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Abstract

This paper gives an overview of selected topics in mechanics and their rela-
tion to questions of stability, control and stabilization. The mechanical connec-
tion, whose holonomy gives phases and that plays an important role in block
diagonalization, provides a unifying theme.

1 The Mechanical Connection

The mechanical connection is a basic object that links mechanics and gauge the-
ory. This point of view has matured over the last decade to the stage where we
now see enough applications and intrinsic beauty to elevate it to a special status.
This topic owes much to Smale [1970], Meyer [1973], Marsden and Weinstein [1974],
Abraham and Marsden [1978], Kummer [1981], Guichardet [1984], Montgomery,
Marsden and Ratiu [1984], Montgomery [1986,1989,1990], Iwai [1987], Wilczeck and
Shapere [1989], Marsden, Montgomery and Ratiu [1990], Simo, Posbergh and Mars-
den [1990], Simo, Lewis and Marsden [1991] and others.

We start with four basic ingredients:

• Q, the configuration manifold of a mechanical system,

• 〈〈 , 〉〉, a Riemannian metric (usually derived from the kinetic energy),

• G, a Lie group of symmetries acting by isometries on Q,

• V , a G-invariant potential energy.

∗Research partially supported by a Fairchild fellowship at Caltech and by DOE. We thank W.
Sluis for providing a draft of the lectures given at the Fields Institute, March 1992.
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Examples
1 The Spherical Pendulum Here Q = S2 a sphere of radius l, where l is the
length of the pendulum, 〈〈 , 〉〉 is the inner product such that K(q, v) = 1

2‖v‖2 is
the kinetic energy, G = S1 acts by rotations around the vertical axis, and V is the
gravitational potential energy. See Figure 1.1.
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Figure 1.1: The spherical pendulum

2 The Ozone Molecule In this case, Q = R
3 × R

3 × R
3, again 〈〈 , 〉〉 gives the

kinetic energy, G is the Euclidean group, and V models the interaction potential
between the oxygen atoms. This problem also has an interesting group of discrete
symmetries associated with the identity of the three oxygen atoms. See Figure 1.2.
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Figure 1.2: The ozone molecule.
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3 The Double Spherical Pendulum (Marsden and Scheurle [1993]). Here Q =
S2

l1
× S2

l2
, the product of two spheres, with radii l1 and l2, the lengths of the two

pendula. The metric 〈〈 , 〉〉 again gives the kinetic energy (it is not the standard
metric!), G = S1 acts by rotations about the vertical axis, and V is the gravitational
potential. See Figure 1.3. �
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Figure 1.3: The double spherical pendulum.

Two Instances of the Mechanical Connection Before giving the abstract defi-
nition of the mechanical connection, which depends only on Q, 〈〈 , 〉〉,and G, we give
a glimpse of how it appears in two specific contexts.

First consider the double spherical pendulum. This problem has some interesting
special explicit solutions of the form q(t) = exp(tξ)q(0) for some ξ ∈ R, where
exp(tξ)q(0) denotes the S1 action, and q = (q1, q2) ∈ S2

l1
×S2

l2
gives the configuration.

The curve q(t) satisfies the Euler-Lagrange equations for the Lagrangian L = kinetic-
potential energies for special choices of q(0). Solutions of this sort are called relative
equilibria .

The general appearance of two of these special solutions is shown in Figure 1.4.
The solution on the left is called the stretched out solution, while the one on the
right is the cowboy solution.

We will explain in §2 the principles by which one determines these shapes. In a
study of stability and bifurcation, one often linearizes the Euler-Lagrange equations
about a given solution. We now describe the form of the equations linearized about
either of the above relative equilibrium.

To describe the pendula configurations, project the position vectors q1 and q2

to the horizontal plane, producing planar vectors q⊥1 and q⊥2 . These vectors have
polar coordinates (r1, θ1) and (r2, θ2) relative to a fixed inertial frame. Notice that
(r1, θ1), (r2, θ2) give local coordinates on Q = S2

l1
× S2

l2
.

As a result of conservation of angular momentum µ, one of the velocities (or
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(a) Stretched out solution (b) cowboy solution

Figure 1.4: The shape of two relative equilibria of the double spherical pendulum.

momenta) can be eliminated. The resulting system, being S1 invariant, can be
written in terms of the reduced variables (r1, r2, ϕ), where

ϕ = θ2 − θ1.

We shall return later to some general comments on reduction. However, it should
already be clear that in terms of the variables (r1, r2, ϕ), the equations have a fixed
point at a relative equilibria, so we can linearize the equations in standard fashion.
(Notice that this process does not involve passing to a rotating frame of reference.)

