations of motion. This principle, apparently having
its roots in early work of Leibnitz, is a less natural principle in the sense that the
curves are only varied over those which have a constant energy. It is also Hamil-
ton’s principle that applies in the time dependent case, when H is not conserved
and which also generalizes to allow for certain external forces as well.

This discussion in the Mecanique Analytique precedes the equations of motion
in general coordinates, and correspondingly is written in the case that the kinetic
energy is of the form

∑
imiv

2
i , with constant m′

is. Wintner [1941] is also amazed
by the fact that the more complicated Maupertuis principle historically precedes

1Many of these interesting historical points were conveyed by Hans Duistermaat. The reader

can profitably consult with the standard texts such as those of Whittaker, Wintner, and Lanczos

listed in the bibliography for additional information.
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Hamilton’s principle. One possible explanation is that Lagrange did not consider
L as an interesting physical quantity; for him it was only a convenient function for
writing down the equations of motion in a coordinate-invariant fashion. The time
span between his work on variational calculus and the Mecanique Analytique (1788,
1808) could also be part of the explanation; he may have not been thinking of the
variational calculus at the time he addressed the question of a coordinate invariant
formulation of the equations of motion.

Section V starts by discussing the fact that the position and velocity at time t
depend on the initial position and velocity, which can be chosen freely. We write this
as (suppressing the coordinate indices for simplicity): q = q(t, q0, v0), v = v(t, q0, v0),
and in modern terminology we would talk about the flow in x = (q, v)-space. One
problem in reading Lagrange is that he does not explicitly write the variables on
which his quantities depend. In any case, he then makes an infinitesimal variation
in the initial conditions and looks at the corresponding variations of position and
velocity at time t. In our notation we would write δx = (∂x/∂x0)(t, x0)δx0 and we
would say that he considers the tangent mapping of the flow on the tangent bundle
ofX = TQ. Now comes the first interesting result. He takes two such variations, one
denoted by δx and the other by ∆x, and he writes down a bilinear form ω(δx,∆x),
in which we recognize ω as the pull-back of the canonical symplectic form on the
cotangent bundle of Q, by means of the fiber derivative FL. What he then shows
is that this symplectic product is constant as a function of t. This is nothing else
than the invariance of the symplectic form ω under the flow in TQ.

It is striking that Lagrange gets the invariance of the symplectic form in TQ
and not in T ∗Q. In fact, Lagrange does not look at the equations of motion in
the cotangent bundle via the transformation FL; again it is Hamilton who observes
that these take the Hamiltonian form (2.3). This is retrospectively puzzling since,
later on in section V, Lagrange states very explicitly that it useful to pass to the
(q, p)-coordinates by means of the coordinate transformation FL and one even sees
written down a system of ordinary differential equations in Hamiltonian form, but
with the total energy function H replaced by some other mysterious function −Ω.
Lagrange does use the letter H for the constant value of the energy, apparently in
honor of Huygens. He also knew about the conservation of momentum as a result
of translational symmetry.

The part where he discusses the Hamiltonian form deals with the case in which
he modifies the system by perturbing the potential from V (q) to V (q)−Ω(q), leaving
the kinetic energy unchanged. To this perturbation problem, he applies his famous
method of variation of constants, which is presented here in a truly nonlinear frame-
work! In our notation, he keeps t 7→ x(t, x0) as the solution of the unperturbed sys-
tem, and then looks at the differential equations for x0(t) that make t 7→ x(t, x0(t))
a solution of the perturbed system. The result is that, if V is the vector field of
the unperturbed system and V + W is the vector field of the perturbed system,
then dx0/dt = ((etV )∗W )(x0). Thus, x0(t) is the solution of the time dependent
system, the vector field of which is obtained by pulling back W by means of the
flow of V after time t. In the case Lagrange considers, the dq/dt-component of the
perturbation is equal to zero, and the dp/dt-component is equal ∂Ω/∂q. Thus, it
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is obviously in a Hamiltonian form; this discussion does not use anything about
Legendre-transformations (which Lagrange does not seem to know). But Lagrange
knows already that the flow of the unperturbed system preserves the symplectic
form, and he shows that the pull-back of his W under such a transformation is a
vector field in Hamiltonian form. This is a time-dependent vector field defined by
the function G(t, q0, p0) = −Ω(q(t, q0, p0)). A potential point of confusion is that
Lagrange denotes this by just −Ω, and writes down expressions like dΩ/dp, and
one might first think these are zero because Ω was assumed to depend only on q.
Lagrange presumably means that dq0/dt = ∂G/∂p0, dp0/dt = −∂G/∂q0.

