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ABSTRACT This paper reviews our previous estimates and gives an example
exhibiting a new phenomenon. In problems involving asymptotics beyond all orders
in a perturbation parameter ε, it is a common assumption that the quantity being
studied (such as a separatrix splitting distance or angle, a solitary wave mismatch,
etc.) can be “estimated” by an expression of the form aεbe−c/ε as ε → 0. Here, a, b
and c are constants (where b can be negative and c is “sharp”, often the distance
from the real axis to a pole in the complex plane). The main purpose of our example
is to show that this assumption can be wrong. The example, which concerns the
splitting of separatrices in a rapidly forced system with a heteroclinic orbit shows
that even the estimate from above (using the sharp value of c) can be incorrect. We
argue that this situation is not isolated or particular, but happens rather generally.
We especially note that in situations involving asymptotics beyond all orders, when
an estimate of the form aεbe−c/ε is assumed, it needs to be justified.
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1 INTRODUCTION

In Holmes , Marsden, and Scheurle [1988] and Scheurle [1989], both upper
and lower exponentially small estimates for separatrix splitting in rapidly forced
planar systems were obtained. Although the results are rather general for analytic
reversible planar systems, we recall them for the pendulum:

UPPER ESTIMATE Consider

ϕ̈ + sin ϕ = δ sin(t/ε). (1)

For any η > 0 there is a δ0 > 0 and a constant C(η, δ0) such that for all ε and δ
satisfying 0 < ε ≤ 1, 0 < δ ≤ δ0,we have

|separatrix splitting| ≤ C(η, δ0)e
−(π

2
−η)/ε (2)

LOWER ESTIMATE AND SHARP UPPER ESTIMATE Consider

ϕ̈ + sin ϕ = εpδ sin(t/ε) (3)

and assume that p > 8. Then there is a δ0 > 0 and constants C1 and C2 such that

for all ε, δ satisfying 0 < ε ≤ 1, 0 < δ ≤ δ0, we have

C2ε
pδe−π/2ε ≤ |separatrix splitting| ≤ C1ε

pδe−π/2ε (4)

Remarks
1. Estimates similar to our upper estimates were obtained by Nieshtadt [1984].

The coefficient in the exponent for our estimate, namely π/2, is the distance from
the real axis to the closest pole of the homoclinic orbit in the complex t-plane. For
Nieshtadt, the exponent is related to the width of a strip in the complex plane on
which the angle variable in action-angle coordinates is analytic. The exact relation
between these two approaches would be interesting to explore further. Nieshtadt

also makes the interesting remark that a variant of KAM theory can be used to
bound the whole stochastic layer between exponentially close KAM curves.

2. There are similar upper estimates for mappings in Fontich and Simo [1990].
3. The upper estimate (1.2) shows that the splitting distance is beyond all orders

in ε (without any assumption on p, as in the second result). An analyticity argument
shows that in (1.1), splitting does occur (with at most discrete exceptions) as ε → 0,
but it does not provide an estimate.

4. There are similar estimates for the splitting angle.
5. Based on the example below, we conjecture that for situations of most interest

in KAM theory, perhaps even for ϕ̈ + sin ϕ = δε sin(t/ε), there is no estimate of the

form

C2ε
bδe−c/ε ≤ |splitting distance| ≤ C1ε

bδe−c/ε

with a sharp constant c/ε (like π/2 for the pendulum) for any constant b (positive
or negative), for all small δ and ε. In fact, in problems like this, it would seem that
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one cannot avoid essential singularities that develop in the estimate. We will see
this explicitly in the example.

6. On the other hand, what we do believe occurs in examples like the p =
1 pendulum and related maps like the ones in Fontich and Simo [1990], is a
convergent expression of the form

|splitting distance| =
(

· · · + a2ε
2 + a1ε + a0 +

a−1

ε
+

a−2

ε2
+ · · ·

)

e−c/ε

for some constants ai. Which power of ε to put in front of e−c/ε depends on how
small ε is. Papers giving numerical evidence for a fixed power of ε as ε → 0 need
to confront the example in this paper in which there is no upper estimate of the

form aεbe−π/2ε as ε → 0. However, it suggests that aεbe−π/2ε may give a good
approximation, but that b may need to be adjusted as ε → 0. Despite this extreme
delicacy with the sharp exponent −π/2ε, the upper estimate, with π/2 replaced by
a slightly smaller exponent, remains valid.