In terms of the linearized variables x = (δr1, δr2, δϕ), the linearized equations
have the form (as shown in Marsden and Scheurle [1993]):

Mẍ + Sẋ + Λx = 0,

where

M =




m11 m12 0
m12 m22 0
0 0 m33




is symmetric and positive definite (depending on the masses, pendulum lengths, the
shape of the relative equilibrium and the angular momentum µ),

S =




0 0 S13

0 0 S23

−S13 −S23 0




is skew, and

Λ =




a b 0
b d 0
0 0 e
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is symmetric. The zeros in these matrices are due to discrete symmetry. At equi-
librium, ϕ = 0, which means the two pendula lie in a uniformly rotating vertical
plane. Reflection of the system in this plane is a symmetry, and it is its action on
M, S and Λ that forces the above zeros.

The term Sẋ is called the Coriolis, magnetic, or gyroscopic term. It has
appeared through the reduction process, even though the original Euler-Lagrange
(or Hamilton) equations had no such terms explicitly. This term is a direct man-
ifestation of the mechanical connection; in fact, S may, on the linearized level, be
interpreted as the curvature of the mechanical connection.

We observe also that equations of the form Mq̈ + Sq̇ + Λq = 0 as above, can
be interpreted as either Euler-Lagrange or Hamilton equations, but not in a com-
pletely standard way. We demonstrate this using structures that reflect the general
nonlinear theory.

For the Hamiltonian structure, let p = Mq̇ and let

H =
1
2
pT M−1p +

1
2
qT Λq,

the sum of the kinetic and potential energies, and let the Poisson bracket of two
functions F (q, p) and K(q, p) be given (using the summation convention) by

{F, K} =
∂F

∂qi

∂K

∂pi
− ∂K

∂qi

∂F

∂pi
− Sij

∂F

∂pi

∂K

∂pj
.

One checks that this is a Poisson structure and that the equations Mẍ+Sẋ+ΛX = 0
are equivalent to Hamilton’s equations in Poisson bracket form: Ḟ = {F, H} for all
F . Notice that the “curvature” Sij enters directly in the bracket, but not in the
Hamiltonian.

If one writes S = 1
2(A−AT ) for a matrix A (notice that A is not unique, which

reflects a “gauge invariance”), then by replacing p by p = p − Aq, the bracket
becomes the canonical bracket in (q, p) while the Hamiltonian becomes dependent
on A. Momentum shifts of this sort play a key role in reduction theory, as we shall
see shortly.

On the Lagrangian side, the analogue of the above structure is as follows. Let

L(q, q̇) =
1
2
q̇T Mq̇ − 1

2
qT Λq,

the difference of the kinetic and potential energies. The equations Mq̈+Sq̇+Λq = 0
are equivalent to the variational principle (over curves q(t) with fixed endpoints):

δ

∫
L(q, q̇)dt =

∫
δqT Sq̇,

as is readily checked. This variational principle is of the Lagrange-d’Alembert form
with the gyroscopic forces (but that do no work!) appearing on the right hand side.

If the conserved energy quadratic form H is positive definite, one may conclude
that the relative equilibrium is linearly and nonlinearly stable. Since M is positive
definite, this can be tested by looking at the signature of Λ. For the straight out
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solution, the signature is (+,+,+), so it is stable. For the cowboy solution, the
signature is (−,−,+), so the standard energy test for stability fails. In fact, the
presence of the gyroscopic terms in the equations makes the conclusion of stability
or instability more subtle. The system is (assuming no resonances) in fact, linearly
stable for many system parameters, but most people would probably guess that the
corresponding nonlinear system is unstable due to Arnold diffusion (being 3 degree
of freedom, one cannot use KAM theory to conclude nonlinear stability). However,
with the addition of internal (joint) dissipation, general theory tells us that the
system becomes linearly unstable; see. Bloch, Krishnaprasad, Marsden and Ratiu
[1992].

Something else quite interesting happens for the cowboy solution. As the angular
momentum µ increases, eigenvalues (complex roots of det(λ2M +λS +Λ) = 0) split
off the imaginary axis, creating a linear instability in a (generic) 1 : 1 resonance
bifurcation, as in Figure 1.5.

� �

C C

Figure 1.5: The eigenvalue movement in a 1 : 1 resonance bifurcation.

This type of bifurcation is in fact quite common and may be analyzed using
normal forms, as in van der Meer [1985]. Keep in mind that this bifurcation occurs
on the reduced space and that if one detects a periodic orbit (or a two torus) it
yields a two torus (or a three torus) on the original phase space.

Next we turn to another aspect of the mechanical connection that comes up in
rigid body dynamics. We consider a free rigid body and fix the center of mass at
the origin. The position of the rigid body is given by a special orthogonal matrix
A ∈ SO(3) that maps the reference configuration B to the current configuration, as
in Figure 1.6.

Letting X ∈ B and x = AX be points in the fixed reference and moving current
configurations respectively, we see that the velocity of a point is

ẋ = ȦX = ȦA−1x,
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B
x

X

A

Figure 1.6: The rigid body attitude matrix.

where the dynamics is captured through the time dependence of A. Since A is
orthogonal, ȦA−1 is skew, and so we can write, for all v ∈ R

3,

ȦA−1v = ω × v,

defining the spatial angular velocity ω. The body angular velocity is defined
by

Ω = A−1ω.