Most classical textbooks on mechanics, for example Routh, correctly point out
that Lagrange has the invariance of the symplectic form in (q, v) coordinates (rather
than in the canonical (q, p) coordinates). Less attention is paid to the equations
obtained by the method of variation of constants that he wrote in Hamiltonian
form. We do note, however, that this point is discussed in Weinstein [1981]. In fact,
we should point out that the whole question of linearizing the Euler-Lagrange and
Hamilton equations and retaining the mechanical structure is remarkably subtle (see
Marsden, Ratiu, and Raugel [1991], for example).

Lagrange continues by introducing the Poisson brackets for arbitrary functions,
arguing that these are useful in writing the time derivative of arbitrary functions
of arbitrary variables, along solutions of systems in Hamiltonian form. He also
continues by saying that if Ω is small, then x0(t) in zero order approximation is
a constant and he obtains the next order approximation by an integration over t;
here Lagrange introduces the first steps of the so-called method of averaging . When
Lagrange discovered (in 1808) the invariance of the symplectic form, the variations-
of-constants equations in Hamiltonian form and the Poisson brackets, he was already
73 years old. It is quite probable that Lagrange shared some of his ideas on brackets
with Poisson at this time. In any case, it is clear that Lagrange had a surprisingly
large part of the symplectic picture of classical mechanics.

4 Some History of Poisson Structures

Following from the work of Lagrange and Poisson mentioned above, the general
concept of Poisson manifold probably should be credited to Sophus Lie in his treatise
on transformation groups about 1880 in the chapter on “function groups”. As was
pointed out in Weinstein [1983], he also defined quite explicitly, a Poisson structure
on the dual of a general Lie algebra; because of this, Marsden and Weinstein [1983]
coined the phrase “Lie-Poisson bracket” for this object, and this terminology is now
in common use. We recall the definition at the start of the next section. However,
it is not clear that Lie realized that the Lie-Poisson bracket is obtained by a simple
reduction process, namely that it is induced from the canonical cotangent Poisson
bracket on T ∗G by passing to g regarded as the quotient T ∗G/G, as will be explained
in the next section. (This fact seems to have been first noted for the corresponding
symplectic context by Marsden and Weinstein [1974]).

As noted by Weinstein [1983], Lie seems to have come very close, and may have
even understood implicitly, the general concepts of momentum map and coadjoint
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orbit. The link between the closedness of the symplectic form and the Jacobi identity
is a little harder to trace explicitly; some comments in this direction are given in
Souriau [1970].

Lie starts by taking functions F1, . . . , Fr on a symplectic manifold M , with the
property that there exist functions Gij of r variables, such that

{Fi, Fj} = Gij(F1, . . . , Fr).

In Lie’s time, functions were implicitly assumed to be analytic. The collection of all
functions φ of F1, . . . , Fr is the “function group” and is provided with the bracket

[φ,ψ] =
∑

ij

Gijφiψj , (4.5)

where

φi =
∂φ

∂Fi
and ψj =

∂ψ

∂Fj
.

Considering F = (F1, . . . , Fr) as a map from M to an r-dimensional space P and
φ and ψ as functions on P , one may formulate this as: [φ,ψ] is a Poisson structure
on P , with the property that

F ∗[φ,ψ] = {F ∗φ, F ∗ψ}.

Lie writes down the equations for the Gij that follow from the antisymmetry
and the Jacobi identity for the bracket { , } on M . He continues with the question:
suppose we have given a system of functions Gij in r variables that satisfy these
equations, is it induced as above from a function group of functions of 2n variables?
He shows that under suitable rank conditions the answer is yes. As we shall see
below, this result is the precursor to many of the fundamental results about the
geometry of Poisson manifolds.

It is obvious that if Gij is a system that satisfies the equations that Lie writes
down, then (4.5) is a Poisson structure in the r-dimensional space. Vice versa, for
any Poisson structure [φ,ψ], the functions

Gij = [Fi, Fj ]

satisfy Lie’s equations.
Lie continues with more remarks on local normal forms of function groups (i.e.,

of Poisson structures), under suitable rank conditions, which are not always stated
as explicitly as one would like. These amount to the statement that a Poisson
structure of constant rank is determined from a foliation by symplectic leaves. It is
this characterization that Lie uses to get the symplectic form on coadjoint orbits.
On the other hand, Lie does not apply the symplectic form on the coadjoint orbits to
representation theory—representation theory of Lie groups started only later with
Schur on GLn, Elie Cartan on representations of semisimple Lie algebras and much
later, in the 1930’s by Weyl for compact Lie groups. The coadjoint orbit symplectic
structure was connected with representation theory in the work of Kirillov and
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Kostant. On the other hand, Lie did apply the Poisson structure on the dual of
the Lie algebra to prove that every abstract Lie algebra can be realized as a Lie
algebra of Hamiltonian vector fields, or as a Lie subalgebra of the Poisson algebra of
functions on some symplectic manifold. This is “Lie’s third fundamental theorem”
in the form as given by Lie.