2 THE EXAMPLE

We consider the following family of planar systems.

ẋ = 1 − x2

ẏ = [2x − (α + 2βx)(1 − x2)]y + δ cos(t/ε)
(5)

where α, β, δ, ε are constants. For δ = 0, this system has the heteroclinic orbit

Γ : x = tanh t, y = 0

joining (−1, 0) to (1, 0). We are interested in the splitting of this orbit for small
α, β, δ, ε and β, δ, ε non-zero. Before proceeding with the example, we make a series
of remarks.

Remarks

1. The system (2.1) is chosen so the variables separate (the first equation is
independent of y). This enables one to perform explicit and exact calculations, but
does not seem to be essential for the phenomenon we want to illustrate.

2. Many systems of interest in the splitting of separatrices are Hamiltonian (see
Holmes , Marsden, and Scheurle [1988] for instance), so we make some remarks
on this structure. First, consider the Hamiltonian

H(q, p) =
1

2m
p2 + V (q) + pf(q) (6)

where V is a potential and pf(q) is a gyroscopic term. The variables separate in the
limit m → ∞ and Hamilton’s equations become

q̇ = f(q)
ṗ = −V ′(q) − pf ′(q)

(7)

3



For f(q) = 1−q2, (2.3) has a heteroclinic orbit joining (−1,−1
2V ′(−1)) to (1, 1

2V ′(1)).
With the addition of δ cos(t/ε) to the p-equation, one can readily compute the split-
ting and one finds that it is given exactly by

splitting =

∫ ∞

−∞

δeit/ε

cosh2 t
dt =

δπ

ε sinh(π/2ε)
(8)

and so the system (2.3) is too simple to illustrate what we want. That is, one does

have, for this especially simple situation, a valid prefactor εb. Note that if V = 0
and f(q) = 1 − q2, then (2.3) reduces to (2.1) with α = 0, β = 0. However, (2.1)
exhibits the behavior we want to illustrate only for α or β non-zero. If in (2.2),
m is finite, it seems difficult to calculate the splitting directly; however, we suspect
the same phenomena can happen as in the nearby system (2.1)—that is, we suspect
that there is no prefactor εb one can use (along with the sharp exponential factor
e−π/2) to get an estimate.

3. The equations (2.1) are Hamiltonian when δ = 0, with Hamiltonian function

H = eαx+βx2

[(1 − x2)y]

and symplectic form
Ω = eαx+βx2

dx ∧ dy

as is readily checked. For δ 6= 0 the equations are still Hamiltonian in the non-
autonomous sense.

4. A formal calculation of the Melnikov function for (2.1) gives the function

Mε(t0) = δ

∫ ∞

−∞
(1 − x2) cos((t + t0)/ε)dt =

δπ cos(t0/ε)

ε sinh(π/2ε)
, (9)

whose magnitude coincides with the exact result (2.4). This occurs because the
evolution equation along the heteroclinic orbit for α = β = 0 is linear, so that the
iteration procedure of Holmes, Marsden, and Scheurle [1988] terminates after
the first term. Note, however, that the formal result (2.5) is obtained for all α and
β. As we shall see, the ε dependence of this “leading” term is in general incorrect
for β = εp.

5. Essentially the same equation (2.1) with α = β = 0 with forcing, but not
rapid forcing, was presented by Bountis, Papageorgiou, and Bier [1987] as an
example which is integrable in the sense that it is separable, so can be explicitly
integrated, but which nonetheless exhibits separatrix splitting.