The mass distribution of the reference body is captured by the moment of inertia
tensor (defined as in calculus textbooks!), which we denote I. The body angular
momentum is given by

Π = IΩ

and the spatial angular momentum by

π = AΠ.

Note that π = (AIA−1)ω and that IA = AIA−1 is the moment of inertia tensor of
the current configuration.

Euler’s famous equations for free rigid body dynamics are given by

Π̇ = Π × Ω.

These equations are again Hamiltonian in the sense that they are equivalent to
Ḟ = {F, H}, where the Hamiltonian is

H(Π) =
1
2
ΠI−1Π =

1
2
πI−1

A π

and where the rigid body bracket is

{F, K}(Π) = −Π · (∇F ×∇K).
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This bracket is a special case of the Lie-Poisson bracket valid on the dual of any
Lie algebra.

The spatial angular momentum is conserved in time:

π̇ = (AΠ)̇ = ȦΠ + AΠ̇
= ȦA−1π + A(Π × Ω)
= ω × π + π × ω = 0.

In particular, the length ‖π‖ = ‖Π‖ is conserved. In fact the functions

C(Π) = ϕ(‖Π‖2)

for any function ϕ of one variable are not only conserved, they are Casimir func-
tions for the rigid body bracket. That is,

{C, K} = 0

for any K.
The two invariants ‖Π‖ and H(Π) show that the trajectories of Euler’s equations

are given by the standard picture of intersecting a sphere and a family of ellipsoids,
as in Figure 1.7.

Π3

Π2

Π1

Figure 1.7: The rigid body angular momentum sphere.

Notice that most trajectories on the sphere are periodic. Now we ask the fol-
lowing question: if Π(t) goes through a periodic motion with period T , so that
Π(T ) = Π(0), what is A(T )A(0)−1?

A beautiful answer to this question was given by Montgomery [1991]; see also
Marsden, Montgomery and Ratiu [1990]. (The proof of Montgomery is based on
Stokes theorem in the given phase space, but that of Marsden, Montgomery and
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Ratiu is based directly on holonomy formulas from differential geometry). Namely,
from the definitions and conservation of π, we see that

A(T )A(0)−1π = π,

so A(t)A(0)−1 is a rotation about the axis π through some angle, say ∆θ. The
formula for ∆θ is

∆θ = −Λ +
2ET

‖π‖
where Λ is the solid angle enclosed by the loop Π(t), E is the energy and T is the
period.

This formula can be interpreted in terms of holonomy. In fact, we can regard
the set π = µ = constant as being a subset of TSO(3) (containing elements (A, Ȧ)),
or of its dual T ∗SO(3). As such, this set is diffeomorphic to SO(3) (it is the
graph of the right invariant one form whose value at the identity is µ). If we call
J : T ∗SO(3) → R

3 the map whose value is π, then the set in question is J−1(µ),
and we have a map

ρ : J−1(µ) → S2

given by taking (A, Ȧ) ∈ J−1(µ) and producing the corresponding Π. The map ρ
is, in fact, the Hopf fibration . There is a natural connection on the bundle ρ,
namely (a multiple of) the canonical one form on T ∗SO(3), restricted to J−1(µ).
Its curvature gives the area form on the sphere.

The holonomy of the loop Π(t) for this connection is exactly the term Λ in the
formula for ∆θ.

These two instances of the connection are in fact related — one can view the
rigid body bracket as all curvature whereas the bracket in the reduced double
spherical pendulum reflects the more general case of a mixture of canonical and
curvature. Reduction theory sorts out these special cases into a unified scheme. The
mechanical connection is the concept that puts these two instances of a connection
into a common framework.

We also wish to point out that the formula for ∆θ is useful for a variety of
other problems, such as attitude shifts due to internal moving parts (falling cats,
satellites with internal rotors or flexible appendages, etc.). It also is very useful in
the framework of attitude control, as we shall hint at in §3.

The Definition of the Mechanical Connection First of all, let g denote the
Lie algebra of G, and for ξ ∈ g, let ξQ denote the infinitesimal generator on Q, so
ξQ is a vector field on Q. In coordinates qi, i = 1, . . . , n on Q, write ξQ = ξi

Q∂/∂qi

and

ξi
Q(q) = Ai

a(q)ξ
a

where ξ = ξaea relative to a choice of basis for g. The locked inertia tensor
I(q) : g → g∗ is defined by

〈I(q) · ξ, η〉 = 〈〈ξQ(q), ηQ(q)〉〉.
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Note that as a bilinear form I(q) is positive definite when ξ �→ ξQ(q) is injective;
i.e., the action is locally free. In this case also, I(q) is invertible. In coordinates,

Iab = gijA
i
aA

j
b

where gij is the metric tensor.
For systems such as coupled rigid bodies or rigid bodies with flexible attach-

ments, where G = SO(3), I(q) is a 3 × 3 matrix, which represents the moment of
inertia tensor for the rigid body obtained by locking the joints (or the internal de-
grees of freedom) in the configuration q. For the ordinary rigid body and using our
earlier notation, I(A) = AIA−1.