Of course, in geometry, people like Engel, Study and in particular Elie Cartan
studied Lie’s work intensely and propagated it very actively. However, through the
tainted glasses of retrospection, Lie’s work on Poisson structures did not appear to
receive as much attention in mechanics; for example, even though Cartan himself did
very important work in mechanics, he did not seem to realize that the Lie-Poisson
bracket was central to the Hamiltonian description of some of the rotating fluid
systems he was himself studying. However, others, such as Hamel [1904, 1949] did
study Lie intensively and used it to make substantial contributions and extensions
(such as to the study of nonholonomic systems, including rolling constraints), but
many other active schools seem to have missed it. Even more surprising in this
context is the contribution of Poincaré [1901, 1910] to the Lagrangian side of the
story, a tale that we shall come to shortly. But we are getting ahead of ourselves—
before telling this part of the story let us study some of the theory of mechanics and
Lie algebras from the Hamiltonian point of view.

5 Lie-Poisson Structures and the Rigid Body

We now summarize a few topics in the dynamics of systems associated with Lie
groups from a modern point of view to put the preceding historical comments in
perspective.

Let G be a Lie group and g = TeG its Lie algebra with [ , ] : g × g → g the
associated Lie bracket. The dual space g

∗ is a Poisson manifold with either of the
two brackets

{f, k}±(µ) = ±

〈
µ,

[
δf

δµ
,
δk

δµ

]〉
. (5.6)

Here δf/δµ ∈ g is defined by
〈
ν,
δf

δµ

〉
= Df(µ) · ν

for ν ∈ g
∗, where D denotes the Frechet derivative. (In the infinite dimensional case

one needs to worry about the existence of δf/δµ). See, for instance, Marsden and
Weinstein [1982, 1983] for applications to plasma physics and fluid mechanics. The
notation δf/δµ is used to conform to the functional derivative notation in classical
field theory. In coordinates, (ξ1, . . . , ξm) on g and corresponding dual coordinates
(µ1, . . . , µm) on g

∗, the Lie-Poisson bracket (5.6) is

{f, k}±(µ) = ±µaC
a
bc

∂f

∂µb

∂k

∂µc
; (5.7)

here, Ca
bc are the structure constants of g defined by [ea, eb] = Cc

abec, where (e1, . . . , em)
is the coordinate basis of g and where, for ξ ∈ g, we write ξ = ξaea, and for
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µ ∈ g
∗, µ = µae

a, where (e1, . . . , em) is the dual basis. As we mentioned earlier,
formula (5.7) appears explicitly in Lie [1890] (see §75).

Which sign to take in (5.7) is determined by understanding Lie-Poisson re-

duction , which can be summarized as follows. Let

λ : T ∗G→ g
∗ be defined by pg 7→ (TeLg)

∗pg ∈ T ∗
eG

∼= g
∗, (5.8)

and
ρ : T ∗G→ g

∗ be defined by pg 7→ (TeRg)
∗pg ∈ T ∗

eG
∼= g

∗. (5.9)

Then λ is a Poisson map if one takes the − Lie-Poisson structure on g
∗ and ρ

is a Poisson map if one takes the + Lie-Poisson structure on g
∗. This procedure

uniquely characterizes the Lie-Poisson bracket and is a basic example of Poisson
reduction.

Every left invariant Hamiltonian and Hamiltonian vector field is mapped by λ
to a Hamiltonian and Hamiltonian vector field on g

∗. There is a similar statement
for right invariant systems on T ∗G. One says that the original system on T ∗G has
been reduced to g

∗. The reason λ and ρ are both Poisson maps is perhaps best
understood by observing that they are both equivariant momentum maps generated
by the action of G on itself by right and left translations, respectively together
with the fact that equivariant momentum maps are always Poisson maps (see, for
example, Marsden et. al. [1983]).