6. A key point that leads to the invalidity of the assumption of a prefactor of the
form εb for (2.1) is the essential singularity in the resulting formula for the splitting
distance in (3.7) below. It should be noted that we did not put in this essential
singularity by hand–it arises naturally even though there are no obvious essential
singularities in the given problem. From the proofs of the splitting estimates, one
sees that one should expect this most of the time, even in simple problems.
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3 THE SPLITTING DISTANCE FORMULA

An interesting feature of the equations (2.1) is that there is a relatively explicit
formula for the exact splitting distance. From ẋ = 1 − x2, we find that the first
component of the stable and unstable manifolds near Γ are given by x = tanh t.
Substituting in the second equation, we get

ẏ = [2x − (α + 2βx)(1 − x2)]y + δ cos(t/ε)
= [2 tanh t − (α + 2β tanh t)(sech2t))]y + δ cos(t/ε)

(10)

Let u = y/ cosh2 t so that

u̇ =
ẏ

cosh2 t
−

2y sinh t

cosh3 t
=

ẏ − 2y tanh t

cosh2 t

i.e.,

u̇ = −
(α + 2β tanh t)

cosh2 t
u +

δ cos(t/ε)

cosh2 t
(11)

Since an indefinite integral of αsech2t + 2βsech2t tanh t is α tanh t− βsech2t, we get

u(t) = e−α tanh t+βsech2t

{

e−βu(0) +

∫ t

0
eα tanh s−βsech2s δ cos(s/ε)

cosh2 s
ds

}

i.e.,

y(t) = cosh2 t e−α tanh t+βsech2t

{

e−βy(0) +

∫ t

0
eα tanh s−βsech2s δ cos(s/ε)

cosh2 s
ds

}

(12)

The unstable manifold of the periodic point near (−1, 0) starting at (0, y(0)) at t = 0
is characterized by choosing y(0) = yu(0) so that y(t) is bounded as t → −∞. Then
(3.3) gives

yu(0) = δeβ

∫ 0

−∞
eα tanh s−βsech2s cos(s/ε)

cosh2 s
ds (13)

Subtracting an analogous formula for ys(0) gives

yu(0) − ys(0) = δeβ

∫ ∞

−∞
eα tanh s−βsech2s cos(s/ε)

cosh2 s
ds (14)

The formula with a starting time t0 and position (0, y(t0)) similarly gives

yu(t0) − ys(t0) = δeβ

∫ ∞

−∞
eα tanh s−βsech2s cos(s + t0)/ε

cosh2 s
ds (15)

Thus, the splitting distance is the absolute value

d =

∣

∣

∣

∣

∣

δeβ

∫ ∞

−∞
eα tanh s−βsech2s eis/ε

cosh2 s
ds

∣

∣

∣

∣

∣

(16)
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The integrand has an essential singularity at s = iπ/2. If we shift the contour to
s = iπ + w, we get

δeβ

∣

∣

∣

∣

∣

∫ iπ+∞

iπ−∞
eα tanh w−βsech2w eiw/ε

cosh2 w
dw

∣

∣

∣

∣

∣

e−π/ε

Thus,

d =

∣

∣

∣

∣

∣

δeβ

1 − e−π/ε

∮

C′

eα tanh w−βsech2w eiw/ε

cosh2 w
dw

∣

∣

∣

∣

∣

where the integration contour C ′ encloses the point iπ/2. Now make the change of
variables z = w − iπ/2 and use cosh(z + iπ/2) = i sinh z to get

d =

∣

∣

∣

∣

∣

δeβ

1 − e−π/ε

∮

eα coth z+β/ sinh2 z eiz/ε

sinh2 z
dz

∣

∣

∣

∣

∣

e−π/2ε (17)

where the integration contour encloses the origin (and none of the other singularities
at (2n + 1)πi/2). Formulas (3.7) and (3.8) are the splitting distance formulas we
shall work with.

The main problem we now pose is this: If β = −ε and α = 0, can one estimate
(3.8) above by an expression of the form aεbe−π/2ε for constants a and b (not de-
pending on ε) as ε → 0 ? As we shall see in the next section, the answer is NO.

Remarks
1. The main difficulty with (3.8) is the presence of the essential singularity of

the function

g(z) = eα coth z+β/ sinh2 z eiz/ε

sinh2 z
(18)

at z = 0. One can ask if essential singularities occur typically or are a peculiarity
of this example. For the pendulum example, one sees from Scheurle [1989] that
there is an uncontrollable accumulation of poles as the iteration procedure is carried
out. This accumulation is the counterpart of the essential singularity of g, so one
can expect a similar consequence. A similar phenomenon seems to occur in the
bifurcation example in Holmes, Marsden and Scheurle [1988].