The case in which I(q) is invertible will be studied here; the singular case (where
I(q) is a singular matrix) requires special attention. For example, the straight down
state of the double spherical pendulum is such a case.

The momentum map in our context is defined to be the map J : T ∗Q → g∗

given by

〈J(αq), ξ〉 = 〈αq, ξQ(q)〉

or in coordinates, by

Ja(q, p) = piA
i
a(q).

Recall that J will be a constant of the motion for our G-invariant system (Lagrangian
on TQ or Hamiltonian on T ∗Q), which is one version of Noether’s theorem.

Define the locked angular velocity α by analogy with what we do for a rigid
body:

α(q, v) = I(q)−1µ

where µ = J(FL(q, v)) and where FL : TQ → T ∗Q is the Legendre transform. In
coordinates,

αa = I
abgijA

i
bv

j ,

where I
ab is the inverse matrix of Iab. View α as a map α: TQ → g. As such, we also

call α the mechanical connection . It was Kummer [1981] who first pointed out
that α indeed can be viewed as a connection on the bundle Q → Q/G regarded as a
principal G-bundle, that is, α is equivariant and α(ξQ(q)) = ξ. This latter property
can also be interpreted as follows. Let µ ∈ g∗ be fixed and define αµ(q) ∈ T ∗Q by

〈αµ(q), v〉 = 〈α(v), µ〉,

so αµ is a one form on Q. Then αµ ∈ J−1(µ). We shall need this remark below. In
coordinates,

αµ = µaI
abgijA

i
bdqj .
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The magnetic term βµ is defined on Q by

βµ = dαµ.

It plays an important role in the next section.
We refer to Smale [1970] and Abraham and Marsden [1978] for characterizations

of αµ that are equivalent to the one given here.
Here is a direct link with our discussion of the rigid body. If G = Q, then αµ

is independent of the metric, and equals the right invariant form on G whose value
at the identity is µ. This is easily checked, and it was used in this form in Marsden
and Weinstein [1974].

2 Reduction, Stability and Bifurcation

In the last section, we defined the mechanical connection α : TQ → g, which can be
viewed as completing the commutative diagram

T ∗Q g∗

TQ g

J

α

FL I(q)

�

�

� �

For example, for the double spherical pendulum, one checks that α : TQ → R is
given by

α =
k · [m1q1 × v1 + m2(q1 + q2) × (v1 + v2)]

m1‖q⊥1 ‖2 + m2‖(q1 + q2)⊥‖2

where (qi, vi) ∈ TS2
li

gives the positions and velocities of the two pendulum bobs,
with masses m1 and m2, and where, as above, q⊥ denotes the projection of the
vector q to the horizontal plane.

For the ozone molecule, we first eliminate the translation subgroup so that G =
SO(3) remains. With the Jacobi coordinates r and s defined as in Figure 2.1, we
have

α =
ṙ · n
‖s‖ r̂ +

ṡ · n
‖r‖ ŝ +

1
γ

{
1
2
‖r‖2s · ṙ − 2

3
‖s‖2r · ṡ

}
n

where

r̂ =
r

‖r‖ , γ =
1
2
‖r‖2 +

2
3
‖s‖2 and n =

r × s

‖r‖‖s‖ ,

provided r and s are perpendicular. (The formula in the general case is a little more
complicated.)
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s

r

Figure 2.1: Jacobi coordinates

Cotangent Bundle Reduction The mechanical connection plays an important
role in the reduction process. Here we form the reduced space (again, staying away
from singularities)

Pµ = J−1(µ)/Gµ

where Gµ = {g ∈ G | g · µ = µ} is the isotropy subgroup for the coadjoint action
of G on g∗, at µ. By a general theorem of Marsden and Weinstein [1974] (see also
Meyer [1973]), Pµ inherits a symplectic structure. Also, any G invariant Hamiltonian
system on T ∗Q drops to one on Pµ.

After reduction, one would like to know how to reconstruct the dynamics back
on the original phase space. It is here that geometric phases and holonomy come in.
We shall remark on this below, but for the general theory, the reader should consult
Marsden, Montgomery and Ratiu [1990].

In many examples, such as the double spherical pendulum and the ozone molecule,
we work not in the general context of symplectic manifolds, but in the cotangent
bundle context. Thus, in this case, it is good to know to what extent Pµ is a
cotangent bundle. The cotangent bundle reduction theorem answers this.

There are two versions of the cotangent bundle reduction theorem. The first (see
Abraham and Marsden [1978]) states that there is a symplectic embedding

(T ∗Q)µ → T ∗(Q/Gµ),

where (T ∗Q)µ embeds as a symplectic subbundle. However, T ∗(Q/Gµ) does not
carry the canonical symplectic structure, but rather it carries the symplectic two
form

Ωµ = Ωcanonical + βµ

where βµ is the two form on Q/Gµ induced by dαµ. Here it is important to note that
αµ does not give a well defined one form on Q/Gµ, but dαµ, its exterior derivative,
does.
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The key step in proving the above is to choose a point αq ∈ J−1(µ) and shift it by
αµ; αq �→ αq − αµ(q), which produces a point in J−1(0) since αµ(q) ∈ J−1(µ). This
is the map that readily drops to the quotient and produces the desired embedding.