The Euler equations of motion for rigid body dynamics are given by

Π̇ = Π × Ω, (5.10)

where Π = IΩ is the body angular momentum, I is the moment of inertia tensor, and
Ω is the body angular velocity. Euler’s equations are Hamiltonian relative to the
minus Lie-Poisson structure. To see this, take G = SO(3) to be the configuration
space. Then g ∼= (R3,×) and we identify g ∼= g

∗ using the standard inner product on
Euclidean space. The corresponding (minus) Lie-Poisson structure on R

3 is given
by

{f, k}(Π) = −Π · (∇f ×∇k). (5.11)

For the rigid body one chooses the minus sign in the Lie-Poisson bracket because the
rigid body Lagrangian (and hence Hamiltonian) is left invariant and so its dynamics
pushes to g

∗ by the map λ in (5.8) .
To understand the way the Hamiltonian function originates, it is helpful to recall

some basic facts about rigid body dynamics. We regard an element R ∈ SO(3) giving
the configuration of the body as a map of a reference configuration B ⊂ R

3 to the
current configuration R(B); the map R takes a reference or label point X ∈ B to a
current point x = R(X) ∈ R(B). When the rigid body is in motion, the matrix R is
time dependent and the velocity of a point of the body is ẋ = ṘX = ṘR−1x. Since
R is an orthogonal matrix, R−1Ṙ and ṘR−1 are skew matrices, and so we can write

ẋ = ṘR−1x = ω × x, (5.12)
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which defines the spatial angular velocity vector ω. The corresponding body
angular velocity is defined by

Ω = R−1ω, i.e., R−1Ṙv = Ω × v (5.13)

so that Ω is the angular velocity relative to a body fixed frame. The kinetic energy
is

K =
1

2

∫

B

ρ(X)‖ṘX‖2 d3X, (5.14)

where ρ is a given mass density in the reference configuration. Since

‖ṘX‖ = ‖ω × x‖ = ‖R−1(ω × x)‖ = ‖Ω ×X‖,

K is a quadratic function of Ω. Writing

K =
1

2
ΩT

IΩ (5.15)

defines the moment of inertia tensor I, which, if the body does not degenerate
to a line, is a positive definite 3 × 3 matrix, or equivalently, a quadratic form.
This quadratic form can be diagonalized, and this defines the principal axes and
moments of inertia. In this basis, we write I = diag(I1, I2, I3). The function K is
taken to be the Lagrangian of the system on TSO(3) and by means of the Legendre
transformation we get the corresponding Hamiltonian description on T ∗SO(3). One
observes that the Lagrangian and the Hamiltonian are left invariant functions and
so can be expressed in body representation. In this way, we obtain the formula
for the Hamiltonian in body representation H(Π) = 1

2Π · (I−1Π). One can then
verify directly from the chain rule and properties of the triple product that Euler’s
equations are equivalent to the following equation for all f ∈ F(R3):

ḟ = {f,H}. (5.16)

If (P, { , }) is a Poisson manifold, a function C ∈ F(P ) satisfying {C, f} =
0 for all f ∈ F(P ) is called a Casimir function. In the case of the rigid body,
every function C : R

3 → R of the form C(Π) = Φ(‖Π‖2), where Φ : R → R is a
differentiable function, is a Casimir function, as is readily checked. Casimir functions
are constants of the motion for any Hamiltonian since Ċ = {C,H} = 0 for any H.
In particular, for the rigid body, ‖Π‖2 is a constant of the motion. Casimir functions
and momentum maps play a key role in the stability theory of relative equilibria
(see Marsden [1992] and references therein and for references and a discussion of the
relation between Casimir functions and momentum maps.

As we have remarked, the maps λ and ρ induce Poisson isomorphisms between
(T ∗G)/G and g

∗ (with the − and + brackets respectively) and this is a special
instance of Poisson reduction. The following result is one useful way of formulat-
ing the general relation between T ∗G and g

∗. We treat the left invariant case for
simplicity.
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Theorem 5.1 Let G be a Lie group and H : T ∗G → R be a left invariant Hamil-
tonian. Let h : g

∗ → R be the restriction of H to the identity. For a curve
p(t) ∈ T ∗

g(t)G, let µ(t) = (T ∗

g(t)L) · p(t) = λ(p(t)) be the induced curve in g
∗. Then

the following are equivalent:

i p(t) is an integral curve of XH ; i.e., Hamilton’s equations on T ∗G hold,

ii for any smooth function F ∈ F(T ∗G), Ḟ = {F,H}, where { , } is the canonical
bracket on T ∗G

iii µ(t) satisfies the Lie-Poisson equations

dµ

dt
= ad∗

δh/δµµ (5.17)

where adξ : g → g is defined by adξη = [ξ, η] and ad∗
ξ is its dual, i.e.,

µ̇a = Cd
ba

δh

δµb
µd (5.18)

iv for any f ∈ F(g∗), we have
ḟ = {f, h}− (5.19)

where { , }− is the minus Lie-Poisson bracket.

We now make some remarks about the proof. First of all, the equivalence of i

and ii is general for any cotangent bundle, as is well known. The equivalence of ii

and iv follows from the fact that λ is a Poisson map and H = h ◦ λ. Finally, we
establish the equivalence of iii and iv. Indeed, ḟ = {f, h}− means

〈
µ̇,
δf

δµ

〉
= −

〈
µ,

[
δf

δµ
,
δh

δµ

]〉

=

〈
µ, adδh/δµ

δf

δµ

〉

=

〈
ad∗

δh/δµµ,
δf

δµ

〉
.