2. If β = Cεp where p ≥ 3, then the essential singularity can be controlled, as
in the pendulum case, and in this case the upper and lower estimates are valid.

3. Equations (2.1) can be modified to

ẋ = 1 − x2

ẏ = [2x − (α + 2βx)(1 − x2)]y − µ[2x − (α + 2βx)(1 − x2) sin(t/ε)

+
(

δ +
µ

ε

)

cos(t/ε), (19)

which may be regarded as a perturbation of (2.1) with the new parameter µ. How-
ever, for δ = 0 and all α, β and µ, this system is integrable, since it is transformed
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back to the autonomous Hamiltonian system (2.1) with δ = 0 under the change of
variables

x = x̃, y = ỹ + µ sin(t/ε),

and so the splitting is zero. In this case, there is still an essential singularity in the
splitting distance formula, but there is in fact no splitting. Examples like this show
how delicate the splitting condition can be!

4 EXPONENTIALLY SMALL ESTIMATES

We now turn to estimates on d given by (3.7) and (3.8). We shall focus on the
region in parameter space where α = 0, β = −ε and ε > 0. However, there are
many possible ways of expanding the integral, so we leave β independent of ε for
the moment.

Let

D =

∫ ∞

−∞
e−β/ cosh2 s eisε

cosh2 s
ds (20)

As in (3.8), we get

D =
−1

2 sinh(π/2ε)

∮

eβ/ sinh2 z eiz/ε

sinh2 z
dz (21)

Thus, with α = 0, we get d = δeβD. Now we expand the first exponential in (4.1),
giving

D =

∞
∑

n=0

∫ ∞

−∞

(−β)n

n!

eis/ε

cosh2n+2 s
ds (22)

Observe that the (inverse) Fourier transform of 1/ cosh2 s gives

∫ ∞

−∞

eisη

cosh2 s
ds =

η

sinh(πη/2)
≥ 0 (23)

With η = 1/ε in (4.4), we see that each term in the expansion (4.3) is a multiple
convolution of the non-negative function η/ sinh(πη/2) and therefore it is clear that
these terms are postive. Therefore we get an inequality if we discard the tail of the
series. Thus, we have proved the following:

Lemma 1 If β < 0 and N is a positive integer, then

D ≥
N

∑

n=0

(−β)n

n!

∫ ∞

−∞

eis/ε

cosh2n+2 s
ds (24)

Next, rewrite (4.5), as we did in (4.2), to give

D ≥
1

2 sinh(π/2ε)

N
∑

n=0

(−β)n

n!i2n+2

∮

eiz/ε

sinh2n+2 z
dz. (25)
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Making the change of variables ζ = z/ε, we get

D ≥
−ε

2 sinh(π/2ε)

N
∑

n=0

βn

n!

∮

eiζ

sinh2n+2(εζ)
dζ (26)

=
−ε

2 sinh(π/2ε)

N
∑

n=0

βn

n!

∮

1

(εζ)2n+2
hn(εζ)eiζdζ

where hn(w) = w2n+2/ sinh2n+2 w, which is analytic near zero. Therefore, by
Cauchy’s theorem for the derivatives, we get

D ≥
−1

2 sinh(π/2ε)

N
∑

n=0

βn

n!

2πi

(2n + 1)!

1

ε2n+1

d2n+1

dζ2n+1
[hn(εζ)eiζ ]|ζ=0

. (27)

The power series expansion of hn(w) has the form

hn(w) = 1 + an,2w
2 + an,4w

4 + · · ·

for constants an,m, and so

hn(εζ)eiζ =
(

1 + an,2ε
2ζ2 + an,4ε

4ζ4 + · · ·
)

(

1 + iζ +
(iζ)2

2!
+ · · ·

)

The coefficient of ζ2n+1 has the form

i

(2n + 1)!

[

(−1)n + ε2bn,2 + ε4bn,4 + · · · + ε2nbn,2n

]

for real constants bn,2, . . . , bn,2n. Thus, (4.8) gives

D ≥
−π

sinh(π/2ε)

N
∑

n=0

βn

n!