For example, for the ordinary rigid body, Q = G = SO(3), Gµ = S1 (rotations
about the axis µ) and (T ∗Q)µ embeds in T ∗(SO(3)/S1) = T ∗(S2) as the zero section.
In this case then, one recovers the body angular momentum sphere and the dynamics
on it. In general, for Q = G, (T ∗Q)µ is a coadjoint orbit, realized in the zero section
of T ∗(G/Gµ) = T ∗(Qµ). In this case, the reduced symplectic form is “all magnetic”,
since Ωcanonical vanishes on the zero section.

When G is abelian, G = Gµ and we have equality

(T ∗Q)µ = T ∗(Q/G),

but the magnetic term is still present in general.
For example, for the double spherical pendulum, (T ∗q)µ = T ∗((S2 × S2)/S1) is

6-dimensional (but it has two singularities!), and the magnetic term is the 2-form
associated with the 3×3 matrix S described earlier — it is 3×3 since βµ is a 2-form
on configuration space. For the associated Poisson brackets, one adds the term

βij
∂F

∂pi

∂K

∂pj

to the canonical bracket of F and K, as was also mentioned earlier.
The other way of looking at the cotangent bundle reduction theorem is to view

(T ∗Q)µ as a coadjoint orbit bundle over T ∗(Q/G), as in Montgomery, Marsden and
Ratiu [1984] and Montgomery [1986]. For example, for the ozone molecule one finds
that (T ∗Q)µ is an S2-bundle over T ∗(Q/G) where shape space Q/G is parametrized
by ‖r‖, ‖s‖ and r · s.

Lagrangian Reduction The above constructions emphasize the Hamiltonian point
of view. On the Lagrangian side we proceed as follows (following Marsden and
Scheurle [1993]).

Define the Routhian by

Rµ = L − αµ

where

L(q, v) =
1
2
‖v‖2 − V (q)

is the Lagrangian. A straightforward calculation shows that in terms of the Routhian,
the standard variational principle

δ

∫
Ldt = 0

can be written

δ

∫
Rµdt =

∫
βµ(q̇, δq)
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for solutions with J = µ. Here βµ is the magnetic term as defined in §1. The
following algebraic identity for Rµ is useful:

Rµ(q, v) =
1
2
‖hor(q, v)‖2 − Vµ(q)

where

hor(q, v) = v − (α(q, v))Q

is the horizontal projection for the connection α and where

Vµ(q) = V (q) +
1
2
〈µ, I(q)−1µ〉

= V (q) +
1
2

I
abµaµb

is the amended potential .
Because of this identity for Rµ, and because βµ naturally drops to Q/Gµ, we see

that our variational principle in terms of Rµ drops to Q/Gµ. A key point is that
because Rµ depends on v only through its horizontal part, we can relax the fixed
endpoint boundary conditions to the condition that the endpoints lie on Gµ-orbits.

Thus, if one adopts the variational principle in the sense of Lagrange and d’Alembert,
then Lagrangian reduction is a natural counterpart to the cotangent bundle reduc-
tion theorem. For G abelian, this corresponds to the classical Routh procedure.

One caution is noteworthy, however. In general, our reduced variational prin-
ciple will be degenerate. This degeneracy occurs precisely when G is not abelian
and will introduce additional constraints in the sense of Dirac. Interestingly, these
constraints correspond exactly to the restriction of the bundle T (Q/Gµ) to its sym-
plectic subbundle (T ∗Q)µ (where we identify vectors and covectors by the Legendre
transformation).

As an extreme case, consider again the rigid body. Here the Routhian is inde-
pendent of v altogether, and the variational principle becomes

δ

∫
Vµ(q)dt =

∫
βµ(q̇, δq)

which are the first-order Euler equations on Q/Gµ = S2.
It is worthwhile to note that there is also a theory of Lagrangian reduction

that does not set the momentum map equal to a constant. In this respect, the
theory is the Lagrangian analogue of Poisson reduction on the Hamiltonian side.
In particular, when one reduces a Lagrangian system on TG for a Lie group G,
one gets the Euler-Poincaré equations for a Lagrangian on a Lie algebra, which are
related to the Lie-Poisson equations on the dual of the Lie algebra by a Legendre
transformation. One of the most interesting aspects of this is the way that the Euler-
Poincaré equations couple to the equations for internal variables through curvature
terms. We refer to Marsden and Scheurle [1993a] for details.

Relative Equilibria and Stability In the general setting, relative equilibria
are dynamic solutions that are also one parameter group orbits. In our context of
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cotangent bundles, one shows that relative equilibria with J = µ are critical points
of Vµ.