Since f is arbitrary, this is equivalent to iii.

6 A Little History of the Equations of Mechanics on Lie

algebras and their Duals

The above theory describes the adaptation of the concepts of Hamiltonian mechanics
to the context of the duals of Lie algebras. This theory could easily have been given
shortly after Lie’s work, but evidently it was not observed for the rigid body or
ideal fluids until the work of Pauli [1953], Martin [1959], Arnold [1966], Ebin and
Marsden [1970], Nambu [1973], and Sudarshan and Mukunda [1974], all of whom
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were, it seems, unaware of Lie’s work on the Lie-Poisson bracket. It would appear
that even Elie Cartan was unaware of this aspect of Lie’s work, which does seem
surprising. Perhaps it is less surprising when one thinks for a moment about how
many other things Cartan was involved in at the time. Nevertheless, one is struck
by the amount of rediscovery and confusion in this subject. Evidently this situation
is not unique to mechanics.

One can also write the equations directly on the Lie algebra, bypassing the Lie-
Poisson equations on the dual. The resulting equations were first written down on
a general Lie algebra by Poincaré [1901]; we refer to these as the Euler-Poincaré

equations. Arnold [1988] and Chetaev [1989] emphasized these equations as im-
portant in the recent literature. We shall develop them from a modern point of
view in the next section. Poincaré [1910] goes on to study the effects of the de-
formation of the earth on its precession—he apparently recognizes the equations
as Euler equations on a semi-direct product Lie algebra. In general, the command
that Poincaré had of the subject is most impressive, and is hard to match in his
near contemporaries, except perhaps Riemann and Routh. It is noteworthy that
Poincaré [1901] has no bibliographic references and is only three pages in length,
so it is rather hard to trace his train of thought or his sources–compare this style
with that of Hamel [1904]! In particular, he gives no hints that he understood the
work of Lie on the Lie-Poisson structure, but of course Poincaré understood the Lie
group and Lie algebra concepts very well indeed.

Our derivation of the Euler-Poincaré equations in the next section is based on a
reduction of variational principles, not on a reduction of the symplectic or Poisson
structure, which is natural for the dual. We also show that the Lie-Poisson equations
are related to the Euler-Poincaré equations by the “fiber derivative” in the same way
as one gets from the ordinary Euler-Lagrange equations to the Hamilton equations.
Even though this is relatively trivial in the present context, it does not appear to
have been written down before.

In the dynamics of ideal fluids, the resulting variational principle is essentially
what has been known as “Lin constraints”. (See Cendra and Marsden [1987] for a
discussion of this theory and for further references; that paper introduced a con-
strained variational principle closely related to that given here, but using Lagrange
multipliers rather than the direct and simpler approach in this paper). Variational
principles in fluid mechanics itself has an interesting history, going back to Ehrenfest,
Boltzman, and Clebsch, but again, there was little if any contact with the heritage
of Lie and Poincaré on the subject. Even as recently as Seliger and Witham [1968] it
was remarked that “Lin’s device still remains somewhat mysterious from a strictly
mathematical view”. It is our hope that the methods of the present paper remove
some of this mystery.

One person who was well aware of the work of both Lie and Poincaré was Hamel.
However, despite making excellent contributions, he seemed to miss the true simplic-
ity of the situation, and instead got tangled up in the concept of “quasi-coordinates”.

How does Lagrange fit into this story? In Mecanique Analytique, volume 2,
equations A on page 212 are the Euler-Poincaré equations for the rotation group
written out explicitly for a reasonably general Lagrangian. Of course, he must have
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been thinking of the rigid body equations as his main example. We should remember
that Lagrange also developed the key concept of the Lagrangian representation of
fluid motion, but it is not clear that he understood that both systems are special
instances of one theory. Lagrange spends a large number of pages on his derivation
of the Euler-Poincaré equations for SO(3), in fact, a good chunk of volume 2 of
Mecanique Analytique. His derivation is not as clean as we would give today, but
it seems to have the right spirit of a reduction method. That is, he tries to get
the equations from the Euler-Lagrange equations on TSO(3) by passing to the Lie
algebra.

Because of the above facts, one might argue that the term “Euler-Lagrange-
Poincaré” equations is the right nomenclature for these equations. Since Poincaré
noted the generalization to arbitrary Lie algebras, and applied it to interesting fluid
problems, it is clear that his name belongs, but in light of other uses of the term
“Euler-Lagrange”, it seems that “Euler-Poincaré” is a reasonable choice.