−1

(2n + 1)!ε2n+1

[

(−1)n + ε2bn,2 + · · · + ε2nbn,2n

]

(28)

For ε small, and since this is a finite sum, the expression (4.9) is dominated by the
term from n = N ; i.e., we have proved that

Lemma 2 For ε sufficiently small and β < 0, we have

D ≥
1

2

π

sinh(π/2ε)

|β|N

N !(2N + 1)!

1

ε2N+1
(29)

If |β| = εp, then as in our main lower estimate, for p ≥ 3, this lower estimate is
consistent with a splitting of the form aεbe−π/2ε. However, with β = −ε, we get

D ≥
π

2 sinh(π/2ε)

1

N !(2N + 1)!

1

εN+1
≥

CN

εN+1
e−π/2ε (30)

Putting this all together, we have established our main result:
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Theorem 1 For any integer N , there are constants cN > 0 and εN > 0 such that

for α = 0, β = −ε and δ = ε , we have

d ≥
cN

εN
e−π/2ε (31)

for all 0 < ε < εN

Remarks

1. This result shows, that no sharp upper estimate of the form aεbe−π/2ε can

exist . We emphasize that our ”rough” upper estimate still applies, giving d ≤
Cηe

−(π
2
−η)/ε uniformly as ε → 0 for any η > 0, which is possible, despite (4.12).

2. The above calculations show that with β = −ε, δ = ε, α = 0 and ε > 0, the
splitting distance has the form

d =
(

· · · + a2ε
2 + a1ε + a0 +

a−1

ε
+

a−2

ε2
+ · · ·

)

e−π/2ε (32)

where the Laurent series is convergent and infinitely many of a−1, a−2 . . . are non-
zero. In other words,

d = ϕ(ε)e−π/2ε (33)

where ϕ has an essential singularity in ε at ε = 0. Of course in particular examples,
like this one, one can compute, in principle, the coefficients ak. We suspect the
asymptotic form (4.13), (4.14) is valid rather generally and that ϕ will often have
an essential singularity. Moreover, from (4.11) it is reasonable to suspect that the
coefficients ak get small quickly for large |k|, so for ε not too small, a truncation of
(4.13) may yield a useful numerical approximation.
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CONCLUSIONS
In this paper we have given an explicit example of a system in the plane of the

form u̇ = f0(u) + εf(u, t/ε), where u̇ = f0(u) has a heteroclinic connection, with
pole at iπ/2 in the complex t-plane, and there is no upper estimate of the form
aεbe−π/2ε for any constants a, b uniformly as ε → 0 for the separatrix splitting.

This example illustrates phenomena that we believe are generic, and not isolated.
In particular, it shows that the assumption that the splitting is obtained by (i.e.,
estimated above and below by) aεbe−c/ε, where a, b and c are constants and the
latter is sharp, is not, in general, correct; in fact, not even the upper estimate is
correct. (Note that for reliable numerical work, one would ideally like error bounds
corresponding to an estimate both above and below). Rather, it seems to us that the
correct splitting is given by a prefactor that is an infinite expansion in powers of ε,
both positive and negative. Certain ranges of powers may be useful for numerically
estimating the splitting over corresponding ranges of ε, and this would be of interest
to explore further.

The source of the basic difficulty that the example illustrates is the essential
singularity, which builds up in the iteration process used to give the exact splitting
distance; this essential singularity will typically be present in examples, even though
the original problem may have only poles in the complex t plane and there is no
obvious essential singularity in the given data. In this example, one is able to see
the essential singularity explicitly in the exact formula (3.7). The essential singu-
larity corresponds to one that the proof suggests will build up through a successive
iteration process in most examples. There may be particular mechanisms that can
be used to control the essential singularity, and this is the purpose of the powers εp

in equation (1.3). This type of phenomenon also holds in our main example (2.1),
with β = Cεp, where the power of p needed is given by inspection in this case and in
general by a proof analysis of what is required to control the growth of the pole order
in the iteration proccess. Without such special assumptions, one should expect the
type of behaviour in our example.
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