For example, for the double spherical pendulum,

Vµ(q1, q2) = m1gq1 · k + m2g(q1 + q2) · k

+
1
2

µ2

m1‖q⊥1 ‖2 + m2‖(q1 + q2)⊥‖2
.

A study of the critical points of Vµ leads to the cowboy and straight out solutions
mentioned earlier. One has, in terms of (r1, r2, ϕ),

Vµ = −m1g1

√
l21 − r2

1 − m2g

(√
l21 − r2

1 +
√

l22 − r2
2

)

+
1
2

µ2

(m1 + m2)r2
1 + m2r2

2 + 2m2r1r2 cos ϕ
.

To study stability, one computes δ2Vµ; it is a little complicated, but due to the
discrete symmetries, as mentioned before, it has the form

δ2Vµ =




a b 0
b d 0
0 0 e




and leads to our earlier assertions about the signature.
The nonabelian case is more complicated but still is quite interesting and struc-

tured.
One splits the space of variations of (a concrete realization of) Q/Gµ into varia-

tions in G/Gµ and variations in Q/G. With the appropriate splitting, one gets the
block diagonal structure

δ2Vµ =




Arnold form 0

0 Smale form




where the Arnold form means δ2Vµ computed on the tangent space to the coad-
joint orbit Oµ

∼= G/Gµ, and the Smale form means δ2Vµ computed on Q/G. This
method turns out to be a powerful one when applied to specific systems such as
spinning satellites with flexible appendages. These results are part of the energy-
momentum method of Simo, Posbergh and Marsden [1990] and Simo, Lewis and
Marsden [1991].

Perhaps even more interesting is the structure of the linearized dynamics near
a relative equilibrium. That is, both the augmented Hamiltonian Hξ = H −
〈J, ξ〉 and the symplectic structure can be simultaneously brought into the following
normal form:

δ2Hξ =




Arnold form 0 0

0 Smale form 0

0 0 Kinetic Energy > 0
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and

Symplectic Form =




coadjoint orbit form ∗ 0

−∗ magnetic (coriolis) I

0 −I 0




where the columns represent the coadjoint orbit variables (G/Gµ), the shape
variables (Q/G) and the shape momenta respectively. The term ∗ is an interac-
tion term between the group variables and the shape variables. The magnetic term
is the curvature of the µ-component of the mechanical connection, as we described
earlier.

For G = SO(3), this form captures all the essential features in a well-organized
way: centrifugal forces in Vµ, coriolis forces in the magnetic term and the interaction
between internal and rotational modes. In fact in this case, the splitting of variables
solves an important problem in mechanics: how to efficiently separate rotational and
internal modes near a relative equilibrium.

Now suppose that we have a compact discrete group Σ acting by isometries on
Q, and preserving the potential. This action lifts to the cotangent bundle. The
resulting fixed point space is the cotangent bundle of the fixed point space QΣ. This
fixed point space represents the Σ-symmetric configurations.

This action also gives an action on the quotient space, or shape space Q/G. We
can split the tangent space to Q/G at a configuration corresponding to the relative
equilibrium according to this discrete symmetry. Here, one must check that the
amended potential is invariant under Σ. In general, this need not be the case, since
the discrete group need not leave the value of the momentum µ invariant. However,
there are two important cases for which this is verified. The first is for SO(3) with
Z2 acting by conjugation, where it maps µ to its negative, so in this case, from the
formula Vµ(q) = V (q) − µI(q)−1µ we see that indeed Vµ is invariant. The second
case, which is relevant for the water molecule, is when Σ acts trivially on G. Then Σ
leaves µ invariant, and so Vµ is again invariant. Under one of these assumptions, one
finds that the Smale form block diagonalizes, which we refer to as the subblocking
property . The blocks in the Smale form are the Σ-symmetric variations, and their
complement chosen to be as the annihilator of the symmetric dual variations. This
can also be applied to the symplectic form, showing that it subblocks as well.

For the ozone (or water) molecule in a symmetric configuration (r ⊥ s) one finds

δ2Vµ =




α β 0 0 0
β δ 0 0 0
0 0 a b 0
0 0 b d 0
0 0 0 0 e




where
[

α β
β δ

]
is the 2 × 2 Arnold block, corresponding to the rigid variations
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and the internal variations split into symmetric variations with the block
[

a b
b d

]

and the scalar e corresponding to the non-symmetric internal variations.
In this case, the linearized equations take on the general form Mq̈ +Sq̇ +Λq = 0

before, except that now these equations for the internal variables get coupled to the
rigid body equations for the rigid variables.

Finally, a word about singular states. For the double spherical pendulum such a
state is the straight down state. The reduced linearized equations become singular
as µ → 0. One can regularize them by rescaling the variables and defining a new
Lagrangian for the linearized equations by

L2(δr1, δr2, δϕ, δṙ1, δṙ2, δϕ̇)

= lim
µ→0

1
µ

Lµ
2 (
√

µδr1,
√

µδr2, δϕ,
√

µδṙ1,
√

µδṙ2, δϕ̇),

where Lµ
2 is the Lagrangian for the linearized equations at a relative equilibrium with

µ �= 0. This regularization shows interesting bifurcation behavior in the straight
down state, as in Dellnitz, Marsden, Melbourne and Scheurle [1992]. In particular,
both splitting (as in Figure 1.5) and passing generically occur.