Marsden and Scheurle [1992], [1993] and Weinstein [1993] have studied a more
general version of Lagrangian reduction whereby one drops the Euler-Lagrange
equations from TQ to TQ/G. This is a nonabelian generalization of the classi-
cal Routh method, and leads to a very interesting coupling of the Euler-Lagrange
and Euler-Poincaré equations. This problem was also studied by Hamel [1904] in
connection with his work on nonholonomic systems (see Koiller [1992] and Bloch,
Krishnaprasad, Marsden and Murray [1993] for more information).

7 The Euler-Poincaré Equations

Above, we saw how to write the Lagrangian of rigid body motion as a function
L : TSO(3) → R and that the Lagrangian can be written entirely in terms of the
body angular velocity. From the Lagrangian point of view, the relation between the
motion in R space and that in body angular velocity (or Ω) space is as follows.

Theorem 7.1 The curve R(t) ∈ SO(3) satisfies the Euler-Lagrange equations for

L(R, Ṙ) =
1

2

∫

B

ρ(X)‖ṘX‖2 d3X (7.20)

if and only if Ω(t) defined by R−1Ṙv = Ω × v for all v ∈ R
3 satisfies Euler’s

equations:
IΩ̇ = IΩ × Ω. (7.21)

Moreover, this equation is equivalent to conservation of the spatial angular momen-
tum:

d

dt
π = 0 (7.22)

where π = RIΩ.

One instructive way to prove this indirectly is to pass to the Hamiltonian formu-
lation and use Lie-Poisson reduction, as outlined above. One way to do it directly
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is to use variational principles. By Hamilton’s principle, R(t) satisfies the Euler-
Lagrange equations if and only if

δ

∫
Ldt = 0.

Let l(Ω) = 1
2 (IΩ) · Ω so that l(Ω) = L(R, Ṙ) if R and Ω are related as above.

To see how we should transform Hamilton’s principle, we differentiate the relation
R−1Ṙv = Ω × v with respect to R to get

−R−1(δR)R−1Ṙv +R−1(δṘ)v = δΩ × v. (7.23)

Let the skew matrix Σ̂ be defined by

Σ̂ = R−1δR (7.24)

and define the vector Σ by
Σ̂v = Σ × v. (7.25)

Note that
˙̂
Σ = −R−1ṘR−1δR +R−1δṘ,

so
R−1δṘ =

˙̂
Σ +R−1ṘΣ̂ (7.26)

substituting (7.26) and (7.24) into (7.23) gives

−Σ̂Ω̂v +
˙̂
Σv + Ω̂Σ̂v = δ̂Ωv

i.e.,

δ̂Ω =
˙̂
Σ + [Ω̂, Σ̂]. (7.27)

The identity [Ω̂, Σ̂] = (Ω × Σ)̂ holds by Jacobi’s identity for the cross product, and
so

δΩ = Σ̇ + Ω × Σ. (7.28)

These calculations prove the following

Theorem 7.2 Hamilton’s variational principle

δ

∫ b

a
Ldt = 0 (7.29)

on SO(3) is equivalent to the reduced variational principle

δ

∫ b

a
l dt = 0 (7.30)

on R
3 where the variations δΩ are of the form (7.28) with Σ(a) = Σ(b) = 0.
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To complete the proof of Theorem 7.1, it suffices to work out the equations
equivalent to the reduced variational principle (7.30). Since l(Ω) = 1

2 〈IΩ,Ω〉, and I

is symmetric, we get

δ

∫ b

a
l dt =

∫ b

a
〈IΩ, δΩ〉dt

=

∫ b

a
〈IΩ, Σ̇ + Ω × Σ〉dt

=

∫ b

a

[〈
−
d

dt
IΩ,Σ

〉
+ 〈IΩ,Ω × Σ〉

]

=

∫ b

a

〈
−
d

dt
IΩ + IΩ × Ω,Σ

〉
dt

where we have integrated by parts and used the boundary conditions Σ(b) = Σ(a) =
0. Since Σ is otherwise arbitrary, (7.30) is equivalent to

−
d

dt
(IΩ) + IΩ × Ω = 0,

which are Euler’s equations. That these are equivalent to the conservation of spatial
angular momentum is a straightforward calculation. Note that alternatively, one can
use Noether’s theorem to prove conservation of spatial angular momentum, and from
this one can derive the Euler equations. �

We now generalize this procedure to an arbitrary Lie group and later will make
the direct link with the Lie-Poisson equations.