3 Geometric Phases and Control

To get the idea of geometric phases, we consider some simple examples. Already
the rigid body example in §1 is one basic example, and we will return to this type
of example in the context of control, at the end of the section.

Three Basic Examples of Phases The first example consists of two planar rigid
bodies connected at their centers of mass by a pin joint. Imagine a torque can be
exerted at the joint so that the two bodies can rotate relative to one another, but
that the total angular momentum is zero. See Figure 3.1.

If we let I1 and I2 be the moments of inertia of the two bodies and θ1 and θ2

the angles they make with respect to an inertial frame, then conservation of angular
momentum gives

I1θ̇1 + I2θ̇2 = 0.

Letting ψ = θ2 − θ1 be the angle between the bodies, we get

(I1 + I2)dθ1 + I2dψ = 0

and so if ψ goes through an angle 2πk (i.e., if the joint motor causes k revolutions)
then

∆θ1 = − I2

I1 + I2
· 2πk
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inertial frame

θ1 θ2

body #1

body #2

Figure 3.1: Two planar rigid bodies coupled at their centers of mass by a pin joint

gives the corresponding phase shift on the “large” body. This example shows how
one can reorient body #1 by using a motor to spin body #2. Of course one would like
to understand similar phenomena for a rigid body in 3-space with various internal
variables, such as rotors.

A second example illustrates the role of slowly varying system parameters. This
example, due to Hannay and Berry, considers a bead free to slide on a closed loop of
wire in the plane. Imagine that the bead travels around the loop for time T . Now we
repeat this situation except while the bead is in motion, we slowly (adiabatically)
rotate the hoop (we move the whole system) through 360◦ and compare the two
resulting positions. One finds a shift in position by a distance 4πA/L where A
is the area enclosed by the hoop and where L is the length of the hoop. This
quantity is purely geometric and again can be seen as a holonomy (but there are
some subtleties; see Marsden, Montgomery and Ratiu [1990]).

A third example is the familiar Foucault pendulum. It is well known that the
angular shift in the plane of the pendulum is given by 2π cos α where α is the
colatitude. One can check that this equals the holonomy for parallel translation
of an orthonormal frame around this corresponding line of latitude; see Figure 3.2
for the standard illustration of this holonomy. Establishing this geometric link
using fundamental principles requires some work (Montgomery [1988], Marsden,
Montgomery and Ratiu [1990]).
Generalities on Geometric Phases and Control The general procedure is
to first consider the case in which no external parameters are varied. Here, one
considers the reduction bundle

J−1(µ) → Pµ

with group Gµ and uses the mechanical connection to induce a connection on this
bundle. (As we mentioned before, in the special case G = SO(3) = Q, one gets the
canonical one form.) The holonomy of this connection gives the geometric phase.
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cut and
unroll cone

parallel translate
frame along a
line of latitude

Figure 3.2: Holonomy for the Foucault pendulum.

This construction presupposes the phase corresponds to a closed loop in Pµ.
However, there is evidence that phases can be well defined and meaningful even
when the dynamics on Pµ is chaotic. This is an interesting topic for further research.

For moving systems, one adds to the mechanical connection a “Cartan term”
encoding the coriolis, centrifugal and Euler forces due to the movement. Then
averaging produces a new connection, the Cartan-Hannay-Berry connection
whose holonomy gives the geometric phase.

Let us return to the non-adiabatic situation, but add the complication of control-
ling the internal variables. Perhaps one wants to manipulate the internal variables
having certain attitude objectives in mind.

Suppose one wants to control the internal variables on Q/G with a holonomy
on Q prescribed. Here we are thinking of Q → Q/G as a principle bundle and our
mechanical connection is defined by declaring horizontal to be orthogonal to the
G-orbits, as in Figure 3.3.

horq

verq

q

G.q

Q

Q/G

[q]

Figure 3.3: The mechanical connection.
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The orthogonality condition means that horizontal curves in Q have zero angular
momentum.

This bundle is a possible arena for the dynamics of “colored” particles. That
is, it makes sense to discuss the motion of particles in Q/G in the presence of the
gauge field α, the mechanical connection. These general equations, called Wong’s
equations (see Montgomery [1984] and references therein) have the Hamiltonian,
interestingly, given by the kinetic part of the Routhian; namely

HWong =
1
2
‖hor(q, v)‖2,

but regarded as a function on T (Q/G). These equations reduce to the Lorentz force
law for a particle in a magnetic field when G = S1.

We recall that for constant magnetic fields, charged particles move in circles.
Many control laws (such as those for car and satellite parking) involve repeated
circular excursions in the internal variables as well, and this is undoubtedly not an
accident.

Indeed, a remarkable result of Wilczeck, Shapere and Montgomery (see Mont-
gomery [1990]) shows that the optimal (using the energy cost function) trajectory
in Q/G achieving a given holonomy is indeed the path of a particle moving in the
connection field of the mechanical connection. This link between optimal control
and Yang-Mills particles is one of the surprising results joining these two apparently
unrelated areas of research.

Stabilization of a rigid body with internal rotors We consider a rigid body
with internal rotors as in Figure 3.4. For concreteness, suppose there are 3 rotors
and that they are driven by rotor torques.

Let us first set up the notation. Let

• Ibody = inertia tensor of carrier

• Irotor = diagonal matrix of rotor inertias

• Ilock = locked inertia tensor

• Ω = carrier body angular velocity

• Ωr = vector of rotor angular velocities

• m = IlockΩ + IrotorΩr = momentum conjugate to Ω

• l = Irotor(Ω + Ωr) = momentum conjugate to Ωr

The equations of motion are

ṁ = m × Ω
l̇ = u,

where u is the vector of rotor torques.
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rigid carrier

spinning rotors

Figure 3.4: A rigid body with rotors.

Following Bloch, Krishnaprasad, Marsden and Sanchez [1992], one can ask: can
we manipulate the rotors with a control law so that an otherwise unstable motion
stabilizes?

To answer this question, let us specialize further so we consider motion about
the middle axis and place a rotor along the third axis, as in Figure 3.5.

Let us also specialize the notation. Let

• I1 > I2 > I3 be the rigid body moments of inertia

• J1 = J2 and J3 be the rotor moments of inertia

• Ω be the body angular velocity of the rigid body (the carrier)

• α be the rotor angle relative to the carrier

• m1 = λ1Ω1 where λ1 = J1 + I1

• m2 = λ2Ω2 where λ2 = J2 + I2

• m3 = λ3Ω3 + J3α̇ where λ3 = J3 + I3

• l3 = J3(Ω3 + α̇)
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rigid carrier

rotor

3

1

2

principal axes

Figure 3.5: Rigid body with one rotor along the third axis.

Then the equations of motion become

ṁ1 = m2m3

(
1
I3

− 1
λ2

)
− l3m2

I3

ṁ2 = m1m3

(
1
λ1

− 1
I3

)
+

l3m1

I3

ṁ3 = m1m2

(
1
λ2

− 1
λ1

)
:= m1m2a3

l̇3 = u.

Now we choose the feedback control law

u = km1m2a3

where k is a (gain) parameter. This law is chosen because using it still makes
the whole system Hamiltonian (in fact, these forces are the curvature of a certain
feedback connection!) and retains a symmetry, so leads to the conservation law

l3 − km3 = p,

a constant. We can then perform ordinary reduction, by noting p is a conserved
quantity for a (k-dependent) R-action and we can eliminate the rotor angle α and
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the momentum l3 by substitution. The equations we get are

ṁ1 = m2

(
(1 − k)m3 − p

I3

)
− m3m2

λ2

ṁ2 = −m1

(
(1 − k)m3 − p

I3

)
+

m1m3

λ1

ṁ3 = a3m1m2.

A study of this reduction, or a direct calculation leads to

Proposition 3.1. The preceding equations are Hamiltonian relative to the rigid
body bracket

{F, K}(m) = −m · (∇F ×∇K)

and the Hamiltonian

H =
1
2

(
m2

1

λ1
+

m2
2

λ2
+

[(1 − k)m3 − p]2

(1 − k)I3

)
+

1
2

p2

J3(1 − k)
.

If one prefers, one can do a momentum shift by p and put the gyroscopic effects
in the bracket. One can also do the whole procedure on the Lagrangian side, and
use the theory of Lagrangian reduction. (The details of how to do this will be given
in a forthcoming publication).

For k = 0, there are no torques and one recovers the case of a free spinning rotor.
For k = J3/λ3 one gets the dual spin case where the rotor is constrained to rotate
at constant angular velocity; see Krishnaprasad [1985] and Sanchez [1989].

The stabilization works as follows:

Proposition 3.2. Consider p = 0 and the relative equilibrium (0, M, 0). If

k > 1 − J3

λ2
,

then (0, M, 0) is stable.

Roughly, the flows on the momentum spheres change as in Figure 3.6.
This proposition is readily proved by the energy-momentum or energy-Casimir

method. We look at H + C where C = ϕ(‖m‖2), pick ϕ so that

δ(H + C) |(0,M,0)= 0

and show that δ2(H + C) is negative definite if k > 1 − (J3/λ2) and ϕ′′(M2) < 0.
Finally, we observe that this problem has attitude phase formulas similar to

those for the free rigid body. We refer the reader to Bloch et al. [1992] for details.



3 Geometric Phases and Control 24

k ≈ 1 – (J3/λ2) k > 1 – (J3/λ2)0 < k < 1 – (J3/λ2)

Figure 3.6: Flows on S2 for various gains.
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