Theorem 7.3 Let G be a Lie group and L : TG → R a left invariant Lagrangian.
Let l : g → R be its restriction to the identity. For a curve g(t) ∈ G, let ξ(t) =
g(t)−1 · ġ(t); i.e., ξ(t) = Tg(t)Lg(t)−1 ġ(t). Then the following are equivalent

i g(t) satisfies the Euler-Lagrange equations for L on G,

ii the variational principle

δ

∫
L(g(t), ġ(t))dt = 0 (7.31)

holds, for variations with fixed endpoints,

iii the Euler-Poincaré equations hold:

d

dt

δl

δξ
= ad∗

ξ

δl

δξ
, (7.32)

iv the variational principle

δ

∫
l(ξ(t))dt = 0 (7.33)
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holds on g, using variations of the form

δξ = η̇ + [ξ, η], (7.34)

where η vanishes at the endpoints,

v conservation of spatial angular momentum holds:

d

dt
π = 0 (7.35)

where π is defined by

π = Ad∗

g−1

∂l

∂ξ
. (7.36)

We comment on the proof. First of all, the equivalence of i and ii holds on the
tangent bundle of any configuration manifold Q. Secondly, ii and iv are equivalent.
To see this, one needs to compute the variations δξ induced on ξ = g−1ġ = TLg−1 ġ
by a variation of g. To calculate this, we need to differentiate g−1ġ in the direction
of a variation δg. If δg = dg/dε at ε = 0, where g is extended to a curve gε, then,
roughly speaking,

δξ =
d

dε
g−1 d

dt
g

while if η = g−1δg, then

η̇ =
d

dt
g−1 d

dε
g.

It is thus plausible that the difference δξ−η̇ is the commutator, [ξ, η]. Above, we saw
the explicit verification of this for the rigid body, and the same proof works for any
matrix group. For a complete proof for the general case, see Bloch, Krishnaprasad,
Marsden and Ratiu [1994b] (it also follows from formulas in Marsden, Ratiu and
Raugel [1991]).

The proof that iii and v are equivalent is a straightforward verification. We also
note that conservation of the spatial angular momentum follows from Noether’s
theorem (indeed the spatial angular momentum is the value of the momentum map
for the left action of the group), so this can be used to give another derivation of
the Euler-Poincaré equations.

To complete the proof, we show the equivalence of iii and iv. Indeed, using the
definitions and integrating by parts,

δ

∫
l(ξ)dt =

∫
δl

δξ
δξ dt

=

∫
δl

δξ
(η̇ + adξη)dt

=

∫ [
−
d

dt

(
δl

δξ

)
+ ad∗

ξ

δl

δξ

]
η dt

so the result follows. �
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Since the Euler-Lagrange and Hamilton equations on TQ and T ∗Q are equiva-
lent, it follows that the Lie-Poisson and Euler-Poincaré equations are also equivalent.
To see this directly , we make the following Legendre transformation from g to g

∗:

µ =
δl

δξ
, h(µ) = 〈µ, ξ〉 − l(ξ).

Note that
δh

δµ
= ξ +

〈
µ,
δξ

δµ

〉
−

〈
δl

δξ
,
δξ

δµ

〉
= ξ

and so it is now clear that the Lie-Poisson and Euler-Poincaré equations are equiv-
alent.

8 The Reduced Euler-Lagrange Equations

As we have mentioned, the Lie-Poisson and Euler-Poincaré equations occur for many
systems besides the rigid body equations. They include the equations of fluid and
plasma dynamics, for example. For many other systems, such as a rotating molecule
or a spacecraft with movable internal parts, one can use a combination of equations
of Euler-Poincaré type and Euler-Lagrange type. Indeed, on the Hamiltonian side,
this process has undergone development for quite some time, and is discussed briefly
below. On the Lagrangian side, this process is also very interesting, and has been
recently developed by, amongst others, Marsden and Scheurle [1993]. The general
problem is to drop Euler-Lagrange equations and variational principles from a gen-
eral velocity phase space TQ to the quotient TQ/G by a Lie group action of G on
Q. If L is a G-invariant Lagrangian on TQ, it induces a reduced Lagrangian l on
TQ/G.

An important ingredient in this work is to introduce a connection A on the
principal bundle Q → S = Q/G, assuming that this quotient is nonsingular. For
example, the mechanical connection (see Kummer [1981], Marsden [1992] and refer-
ences therein), may be chosen for A. This connection allows one to split the variables
into a horizontal and vertical part.

We let xα, also called “internal variables”, be coordinates for shape space Q/G,
ηa be coordinates for the Lie algebra g relative to a chosen basis, l be the Lagrangian
regarded as a function of the variables xα, ẋα, ηa, and let Ca

db be the structure con-
stants of the Lie algebra g of G.

If one writes the Euler-Lagrange equations on TQ in a local principal bundle
trivialization, using the coordinates xα introduced on the base and ηa in the fiber,
then one gets the following system of Hamel equations

d

dt

∂l

∂ẋα
−

∂l

∂xα
= 0 (8.37)

d

dt

∂l

∂ηb
−

∂l

∂ηa
Ca

dbη
d = 0. (8.38)

However, this representation of the equations does not make global intrinsic sense
(unless Q → S admits a global flat connection). The introduction of a connection
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allows one to intrinsically and globally split the original variational principle rela-
tive to horizontal and vertical variations. One gets from one form to the other by
means of the velocity shift given by replacing η by the vertical part relative to the
connection:

ξa = Aa
αẋ

α + ηa

Here, Ad
α are the local coordinates of the connection A. This change of coordinates

is well motivated from the mechanical point of view since the variables ξ have the
interpretation of the locked angular velocity and they often complete the square
(help to diagonalize) the kinetic energy expression. The resulting reduced Euler-

Lagrange equations have the following form:

d

dt

∂l

∂ẋα
−

∂l

∂xα
=

∂l

∂ξa

(
Ba

αβẋ
β +Ba

αdξ
d
)

(8.39)

d

dt

∂l

∂ξb
=

∂l

∂ξa
(Ba

αbẋ
α + Ca

dbξ
d) (8.40)

In these equations, Ba
αβ are the coordinates of the curvature B of A, Ba

αd = cabdA
b
α

and Ba
dα = −Ba

αd.
It is interesting to note that the matrix

[
Ba

αβ Ba
αd

Ba
αd cabd

]

is itself the curvature of the connection regarded as residing on the bundle TQ →
TQ/G.

The variables ξa may be regarded as the rigid part of the variables on the origi-
nal configuration space, while xα are the internal variables. As in Simo, Lewis, and
Marsden [1991], the division of variables into internal and rigid parts has deep impli-
cations for both stability theory and for bifurcation theory, again, continuing along
lines developed originally by Riemann, Poincaré and others. The main way this new
insight is achieved is through a careful split of the variables, using the (mechanical)
connection as one of the main ingredients. This split puts the second variation of
the augmented Hamiltonian at a relative equilibrium as well as the symplectic form
into “normal form”. It is somewhat remarkable that they are simultaneously put
into a simple form. This link helps considerably with an eigenvalue analysis of the
linearized equations, and in Hamiltonian bifurcation theory–see for example, Bloch,
Krishnaprasad, Marsden and Ratiu [1994a].

One of the key results in Hamiltonian reduction theory says that the reduction
of a cotangent bundle T ∗Q by a symmetry group G is a bundle over T ∗S, where
S = Q/G is shape space, and where the fiber is either g

∗, the dual of the Lie algebra
of G, or is a coadjoint orbit, depending on whether one is doing Poisson or symplectic
reduction. We refer to Montgomery, Marsden, and Ratiu [1984] and Marsden [1992]
for details and references. The reduced Euler-Lagrange equations give the analogue
of this structure on the tangent bundle.

Remarkably, equations (8.39) are formally identical to the equations for a me-
chanical system with classical nonholonomic velocity constraints (see Neimark and
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Fufaev [1972] and Koiller [1992].) The connection chosen in that case is the one-form
that determines the constraints. This link is made precise in Bloch, Krishnaprasad,
Marsden and Murray [1994]. In addition, this structure appears in several con-
trol problems, especially the problem of stabilizing controls considered by Bloch,
Krishnaprasad, Marsden, and Sanchez [1992].

For systems with a momentum map J constrained to a specific value µ, the
key to the construction of a reduced Lagrangian system is the modification of the
Lagrangian L to the Routhian Rµ, which is obtained from the Lagrangian by sub-
tracting off the mechanical connection paired with the constraining value µ of the
momentum map. On the other hand, a basic ingredient needed for the reduced
Euler-Lagrange equations is a velocity shift in the Lagrangian, the shift being de-
termined by the connection, so this velocity shifted Lagrangian plays the role that
the Routhian does in the constrained theory.

Conclusions

The current vitality of mechanics, including the investigation of fundamental ques-
tions, is quite remarkable, given its long history and development. This vitality
comes about through rich interactions with both pure mathematics (from topology
and geometry to group representation theory) and through new and exciting appli-
cations to areas such as control theory. It is perhaps even more remarkable that
absolutely fundamental points, such as a clear and unambiguous linking of Lie’s
work on the Lie-Poisson bracket on the dual of a Lie algebra and Poincaré’s work on
the Euler-Poincaré equations on the Lie algebra itself, with the most basic of exam-
ples in mechanics, such as the rigid body and the motion of ideal fluids, took nearly
a century to complete. The attendant lessons to be learned about communication
between mathematics and the other mathematical sciences are, hopefully, obvious.
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